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A series whose sum range is an arbitrary finite set

by

Jakub Onufry Wojtaszczyk (Warszawa)

Abstract. In finite-dimensional spaces the sum range of a series has to be an affine
subspace. It has long been known that this is not the case in infinite-dimensional Banach
spaces. In particular in 1984 M. I. Kadets and K. Woźniakowski obtained an example
of a series whose sum range consisted of two points, and asked whether it was possible
to obtain more than two, but finitely many points. This paper answers this question
affirmatively, by showing how to obtain an arbitrary finite set as the sum range of a series
in any infinite-dimensional Banach space.

1. Introduction. For a finite-dimensional linear space X the well-
known Steinitz theorem states that for any conditionally convergent series
the set of all possible limits of the series (called the sum range) is an affine
subspace ofX. In the “Scottish Book” S. Banach posed the problem whether
the same holds for infinite-dimensional Banach spaces. The problem was
solved negatively in the same book by J. Marcinkiewicz. In his example
the sum range is the set M of all integer-valued functions in L2[0, 1]. The
next example, due to M. I. Ostrovskii, showed that the sum range does not
have to be a closed set—the sum range of Ostrovskii’s series was of the
form M +

√
2M . Finally, M. I. Kadets constructed an example in which the

sum range consisted of two points, disproving, in particular, H. Hadwiger’s
conjecture that the sum range has to be the coset of some additive sub-
group of X. The justification of the example was obtained independently by
K. Woźniakowski and P. A. Kornilov in 1986.

It is still unknown what sets can be sum ranges of series. In this paper it
is shown that any finite subset of X can be the sum range of a conditionally
convergent series, which solves the problem posed by M. I. Kadets along
with his two-point example (the problem is stated in [S91] in the general
case, and in [U02] for X = C(∆) and n = 3). The example is an extension
of the 2-point example of M. I. Kadets as given in [S91]. I have tried to keep
the notation consistent with Kadets’ notation as far as possible.
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All function spaces are considered with the L1 norm, i.e. ‖f‖X =T
X |f(x)| dx. Frequently it is obvious on which set the integral is taken,

and we just write ‖f‖.

2. The results of K. Woźniakowski. Our work is strongly inspired
by the 2-point example of M. I. Kadets and the proof by K. Woźniakowski.
We will use not only the final result of Woźniakowski’s work, but also mul-
tiple technical facts than can be found in the proof. Rather than force the
reader to search for those in the original paper, we repeat here part of
Woźniakowski’s work, at times formulating the results in a way that will
make them easier to use in the subsequent sections. This section is based on
[S91], and a reader familiar with that work may probably skip it.

Let Q = [0, 1]ω be the infinite-dimensional cube, i.e. the product of a
countable number of unit segments, equipped with the standard product
topology and measure. By x = (x1, x2, . . .) we shall denote the variable
ranging over Q. Suppose we have two sequences of functions on the cube:
an

m and bnm,j , where n ∈ N, and for given n the indices m and j belong to
some finite sets Mn and Jn = Mn+1 respectively. Set

An = {an
m : m ∈Mn}, Bn = {bnm,j : m ∈Mn, j ∈ Jn}.

For convenience if X is a set of functions, we shall denote by X̃ the sum of
the functions from X.

We shall assume the following properties of the functions an
m and bnm,j :

Ãn(x) = 1 ∀n∈N∀x∈Q,(1)

‖an
m‖ = 1/|Mn|,(2)

lim
n→∞

|Mn| = ∞,(3)

an
m depends only on the variable xn,(4)

an
m assumes only the values 0 and 1,(5)

bnm,j = −an
m · an+1

j .(6)

We shall refer to these properties as the Kadets properties on the cube Q.
They mean that for each n the interval [0, 1] is divided into |Mn| sets V n

m of
equal measure, and an

m(x1, x2, . . .) = 1 iff xn ∈ V n
m. The functions bnm,j are

negative, and are supported on the rectangles {(xn, xn+1) ∈ V n
m × V n+1

j }.
From the Kadets properties we can easily deduce another few properties,

mainly concerning the behaviour of bnm,j , based on properties (1) and (6):

an
m = −

∑

j∈Jn

bnm,j ,(7)

an+1
j = −

∑

m∈Mn

bnm,j ,(8)
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B̃n(x) = −1 ∀n∈N,(9)

‖bnm,j‖ =
1

|Mn × Jn|
,(10)

bnm,j depends only on xn and xn+1,(11)

bnm,j assumes only the values 0 and −1,(12)

an
m and an

m′ have almost disjoint supports for m 6= m′.(13)

Property (13) means that the intersection of two supports is of measure
zero. We can obviously modify an

m so that the Kadets properties still hold
and the sets {x : an

m(x) > 0} are disjoint for any constant n and any two
different values of m.

Let ck, k ∈ N, be any ordering of all the functions an
m and bnm,j . Following

Woźniakowski we shall investigate the convergence of any reordering cσ(k)

of ck.

Proposition 2.1. For any family of functions ck having the Kadets

properties there exist two permutations σ and τ of N such that
∑

cσ(k) = 0

and
∑

cτ(k) = 1.

Proof. For σ it is enough to order the functions an
m lexicographically,

i.e. an
m appears before an′

m′ iff n < n′ or n = n′ and m < m′, and then
immediately after each an

m we put the whole set {bnm,j : j ∈ Jn}. Then the
sum of each block consisting of a single function an

m and the functions bnm,j

following it is zero due to property (7), so the norm of each partial sum is
the norm of the currently open block, which converges to zero by (2), (10)
and (3).

To get τ we order the functions an
m in the same way, but each function

an
m for n > 1 is followed by the set {bn−1

l,m : l ∈ Mn−1}, while the functions

a1
m are not followed by anything (as there are no functions b0m,j). Then the

functions a1
m sum up to the constant function 1 due to property (1). The

following blocks again sum up to zero, this time by (8), so the norm of the
difference between 1 and a particular partial sum is equal to the norm of the
currently open block, which again converges to zero by (2), (10) and (3).

Remark 1. The series of functions from Proposition 2.1 converge not
only in the L1 norm, but also in any Lp norm for any p <∞.

Proof. Again we only have to investigate the norm of any given block,
as the sum of the previous blocks is zero. The functions an

m assume only the
values 0 and 1 and have disjoint supports for fixed n from properties (5)
and (13). The functions bnm,j for given n have disjoint supports (this follows
from (6) and (13)) and assume the values 0 and −1 (by (12)). Thus for any
f which is the sum of any set of functions an

m and bnm,j for fixed n (or an
m

and bn−1
m,j for fixed n in the case of τ) we have ‖f‖∞ ≤ 1. This implies that
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for any 1 ≤ p <∞,

‖f‖p =
(\

|f |p
)1/p

=
(\

|f | · |f |p−1
)1/p

≤ (‖f‖1 · ‖fp−1‖∞)1/p(14)

≤ ‖f‖1/p
1 · 1 = ‖f‖1/p

1 .

Thus if the sum of the series tends to zero in the L1 norm as n→ ∞, it also
tends to zero in any Lp norm for p <∞.

Proposition 2.2. If a reordering cσ(k) of a family ck having the Kadets

properties converges, it converges to a constant integer function.

Proof. By (4) and (11) and the finiteness of Mn and Jn, only finitely
many of the functions cσ(k) depend on a given variable xl, precisely the
functions belonging to Al, Bl and Bl−1. Moreover, their sum is the constant
function −1 by (1) and (9). Thus for some integerK0 the function

∑K
k=1 cσ(k)

is constant with respect to xl for K ≥ K0, and thus the limit of the series
also has to be constant with respect to xl. As this holds for any l, the limit
just has to be constant.

As the functions ck are integer-valued (properties (5) and (12)), so are
their sums. Thus all partial sums of the series are integer-valued, and so the
limit is also integer-valued, which ends the proof.

The next step will be to show that 0 and 1 are the only possible limits
of a rearrangement of a family of functions with the Kadets property. We
shall fix a rearrangement cσ(k) of a given Kadets family, and we shall assume
that the sum

∑

k cσ(k) converges to some constant integer C 6= 1 (we know
C = 1 can be achieved); it remains to prove that under these assumptions
C = 0.

Take an arbitrary δ > 0 and fix K0 = K0(δ) such that for any K > K0,

(15)
∥

∥

∥
C −

K
∑

k=1

cσ(k)

∥

∥

∥
≤ δ

and for any m > l > K0 the Cauchy condition holds, i.e.

(16)
∥

∥

∥

m
∑

k=l

cσ(k)

∥

∥

∥
≤ δ.

In addition to the sets An and Bn introduced earlier we shall also consider
Vn =

⋃n
k=1(Ak ∪Bk). Let M be any integer such that

(17) cσ(k) ∈ VM ∪AM+1 for any k ≤ K.

Let

c∗k =

{

cσ(k) if cσ(k) ∈ VM ∪AM+1,

0 otherwise.
ck =

{

cσ(k) if cσ(k) ∈ BM+1,

0 otherwise.
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Define

c∗ =
∞

∑

k=K0+1

c∗k, c =

K0
∑

k=1

cσ(k).

Then c+ c∗ = ṼM + ÃM+1 = 0 + 1 = 1. Hence ‖c∗‖ = ‖1 − c‖ ≥ ‖1 −C‖ −
‖C − c‖ ≥ 1 − δ. Let k0 = K0 and

(18) kj+1 = min

{

k :
1

4
− 5δ

4
≤

∥

∥

∥

k
∑

i=kj+1

c∗k

∥

∥

∥
≤ 1

4
− δ

4

}

.

The indices kj are well defined for j from 1 to 4 because the norm of c∗

is at least 1 − δ and each single c∗k has norm ≤ δ by (16). For j = 0, 1, 2, 3
define

c∗∗j+1 =

kj+1
∑

k=kj+1

c∗k, ¯̄cj+1 =

kj+1
∑

k=kj+1

ck, ĉj+1 =

kj+1
∑

k=kj+1

cσ(k),

and for j = 1, 2, 3, 4 set

rj = ĉj − cj − c∗∗j .

In plain words this means that we divide the functions ck for kj < k ≤
kj+1 into three sets: those from An for n ≤ M + 1 or Bn for n ≤ M (these
add up to c∗∗j ), those from BM+1 (these add up to ¯̄cj), and the rest (these
add up to rj). We will show that the functions from BM+1 are placed in ck
in similar proportions as the functions from VM ∪AM+1—if, say, about half
of the functions from VM ∪ AM+1 appears in ck (that happens at k2) then
about half of the functions from BM+1 must also appear.

We shall need to estimate the norms of two sums, which we would like to
be negligible: ‖rj‖ and ‖∑∞

k=k4+1 c
∗
k‖. We know that the sum of all ck up to

kj is negligible, thus if the high-n functions (rj) are negligible, the functions
from VM ∪ AM+1 and BM+1 have to approximately cancel each other out.
This motivates the following proposition:

Proposition 2.3. For a Kadets family of functions ck with rearrange-

ment cσ(k) converging to some C 6= 1, and for any δ and M > K0(δ) as

above,
4

∑

j=1

‖rj‖ ≤ 18δ.

Proof. As c∗∗j is integer-valued (being a sum of functions from a Kadets
family), the condition ‖c∗∗j ‖ ≤ 1/4 implies |supp c∗∗j | ≤ 1/4. Thus we can
use Lemma 1 from Section 4 to get

‖c∗∗j + rj‖ ≥ ‖c∗∗j ‖ + (1 − 2|supp c∗∗j |)‖rj‖ = ‖c∗∗j ‖ +
1

2
rj .
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Clearly ‖ĉj‖ ≤ δ from the Cauchy condition (16). We thus have

1 ≥
4

∑

j=1

‖¯̄cj‖ =
4

∑

j=1

‖ĉj − c∗∗j − rj‖ ≥
4

∑

j=1

‖c∗∗j + rj‖ −
4

∑

j=1

‖ĉj‖

≥
4

∑

j=1

(

‖c∗∗j ‖ +
1

2
‖rj‖

)

− 4δ ≥ 1 − 5δ +
1

2

4
∑

j=1

‖rj‖ − 4δ,

which gives the asserted estimate. In particular, each ‖rj‖ is bounded by 18δ.

Corollary 2.4. With the notation and assumptions as above,

‖¯̄cj + c∗∗j ‖ ≤ 19δ.

Proof. ‖¯̄cj + c∗∗j ‖ = ‖ĉj − rj‖ ≤ ‖ĉj‖ + ‖rj‖ ≤ δ + 18δ = 19δ.

Proposition 2.5. With the notation and assumptions as above,
∥

∥

∥

∞
∑

k=k4+1

c∗k

∥

∥

∥
≤ 11δ.

Proof. We have

‖¯̄cj‖ = ‖ĉj − c∗∗j − rj‖ ≥ ‖c∗∗j + rj‖ − ‖ĉj‖ ≥ ‖c∗∗j ‖ +
1

2
‖rj‖ − ‖ĉj‖

≥ ‖c∗∗j ‖ − δ ≥ 1/4 − 9δ/4.

Suppose that ‖∑k′

k=k4+1 c
∗
k‖ > 11δ for some k′ > k4. Then there would

exist k5 ∈ (k4, k
′] such that 12δ ≥ ‖∑k5

k=k4+1 c
∗
k‖ > 11δ. Then by a similar

argument (‖¯̄c5‖ ≥ ‖c∗∗5 ‖ + (1 − 24δ)‖r5‖ − ‖ĉ5‖ ≥ 11δ − δ) the norm of
∑k5

k=k4+1 ck would be larger than 10δ. But all the functions ck are negative,

so ‖
∑

ck‖ =
∑

‖ck‖, which in this case gives

1 ≥
∥

∥

∥

k5
∑

k=k0

ck

∥

∥

∥
=

4
∑

j=1

‖ck‖ +
∥

∥

∥

k5
∑

k=k4+1

ck

∥

∥

∥
> 1 − 9δ + 10δ,

a contradiction. Thus ‖
∑∞

k=k4+1 c
∗
k‖ ≤ 11δ (the sum is convergent, as it is

in fact the sum of a finite number of functions, all coming from VM+1). We
will denote this sum by c∗∗5 .

Now we can prove the main theorem of Woźniakowski’s work:

Theorem 2.6. For a Kadets family of functions ck with some rear-

rangement cσ(k) converging to C 6= 1, we have |C − 1/2| ≤ 1/2, which (by
Proposition 2.2) implies C = 0.

Proof. Consider any δ, and the partial sum S =
∑k4

k=1 cσ(k) with the
notation as above. As k4 > K0, from assumption (15) we know that ‖S−C‖
≤ δ, so it will suffice to estimate ‖S − 1/2‖. We have
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∥

∥

∥

∥

S − 1

2

∥

∥

∥

∥

=

∥

∥

∥

∥

c+
4

∑

j=1

c∗∗j +
4

∑

j=1

¯̄cj +
4

∑

j=1

rj + c∗∗5 − c∗∗5 − 1

2

∥

∥

∥

∥

=

∥

∥

∥

∥

c+ c∗ − 1

2
+

4
∑

j=1

¯̄cj +
4

∑

j=1

rj − c∗∗5

∥

∥

∥

∥

≤
∥

∥

∥

∥

1

2
+

4
∑

j=1

¯̄cj

∥

∥

∥

∥

+

∥

∥

∥

∥

4
∑

j=1

rj

∥

∥

∥

∥

+ ‖c∗∗5 ‖.

The function
∑4

j=1
¯̄cj is a sum of functions from BM+1, which means it

assumes only the values 0 and −1, thus |1/2 +
∑4

j=1
¯̄cj | is always equal to

1/2. Inserting this and the bounds on rj and c∗∗5 we get

‖S − 1/2‖ ≤ 1/2 + 18δ + 11δ = 1/2 + 29δ.

As ‖S −C‖ ≤ δ we get ‖C − 1/2‖ ≤ 1/2 + 30δ. As δ is arbitrary, we get the
assertion.

Corollary 2.7. The sum range of any Kadets family consists of two

points, the constant functions 0 and 1, in any Lp norm for 1 ≤ p <∞.

Proof. From Proposition 2.1 and Remark 1 we know that the two constant
functions belong to the sum range. From Proposition 2.2 we know that all
functions in the sum range in the L1 norm are constant integer functions, and
from Theorem 2.6, only the 0 and 1 functions are eligible. If a permutation
of the series converged to some function g in some Lp norm, then ‖Sn − g‖p

would tend to zero, where Sn =
∑n

k=1 cσ(k). But from the Hölder inequality
we know that ‖Sn − g‖p ≥ ‖Sn − g‖1 (as the measure of the whole space
is 1), which would imply that the series Sn also converges in the L1 norm,
contradicting Theorem 2.6.

3. The 3-point series. Let Qi, i = 1, 2, 3, be three copies of the cube
Q. The example will be constructed in L1(Q1∪Q2∪Q3). In the whole paper
t = (t1, t2, . . .) will vary in Q1, u = (u1, u2, . . .) in Q2 and v = (v1, v2, . . .)
in Q3.

Our series will consist of functions of three kinds. The functions of the
first kind are defined as follows:

fn
m(t) =

{

1 if m−1
n < tn <

m
n ,

0 otherwise,

fn
m(u) = fn

m(v) = 0 for n ∈ N, m ∈ {1, . . . , n}.
The second kind of functions are non-zero on all three cubes:

gn
m,j(t) =

{

−1 if m−1
n < tn <

m
n and j−1

n+1 < tn+1 <
j

n+1 ,

0 otherwise ,

gn
m,j(u) =

{ 1
n+1 if m−1

n < un <
m
n ,

0 otherwise,



268 J. O. Wojtaszczyk

gn
m,j(v) =

{

1 if (m−1)(n+1)+j−1
n(n+1) < vn <

(m−1)(n+1)+j
n(n+1) ,

0 otherwise,

for n ∈ N, m ∈ {1, . . . , n}, j ∈ {1, . . . , n+ 1}.
The functions of the third kind are non-zero on Q2 and Q3:

hn
m,j,k(t) = 0,

hn
m,j,k(u) =

{

− 1
(n+1)2(n+2)

if m−1
n < un <

m
n ,

0 otherwise,

hn
m,j,k(v) =











−1 if (m−1)(n+1)+j−1
n(n+1) < vn <

(m−1)(n+1)+j
n(n+1)

and k−1
(n+1)(n+2) < vn+1 <

k
(n+1)(n+2) ,

0 otherwise,

for n ∈ N, m ∈ {1, . . . , n}, j ∈ {1, . . . , n+ 1}, k ∈ {1, . . . , (n+ 1)(n+ 2)}.
These functions have properties we want to generalize. Suppose we have

three families of indices: Mn, Jn and Kn, with Jn = Mn+1 and Kn =
Mn+1 × Jn+1 (here Mn = {1, . . . , n} and the mapping from {1, . . . , n+ 1}×
{1, . . . , n+2} to {1, . . . , (n+1)(n+2)}, needed tomake k a single index, is given
by (m, j) 7→ (m−1)(n+1)+ j). We have three families of functions: the first
kind {fn

m : n ∈ N, m ∈Mn}, the second kind {gn
m,j : n ∈ N, m ∈Mn, j ∈ Jn}

and the third kind {hn
m,j,k : n ∈ N, m ∈Mn, j ∈ Jn, k ∈ Kn} defined on the

union Q1 ∪ Q2 ∪ Q3 of Hilbert cubes. The families f and g form a Kadets
family on Q1, while the functions h vanish identically on Q1. On Q3 the
functions g and h form a Kadets family (with Mn × Jn being the first index
set and Kn the second), while the functions f vanish. The properties of the
functions on Q2 are different:

∑

m∈Mn

∑

j∈Jn

gn
m,j = 1,(19)

∑

m∈Mn

∑

j∈Jn

∑

k∈Kn

hn
m,j,k = −1,(20)

gn
m,j = −

∑

k∈Kn

hn
m,j,k,(21)

∑

m′∈Mn+1

gn+1
m′,j′ = −

∑

m∈Mn

∑

j∈Jn

∑

m′∈Mn+1

hn
m,j,(m′,j′),(22)

∑

j∈Jn

gm,j assumes only the values 0 and 1,(23) \
Q2

gn
m,j =

\
Q3

gn
m,j ,(24)
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Q2

hn
m,j,k =

\
Q3

hn
m,j,k,(25)

‖gn
m,j‖ =

1

|Mn × Jn|
,(26)

‖hn
m,j,k‖ =

1

|Mn × Jn ×Kn|
,(27)

gn
m,j and hn

m,j,k on Q2 depend only on un.(28)

Such a family of functions will be called a 3-Kadets family. It is easy
(although maybe a bit tedious) to check that the family defined at the
beginning of this section is a 3-Kadets family.

We set

Fn = {fn
m : m ∈Mn}, Gn = {gn

m,j : m ∈Mn, j ∈ Jn},

Hn = {hn
m,j,k : m ∈Mn, j ∈ Jn, k ∈ Kn}, VM =

M
⋃

k=1

Fk ∪Gk ∪Hk.

Denote by dn any fixed enumeration of the whole 3-Kadets family. We are
investigating the possible values of

∑∞
n=1 dσ(n) for all permutations σ of N.

If for a given rearrangement
∑

dσ(n) converges, it converges on each of
the cubes separately. On Q1 and Q3 we have Kadets families of functions,
so on each of these cubes the series converges either to 0 or to 1 due to
Theorem 2.6. The new part is the behaviour on Q2. As in the first paragraph
of the proof of Proposition 2.2, only finitely many functions depend on a given
variable un—the functions gn

m,j and hn
m,j,k—and their sum is constant, equal

to zero by (21) applied to each j separately. Thus again the sum
∑

dσ(n) on
Q2 has to be a constant function.

As
T
Q2
dn =

T
Q3
dn for any dn (it is 0 for functions of the first kind and

follows from properties (24) and (25) for the second and third kinds), we get\
Q2

N
∑

n=1

dσ(n) =
\

Q3

N
∑

n=1

dσ(n).

As the integral is a continuous functional on L1(Q2) and L1(Q3), the integrals
of the limits have to be equal. But we know that

∑

dσ(n) on both Q2 and
Q3 is a constant function, so equality of the integrals implies equality of the
sums. Thus the sum of the whole series is described by a pair of integers: the
value on Q1 and the value on Q3. Let us denote the limit function by d∞.

We will show that it is possible to obtain exactly three different sums:
(0,0), (1,0) and (1,1). To obtain any of these limits we first arrange the
functions f and g as in Proposition 2.1 for a Kadets family on Q1, and then
after each g we put the h functions as in Proposition 2.1 for the cube Q3. It
remains to show convergence on Q2.



270 J. O. Wojtaszczyk

In the case of (0,0) after a given fn
m there appear all gn

m,j and hn
m,j,k with

the same m and n. Their sum on Q2 is equal to 0 by (21) applied for each
j separately. Thus the norm of a partial sum on Q2 is equal to the norm of
the functions appearing after the last f , and this tends to zero by (26), (27)
and (3) (all the functions have the same index m, so the sum of their norms
is equal to 2/|Mn| → 0).

In the case of (1,0) after a given fn
m we get the functions gn−1

l,m and hn−1
l,m,k.

Their sum on Q2 is again 0 by (21), this time applied to each l separately.
Again the norm of the difference between a partial sum and (1,0) is the
norm of the part after the last f , and that again tends to 0.

In the case of (1,1) after a given fn
m we get the functions gn−1

l,m and

hn−2
l′,m′,(l,m). Their sum is 0 by (22) applied to them all. Again the norm of

the difference between a partial sum and 1 tends to 0.

Again it is easy to check that the convergence occurs not only in the L1

norm, but also in anyLp norm for p <∞, in the same way as in Remark 1—on
each of the cubes the L∞ norm of the partial sums is bounded by 1.

One may wonder why the same arguments do not imply the convergence
of the series arranged by rows in Gn and columns in Hn−1 to (0,1). The
answer is that we lack the equivalent of property (22) for this arrangement.
To illustrate this let us look at the 3-Kadets family given at the beginning
of the section arranged in this natural way. The sum

∑n+1
j=1 g

n
m,j on Q2 is

equal to 1 on (m− 1)/n < un < m/n, while the sum of the appropriate
column of Hn−1,

∑n+1
j=1

∑n−1
m′=1

∑n
j′=1 h

n−1
m′,j′,(m−1)(n+1)+j, is equal to −1/n

on the whole cube Q2. Thus the partial sums before each function of the
first kind do not vanish as they did in the previous three cases, and when
half of these functions from a given Fn have appeared, the norm of the
partial sum on Q2 is 1/2 regardless of n—thus this particular series does
not converge. Of course we still have to prove this is true for any rearrange-
ment; but this example indicates why only three and not four possible limits
exist.

4. Auxiliary lemmas. Before we begin the main part of this paper,
i.e. the proof that our series cannot converge to (0,1), we shall need three
auxiliary lemmas:

Lemma 1 (given without proof in [O89]). Let (X,µ) and (Y, ν) be proba-

bility measure spaces. Let f(x, y) and g(x, y) be functions in L1(X×Y ), each

of which depends on only one variable: f(x, y) = f̃(x), g(x, y) = g̃(y). Then

‖f + g‖ ≥ ‖f‖ + ‖g‖[1 − 2µ(supp f̃)].
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Proof. We have

‖f + g‖ =
\

X×Y

|f + g| =
\

supp f̃×Y

|f + g| +
\

(X\supp f̃)×Y

|g|

≥
\

supp(f̃)×Y

|f | −
\

supp(f̃)×Y

|g| + (1 − µ(supp f̃))‖g‖

= ‖f‖ − µ(supp f̃)‖g‖ + (1 − µ(supp f̃))‖g‖
= ‖f‖ + ‖g‖[1 − 2µ(supp f̃)].

Lemma 2. LetA,B,C be probabilitymeasure spaces and letX = A×B×C
be equipped with the standard product measure. Suppose f, g are bounded

functions defined on X of the form f(a, b, c) = f̃(a, b) =
∑N

k=1 skχAk×Bk
and

g(a, b, c) = g̃(b, c) =
∑N

l=1 tlχBl×Cl
, and ‖f − g‖ ≤ ε. Then there exists a

function h(a, b, c) = h̃(b) such that ‖h− g‖ ≤ 2ε and ‖h− f‖ ≤ 2ε. Moreover

if f is integer-valued then h can also be chosen to be integer-valued , and if

for a family of sets Bα ⊂ B we have ∀α∀b1,b2∈Bα
∀a∈A f(a, b1, c) = f(a, b2, c),

then we can choose h constant on each Bα.

Proof. For any given b ∈ B we take h̃(b) such that\
A

|f̃(a, b) − h̃(b)| da = inf
x∈R

{\
A

|f̃(a, b) − x| da
}

.

This is well defined, as f is bounded, and thus in fact the inf is taken over
a bounded, and thus compact set. For such an h we have

‖h− f‖ =
\
X

|f(a, b, c) − h̃(b)| =
\
C

\
B

\
A

|f̃(a, b) − h̃(b)|

=
\
C

\
B

inf
{\

A

|f̃(a, b) − x(b)|
}

≤
\
C

\
B

\
A

|f̃(a, b) − g̃(b, c)|

≤
\
C

\
B

\
A

|f(a, b, c) − g(a, b, c)| = ‖f − g‖ ≤ ε.

As ‖h− f‖ ≤ ε and ‖f − g‖ ≤ ε, we immediately have ‖g − h‖ ≤ 2ε. As for
the additional assumptions, if f and g are integer-valued, we can take the
inf in the definition of h̃ to be only over the integers, with the same result.
Regardless of which option we choose, if f is constant with respect to b on
any Bα, then from the definition h can also be chosen to be constant on that
set.

Lemma 3. Let A,B be probability measures and X = A × B equipped

with the standard product measure. Suppose f, g, h are integer-valued functions

defined on X with f(a, b) = f̃(a) and h(a, b) = h̃(b) for some f̃ , h̃. Suppose

also that g assumes only two adjacent values (i.e. k and k + 1 for some k).
Finally , suppose that ‖f +g+h‖ < δ < 1/9. Then either f or h is a constant
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function equal to some integer c on a set of measure ≥ 1−2
√
δ. Furthermore,

‖f − c‖ < 3
√
δ (or ‖h− c‖ < 3

√
δ, respectively).

Proof. The sets Fn = f̃−1((−∞, n]) and Hn = h̃−1((−∞, n]) form two
increasing families, the sum of each is the whole space (A or B respectively)
and the intersection of each is empty. The measures |Fn| thus form an
ascending sequence with elements arbitrarily close to 0 when n→ −∞ and
arbitrarily close to 1 when n → ∞. As Fn \ Fn−1 = f̃−1(n), if f̃ is not
constant on any set of measure ≥ 1 − 2

√
δ, then at least one element of the

sequence |Fn|, say |Fnf
|, has to fall into the interval [

√
δ, 1 −

√
δ]. Similarly

if h̃ is constant on no set of measure ≥ 1 − 2
√
δ, then for some nh we

have
√
δ ≥ |Hnh

| ≥ 1 −
√
δ. Then on the set X1 = Fnf

× Hnh
we have

f(a, b) + h(a, b) ≤ nh + nf , while on X2 = (A \ Fnf
) × (B \Hnh

) we have
f(a, b)+h(a, b) ≥ nh +nf +2. As g assumes two adjacent values, it is either
≤ −(nh + nf + 1) or ≥ −(nh + nf + 1) on the whole X. Thus on one of the
sets X1, X2 (call it Xi) we have |f + g + h| ≥ 1. As both X1 and X2 are
products of two sets of measure ≥

√
δ, we have

‖f + g + h‖ =
\
X

|f(a, b) + g(a, b) + h(a, b)| ≥
\

Xi

|f(a, b) + g(a, b) + h(a, b)|

≥ |Xi| ≥ δ,

which contradicts the assumptions of the lemma.

Thus one of the functions has to be constant on a large set. Without loss
of generality we may assume it is h, and that it is equal to some integer c.
Let us examine the function f , taking into account that all the functions are
integer-valued, and thus if their sum is non-zero, it is at least 1:

δ > ‖f + g + h‖ ≥ ‖f + g + c‖A×h̃−1(c)

≥ |{f̃(a) 6∈ {−k − c,−k − c− 1}} × h̃−1(c)|
= |{f̃(a) 6∈ {−k − c,−k − c− 1}}| · (1 − 2

√
δ),

which implies f̃(a) ∈ {−k − c,−k − c − 1} on a set of measure at least
1 − δ/(1 − 2

√
δ). Denote this set by A′. Now we return to the function h:

‖h− c‖X ≤ 1

1 − 2
√
δ
‖h− c‖A′×B =

1

1 − 2
√
δ
‖h− c‖A′×(B\h̃−1(c)).

On A′ the function f + g + c assumes values of absolute value ≤ 1, so by
substituting f + g for −c we shall decrease the norm at most by

1 · |A′ × (B \ h̃−1(c))| ≤
(

1 − δ

1 − 2
√
δ

)

(2
√
δ) ≤ 2

√
δ,
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thus obtaining the inequality

‖h− c‖X ≤ 1

1 − 2
√
δ
‖h+ f + g‖A′×(B\h̃−1(c)) + 2

√
δ

≤ 1

1 − 2
√
δ
‖f + g + h‖X + 2

√
δ ≤ δ

1 − 2
√
δ

+ 2
√
δ.

As δ ≤ 1/9, we have δ/(1 − 2
√
δ) ≤

√
δ, and thus ‖h− c‖ ≤ 3

√
δ.

5. The fourth point. Now we can prove the main theorem of the paper:

Theorem 5.1. The function d∞ = (0,1) does not belong to the sum range

of any 3-Kadets family series.

Proof. Suppose we have a rearrangement of some 3-Kadets family dσ(n)

whose sum converges to d∞. Again, take a small δ > 0 (we shall need
927

√
δ < 1/4, i.e. δ < 1/13749264) and an integer K satisfying inequalities

(15) and (16), i.e. the tails and Cauchy sums are smaller than δ for N > K.
Then, again, we take any M satisfying (17), i.e. such that VM contains the
first K elements of our series. Then we take an N0 such that

(29) VM ⊂ {dσ(1), . . . , dσ(N0)}.
Consider any fixed N > N0. We will prove that\

Q3

N
∑

n=1

dσ(n) <
1

4
.

Clearly this suffices to prove that our series does not converge to 1 on Q3,
which contradicts the assumption the rearrangement converged to (0,1).

For any L, k ∈ Z denote by Dk the set {dσ(1), . . . , dσ(k)}, and by F k
L, Gk

L,

Hk
L and V k

L the intersections of FL, GL, HL or VL, respectively, with Dk.
First we shall prove the following lemma:

Lemma 4. If functions fn
m, gn

m,j and hn
m,j,k are a 3-Kadets family on

the cubes Q1, Q2 and Q3 and their fixed permutation dσ(n) has the property

that
∑

dσ(n) is 0 on Q1 and 1 on Q2 and Q3, and for a given L we haveT
Q3
G̃N

L ≥ 1/2 + 38δ, where N > N0 as above, then there exists a P ⊂ [0, 1]

such that |P | = 1/2 and [(H̃N
L )−1(0)] ∩ {v : vL ∈ P} ⊂ Q3 has measure

≤ 450δ.

Remark 2. What this lemma really tells us is this: if up to the Nth
element of the series at least half plus something (38δ) of the GL functions
have appeared, then at least half minus something (450δ) of theHL functions
had to appear. Moreover, the HL functions do not appear in a haphazard
fashion—we know that at least half minus something rows had to appear (a
row is the set of all functions hL

m,j,k with fixed m and j and varying k).
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Proof of Lemma 4. If L ≤M then our assertion is automatically satisfied
—all functions from HL belong to DN , thus we can take any set of measure
1/2 for P and the set (H̃N

L )−1(0) will be empty, so P will satisfy the required
conditions.

Now consider the caseL > M . The numbersK andL−1 satisfy conditions
(15)–(17) (as L > M and M satisfies (17)). Thus there exist numbers ni

satisfying (18) (with ni in place of ki). We shall prove that N ≥ n2.

We know that
T
Q3
G̃N

L = −
T
Q1
G̃N

L (as all gn
m,j are of the same constant

sign on each cube, the absolute value of the integral is equal to the norm,
and the norms on each cube are equal). If N < n2, then

‖G̃N
L ‖Q1

≤ ‖G̃n2

L ‖Q1
= ‖ ¯̄d1 + ¯̄d2‖ ≤ ‖d∗∗1 ‖ + 19δ + ‖d∗∗2 ‖ + 19δ <

1

2
+ 38δ,

which contradicts our assumption (the first inequality follows from the fact
that gn

m,j are non-positive functions on Q1, and the second inequality from
Corollary 2.4).

Thus N > n2. Consider Ṽ n2

L−1 + F̃n2

L on Q1. This function depends on

t1, . . . , tL, while G̃n2

L = ¯̄d1 + ¯̄d2 on Q1 depends on tL and tL+1. From property
(15) and Corollary 2.4 we get

‖Ṽ n2

L−1 + F̃n2

L + G̃n2

L ‖ ≤ ‖D̃k‖+‖d∗∗1 + ¯̄d1‖+‖d∗∗2 + ¯̄d2‖ ≤ δ+19δ+19δ = 39δ.

We can thus use Lemma 2 to show that onQ1 both functions−Ṽ n2

L−1−F̃
n2

L

and G̃n2

L are both closer than 39δ to some integer-valued function Ã depending
only on tL.

Each function fn
m depends only on tn and assumes the values 0 and 1 only

(properties (5) and (4)), so it is in fact the characteristic function of a set
{t : tn ∈ Sn

m} for some Sn
m ⊂ [0, 1]. As the fn

m have disjoint supports for fixed
n, they are all constant on any given Sn

m. The g functions are also constant
with respect to tn on Sn

m by (6), and all the other functions are constant
with respect to tn on the whole interval. Thus the functions −Ṽ n2

L−1 − F̃n2

L

and G̃n2

L are constant with respect to tL on {tL ∈ SL
m}, so we can choose Ã

to be constant on those sets. Thus Ã coincides on Q1 with the sum of some
of the rows of GL, i.e. Ã corresponds to some subset A of GL such that for
fixed m either all or none of the functions gL

m,j belong to A. Define Ã on Q2

and Q3 as the sum of all the elements of A as well, which agrees with our
notation that Ũ is the sum of all the elements of U for an arbitrary set of
functions.

We know from (18) and Proposition 2.5 that

∥

∥

∥

∞
∑

n=n2+1

d∗n

∥

∥

∥

Q1

≤ 1 − δ

4
+

1 − δ

4
+ 11δ ≤ 1

2
+ 11δ.
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Note that (Ṽ n2

L−1 + F̃n2

L +
∑∞

n=n2+1 d
∗
n)|Q1

= (ṼL−1 + FL)|Q1
= 1|Q1

, so

‖Ṽ n2

L−1 + F̃n2

L ‖Q1
≥ 1/2 − 11δ. On the other hand,

‖Ṽ n2

L−1 + F̃n2

L ‖Q1
= ‖D̃K + d∗∗1 + d∗∗2 ‖Q1

≤ δ +
1 − δ

4
+

1 − δ

4
≤ 1/2 + δ.

As ‖Ṽ n2

L−1 + F̃n2

L − Ã‖Q1
≤ 39δ, taking into account the equality ‖Ã‖Q1

=

‖Ã‖Q2
we get the estimate

(30)
1

2
− 50δ ≤ ‖Ã‖Q2

≤ 1

2
+ 40δ.

Distinct functions from GL have disjoint supports on Q1 (this follows
from properties (13) and (6) of Kadets families), and each has the same norm
ψ = 1/|ML × JL|. Thus if the distance between two functions corresponding
to two subsets of GL on Q1 is smaller than nψ, then at most n functions
belong to the symmetric difference of those two subsets. Therefore the distance
between the two functions on Q2 is at most nψ (as on Q2 the norm of a
single function is also ψ by (26)). Thus, in general, if B,C ⊂ GL, then
‖B̃ − C̃‖Q1

≥ ‖B̃ − C̃‖Q2
. In particular G̃n2

L is at most 39δ distant from Ã
on Q2.

Now consider what happens on Q2. From (23) the restriction of Ã to
Q2 is equal to 1 on some set (on the intervals tL ∈ [(m− 1)/L,m/L] for
m such that gL

m,j ∈ A) and 0 on the rest. From (15), as n2 > K, we have

‖D̃n2
− 1‖Q2

≤ δ. If we substitute Ã for G̃n2

L , we will be at most 40δ distant
from zero, precisely

‖D̃n2
− 1 − G̃n2

L + Ã‖Q2
≤ 40δ.

However, as onlyGL andHL depend on uL, this sum is composed of two parts:

the part Ã + H̃n2

L depending on uL and the rest (i.e. D̃n2
− (G̃n2

L + H̃n2

L ))
depending on other variables. Thus we can apply a simplified version of
Lemma 2, with f = Ã + H̃n2

L , g = −(D̃n2
− V n2

L ), and a trivial one-point
space as B. We learn that both our functions are within 80δ of a function c
depending on b (the variable on B, as in Lemma 2). But as B is a one-point
space, c is a constant function. As Ã assumes the values 0 and 1, and
H̃n2

L ∈ [−1, 0], their sum is non-negative on supp Ã and non-positive on the
remainder of Q2.

From (30) we know that |supp Ã| ≥ 1/2−50δ, thus Ã+H̃n2

L is non-negative
on a set of measure ≥ 1/2 − 50δ. If c is positive, then (as δ < 1/200)

80δ ≥ ‖Ã+ H̃n2

L − c‖ ≥ c(1/2 − 50δ) ≥ c

4
,

which implies c ≤ 320δ. Similarly if c is negative, we know from (30) that
|Q2 \ supp Ã| ≥ 1/2 − 40δ, yielding again c > −800δ/3. Thus |c| < 320δ, so
‖Ã+ H̃n2

L ‖ ≤ ‖Ã+ H̃n2

L − c‖ + |c| ≤ 80δ + 320δ = 400δ.
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Thus H̃n2

L is within 400δ of a function with values 0 and −1 onQ2, namely

−Ã. Note that −Ã = −Ã′ on Q2 for a subset A′ of HL with the property
that for given m either all hL

m,j,k belong to A′, or none does (if a given gL
m,j

belongs to A, then all hL
m,j,k belong to A′) . If Ã′, where A′ ⊂ HL, assumes

only the values 0 and 1 on Q2 and B ⊂ HL, then

‖Ã′ − B̃‖Q2
= ‖Ã′ − B̃‖supp Ã′ + ‖Ã′ − B̃‖

Q2\supp Ã′

=
1

|ML × JL ×KL|
|{h : h ∈ A′ ∧ h 6∈ B}|

+
1

|ML × JL ×KL|
|{h : h 6∈ A′ ∧ h ∈ B}|

=
1

|ML × JL ×KL|
|A△B| = ‖Ã′ − B̃|Q3

.

Take any subset A′′ of HL depending only on m and j with exactly half
of the elements of HL and containing A′ or contained in A′. If B ⊂ C ⊂ HL

or C ⊂ B ⊂ HL, then ‖C̃ − B̃‖ = | ‖C̃‖− ‖B̃‖ |, because all the functions in
HL are non-positive. As Ã′ = −Ã on Q2 and |‖Ã‖Q2

− 1/2| ≤ 50δ from (30),

we get ‖Ã′− Ã′′‖Q2
≤ 50δ, and thus ‖Hn2

L − Ã′′‖Q3
= ‖Hn2

L − Ã′′‖Q2
≤ 450δ.

Now consider what happens on Q3. As H̃n2

L and Ã′′ are both integer-
valued on Q3, they differ on a set of measure at most 450δ, and thus their
difference can be positive on a set of measure at most 450δ. When we
increase n from n2 to N the set where the difference is positive can only
decrease. Thus |{HN

L − Ã′′ > 0}| ≤ 450δ. Now we take supp Ã′′ for P . Then

[(H̃L
N )−1(0)] ∩ {v : vL ∈ P} is the set where HL

N is zero and Ã′′ is negative,
thus their difference is positive, so the set has measure smaller than 450δ,
which is what we had to prove.

Now the main proof. Assume d∞ = (0,1), i.e. our series converges to 1

on Q2 and Q3 and to 0 on Q1. We shall prove by induction upon L that\
Q3

Ṽ N
L ≤ 1

4
.

As
∑N

n=1 dσ(n) is finite, its elements are contained in some VL, thus if our

statement is true, we get
T
Q3

∑N
n=1 dσ(n) ≤ 1/4, which is what we had to

prove. For L < M we have VL ⊂ DN and
T
Q3
Ṽ N

L = 0 ≤ 1/4 from (7).
Now suppose we have the statement for L− 1. Set

P1 = (Ṽ N
L−1 + G̃N

L )|Q3
, P2 =

∑

n>L

(G̃N
n + H̃N

n |Q3
).

Consider the function H̃N
L |Q3

. It depends on the variables vL and vL+1. The
function P1 depends on v1, . . . , vL, while P2 depends on vL+1, . . . , vZ for some
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Z ∈ Z. The function HN
L |Q3

assumes only the values 0 and −1, all three
functions – HN

L |Q3
, P1 and P2 are integer-valued, and from (15) their sum

is less than δ distant from 1 on Q3. Thus by taking P ′
1 = P1 − 1 we have

three functions satisfying the assumptions of Lemma 3. Thus either P1 or
P2 is within 3

√
δ of a constant function. In each of these cases the proof will

also depend on whether
T
Q3
G̃N

L ≤ 1/2 + 38δ or
T
Q3
G̃N

L > 1/2 + 38δ. Thus
we have in total four cases to consider.

Suppose first that P2 is within 3
√
δ of a constant function. As ‖P1 +

P2 + H̃N
L − 1‖ ≤ δ, this means that P1 + H̃N

L is within 3
√
δ + δ ≤ 4

√
δ of a

constant function. If
T
Q3
G̃N

L ≤ 1/2 + 38δ, then\
Q3

Ṽ N
L =

\
Q3

(Ṽ N
L−1 + G̃N

L + H̃N
L ) ≤ 1

4
+

(

1

2
+ 38δ

)

+ 0 =
3

4
+ 38δ.

But Ṽ N
L is equal to P1 + H̃N

L , and so is within 4
√
δ of some constant integer

c and its integral also has to be within 4
√
δ of c. As 4

√
δ + 38δ < 1/4, we

get c ≤ 0, thus
T
Q3
Ṽ N

L ≤ c+ 4
√
δ ≤ 1/4.

If P2 is within 3
√
δ of a constant function, and

T
Q3
G̃N

L > 1/2+38δ, then

again P1 + H̃N
L is within 4

√
δ of a constant integer c. From Lemma 4 we

deduce in particular that
T
Q3
H̃N

L ≤ −1/2 + 450δ. Obviously
T
Q3
G̃N

L ≤ 1,
thus \

Q3

V N
L =

\
Q3

(V N
L−1 + G̃N

L + H̃N
L ) ≤ 1

4
+ 1 − 1

2
+ 450δ =

3

4
+ 450δ.

As
T
Q3
V N

L is supposed again to be within 4
√
δ of c, we have c ≤ 0 as

450δ + 4
√
δ ≤ 1/4. Thus again

T
Q3
Ṽ N

L ≤ c+ 4
√
δ ≤ 1/4.

In the third case we suppose that P ′
1, and thus also P1, is within 3

√
δ of

a constant function, and
T
Q3
G̃N

L ≤ 1/2 + 38δ. As
T
Q3
Ṽ N

L−1 ≤ 1/4 from the

inductive assumption, we have
T
Q3
P1 ≤ 3/4 + 38δ. As P1 is supposed to be

within 3
√
δ of some constant integer c, its integral also has to be within 3

√
δ

of c, which again implies c ≤ 0 and
T
Q3
P1 ≤ 3

√
δ. As Ṽ N

L = P1 + H̃N
L and

H̃N
L ≤ 0, we get

T
Q3
Ṽ N

L ≤ 3
√
δ ≤ 1/4.

The last case is whenP1 is within 3
√
δ of a constant integer c and

T
Q3
G̃N

L >

1/2 + 38δ. In this case from Lemma 4 we know there exists a set P ′ ⊂ Q3

depending only on vL such that |P ′| = 1/2 and
T
P ′ H̃

N
L ≤ −1/2+450δ. If P1

is within 3
√
δ of a constant integer function and P1 +P2 +H̃N

L is within δ of 1

(from (15)) then P2 + H̃N
L is within 3

√
δ+ δ ≤ 4

√
δ of some constant integer

function C. Taking P ′
2 = P2−C we arrrive at the situation of Lemma 2: H̃N

L
depends on vL and vL+1 while P ′

2 depends on vL+1, vL+2, . . . , vZ . This means

that each of them is within 8
√
δ of some integer function P3 depending only
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on vL+1. As
T
P ′ H̃

N
L ≤ −1/2 + 450δ and ‖H̃N

L − P3‖ ≤ 8
√
δ, we gather that\

P ′

P3 ≤ −1

2
+ 450δ + 8

√
δ ≤ −1

2
+ 458

√
δ.

As P ′ depends only on vL and P3 only on vL+1 and |P ′| = |Q3 \ P ′| ,\
Q3

P3 =
\

P ′

P3 +
\

Q3\P ′

P3 = 2
\

P ′

P3 ≤ −1 + 916
√
δ.

Returning to H̃N
L we get

T
Q3
H̃N

L ≤
T
Q3
P3 + 8

√
δ ≤ −1 + 924

√
δ.

As
T
Q3
G̃N

L ≤ 1 and
T
Q3
Ṽ N

L−1 ≤ 1/4 we get
T
Q3
P1 ≤ 5/4. As before,

T
Q3
P1

has to be within 3
√
δ of the integer c, implying c ≤ 1 and

T
Q3
P1 ≤ 1 + 3

√
δ.

We have\
Q3

Ṽ N
L =

\
Q3

(P1 + H̃N
L ) ≤ 1 + 3

√
δ − 1 + 924

√
δ ≤ 927

√
δ ≤ 1

4
.

Thus in all four cases we have completed the induction step, which proves

in a finite number of steps that
T
Q3
D̃N ≤ 1/4. This holds for an arbitrary

N > N0, and would thus have to hold for the limit function,
T
Q3
d∞ ≤ 1/4,

which obviously contradicts the assumption that d∞|Q3
= 1.

Corollary 5.2. A 3-Kadets series has a 3-point sum range, consisting

of the functions (0,0), (1,0) and (1,1). As previously , this holds for any Lp

with 1 ≤ p <∞.

6. More points. From the previous section we know how to make 3
points out of 2. The same mechanism can be applied to make r + 1 points
out of r.

Theorem 6.1. For any r > 1 there exists a family {dk} of functions defined

on a union of cubes Q1, . . . , QN with an r-point sum range. Additionally

we can distinguish two disjoint subsets F and G of {dk : k ∈ N} which

form a Kadets family on QN , while all other functions dk vanish on QN .

Moreover one function in the sum range of dk is equal to 1 on QN and all

the other functions from the sum range vanish on QN . Finally , there exist

rearrangements convergent to any point of the sum range in which the sets

F and G are arranged as in Proposition 2.1.

Proof. We shall prove the assertion by induction on r. For r = 2 the
original Kadets example with N = 1 satisfies the given conditions.

Suppose we have an appropriate family for r − 1. We add two cubes to
the domain of dk: QN+1 and QN+2. Denote by x = (x1, x2, . . .) the variable
on QN+1 and by y = (y1, y2, . . .) the variable on QN+2. All the functions
not in G will vanish on these cubes. For each n we divide the unit interval
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[0, 1] into |Mn| sets Sn
m,m ∈Mn, of measure 1/|Mn| each. We define gn

m,j to
be 1/|Jn| if xn ∈ Sn

m, and 0 otherwise. Next we define Kn = Mn+1 × Jn+1

and divide the unit interval [0, 1] into |Kn| sets Tn
k of equal measure, and

on QN+2 define gn
m,j to be 1 if yn ∈ Tn−1

(m,j), and 0 otherwise. Finally, to the

functions dk we add a set of functions H = {hn
m,j,k} which vanish on the

cubes Q1 to QN , and satisfy

hn
m,j,k = − 1

|Kn|
gn
m,j on QN+1, hn

m,j,k = −gn
m,j · gn+1

k on QM+2.

It is again easy, although tedious, to check thatF , G and the new functions
H form a 3-Kadets family onQN , QN+1, QN+2. We claim that the set {dk}∪H
satisfies the conditions of the theorem. The sets G and H form a Kadets
family on QN+2, and all other functions vanish on QN+2. We have to check
the sum ranges. Fix any convergent rearrangement ek of {dk}∪H. From the
properties of 3-Kadets families given in Section 3 we know that the limit on
QN+1 and QN+2 is the same, and equals either 0 or 1. From Theorem 5.1
we know that if the series converges to 0 on QM , it has to converge to 0 on
QN+1 and QN+2. Thus at most r + 1 limits can be achieved: the functions
with 0 on QN generate one each (by the 0-extension onto QN+1 ∪ QN+2),
while the single function with 1 on QN can be extended by either 0 or 1 to
QN+1 ∪QN+2. This also satisfies the condition that only one of the points
in the sum range is 1 on QN+2, while the others vanish on Q2.

We can obviously attain all the desired points in the sum range with G
and H ordered as in Proposition 2.1 by taking the rearrangements with F
and G ordered as in the proposition and inserting H as in Section 3.

Thus it is possible to attain an affine-independent finite set of any size r
as the sum range of a conditionally convergent series. Again, this works for
any Lp, 1 ≤ p <∞.

To reach full generality on Lp we will attain arbitrary sum ranges, and
not only affine-independent ones. The proof presented below is due to the
anonymous referee of this paper and follows the scheme from [K90].

Lemma 5. Let Ω be a probability space, cn ∈ R with cn → 0, and

let fn ∈ L2(Ω) be a sequence of integer-valued functions. Then the series
∑∞

n=1(fn + cn) converges if and only if both
∑∞

n=1 fn and
∑∞

n=1 cn converge.

Proof. The “if” part is obvious. For the “only if” part it is enough to
prove that if

∑

cn diverges, then
∑

(fn + cn) has to diverge as well. In fact,
if

∑

cn diverges then there exists an ε ∈ (0, 1/4) such that for any N ∈ N

we have a large Cauchy sum above N , i.e. for some l > k > N we have
|
∑l

n=k cn| > ε. As cn → 0 we can take N large enough to ensure |cj| < ε

for j > N . Thus we can select l = l(k) such that ε <
∑l(k)

n=k cn < 2ε < 1/2.
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But then ‖∑l(k)
n=k(fn + cn)‖ ≥ ε as a sum of an integer-valued function and

a constant c ∈ (ε, 1/2), which ensures the divergence of
∑

(fn + cn).

Now let us apply this lemma to our example from Theorem 6.1. We
have a series dk with an r + 2-point sum range D defined on the union
Ω =

⋃2r+1
i=1 Qi of cubes. We consider it as a series defined on L2(Ω). Let

X = lin{χQ1
, . . . , χQ2r+1

} be the subspace of piecewise constant functions on
Ω. Let P : L2(Ω) → X be the orthogonal projection onto X. Denote by Y
the subspace of X consisting of those piecewise constant functions (fi)

2r+1
i=1 ,

where fi is the value of f on Qi, that satisfy f2j = f2j+1 for j = 1, . . . , r.
Recall that

T
Q2j dk dµ =

T
Q2j+1

dk dµ for j = 1, . . . , r. Thus for any dk

we have P (dk) ∈ Y , and thus P (D) is in fact a subset of Y . Recall also that
for odd indices j the functions dk are integer-valued. Let T : Y → Y be an
arbitrary linear operator. Put d′k = dk + TP (dk).

Theorem 6.2. The sum range D′ of the series
∑

d′k equals (I + T )(D).

Proof. The inclusion (I + T )(D) ⊂ D′ is evident. To prove the inverse
inclusion consider an arbitrary arrangement (b′k) of (d′k) and the corresponding
rearrangement (bk) of (dk). If (b′k) converges to some b′ ∈ D′, then its
restrictions to Qj for odd indices j satisfy the conditions of the lemma. Thus
the restrictions of TP (bk) to Qj for odd j converge. Now the restrictions
of TP (bk) to Qj−1 are equal to the corresponding restrictions to Qj , so the
whole series TP (bk) converges. Then

∑

bk =
∑

(b′k − TP (bk)) also has to
converge. The sum b of this series belongs toD, hence b′ = b+TP (b) belongs
to (I + T )(D).

This example can be transferred to any infinite-dimensional Banach space
Y by using the results of V. M. Kadets. Let SR(

∑

xi) denote the sum range

of
∑

xi and let X
f⇒ Y denote the fact that the Banach space X is finitely

representable in the Banach space Y . Theorem 7.2.2 of [S91] states:

Let X and Y be Banach spaces, X
f⇒ Y . Suppose that X has a basis

{ek}∞k=1 and let
∑∞

k=1 xk be a series in X such that SR(
∑∞

k=1 xk) is not a

linear set. Then for any monotone sequence {ak}∞k=1 of positive numbers with

ak → ∞ as k → ∞, there exists a series
∑∞

k=1 yk in Y such that SR(
∑∞

k=1 yk)
is not a linear set and ‖yk‖ ≤ ak‖xk‖ for all k ∈ N.

Corollary 7.2.1 points out that if X is l2 then by Dvoretzky’s theorem

X
f⇒ Y , and Corollary 7.2.2 states that in any infinite-dimensional Banach

space there are series whose sum range consists of two points. This is achieved
by applying the two-point example in L2 to Corollary 7.2.1 and following
the proof of Theorem 7.2.2 to see that no new points appear and all the
old ones are transferred to the space Y . We have an n-point example in
L2 which can be in the same manner, through obvious modifications in the
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proof of Theorem 7.2.2 transferred to any Banach space Y . Finally, for any
finite-dimensional subspaces H1, H2 of an infinite-dimensional Banach space
Y and any isomorphism f : H1 → H2 there exists an isomorphism f̃ : Y → Y
extending f . Thus having any n points satisfying some linear equations as
a sum range of yk in Y we can take an f transferring them to any other n
points satisfying the same linear equations and then transfer the whole series
by f̃ .
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