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Abstract. The notion of proximal normal structure is introduced and used to study
mappings that are “relatively nonexpansive” in the sense that they are defined on the
union of two subsets A and B of a Banach space X and satisfy ‖Tx − Ty‖ ≤ ‖x − y‖
for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and
if the pair (A, B) has proximal normal structure, then a relatively nonexpansive mapping
T : A ∪ B → A ∪ B satisfying (i) T (A) ⊆ B and T (B) ⊆ A, has a proximal point in the
sense that there exists x0 ∈ A ∪ B such that ‖x0 − Tx0‖ = dist(A, B). If in addition the
norm of X is strictly convex, and if (i) is replaced with (i)′ T (A) ⊆ A and T (B) ⊆ B,
then the conclusion is that there exist x0 ∈ A and y0 ∈ B such that x0 and y0 are fixed
points of T and ‖x0 − y0‖ = dist(A, B). Because every bounded closed convex pair in a
uniformly convex Banach space has proximal normal structure, these results hold in all
uniformly convex spaces. A Krasnosel’skĭı type iteration method for approximating the
fixed points of relatively nonexpansive mappings is also given, and some related Hilbert
space results are discussed.

1. Introduction. Let X be a normed linear space and D ⊆ X. Recall
that a mapping T : D → D is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ D. In this paper we consider mappings that are “relatively nonexpan-
sive” in the sense that they are defined on the union of two subsets A and
B of X and satisfy ‖Tx−Ty‖ ≤ ‖x− y‖ for all x ∈ A, y ∈ B. We introduce
the notion of “proximal normal structure”, and we show that if A and B
are weakly compact and convex, and the pair (A, B) has proximal normal
structure, then every relatively nonexpansive mapping T : A ∪ B → A ∪ B
for which T (A) ⊆ B and T (B) ⊆ A has a best proximity point. This means
that there exists x ∈ A∪B such that ‖x−Tx‖ = dist(A, B). As a companion
result we show that if, in addition, the norm of X is strictly convex, then the
assumptions T (A) ⊆ A and T (B) ⊆ B imply the existence of x0 ∈ A and
y0 ∈ B such that x0 and y0 are fixed points of T and ‖x0−y0‖ = dist(A, B).
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Strict convexity is essential for the second result. The significance of these
two results lies in the fact that the “relative nonexpansive” assumption is
much weaker than the assumption that T is nonexpansive; in fact, it does
not even imply continuity of T . Also, in contrast to the results of [5] where
the contractive conditions on the mappings force A and B to intersect, the
interesting case here is when A ∩ B = ∅. In the event that A ∩ B 6= ∅ then
the restriction of T to A∩B is nonexpansive, and our first result yields the
fixed point theorem of Kirk [3] as a special case.

A Krasnosel’skĭı type iteration method for approximating the fixed points
of relatively nonexpansive mappings is also given, and in Section 3 some re-
lated Hilbert space results are discussed.

To describe our results we need some definitions and notation. We shall
say that a pair (A, B) of sets in a Banach space satisfies a property if each
of the sets A and B has that property. Thus (A, B) is said to be convex if
both A and B are convex; (A, B) ⊆ (C, D) ⇔ A ⊆ C and B ⊆ D, etc. We
shall also adopt the notation

δ(A, B) = sup{‖x − y‖ : x ∈ A, y ∈ B};

δ(x, A) = sup{‖x − y‖ : y ∈ A};

dist(A, B) = inf{‖x − y‖ : x ∈ A, y ∈ B}.

Definition 1.1. A pair (A, B) of subsets of a normed linear space is said
to be a proximal pair if for each (x, y) ∈ A×B there exists (x′, y′) ∈ A×B
such that

‖x − y′‖ = ‖x′ − y‖ = dist(A, B).

Definition 1.2. A convex pair (K1, K2) in a Banach space is said to
have proximal normal structure if for any closed, bounded, convex proxi-
mal pair (H1, H2) ⊆ (K1, K2) for which dist(H1, H2) = dist(K1, K2) and
δ(H1, H2) > dist(H1, H2), there exists (x1, x2) ∈ H1 × H2 such that

δ(x1, H2) < δ(H1, H2), δ(x2, H1) < δ(H1, H2).

Notice that the pair (K, K) has proximal normal structure if and only if
K has normal structure in the sense of Brodskĭı and Milman (cf. [3] and [1]).
This can be seen by taking K1 = K2 and H1 = H2 in Definition 1.2, and
observing that δ(H1, H1) = diam(H1) and dist(H1, H1) = 0. If δ(x1, H1) <
δ(H1, H1) then x1 is a nondiametral point of H1.

2. Main results. We will show below that every convex pair in a uni-
formly convex Banach space has proximal normal structure, as do compact
convex pairs in an arbitrary Banach space. First, however, we turn to our
applications.
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Theorem 2.1. Let (A, B) be a nonempty , weakly compact convex pair

in a Banach space, and suppose (A, B) has proximal normal structure. Let

T : A ∪ B → A ∪ B satisfy

(i) T (A) ⊆ B and T (B) ⊆ A;
(ii) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A, y ∈ B.

Then there exists (x, y) ∈ A×B such that ‖x−Tx‖ = ‖y−Ty‖ = dist(A, B).

We also have the following fixed point result for relatively nonexpansive
mappings. This requires the added assumption of strict convexity on the
underlying space.

Theorem 2.2. Let (A, B) be a nonempty , weakly compact convex pair

in a strictly convex Banach space, and suppose (A, B) has proximal normal

structure. Suppose T : A ∪ B → A ∪ B satisfies

(i)′ T (A) ⊆ A and T (B) ⊆ B;
(ii) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A, y ∈ B.

Then there exist x0 ∈ A and y0 ∈ B such that

Tx0 = x0, Ty0 = y0, and ‖x0 − y0‖ = dist(A, B).

Before proving the theorems, we introduce some more notation. Let A
and B be subsets of a normed linear space X. The pair (x, y) ∈ A × B is
said to be proximal in (A, B) if ‖x − y‖ = dist(A, B). We use (A0, B0) to
denote the proximal pair obtained from (A, B) upon setting

(2.1)
A0 = {x ∈ A : ‖x − y′‖ = dist(A, B) for some y′ ∈ B},

B0 = {y ∈ B : ‖x′ − y‖ = dist(A, B) for some x′ ∈ A}.

In particular, if the pair (A, B) is nonempty, weakly compact and convex,
so also is the pair (A0, B0), and moreover dist(A0, B0) = dist(A, B). For
details, see [4]. Also we use B(x; r) to denote the closed ball centered at
x ∈ X with radius r ≥ 0.

Proof of Theorem 2.1. The theorem is trivial (via the theorem of [3]) if
A ∩ B 6= ∅, so we assume dist(A, B) > 0. Let (A0, B0) be the proximal pair
associated with (A, B) as in (2.1). As we have just observed, A0 and B0

are weakly compact and convex, and dist(A0, B0) = dist(A, B). Let x ∈ A0.
Then there exists z ∈ B0 such that ‖x − z‖ = dist(A, B). Thus

‖Tx − Tz‖ ≤ ‖x − z‖ = dist(A, B).

This implies Tx ∈ B0; hence T (A0) ⊆ B0. Similarly, T (B0) ⊆ A0. Also

‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A0, y ∈ B0.

Clearly (A0, B0) also has proximal normal structure. Now let Γ denote the
collection of all nonempty subsets F of A0∪B0 for which F ∩A0 and F ∩B0
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are nonempty, closed and convex,

T (F ∩ A0) ⊆ F ∩ B0, T (F ∩ B0) ⊆ F ∩ A0,

and dist(F ∩ A0, F ∩ B0) = dist(A, B). Since A0 ∪ B0 ∈ Γ , Γ is nonempty.
Let {Fα}α∈J be a descending chain in Γ , and let F0 =

⋂
α

Fα. Then
F0

⋂
A0 =

⋂
α
(Fα∩A0), so F0∩A0 is nonempty, closed and convex. Similarly

F0 ∩ B0 is nonempty, closed and convex. Also

T (F0 ∩ A0) ⊆ F0 ∩ B0, T (F0 ∩ B0) ⊆ F0 ∩ A0.

To show that F0 ∈ Γ we only need to show that dist(F0 ∩ A0, F0 ∩ B0) =
dist(A, B). However, for each α ∈ J it is possible to select xα ∈ Fα ∩A0 and
yα ∈ Fα ∩ B0 such that

‖xα − yα‖ = dist(A, B).

It is also possible to choose weakly convergent subnets {xα′} and {yα′}
(with the same indices), say weak-limα′ xα′ = x and weak-limα′ yα′ = y.
Then clearly x ∈ F0 ∩A0 and y ∈ F0 ∩B0. By weak lower semicontinuity of
the norm,

‖x − y‖ ≤ dist(A, B);

hence

dist(A, B) ≤ dist(F0 ∩ A0, F0 ∩ B0) ≤ ‖x − y‖ ≤ dist(A, B).

Since every chain in Γ is bounded below by a member of Γ , Zorn’s
lemma implies that Γ has a minimal element, say K. Let K1 = K ∩A0 and
K2 = K ∩ B0. Observe that if

δ(K1, K2) = dist(K1, K2),

then ‖x − Tx‖ = dist(K1, K2) = dist(A, B) for any x ∈ K1, and we are
finished. So we may suppose that

δ(K1, K2) > dist(K1, K2).

We complete the proof by showing that this leads to a contradiction.
Since K is minimal it follows that (K1, K2) is a proximal pair in (A0, B0).

By proximal normal structure there exist (y1, y2) ∈ K1 × K2 and β ∈ (0, 1)
such that

δ(y1, K2) ≤ βδ(K1, K2), δ(y2, K1) ≤ βδ(K1, K2).

Since (K1, K2) is a proximal pair there exists (y′1, y
′

2) ∈ K1 × K2 such that

‖y1 − y′2‖ = ‖y2 − y′1‖ = dist(K1, K2).

So for any z ∈ K2,∥∥∥∥
y1 + y′1

2
− z

∥∥∥∥ ≤

∥∥∥∥
y1 − z

2

∥∥∥∥ +

∥∥∥∥
y′1 − z

2

∥∥∥∥
≤ βδ(K1, K2)/2 + δ(K1, K2)/2 = αδ(K1, K2),
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where α = (1 + β)/2 ∈ (0, 1). Let x1 = (y1 + y′1)/2 and similarly x2 =
(y2 + y′2)/2. Then

δ(x1, K2) ≤ αδ(K1, K2), δ(x2, K1) ≤ αδ(K1, K2),

and ‖x1 − x2‖ = dist(K1, K2). Define

L1 = {x ∈ K1 : δ(x, K2) ≤ αδ(K1, K2)},

L2 = {y ∈ K2 : δ(y, K1) ≤ αδ(K1, K2)}.

Then Li is a nonempty closed convex subset of Ki, i = 1, 2, and since x1 ∈ L1

and x2 ∈ L2, dist(L1, L2) = dist(K1, K2) (= dist(A, B)).
Now let x ∈ L1, z ∈ K2. Then ‖Tx−Tz‖ ≤ ‖x− z‖ ≤ αδ(K1, K2). This

implies

T (K2) ⊆ B(Tx; αδ(K1, K2)) ∩ K1 := K ′

1.

Clearly K ′

1 is closed and convex. Also, if y ∈ K2 satisfies ‖x−y‖ = dist(A, B)
then ‖Tx−Ty‖ = dist(K1, K2). Since Ty ∈ K ′

1, we conclude dist(K ′

1, K2) =
dist(A, B). Therefore K ′

1 ∪ K2 ∈ Γ , and by minimality of K it must be the
case that K ′

1 = K1; hence K1 ⊆ B(Tx; αδ(K1, K2)) and since x ∈ L1

was arbitrary this proves T (L1) ⊆ L2. Similarly T (L2) ⊆ L1. Therefore
L1∪L2 ∈ Γ . But δ(L1, L2) ≤ αδ(K1, K2), and this contradicts the minimal-
ity of K.

Proof of Theorem 2.2. Let (A0, B0) be the proximal pair associated with
(A, B) and choose x ∈ A0. Then there exists z ∈ B0 such that ‖x − z‖ =
dist(A, B), and moreover ‖Tx − Tz‖ = dist(A, B). Thus T : A0 → A0.
Similarly T : B0 → B0. Now let Γ denote the collection of all nonempty
subsets F of A0∪B0 for which F ∩A0 and F ∩B0 are nonempty, closed and
convex,

T (F ∩ A0) ⊆ F ∩ A0, T (F ∩ B0) ⊆ F ∩ B0,

and dist(F ∩ A0, F ∩ B0) = dist(A, B). Since A0 ∪ B0 ∈ Γ , Γ is nonempty.
Proceed as in the proof of Theorem 2.1 to show that Γ has a minimal
element K. Let K1 = K ∩ A0 and K2 = K ∩ B0. First, suppose one of the
sets is a singleton, say K1 = {x}. Then Tx = x, and if y is the unique point
of K2 for which ‖x − y‖ = dist(K1, K2) it must be the case that Ty = y.
Since ‖y − x‖ = dist(A, B), we are finished. So we may suppose both K1

and K2 have positive diameter, and because the space is strictly convex this
in turn implies that

δ(K1, K2) > dist(K1, K2).

We complete the proof by showing that this leads to a contradiction.
Since (A0, B0) has proximal normal structure, we may define L1 and L2

as in the proof of Theorem 2.1. Choose x ∈ L1. For any z ∈ K2,

‖Tx − Tz‖ ≤ ‖x − z‖ ≤ αδ(K1, K2),
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and this implies

T (K2) ⊆ B(Tx; αδ(K1, K2)) ∩ K2.

By minimality of K it follows that K2 ⊆ B(Tx; αδ(K1, K2)), and this in
turn implies δ(Tx, K2) ≤ αδ(K1, K2). Therefore T (L1) ⊆ L1. Similarly
T (L2) ⊆ L2. Since L1 and L2 are, respectively, nonempty closed convex
subsets of K1 and K2, and since δ(L1, L2) ≤ αδ(K1, K2) for α < 1, this
contradicts the minimality of K.

Remark. The strict convexity assumption is essential in Theorem 2.2.
To see this, it suffices to consider compact convex sets A and B in ℓ∞ that
have the property that ‖x−y‖ ≡ d > 0 for x ∈ A and y ∈ B. Then (A, B) has
proximal normal structure (vacuously). Any (even discontinuous) mapping
T : A∪B → A∪B with T (A) ⊆ A and T (B) ⊆ B satisfies the assumptions
of Theorem 2.2, but in general such a mapping need not have fixed points.

Now let X be a uniformly convex Banach space with modulus of con-
vexity δ. Then δ(ε) > 0 for ε > 0. Moreover, if x, y, p ∈ X, R > 0, and
r ∈ [0, 2R], we have

‖x − p‖ ≤ R

‖y − p‖ ≤ R

‖x − y‖ ≥ r





⇒

∥∥∥∥
x + y

2
− p

∥∥∥∥ ≤

(
1 − δ

(
r

R

))
R.

It is well known that all uniformly convex Banach spaces have normal struc-
ture. They in fact have proximal normal structure.

Proposition 2.1. Every bounded closed convex pair in a uniformly con-

vex Banach space X has proximal normal structure.

Proof. Let (H1, H2) be a bounded closed convex proximal pair in X, and
suppose δ(H1, H2) > dist(H1, H2). Choose x, y ∈ H1 with x 6= y. Then if
x̃, ỹ ∈ H2 satisfy

‖x − x̃‖ = ‖y − ỹ‖ = dist(H1, H2),

it follows (by strict convexity) that x̃ 6= ỹ, and
∥∥∥∥
x + y

2
−

x̃ + ỹ

2

∥∥∥∥ = dist(H1, H2).

Take ε = min{‖x − y‖, ‖x̃ − ỹ‖}. For any z1 ∈ H2,

‖x − z1‖ ≤ δ(H1, H2), ‖y − z1‖ ≤ δ(H1, H2).

Then if α = 1 − δ(ε/δ(H1, H2)) we have
∥∥∥∥
x + y

2
− z1

∥∥∥∥ ≤ αδ(H1, H2).
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Similarly if z2 ∈ H1 then∥∥∥∥
x̃ + ỹ

2
− z2

∥∥∥∥ ≤ αδ(H1, H2)

and the result follows.

Corollary 2.1. Let (A, B) be a nonempty bounded closed convex pair

in a uniformly convex Banach space. Let T : A ∪ B → A ∪ B satisfy

(i) T (A) ⊆ B and T (B) ⊆ A;
(ii) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A, y ∈ B.

Then there exists (x, y) ∈ A×B such that ‖x−Tx‖ = ‖y−Ty‖ = dist(A, B).

Corollary 2.2. Let (A, B) be a nonempty bounded closed convex pair

in a uniformly convex Banach space. Let T : A ∪ B → A ∪ B satisfy

(i)′ T (A) ⊆ A and T (B) ⊆ B;
(ii) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A, y ∈ B.

Then there exist x ∈ A and y ∈ B such that Tx = x, Ty = y, and ‖x−y‖ =
dist(A, B).

Next we show that Krasnosel’skĭı’s iteration process (cf. [6]) yields a
convergence result if X is uniformly convex. In this theorem A0 is the set
in the proximal pair (A0, B0) associated with the pair (A, B) as described
above.

Theorem 2.3. Let A and B be nonempty bounded closed convex subsets

of a uniformly convex Banach space and suppose T : A∪B → A∪B satisfies

(i)′ T (A) ⊆ A and T (B) ⊆ B;
(ii) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A, y ∈ B.

Let x0 ∈ A0, and define xn+1 = (xn + Txn)/2, n = 1, 2, . . . . Then

lim
n

‖xn − Txn‖ = 0.

Moreover , if T (A) lies in a compact set , then {xn} converges to a fixed

point of T .

Proof. If dist(A, B) = 0, then A0 = B0 = A ∩ B and the conclusion
follows from a well known theorem of Ishikawa [2] and the fact that T :
A ∩ B → A ∩ B is nonexpansive. So we assume dist(A, B) > 0. By Theo-
rem 2.2 there exists y ∈ B0 such that Ty = y. Since

‖xn+1 − y‖ =

∥∥∥∥
xn + Txn

2
−

y + Ty

2

∥∥∥∥
≤ ‖xn − y‖/2 + ‖Txn − Ty‖/2 ≤ ‖xn − y‖,

{‖xn−y‖} is nonincreasing and limn ‖xn−y‖ = d > 0. Suppose there exists a
subsequence {xnk

} of {xn} and an ε > 0 such that ‖xnk
−Txnk

‖ ≥ ε > 0 for



290 A. A. Eldred et al.

all k. Since the modulus of convexity δ of X is an increasing (and continuous)
function it is possible to choose ξ > 0 so small that

(
1 − δ

(
ε

d + ξ

))
(d + ξ) < d.

Then if k is chosen so that ‖xnk
− y‖ ≤ d + ξ, we have the contradiction:

‖y − xnk+1‖ =

∥∥∥∥y −
xnk

+ Txnk

2

∥∥∥∥ ≤

(
1 − δ

(
ε

d + ξ

))
(d + ξ).

This proves that limn ‖xn−Txn‖ = limn ‖xn−xn+1‖ = 0. If T (A) is compact
then {xn} has a subsequence {xnk

} that converges to a point z ∈ A. Also
{xnk+1} and {Txnk

} converge to z. Let D = dist(A, B) and choose w ∈ B0

so that ‖z −w‖ = D. We now have ‖xnk
−w‖ → ‖z −w‖ = D, and by (ii),

‖xnk
− w‖ ≥ ‖xnk+1 − Tw‖ → ‖z − Tw‖,

so ‖z − Tw‖ = D. By strict convexity of the norm, Tw = w, and by (ii),
Tz = z because z is the unique point of A which is nearest to w.

It is possible to give simple examples (even on the real line) to show that
the assumption x0 ∈ A0 is necessary in Theorem 2.3.

Finally, we have the following result, which illustrates that proximal
normal structure is similar to normal structure in another way.

Proposition 2.2. Every compact convex pair (K1, K2) in a Banach

space has proximal normal structure.

Proof. Let (H1, H2) be any bounded closed convex proximal pair con-
tained in (K1, K2) for which δ(H1, H2) > dist(H1, H2), and suppose δ(x, H2)
= δ(H1, H2) for each x ∈ H1. Let x0 ∈ H1. Then there exists y0 ∈ H2 such
that ‖x0 − y0‖ = δ(H1, H2). Since (H1, H2) is a proximal pair there exists
x1 ∈ H1 such that ‖x1 − y0‖ = dist(H1, H2). Therefore

‖x1 − x0‖ ≥ ‖x0 − y0‖ − ‖x1 − y0‖ = δ(H1, H2) − dist(H1, H2).

Choose y1 ∈ H2 so that ‖(x1 + x0)/2 − y1‖ = δ(H1, H2). This implies

‖x1 − y1‖ = ‖x0 − y1‖ = δ(H1, H2).

Having chosen {x1, . . . , xn} in H1, take yn ∈ H2 so that
∥∥∥∥
x1 + · · · + xn

n
− yn

∥∥∥∥ = δ(H1, H2).

Now choose xn+1 ∈ H1 so that ‖xn+1 − yn‖ = dist(H1, H2). Having defined
the sequence {xn}, observe that since ‖xi − yn‖ = δ(H1, H2) for all i =
1, . . . , n, we have

‖xn+1 − xi‖ ≥ ‖xi − yn‖ − ‖xn+1 − yn‖ = δ(H1, H2) − dist(H1, H2)
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for i = 1, . . . , n. Since δ(H1, H2) − dist(H1, H2) > 0 this contradicts the
compactness of H1. Therefore there exists x ∈ H1 such that δ(x, H2) <
δ(H1, H2). Similarly there exists y ∈ H2 such that δ(y, H1) < δ(H1, H2).

3. Hilbert spaces. We now examine the results of the previous section
in a Hilbert space setting. Suppose A is a nonempty closed convex subset of
a real Hilbert space X. For any x ∈ X let PAx denote the unique point of
A for which

‖x − PAx‖ = dist(x, A).

It is well known that PA is nonexpansive and characterized by the inequality

(3.1) 〈z − PAx, PAx − x〉 ≥ 0 for all x ∈ X and z ∈ A.

The next observation provides an example of a relatively nonexpansive map-
ping.

Proposition 3.1. Let A and B be two closed and convex subsets of a

Hilbert space X, and define P : A ∪ B → A ∪ B to be the restriction of PB

on A and the restriction of PA on B. Then P (A) ⊆ B, P (B) ⊆ A, and

‖Px − Py‖ ≤ ‖x − y‖ for x ∈ A and y ∈ B.

Proof. Suppose x ∈ A and y ∈ B. Then by (3.1),

〈y − PBx, PBx − x〉 ≥ 0, 〈x − PAy, PAy − y〉 ≥ 0.

Adding the above two terms, we have

〈y − PBx, PBx − x〉 − 〈x − PAy, y − PAy〉 ≥ 0.

Simple calculations yield

〈y − PBx, PBx + PAy − (x + y)〉 + 〈y − x + PAy − PBx, y − PAy〉 ≥ 0,

〈y − x + PAy − PBx, PBx − x〉 + 〈x − PAy, PBx + PAy − (x + y)〉 ≥ 0.

Adding again we have

〈(PAy + PBx) − (x + y), (x + y) − (PBx + PAy)〉

+ 〈y − x + PAy − PBx, y − x + PBx − PAy〉 ≥ 0.

Thus

(3.2) ‖PBx − PAy‖2 ≤ ‖x − y‖2 − ‖(x + y) − (PAy + PBx)‖2,

which implies ‖PBx − PAy‖ ≤ ‖x − y‖.

Now suppose T : A∪B → A∪B (A and B as above) satisfies T (A) ⊆ A
and T (B) ⊆ B, and suppose

(3.3) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A and y ∈ B.

Define U : A ∪ B → A ∪ B by setting

Ux = PBTx if x ∈ A and Uy = PATy if y ∈ B.
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Then by Theorem 2.1 there exists x0 ∈ A0 such that ‖x0 − PBTx0‖ =
dist(A, B). Since ‖x0 − PBx0‖ = dist(A, B), (3.3) implies ‖Tx0 − TPBx0‖
= dist(A, B). But this in turn implies ‖Tx0 − PBTx0‖ = dist(A, B). This
means that both x0 and Tx0 are proximal points for PBTx0, so by unique-
ness of proximal points, Tx0 = x0.

Thus in a Hilbert space setting Theorem 2.2 follows directly from The-
orem 2.1. This does not appear to be true in general.

Similarly there is a more direct approach to Theorem 2.2 in a Hilbert
space setting. The mapping T of Theorem 2.2 need not be continuous on
A ∪ B, although it is fairly easy to see that it is continuous if (A, B) is a
proximal pair. In a Hilbert space setting T is in fact nonexpansive on A∪B
if (A, B) is a proximal pair.

Proposition 3.2. Suppose A and B are bounded closed convex subsets

of a Hilbert space, and suppose A = A0 and B = B0. Suppose T : A ∪ B →
A ∪ B satisfies

(i)′ T (A) ⊆ A and T (B) ⊆ B;
(ii) ‖Tx − Ty‖ ≤ ‖x − y‖ for x ∈ A, y ∈ B.

Then T is nonexpansive on A ∪ B.

Proof. Let u, v ∈ A and let d = dist(A, B). Since ‖TPBu − Tu‖ ≤
‖PBu − u‖ it must be the case that

T (PB(u)) = PB(T (u)).

Also it is easy to see that the segment [u, PBu] is orthogonal to [u, v]. (This
follows from the fact that u is the point on the line passing through u and
v which is nearest to PBu.) Similarly the segment [Tu, PBTu] is orthogonal
to [Tu, Tv]. By the Pythagorean Theorem we have

d2 + ‖Tu − Tv‖2 = ‖TPBu − Tv‖2 ≤ ‖PBu − v‖2 = d2 + ‖u − v‖2,

from which ‖Tu − Tv‖ ≤ ‖u − v‖.

Proposition 3.2 in conjunction with the fixed point theorem for nonex-
pansive mappings immediately ensures the existence of a fixed point x0 of T
in A, and the unique point y0 ∈ B which is nearest to x0 satisfies Ty0 = y0

and ‖x0 − y0‖ = dist(A, B).
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