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A series whose sum range is an arbitrary finite set
by

JAKUB ONUFRY WOJTASZCZYK (Warszawa)

Abstract. In finite-dimensional spaces the sum range of a series has to be an affine
subspace. It has long been known that this is not the case in infinite-dimensional Banach
spaces. In particular in 1984 M. I. Kadets and K. WozZniakowski obtained an example
of a series whose sum range consisted of two points, and asked whether it was possible
to obtain more than two, but finitely many points. This paper answers this question
affirmatively, by showing how to obtain an arbitrary finite set as the sum range of a series
in any infinite-dimensional Banach space.

1. Introduction. For a finite-dimensional linear space X the well-
known Steinitz theorem states that for any conditionally convergent series
the set of all possible limits of the series (called the sum range) is an affine
subspace of X. In the “Scottish Book” S. Banach posed the problem whether
the same holds for infinite-dimensional Banach spaces. The problem was
solved negatively in the same book by J. Marcinkiewicz. In his example
the sum range is the set M of all integer-valued functions in Ls[0, 1]. The
next example, due to M. I. Ostrovskii, showed that the sum range does not
have to be a closed set—the sum range of Ostrovskii’s series was of the
form M ++/2 M. Finally, M. I. Kadets constructed an example in which the
sum range consisted of two points, disproving, in particular, H. Hadwiger’s
conjecture that the sum range has to be the coset of some additive sub-
group of X. The justification of the example was obtained independently by
K. Wozniakowski and P. A. Kornilov in 1986.

It is still unknown what sets can be sum ranges of series. In this paper it
is shown that any finite subset of X can be the sum range of a conditionally
convergent series, which solves the problem posed by M. I. Kadets along
with his two-point example (the problem is stated in [S91] in the general
case, and in [U02] for X = C'(A) and n = 3). The example is an extension
of the 2-point example of M. I. Kadets as given in [S91]. I have tried to keep
the notation consistent with Kadets’ notation as far as possible.
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262 J. O. Wojtaszczyk

All function spaces are considered with the L; norm, ie. ||f||lx =
{x |f(z)]dz. Frequently it is obvious on which set the integral is taken,
and we just write || f]|.

2. The results of K. Wozniakowski. Our work is strongly inspired
by the 2-point example of M. I. Kadets and the proof by K. WozZniakowski.
We will use not only the final result of Wozniakowski’s work, but also mul-
tiple technical facts than can be found in the proof. Rather than force the
reader to search for those in the original paper, we repeat here part of
WozZniakowski’s work, at times formulating the results in a way that will
make them easier to use in the subsequent sections. This section is based on
[S91], and a reader familiar with that work may probably skip it.

Let @ = [0,1]“ be the infinite-dimensional cube, i.e. the product of a
countable number of unit segments, equipped with the standard product
topology and measure. By z = (x1,x2,...) we shall denote the variable
ranging over (). Suppose we have two sequences of functions on the cube:
an and b ., where n € N, and for given n the indices m and j belong to

m,J )

some finite sets M, and J,, = M1 respectively. Set
Ap={ay, :me My}, Bp={by;:meM,,je€Jn}
For convenience if X is a set of functions, we shall denote by X the sum of

the functions from X.
We shall assume the following properties of the functions ay, and by, ;i

(1) Aﬂ(x) =1 vnevie@
2)  lapll = 1/[My),
(3) lim |M,| =

n—oo
(4)  a,, depends only on the variable z,,
(5)  a,, assumes only the values 0 and 1,
(6)  bp;=—ap, - a?“.

We shall refer to these properties as the Kadets properties on the cube Q.
They mean that for each n the interval [0, 1] is divided into |M,,| sets V,* of
equal measure, and ay,(z1,22,...) = 1 iff 2, € V. The functions by, ; are

negative, and are supported on the rectangles {(x,, zn4+1) € V! X V}”‘H}.
From the Kadets properties we can easily deduce another few properties,

mainly concerning the behaviour of by, ;, based on properties (1) and (6):

(7) ap ==Y b,

J€Jn

(8) aftt=— > b,

meMy,
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9)  Bplz)=-1 Vpen,
1
ol = —
) Wl = T
) by, ; depends only on xy, and 41,
12) by, ; assumes only the values 0 and —1,
)

ay, and a), have almost disjoint supports for m # m/'.

Property (13) means that the intersection of two supports is of measure
zero. We can obviously modify a}}, so that the Kadets properties still hold
and the sets {z : a],(z) > 0} are disjoint for any constant n and any two
different values of m.

Let ¢, k € N, be any ordering of all the functions ay, and by, ;- Following
Wozniakowski we shall investigate the convergence of any reordering c, 1)
of Cl-.

PRrROPOSITION 2.1. For any family of functions c; having the Kadets
properties there exist two permutations o and 7 of N such that ) c,) =0
and Y crgy = 1.

Proof. For o it is enough to order the functions a]}, lexicographically,
i.e. al appears before a”m/, if n <n orn=n"and m < m/, and then
immediately after each a]}, we put the whole set {b%,j :j € Jp}. Then the
sum of each block consisting of a single function ay, and the functions by, ;
following it is zero due to property (7), so the norm of each partial sum is
the norm of the currently open block, which converges to zero by (2), (10)
and (3).

To get 7 we order the functions a;}, in the same way, but each function
ay, for n > 1 is followed by the set {b?;ll : 1 € M,_1}, while the functions

L are not followed by anything (as there are no functions b?m j). Then the
functions a!, sum up to the constant function 1 due to property (1). The
following blocks again sum up to zero, this time by (8), so the norm of the
difference between 1 and a particular partial sum is equal to the norm of the

currently open block, which again converges to zero by (2), (10) and (3). =

a

REMARK 1. The series of functions from Proposition 2.1 converge not
only in the L norm, but also in any L, norm for any p < oc.

Proof. Again we only have to investigate the norm of any given block,
as the sum of the previous blocks is zero. The functions a;,, assume only the
values 0 and 1 and have disjoint supports for fixed n from properties (5)
and (13). The functions bim, j for given n have disjoint supports (this follows
from (6) and (13)) and assume the values 0 and —1 (by (12)). Thus for any
f which is the sum of any set of functions ay, and by, ; for fixed n (or ajp,

and b;‘;jl for fixed n in the case of 7) we have || f||s < 1. This implies that
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for any 1 < p < oo,

1/ 1/
a9 = (S0) = (T 1) < A 7 )
<A1 =17

Thus if the sum of the series tends to zero in the L norm as n — oo, it also
tends to zero in any L, norm for p < co. =

PROPOSITION 2.2. If a reordering c, () of a family cy having the Kadets
properties converges, it converges to a constant integer function.

Proof. By (4) and (11) and the finiteness of M,, and J,, only finitely
many of the functions c,(;) depend on a given variable x;, precisely the
functions belonging to A;, B; and B;_1. Moreover, their sum is the constant
function —1 by (1) and (9). Thus for some integer Ky the function Zszl Co(k)
is constant with respect to x; for K > Ky, and thus the limit of the series
also has to be constant with respect to x;. As this holds for any [, the limit
just has to be constant.

As the functions ¢, are integer-valued (properties (5) and (12)), so are
their sums. Thus all partial sums of the series are integer-valued, and so the
limit is also integer-valued, which ends the proof. =

The next step will be to show that 0 and 1 are the only possible limits
of a rearrangement of a family of functions with the Kadets property. We
shall fix a rearrangement c, 1) of a given Kadets family, and we shall assume
that the sum }; c, () converges to some constant integer C' # 1 (we know
C' =1 can be achieved); it remains to prove that under these assumptions
C=0.

Take an arbitrary 6 > 0 and fix Ky = Ky(d) such that for any K > Kj,

K
(15) |0 =3 o] <0
k=1

and for any m > [ > Ky the Cauchy condition holds, i.e.

m
(16) H an(k)H <4
k=l
In addition to the sets A,, and B,, introduced earlier we shall also consider
Vi = Up—1 (A U By). Let M be any integer such that
(17) Cott) €E VMU Apry1 forany k < K.
Let

o — {cg(k) if co) € Vs U Apria, T = {cg(k) if ¢o(1) € By,

0 otherwise. 0 otherwise.
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Define
[e’e) Ko
* *
=), G =) com
k=Ko+1 k=1

Then ¢+ ¢* = Vi + Apry1 =0+ 1= 1. Hence ||c*|| = |[[1 —¢| > |1 = C|| -
IC —¢|| >1—24. Let kg = K¢ and

1 56 b 1 6
(18) kjﬂ—mln{k‘ Z—ZgH Z Z——}.

The indices k; are well defined for j from 1 to 4 because the norm of ¢*
is at least 1 — ¢ and each single ¢ has norm < § by (16). For j = 0,1,2,3
define

kjt1 ki1 kjt1
i = Z Ckr  Cip1 = E Ch, G = Z Co(k)s
k=k;+1 k=k;+1 k=kj+1

and for 7 =1,2,3,4 set

— $ — s — oK
Ty =¢4 Cj C].

In plain words this means that we divide the functions ¢, for k; < k£ <
kj+1 into three sets: those from A, for n < M + 1 or By, for n < M (these
add up to ¢j*), those from Bar41 (these add up to ¢;), and the rest (these
add up to ;). We will show that the functions from Bjs4q are placed in ¢
in similar proportions as the functions from Vj; U Apr1—if, say, about half
of the functions from Vi; U Apr41 appears in ¢ (that happens at k2) then
about half of the functions from Bjs1; must also appear.

We shall need to estimate the norms of two sums, which we would like to
be negligible: [|7;]| and || Y272, .| cll. We know that the sum of all ¢ up to
k; is negligible, thus if the high-n functions (r;) are negligible, the functions
from Vs U Apry1 and Bjpry1 have to approximately cancel each other out.
This motivates the following proposition:

PROPOSITION 2.3. For a Kadets family of functions ¢y, with rearrange-
ment ¢,y converging to some C # 1, and for any 6 and M > Ko(0) as
above,

4
> il < 186.
Jj=1

Proof. As c* is integer-valued (being a sum of functions from a Kadets
family), the condition [|cj*|| < 1/4 implies [suppcj*| < 1/4. Thus we can
use Lemma 1 from Section 4 to get

o ok *x ", 1
le™ 4 rill = el + (1 = 2lsupp & Dllrsll = 5| + 5 7
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Clearly ||¢j]] < 6 from the Cauchy condition (16). We thus have

4 4 4 4
12 el =D lle; =5 =il = > lles™ +rll = D llgll
j=1 j=1 j=1 j=1

4 4
1 1
>3 (e + Il ) =46 2 1 =584 5 5 Iyl — 40
j=1 j=1

which gives the asserted estimate. In particular, each ||7;|| is bounded by 186. m
COROLLARY 2.4. With the notation and assumptions as above,
€5+ ¢;*|| < 190.
Proof. ||gj + c5*|| = &5 — rill < [l&;] + [l <0+ 185 = 196. =

PROPOSITION 2.5. With the notation and assumptions as above,

oo
H 3 gl <16
k=ka+1
Proof. We have
51l = lle; = 5" =il = lef™ + sl = lleslh = llef™ [ + % 7511 = [1&]]

> | =8 > 1/4 - 90/4.

Suppose that || ZIZ;MH cill > 116 for some k' > k4. Then there would
exist ks € (k4, k'] such that 126 > || Ziimﬂ ci|| > 116. Then by a similar
argument (||cs|| > [|c*|| + (1 — 249)||rs]| — ||és]] > 115 — §) the norm of
Do kyt1 Ch would be larger than 100. But all the functions ¢, are negative,
so || > ¢kl = > ||ek||, which in this case gives

ks 4 ks
= H 2. EkH = > llewll + H > EkH >1— 96+ 10,
k=ko j=1 k=ka+1

a contradiction. Thus [| 322, il < 110 (the sum is convergent, as it is
in fact the sum of a finite number of functions, all coming from Vj;11). We
will denote this sum by c;*. =

Now we can prove the main theorem of WozZniakowski’s work:

THEOREM 2.6. For a Kadets family of functions c, with some rear-
rangement cq(iy converging to C' # 1, we have |C — 1/2| < 1/2, which (by
Proposition 2.2) implies C = 0.

Proof. Consider any 4, and the partial sum S = ZZ“: 1 Co(k) With the

notation as above. As ks > Kj, from assumption (15) we know that ||.S — C/|
< 4, so it will suffice to estimate ||.S — 1/2||. We have
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1 4 4 B 4 1
HS_§H: c+ch*+Zaj+er+c§*—c;*—iH
j=1 j=1 j=1
4 1 4
. c+c*—§+j§::15j+;7“] i _H§ ;5 Z + |||

The function Z?Zl ¢; is a sum of functions from Bjsy1, which means it

assumes only the values 0 and —1, thus |1/2 + Z?:l ¢j| is always equal to
1/2. Inserting this and the bounds on r; and c* we get

IS = 1/2|| < 1/2+ 186 4 116 = 1/2 + 296.

As ||S—C| < 6§ we get ||[C —1/2]] < 1/2+304. As 0 is arbitrary, we get the
assertion. m

COROLLARY 2.7. The sum range of any Kadets family consists of two
points, the constant functions 0 and 1, in any L, norm for 1 < p < oo.

Proof. From Proposition 2.1 and Remark 1 we know that the two constant
functions belong to the sum range. From Proposition 2.2 we know that all
functions in the sum range in the L1 norm are constant integer functions, and
from Theorem 2.6, only the 0 and 1 functions are eligible. If a permutation
of the series converged to some function g in some L, norm, then [|S, — gl|,
would tend to zero, where S, = > Co(k)- But from the Holder inequality
we know that ||S, — ¢gllp > [|Sn — gll1 (as the measure of the whole space
is 1), which would imply that the series \S,, also converges in the L; norm,
contradicting Theorem 2.6. m

3. The 3-point series. Let @;, i = 1,2,3, be three copies of the cube
Q. The example will be constructed in Lj(Q1 UQ2UQ3). In the whole paper
t = (t1,te,...) will vary in Q1, u = (u1,u2,...) in Q2 and v = (vi,va,...)
in Qg.

Our series will consist of functions of three kinds. The functions of the
first kind are defined as follows:

fn(t):{1 if =1 <, < 2
m

0 otherwise,
fow)=fr(v)=0 forneN, me{l,...,n}
The second kind of functions are non-zero on all three cubeS'
N -1 1fm1<t<—andj < tpg1 <
gm,j (t) =
0 otherwise ,

n+1’

1 e m—1 m
" 0 otherwise,
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(m—=1)(n+1)+j (m—=1)(n+1)+j
Im.j (V) = { - n(n+1) F < < n(ntl)

0 otherwise,

forneN,me{l,....,n},je{l,....,n+1}.
The functions of the third kind are non-zero on @2 and @s:

P i (t) = 0,

_ 1
By () = {o (CESVEICED)

e m—1 m
if o < Up < o
otherwise,

Ly g DD (m-1)(n+1)+j

n(n+1) < Un < n(n+1)
n _ k—1 E____
him, e (V) and D) nt2) < Untl < D me2)

0 otherwise,

forneN,me{l,...,n},je{l,....n+1}, ke{l,...,(n+1)(n+2)}.

These functions have properties we want to generalize. Suppose we have
three families of indices: M, J, and K,, with J, = M,+; and K
Myi1 X Jpy1 (here M, = {1,...,n} and the mapping from {1,...,n+ 1} X
{1,...,n+2}to{1,..., (n+1)(n+2)}, needed to make k a single index, is given
by (m, j) — (m—1)(n+1)+ 7). We have three families of functions: the first
kind {f}, : n € N, m € My}, thesecond kind {gy,, ; : n € N, m € M, j € Jn}
and the third kind {hﬁld’k :n €N, me M,, je€ J, k€ K,} defined on the
union @1 U Q2 U Q3 of Hilbert cubes. The families f and g form a Kadets
family on ()1, while the functions A vanish identically on 1. On Q3 the
functions g and h form a Kadets family (with M,, x J,, being the first index
set and K, the second), while the functions f vanish. The properties of the
functions on Qo are different:

(19) Z Z ggq,,j =1,

meMy, je€Jp

(200 > > > hnge=-L

meMy, j€Jn kEKy

@1  gri=— > bk

keK,
+1 —
EIRD SRV S S S
m/€Mpy1 meMy j€Jn m' €My 41
(23) Z gm, assumes only the values 0 and 1,

J€JIn

29 Nan;=1\ons
Q2 Q3
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(25) S P ke = S P i e

Q2 Q3
(26)  [lgtll = ————
msJ | My, X Jp|’
1
927 Bl =
( ) H m,],k” ‘Mn » Jn » Kn‘7

(28) g, and Ay, ;. on Qo depend only on uy,.

J m
Such a family of functions will be called a 3-Kadets family. It is easy
(although maybe a bit tedious) to check that the family defined at the
beginning of this section is a 3-Kadets family.
We set

Fo={fm:meMyp}, Gn=A{gn;:meM,, jeJ},

M
Hy={h}, i\ :m€M,, j€Jn, keK,}, V=] FrUGyUH.
k=1
Denote by d,, any fixed enumeration of the whole 3-Kadets family. We are
investigating the possible values of > 7, dg(n) for all permutations o of N.
If for a given rearrangement » dg(n) converges, it converges on each of
the cubes separately. On ()1 and Q3 we have Kadets families of functions,
so on each of these cubes the series converges either to 0 or to 1 due to
Theorem 2.6. The new part is the behaviour on (). As in the first paragraph
of the proof of Proposition 2.2, only finitely many functions depend on a given
variable u,,—the functions G, j and hﬁ% j —and their sum is constant, equal
to zero by (21) applied to each j separately. Thus again the sum } d,(,) on
()2 has to be a constant function.
As SQQ d, = SQB dy, for any d,, (it is O for functions of the first kind and

follows from properties (24) and (25) for the second and third kinds), we get

N N
§ 2 dowy = | D dotu)-

Q2 n=1 Q3 n=1

As the integral is a continuous functional on L1 (Q2) and L1(Q3), the integrals
of the limits have to be equal. But we know that ) d,,) on both Q2 and
(3 is a constant function, so equality of the integrals implies equality of the
sums. Thus the sum of the whole series is described by a pair of integers: the
value on ()1 and the value on (J3. Let us denote the limit function by d..

We will show that it is possible to obtain exactly three different sums:
(0,0),(1,0) and (1,1). To obtain any of these limits we first arrange the
functions f and ¢ as in Proposition 2.1 for a Kadets family on )1, and then
after each g we put the h functions as in Proposition 2.1 for the cube Q3. It
remains to show convergence on ()s.
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In the case of (0, 0) after a given f; there appear all Gpm,; and by, ik with
the same m and n. Their sum on @3 is equal to 0 by (21) apphed for each
J separately. Thus the norm of a partial sum on ()7 is equal to the norm of
the functions appearing after the last f, and this tends to zero by (26), (27)
and (3) (all the functions have the same index m, so the sum of their norms
is equal to 2/|M,| — 0).

In the case of (1, 0) after a given f we get the functions gl’frjll and h?r_nlk
Their sum on @9 is again 0 by (21), this time applied to each [ separately.
Again the norm of the difference between a partial sum and (1,0) is the
norm of the part after the last f, and that again tends to 0.

In the case of (1,1) after a given f we get the functions gf;Ll and

hy . 2, (Lm)* Their sum is 0 by (22) applied to them all. Again the norm of
the difference between a partial sum and 1 tends to 0.

Again it is easy to check that the convergence occurs not only in the L
norm, but also in any L, norm for p < 00, in the same way as in Remark 1-—on
each of the cubes the L, norm of the partial sums is bounded by 1.

One may wonder why the same arguments do not imply the convergence
of the series arranged by rows in G,, and columns in H,_; to (0,1). The
answer is that we lack the equivalent of property (22) for this arrangement.
To illustrate this let us look at the 3-Kadets family given at the beginning
of the section arranged in this natural way. The sum Z 1 Im,j ON Q2 is
equal to 1 on (m —1)/n < n < m/n while the sum of the appropriate
column of H,_1, Z"H sl o hfn,i, (m—1)(nt1)1j> 1 equal to —1/n
on the whole cube Qg Thus the partial sums before each function of the
first kind do not vanish as they did in the previous three cases, and when
half of these functions from a given F,, have appeared, the norm of the
partial sum on Q2 is 1/2 regardless of n—thus this particular series does
not converge. Of course we still have to prove this is true for any rearrange-
ment; but this example indicates why only three and not four possible limits
exist.

4. Auxiliary lemmas. Before we begin the main part of this paper,
i.e. the proof that our series cannot converge to (0, 1), we shall need three
auxiliary lemmas:

LEMMA 1 (given without proof in [O89]). Let (X, u) and (Y,v) be proba-
bility measure spaces. Let f(x,y) and g(x,y) be functions in L1(X xY'), each
of which depends on only one variable: f(x,y) = f(x), g(z,y) = §(y). Then

1F +gll = 71+ lgll[L — 2p(supp f)].
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Proof. We have

If+al= \ If+gl= | If+gl+ | 9]
XxY supp fxY (X \supp f)xY
> | 1= lgl+ (= p(supp £)llgl
supp(f)xY supp(f)xY

= [I71l = u(supp f)llg]l + (1 = p(supp f)) 9]
= I/l + llgll[X = 2p(supp f)]. =
LEMMA 2. Let A, B, C be probability measure spaces andlet X = Ax BxC

be equipped with the standard product measure. Suppose f,g are bounded
functions defined on X of the form f(a,b,c) = f(a, b) = Z,]CVZI SkXA.x B, ond
g(a,b,c) = g(b,c) = Zl]\il tixe,xc,, and ||f — gl < €. Then there exists a
function h(a,b,¢) = h(b) such that |h— g|| < 2¢ and ||h— f|| < 2e. Moreover
if f is integer-valued then h can also be chosen to be integer-valued, and if
for a family of sets B, C B we have Yoy, p,eB,Vaca f(a,bi,¢c) = f(a,ba,c),
then we can choose h constant on each B,,.

Proof. For any given b € B we take iz(b) such that
{17(a,b) = h(v)| da = inf{g I (a,b) — x| da}.
s zeR s

This is well defined, as f is bounded, and thus in fact the inf is taken over
a bounded, and thus compact set. For such an A we have

1h = £l = § 1f(a.b,e) = h®)| = | § {1 F(a,b) = A(b)|

X CBA

= | Y] § 17, b) —2®)1} < § ] §1F(a,t) — 30,0
CB A CBA

<\ 1 V1f(a,b.c) = gla,b,0)| = || f — gl <e.
CBA

As ||h— f|| < e and ||f — g|| < &, we immediately have ||g — h|| < 2¢. As for
the additional assumptions, if f and ¢ are integer-valued, we can take the
inf in the definition of i to be only over the integers, with the same result.
Regardless of which option we choose, if f is constant with respect to b on
any Bg, then from the definition A can also be chosen to be constant on that
set. m

LEMMA 3. Let A, B be probability measures and X = A X B equipped
with the standard product measure. Suppose f, g, h are integer-valued functions
defined on X with f(a,b) = f(a) and h(a,b) = h(b) for some f,h. Suppose
also that g assumes only two adjacent values (i.e. k and k + 1 for some k).

Finally, suppose that ||f + g+ h|| < § < 1/9. Then either f or h is a constant
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function equal to some integer ¢ on a set of measure > 1 — 2V/0. Furthermore,
|f —cll <3V3 (or ||h — c|| < 3V6, respectively).

Proof. The sets F, = f~1((—o0,n]) and H, = h™'((—o0,n]) form two
increasing families, the sum of each is the whole space (A or B respectively)
and the intersection of each is empty. The measures |F,| thus form an
ascending sequence with elements arbitrarily close to 0 when n — —oo and
arbitrarily close to 1 when n — oo. As Fj, \ Fo_1 = f~(n), if f is not
constant on any set of measure > 1 — 21/9, then at least one element of the
sequence |F,|, say |F, |, has to fall into the interval [V/8,1 — /). Similarly
if h is constant on no set of measure > 1 — 21/6, then for some n; we
have V6 > |Hp,| > 1— V6. Then on the set X; = Fn, x Hy, we have
f(a,b) + h(a,b) < np +ny, while on Xo = (A\ Fy;) x (B\ Hp,) we have
f(a,b)+h(a,b) > nyp+ns+2. As g assumes two adjacent values, it is either
< —(np+ng+1)or > —(ny+ng+1) on the whole X. Thus on one of the
sets X7, Xy (call it X;) we have |f + g+ h| > 1. As both X; and X5 are
products of two sets of measure > /9, we have

If + g+ hll = | |f(a,0) + g(a,b) + h(a,b)| = | [£(a,b) + g(a,b) + h(a,b)]
X X;

which contradicts the assumptions of the lemma.

Thus one of the functions has to be constant on a large set. Without loss
of generality we may assume it is h, and that it is equal to some integer c.
Let us examine the function f, taking into account that all the functions are
integer-valued, and thus if their sum is non-zero, it is at least 1:

5> I +g+hl = 1 + 9+ cllaioso
> |{f(a) & {—k — e, —k — c— 11} x h™1(¢)
= [{f(a) ¢ {~k —c,~k —c—1}}|- (1 - 2V¥),
which implies f(a) € {—=k —¢,—k — ¢ — 1} on a set of measure at least

1 —6/(1 — 2v/9). Denote this set by A’. Now we return to the function h:

1 1
= dbes Ty I = e = 7505 1= i o

On A’ the function f + g + ¢ assumes values of absolute value < 1, so by
substituting f + g for —c¢ we shall decrease the norm at most by

LA % (B ()] < (1 - %m)@x/ﬁ) <23,
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thus obtaining the inequality

1
||h—CHX£1_2\f|| + 4 9wy +2V0

IN

5
— If+g+hlx+2Ve< ——— +2V5.
1_2\/5||f g+h|x SN

As 6 < 1/9, we have 6/(1 — 2v/8) < /9, and thus ||h —¢|| < 3V/0. =

5. The fourth point. Now we can prove the main theorem of the paper:

THEOREM 5.1. The function ds = (0,1) does not belong to the sum range
of any 3-Kadets family series.

Proof. Suppose we have a rearrangement of some 3-Kadets family d, ()
whose sum converges to do,. Again, take a small 6 > 0 (we shall need
927V6 < 1/4, i.e. § < 1/13749264) and an integer K satisfying inequalities
(15) and (16), i.e. the tails and Cauchy sums are smaller than ¢ for N > K.
Then, again, we take any M satisfying (17), i.e. such that V}; contains the
first K elements of our series. Then we take an Ny such that

(29) Vi C {dO'(l)) s 7d0'(No)}'
Consider any fixed N > Ny. We will prove that

N
1
Aoin) < =.
Clearly this suffices to prove that our series does not converge to 1 on @3,
which contradicts the assumption the rearrangement converged to (0, 1).
For any L,k € Z denote by Dy, the set {dy(1), ..., dy)}, and by FF G
H ]Lf and VL’C the intersections of Fy, Gp, Hy, or Vi, respectively, with Dj.
First we shall prove the following lemma:

LeMMA 4. If functions fy,, gy, ; and b jx are a 3-Kadets family on
the cubes Q1, Q2 and Q3 and their fized permutatzon dy(n) has the property
that Y dg(y) is 0 on Q1 and 1 on Q2 and Q3, and for a given L we have

SQ3 GY > 1/2 4 383, where N > Ny as above, then there exists a P C [0, 1]

such that |P| = 1/2 and [(HN)~'(0)] N {v : v, € P} C Q3 has measure
< 4500.

REMARK 2. What this lemma really tells us is this: if up to the Nth
element of the series at least half plus something (380) of the G, functions
have appeared, then at least half minus something (4500) of the H, functions
had to appear. Moreover, the H; functions do not appear in a haphazard
fashion—we know that at least half minus something rows had to appear (a
row is the set of all functions h#’ ik with fixed m and j and varying k).
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Proof of Lemma 4. If L < M then our assertion is automatically satisfied
—all functions from Hj, belong to Dy, thus we can take any set of measure
1/2 for P and the set (HY)~1(0) will be empty, so P will satisfy the required
conditions.

Now consider the case L > M. The numbers K and L—1 satisfy conditions
(15)—(17) (as L > M and M satisfies (17)). Thus there exist numbers n;
satisfying (18) (with n; in place of k;). We shall prove that N > no.

We know that §, GY =~ So, GY (as all gy, ; are of the same constant
sign on each cube, the absolute value of the integral is equal to the norm,
and the norms on each cube are equal). If N < ng, then

~ ~ 7 7 ok ok 1
IGT o < 1GT2 M@ = lldy + dall < [|di*|| + 195 + [|d5*|| + 195 < 5 T 380,

which contradicts our assumption (the first inequality follows from the fact
that gfmj are non-positive functions on )1, and the second inequality from
Corollary 2.4).

Thus N > no. Consider Vanl + FBQ on Q1. This function depends on
t1,...,tr, while GEQ = dy +ds on Q1 depends on t7, and ¢ ;. From property
(15) and Corollary 2.4 we get

VP2, + Fr2 4 G2|| < || Dil|+ || di* + da|| + || d5* + da| < 6+196+196 = 396

We can thus use Lemma 2 to show that on ()1 both functions —VL"fl —FEQ

and CN}"EQ are both closer than 398 to some integer-valued function A depending
only on tr.

Each function f;}, depends only on ¢,, and assumes the values 0 and 1 only
(properties (5) and (4)), so it is in fact the characteristic function of a set
{t : t, € S} for some S, C [0, 1]. As the f have disjoint supports for fixed
n, they are all constant on any given S]),. The g functions are also constant
with respect to ¢, on S, by (6), and all the other functions are constant
with respect to ¢, on the whole interval. Thus the functions —VL”fl — FZQ
and C;"L” are constant with respect to t;, on {t; € Sk}, so we can choose A
to be constant on those sets. Thus A coincides on @ with the sum of some
of the rows of G, i.e. A corresponds to some subset A of G, such that for
fixed m either all or none of the functions gTLn’ ; belong to A. Define Aon Qo
and @3 as the sum of all the elements of A as well, which agrees with our
notation that U is the sum of all the elements of U for an arbitrary set of
functions.

We know from (18) and Proposition 2.5 that

H i g 1-6 1-9

1
< ——|—T—|—115§§—|—115.
n=ns+1

Q1 4
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Note that (VLT/LEI + FELQ + zzo:ng—i—l d;kz)|Q1 = (VL—I + FL)|Q1 = 1|Q17 S0
V[, + F/?|lg, > 1/2 —116. On the other hand,
(712 2 - ok Kk 1-96 1-6
1772, + Fg2lla, = |Dsc + 5" +dftllg, <6+ -+ 12 <1/246
As ||[V2, + FJ? — Allg, < 399, taking into account the equality ||A|lg, =
| A]lg, We get the estimate

1 - 1
(30) 5 =500 < || Allq, < 5 + 403,

Distinct functions from G have disjoint supports on @ (this follows
from properties (13) and (6) of Kadets families), and each has the same norm
¥ =1/|Mp, x Jr|. Thus if the distance between two functions corresponding
to two subsets of G, on ()1 is smaller than n, then at most n functions
belong to the symmetric difference of those two subsets. Therefore the distance
between the two functions on Q2 is at most ny (as on @2 the norm of a
single function is also ¢ by (26)). Thus, in general, if B,C C Gy, then
|B —Cllg, > IIB — C|lg,- In particular GL is at most 395 distant from A
on Q2.

Now consider what happens on Q3. From (23) the restriction of A to
()2 is equal to 1 on some set (on the intervals ¢t € [(m —1)/L,m/L] for
m such that g{;m € A) and 0 on the rest. From (15), as ny > K, we have

| Dpy — 1@, < 6. If we substitute A for G2, we will be at most 405 distant
from zero, precisely

|Dpy — 1= G2 + Al g, < 406.

However, as only G, and H, depend on up,, this sum is composed of two parts:
the part A+ H}?* depending on uy, and the rest (i.e. Dy, — (G}> + H}?))
depending on other variables. Thus we can apply a simplified version of
Lemma 2, with f = A+ H}?, g = —(Dy, — V), and a trivial one-point
space as B. We learn that both our functions are within 809 of a function ¢
depending on b (the variable on B, as in Lemma 2). But as B is a one-point
space, ¢ is a constant function. As A assumes the values 0 and 1, and
ﬁ? € [—1,0], their sum is non-negative on supp A and non-positive on the
remainder of @s.

From (30) we know that [supp A| > 1/2—506, thus A+ H} is non-negative
on a set of measure > 1/2 — 500. If ¢ is positive, then (as § < 1/200)

800 > || A+ HP> —c| > ¢(1/2 - 508) > -,

which implies ¢ < 3200. Similarly if ¢ is negative, we know from (30) that
|Q2 \ supp A| > 1/2 — 400, yielding again ¢ > —8000/3. Thus |¢| < 3200, so
|A+H?|| < [|[A+ H? —c|| + |¢| < 808+ 3205 = 4000.
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Thus H 12 is within 4006 of a function with values 0 and —1 on @2, namely
—A. Note that —A = —A’ on Q4 for a subset A’ of H;, with the property
that for given m either all hTLn’ ;1 belong to A’ or none does (if a given 951, j

belongs to A, then all hfn,j,k belong to A’) . If A’ where A’ C Hj,, assumes
only the values 0 and 1 on Q)2 and B C Hp, then
HA, - BHQZ = HA/ - BHsuppA/ + HA/ - BHQQ\suppA/
1

= h:he AANh¢B

1
h:hg AA\NheB

1 TR
- ’ML < JL < KL‘ ’AAB’ - ||A _B’Qs

Take any subset A” of Hy, depending only on m and j with exactly half
of the elements of H;, and containing A’ or contained in A’. If B C C' C Hy,
or C C B C Hy, then ||C — B|| = | ||C|| — || B|| |, because all the functions in
Hj, are non-positive. As A’ = —A on Q, and ||| Ao, — 1/2| < 508 from (30),
we get || A’ — A”|| g, < 503, and thus ||H}? — A"| g, = ||H}> — A”||g, < 4500.

Now consider what happens on Q3. As PNIZZ and A” are both integer-
valued on @3, they differ on a set of measure at most 4506, and thus their
difference can be positive on a set of measure at most 4505. When we
increase n from no to N the set where the difference is positive can only
decrease. Thus |[{ HY — A" > 0}| < 4508. Now we take supp A” for P. Then
[(HE)=1(0)] N {v : vy, € P} is the set where H% is zero and A” is negative,
thus their difference is positive, so the set has measure smaller than 4500,
which is what we had to prove. =

Now the main proof. Assume do, = (0,1), i.e. our series converges to 1
on (Y2 and @3 and to 0 on Q1. We shall prove by induction upon L that
- 1
vV <.
S L =4y
Q3
As Zﬁle dg(n) is finite, its elements are contained in some V7, thus if our
statement is true, we get SQs Zgzl dy(ny < 1/4, which is what we had to
prove. For L < M we have Vi, C Dy and {,, VN =0 < 1/4 from (7).
Now suppose we have the statement for L — 1. Set
N 5N AN | frN
Pl:(VL—1+GL)’Q37 P2:Z(Gn + H, ‘Q3)
n>L
Consider the function H ]{V |05 It depends on the variables vy, and vy,1;. The
function Py dependson vy, ...,vr, while P, depends on vy 41,...,vz for some



Sum ranges of series 277

Z € Z. The function H é\f |g, assumes only the values 0 and —1, all three
functions — HY|q,, Pi and P are integer-valued, and from (15) their sum
is less than 0 distant from 1 on Q3. Thus by taking P| = P — 1 we have
three functions satisfying the assumptions of Lemma 3. Thus either P; or
P, is within 3v/0 of a constant function. In each of these cases the proof will
also depend on whether SQ3 ég < 1/2+ 386 or SQ3 C;’g > 1/2 + 38§. Thus
we have in total four cases to consider.

Suppose first that P is within 3v/0 of a constant function. As ||P; +
P+ ﬁiv — 1|| <9, this means that P; +}~I£V is within 3v/0 + 8 < 4v/6 of a
constant function. If §, GY <1/2 4 386, then

. - ~ - 1 1 3

| v = VN, +GY +HY) < 1t <§+385> +0= 7 +380.
Q3 Qs

But f/]—fv is equal to P; + H ]{V , and so is within 4v/8 of some constant integer

¢ and its integral also has to be within 46 of c. As 45 + 385 < 1/4, we
get ¢ < 0, thus SQ3 VN < c+4V6 < 1/4.

If P, is within 3v/8 of a constant function, and SQ3 ég > 1/2+ 386, then
again P} + H év is within 4v/6 of a constant integer ¢. From Lemma 4 we
deduce in particular that SQs HYN < —1/2 + 4508. Obviously SQ3 GY <1,
thus

- . 1 1 3
| vii= Vv, +GY +HY) < ;15 14508 = - +4500.
Q3 Q3
As SQs VLN is supposed again to bNe within 4v/8 of ¢, we have ¢ < 0 as
4506 + 4v/6 < 1/4. Thus again §, V¥ <c+4v/5 <1/4.

In the third case we suppose that P/, and thus also P, is within 3v/0 of
a constant function, and {,_ GY < 1/2+386. As $0s VAN | < 1/4 from the
inductive assumption, we have SQ3 P, <3/4+38). As P; is supposed to be
within 3v/8 of some constant integer ¢, its integral also has to be within 3vo
of ¢, which again implies ¢ < 0 and SQ3 P < 3V06. As VLN =P+ Hiv and
HY <0, we get §,, VIV <3V6 < 1/4.

The last case is when P is within 3v/8 of a constant integer ¢ and §Q3 é’g >
1/2 + 380. In this case from Lemma 4 we know there exists a set P’ C Q3
depending only on vy, such that |P’'| = 1/2 and {,, HY < —1/244500. If P,
is within 3v/6 of a constant integer function and P; + P+ H i\f is within d of 1
(from (15)) then Py + HY is within 3v/0 +d < 4v/§ of some constant integer
function C. Taking Pj = P, — C we arrrive at the situation of Lemma 2: HY
depends on vy, and vy,11 while Pj depends on vr41,vr42, .. .,vz. This means
that each of them is within 81/ of some integer function P; depending only
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on vry1. As {5, HY < —1/2 44508 and |HY — P3| < 8V, we gather that

1 1
| Py <=2 +4506 +8V6 < — + 458V,
P/
As P’ depends only on vz, and Ps only on vz41 and |P'| =|Qs \ P'|,

| =P+ | B=2[P<-1+916V0
Q3 P’ Qs3\ P’ P’

Returning to I~{}JV we get SQs ﬁiv < SQs P34+ 8V30 < —1+ 9245,
As §Q3 GY < 1land SQ3 VN | < 1/4 we get SQ3 Py <5/4. As before, SQ3 P

has to be within 3v/8 of the integer ¢, implying ¢ < 1 and §Q3 Py <1+3V0.
We have

| V=P +HY)<143V6-1+924V6 < 927V5 < i.
Q3 Qs
Thus in all four cases we have completed the induction step, which proves
in a finite number of steps that SQs Dy <1 /4. This holds for an arbitrary
N > Ny, and would thus have to hold for the limit function, SQ3 doo < 1/4,
which obviously contradicts the assumption that d|g, =1. »

COROLLARY 5.2. A 3-Kadets series has a 3-point sum range, consisting
of the functions (0,0), (1,0) and (1,1). As previously, this holds for any Ly
with 1 < p < oo.

6. More points. From the previous section we know how to make 3
points out of 2. The same mechanism can be applied to make r + 1 points
out of .

THEOREM 6.1. Foranyr > 1 there exists a family {dy} of functions defined
on a union of cubes Q1,...,Qn with an r-point sum range. Additionally
we can distinguish two disjoint subsets F and G of {dx : k € N} which
form a Kadets family on Qn, while all other functions dy vanish on Q.
Moreover one function in the sum range of dy is equal to 1 on Qn and all
the other functions from the sum range vanish on Qn. Finally, there exist
rearrangements convergent to any point of the sum range in which the sets
F and G are arranged as in Proposition 2.1.

Proof. We shall prove the assertion by induction on 7. For r = 2 the
original Kadets example with N = 1 satisfies the given conditions.

Suppose we have an appropriate family for r — 1. We add two cubes to
the domain of di: Qn4+1 and Qn4o. Denote by = (x1, x2,...) the variable
on Qn+1 and by y = (y1,¥2,...) the variable on Qn42. All the functions
not in G will vanish on these cubes. For each n we divide the unit interval



Sum ranges of series 279

[0,1] into [M,| sets S7,,m € My, of measure 1/|M,| each. We define g;;, ; to
be 1/|J,] if x, € S, and 0 otherwise. Next we define K,, = M, 41 X Jp+1

m?

and divide the unit interval [0,1] into |K,| sets T}' of equal measure, and

on Qn+2 define gy, ; to be 1if y,, € T("n;;), and 0 otherwise. Finally, to the

functions dj we add a set of functions H = {hy, ;;} which vanish on the
cubes Q1 to @y, and satisfy

1
n — n n _ n n+1
hm,j,k - ’ K ‘ gm,] on QN+17 hm,j,k - _ng 9 on QM+2-
n

It is again easy, although tedious, to check that F, G and the new functions
H form a 3-Kadets family on Qn, Qn+1, @n+2. We claim that the set {dy }UH
satisfies the conditions of the theorem. The sets G and H form a Kadets
family on @ n2, and all other functions vanish on @y 2. We have to check
the sum ranges. Fix any convergent rearrangement ey, of {dj} UH. From the
properties of 3-Kadets families given in Section 3 we know that the limit on
@n+1 and Qn4o is the same, and equals either O or 1. From Theorem 5.1
we know that if the series converges to 0 on @y, it has to converge to 0 on
®@n+1 and Q2. Thus at most r + 1 limits can be achieved: the functions
with 0 on Qu generate one each (by the 0-extension onto Qn41 U Qny2),
while the single function with 1 on Q5 can be extended by either 0 or 1 to
QnN+1 U Qn4o. This also satisfies the condition that only one of the points
in the sum range is 1 on @ 2, while the others vanish on Qs.

We can obviously attain all the desired points in the sum range with G
and H ordered as in Proposition 2.1 by taking the rearrangements with F
and G ordered as in the proposition and inserting H as in Section 3. =

Thus it is possible to attain an affine-independent finite set of any size r
as the sum range of a conditionally convergent series. Again, this works for
any Lp, 1 <p < oc.

To reach full generality on L, we will attain arbitrary sum ranges, and
not only affine-independent ones. The proof presented below is due to the
anonymous referee of this paper and follows the scheme from [K90].

LEMMA 5. Let (2 be a probability space, ¢, € R with ¢, — 0, and
let f,, € La(Q) be a sequence of integer-valued functions. Then the series
Yon  (fn +cn) converges if and only if both > 0" fn and Y .2 | ¢, converge.

Proof. The “if” part is obvious. For the “only if” part it is enough to
prove that if ) ¢, diverges, then > (f, + ¢;) has to diverge as well. In fact,
if > ¢, diverges then there exists an ¢ € (0,1/4) such that for any N € N
we have a large Cauchy sum above N, i.e. for some [ > k > N we have
|Z;:k cn| > €. As ¢, — 0 we can take NN large enough to ensure |c;| < ¢

for j > N. Thus we can select [ = (k) such that ¢ < me(i)k cn < 2e < 1/2.
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But then || Zgi)k( fn + cn)| > € as a sum of an integer-valued function and
a constant ¢ € (g,1/2), which ensures the divergence of Y (fn, + ¢,). =

Now let us apply this lemma to our example from Theorem 6.1. We
have a series dj with an r + 2-point sum range D defined on the union
0= U?:lrl ; of cubes. We consider it as a series defined on Ly(§2). Let
X =1lin{x@,,---»XQar41} be the subspace of piecewise constant functions on
2. Let P : Ly(£2) — X be the orthogonal projection onto X. Denote by Y
the subspace of X consisting of those piecewise constant functions ( fi)?:{l,
where f; is the value of f on @, that satisfy fa; = foj41 for j =1,...,r.

Recall that SQQJ. dp dp = SQ2j+1 dpdp for j = 1,...,r. Thus for any dj
we have P(dy) € Y, and thus P(D) is in fact a subset of Y. Recall also that
for odd indices j the functions d; are integer-valued. Let T : Y — Y be an
arbitrary linear operator. Put d;, = dy + TP (dy).

THEOREM 6.2. The sum range D' of the series Y d}. equals (I +T)(D).

Proof. The inclusion (I +T)(D) C D’ is evident. To prove the inverse
inclusion consider an arbitrary arrangement (b)) of (d}.) and the corresponding
rearrangement (by) of (di). If (b)) converges to some b’ € D', then its
restrictions to (); for odd indices j satisfy the conditions of the lemma. Thus
the restrictions of T'P(by) to Q; for odd j converge. Now the restrictions
of TP(by) to Qj—1 are equal to the corresponding restrictions to @, so the
whole series TP(by) converges. Then Y by = > (b, — TP(by)) also has to
converge. The sum b of this series belongs to D, hence b’ = b+ T P(b) belongs
to(I+T)(D). =

This example can be transferred to any infinite-dimensional Banach space
Y by using the results of V. M. Kadets. Let SR(D _ x;) denote the sum range

of Y x; and let X 2 Y denote the fact that the Banach space X is finitely
representable in the Banach space Y. Theorem 7.2.2 of [S91] states:

Let X and Y be Banach spaces, X :f> Y. Suppose that X has a basis
{er}s2, and let >°732 | xy be a series in X such that SR(Y -, xx) is not a
linear set. Then for any monotone sequence {ay}3>, of positive numbers with
ap — 00 ask — 0o, there exists a series y oo 1 yi in'Y such that SR(Y peq yk)
is not a linear set and ||yx|| < ak||zk|| for all k € N.

Corollary 7.2.1 points out that if X is [y then by Dvoretzky’s theorem

X & Y, and Corollary 7.2.2 states that in any infinite-dimensional Banach
space there are series whose sum range consists of two points. This is achieved
by applying the two-point example in Ly to Corollary 7.2.1 and following
the proof of Theorem 7.2.2 to see that no new points appear and all the
old ones are transferred to the space Y. We have an n-point example in
Lo which can be in the same manner, through obvious modifications in the
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proof of Theorem 7.2.2 transferred to any Banach space Y. Finally, for any
finite-dimensional subspaces Hy, Ho of an infinite-dimensional Banach space
Y and any isomorphism f : Hy — Hs there exists an isomorphism f Y =Y
extending f. Thus having any n points satisfying some linear equations as
a sum range of y; in Y we can take an f transferring them to any other n
points satisfying the same linear equations and then transfer the whole series
by f.
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