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Convergence of greedy approximation II.
The trigonometric system

by

S. V. Konyagin (Moscow) and V. N. Temlyakov (Columbia, SC)

Abstract. We study the following nonlinear method of approximation by trigono-
metric polynomials. For a periodic function f we take as an approximant a trigonometric
polynomial of the form Gm(f) :=

∑
k∈Λ f̂(k)ei(k,x), where Λ ⊂ Zd is a set of cardinality

m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of
the function f . Note that Gm(f) gives the best m-term approximant in the L2-norm, and
therefore, for each f ∈ L2, ‖f − Gm(f)‖2 → 0 as m → ∞. It is known from previous
results that in the case of p 6= 2 the condition f ∈ Lp does not guarantee the convergence
‖f − Gm(f)‖p → 0 as m → ∞. We study the following question. What conditions (in
addition to f ∈ Lp) provide the convergence ‖f − Gm(f)‖p → 0 as m→∞? In the case
2 < p ≤ ∞ we find necessary and sufficient conditions on a decreasing sequence {An}∞n=1
to guarantee the Lp-convergence of {Gm(f)} for all f ∈ Lp satisfying an(f) ≤ An, where
{an(f)} is the decreasing rearrangement of the absolute values of the Fourier coefficients
of f .

1. Introduction. We study the following natural nonlinear method
of summation of trigonometric Fourier series. Consider a periodic function
f ∈ Lp(Td), 1 ≤ p ≤ ∞ (L∞(Td) = C(Td)), defined on the d-dimensional
torus Td. Let m ∈ N and t ∈ (0, 1] be given, and let Λm be a set of k ∈ Zd
with the properties:

(1.1) min
k∈Λm

|f̂(k)| ≥ t max
k 6∈Λm

|f̂(k)|, |Λm| = m,

where
f̂(k) := (2π)−d

�

Td
f(x)e−i(k,x) dx

is the kth Fourier coefficient of f . We define

Gtm(f) := Gtm(f, T ) := SΛm(f) :=
∑

k∈Λm
f̂(k)ei(k,x)
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and call it an mth weak greedy approximant of f with regard to the trigono-
metric system T := {ei(k,x)}k∈Zd . We write Gm(f) = G1

m(f) and call it
an mth greedy approximant . Clearly, an mth weak greedy approximant and
even an mth greedy approximant may not be unique. In this paper we do
not impose any extra restrictions on Λm in addition to (1.1). Thus the theo-
rems formulated below hold for any choice of Λm satisfying (1.1) or in other
words for any realization Gtm(f) of the weak greedy approximation.

There has recently been much interest in approximation of functions
by m-term approximants with regard to a basis (or a minimal system; see
surveys [D] and [T2]). We will discuss in detail only results concerning the
trigonometric system. T. W. Körner, answering a question raised by Car-
leson and Coifman, constructed in [K1] a function from L2(T) and then
in [K2] a continuous function such that {Gm(f, T )} diverges almost every-
where. It has been proved in [T1] for p 6= 2 and in [CF] for p < 2 that there
exists f ∈ Lp(T) such that {Gm(f, T )} does not converge in Lp. It was
remarked in [T2] that the method from [T1] gives a little more: 1) There
exists a continuous function f such that {Gm(f, T )} does not converge in
Lp(T) for all p > 2; 2) There exists a function f that belongs to all Lp(T),
p < 2, such that {Gm(f, T )} does not converge in measure. Thus the above
negative results show that the condition f ∈ Lp(Td), p 6= 2, does not guar-
antee the convergence of {Gm(f, T )} in the Lp-norm. The main goal of this
paper is to find an additional condition on f (besides f ∈ Lp) to guarantee
that ‖f − Gm(f, T )‖p → 0 as m→ ∞. In Section 2 we prove the following
theorem.

Theorem 1. Let f ∈ Lp(Td), 2 < p ≤ ∞, and let q > p′ := p/(p − 1).
Assume that ∑

|k|>n
|f̂(k)|q = o(nd(1−q/p′)),

where |k| := max1≤j≤d |kj|. Then

lim
m→∞

‖f −Gtm(f, T )‖p = 0.

For f ∈ L1(Td) let {f̂(k(l))}∞l=1 denote the decreasing rearrangement of
{f̂(k)}k∈Zd , i.e.

(1.2) |f̂(k(1))| ≥ |f̂(k(2))| ≥ . . .
Set an(f) := |f̂(k(n))|. In Section 3 we prove the following theorem.

Theorem 2. Let 2 < p <∞ and let {An}∞n=1 be a decreasing sequence
satisfying

(1.3) An = o(n1/p−1) as n→∞.
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Then for any f ∈ Lp(Td) with an(f) ≤ An for n = 1, 2, . . . , we have

(1.4) lim
m→∞

‖f −Gtm(f, T )‖p = 0.

We also prove in Section 3 that for any decreasing sequence {An} satis-
fying

lim sup
n→∞

Ann
1−1/p > 0

there exists a function f ∈ Lp with an(f) ≤ An for n = 1, 2, . . . and with
the sequence {Gm(f)} of greedy approximants divergent in Lp.

In Section 4 we prove a necessary and sufficient condition on the majorant
{An} to guarantee (under the assumption that f is continuous) the uniform
convergence of the greedy approximants to the function f .

Theorem 3. Let {An}∞n=1 be a decreasing sequence satisfying the con-
dition (A∞):

(1.5)
∑

M<n≤eM
An = o(1) as M →∞.

Then for any f ∈ C(T) with an(f) ≤ An for n = 1, 2, . . . , we have

(1.6) lim
m→∞

‖f −Gtm(f, T )‖∞ = 0.

The condition (A∞) is very close to the convergence of the series
∑
nAn;

if it holds then
N∑

n=1

An = o(log∗(N)) as N →∞,

where log∗(u) is defined to be bounded for u ≤ 0 and to satisfy log∗(u) =
log∗(log u) + 1 for u > 0. The function log∗(u) grows more slowly than any
iterated logarithmic function.

The condition (A∞) in Theorem 3 is sharp.

Theorem 4. Assume that a decreasing sequence {An}∞n=1 does not sat-
isfy the condition (A∞). Then there exists a function f ∈ C(T) with
an(f) ≤ An for n = 1, 2, . . . and such that

lim sup
m→∞

‖f −Gm(f, T )‖∞ > 0

for some realization Gm(f, T ).

Theorems 3 and 4 will be proved in Section 4. Also, in that section we
will prove the following theorem.

Theorem 5. Assume that a decreasing sequence {An}∞n=1 is not sum-
mable. Then there exists a function f ∈ C(T) with an(f) ≤ An for all n,
such that the partial Fourier sums of f diverge at some point.
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We note (see Section 2) that sufficient conditions for convergence of
greedy approximants in Theorem 1 for p =∞ also imply the convergence of
partial Fourier sums. Theorems 3 and 5 demonstrate that the conditions for
convergence of greedy approximants in terms of the decreasing rearrange-
ments of the Fourier coefficients of continuous functions are weaker than the
ones for convergence of partial Fourier sums.

2. Sufficient conditions in terms of Fourier coefficients. Proof
of Theorem 1. Let us begin this section with some historical remarks.
The question of the rate of greedy approximation of functions in certain
smoothness classes was discussed in [T1]. In particular the following function
class was considered. For 0 < r < ∞ and 0 < q ≤ ∞, let F rq denote the
class of those functions in L1(Td) such that

|f |Frq := ‖(|k|r|f̂(k)|)k∈Zd‖lq ≤ 1, |f̂(0)| ≤ 1.

Here we use the notation |k| := max{|k1|, . . . , |kd|}. The following error
estimates have been proved in [T1] for

Gm(Frq )p := sup
f∈Frq

‖f −Gm(f)‖p.

Theorem 2.1. For any 0 < q <∞ and r > d(1− 1/q)+ we have

Gm(Frq )p � m−r/d−1/q+1/2, 1 ≤ p ≤ 2,(2.1)

Gm(Frq )p � m−r/d−1/q+1−1/p, 2 ≤ p ≤ ∞.(2.2)

It has also been noticed in [T1] that the method used in the proof of
Theorem 2.1 allows us to prove order estimates similar to (2.1) and (2.2)
for classes a little wider than Frq . We define these classes now. It is easy to
verify that for f ∈ Frq and each l ≥ 1 we have

(2.3)
( ∑

2l−1≤|k|<2l

|f̂(k)|q
)1/q

≤ 2−r(l−1), |f̂(0)| ≤ 1.

We use (2.3) as the definition of a new classDF rq (D stands here to stress that
restrictions are imposed on the dyadic blocks). Here is a remark from [T1].

Remark to Theorem 2.1. The relations (2.1) and (2.2) are valid when
the class Frq is replaced by DFrq .

For r > 0 and 0 < q < ∞, denote by Forq the space of functions f ∈
L1(Td) satisfying

(2.4)
∑

|k|>n
|f̂(k)|q = o(n−rq).

We will now prove Theorem 1 from the introduction.
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Theorem 1. Let 2 < p ≤ ∞ and q > p′ = p/(p − 1). Assume that
f ∈ Lp(Td) ∩ Forq with r = d(1/p′ − 1/q). Then for any 0 < t ≤ 1 we have

‖f −Gtm(f)‖p → 0 as m→∞.
Proof. First we note that (2.4) is equivalent to

(2.5)
∑

k∈U(l)

|f̂(k)|q ≤ o(2−rlq), l = 1, 2, . . . ,

where U(l) := {k ∈ Zd : 2l−1 ≤ |k| < 2l}. It has been proved in [T1, (3.18)]
that the estimates

∑

k∈U(l)

|f̂(k)|q ≤ 2−rlq, l = 1, 2, . . . ,

imply
am(f) = O(m−r/d−1/q).

In the same way one can prove that (2.5) implies that

(2.6) am(f) = o(m−r/d−1/q).

Since r = d(1/p′ − 1/q) we deduce from (2.6) that

am(f) = o(m−1/p′).

In the case 2 < p < ∞ we can finish the proof of Theorem 1 by applying
Theorem 2 from the introduction. However, we choose to give an indepen-
dent proof for the following two reasons. The proof below is simpler than
the proof of Theorem 2 (see Section 3); moreover, the proof below covers
the case p =∞, where Theorem 2 does not hold (see Section 4).

Let
Gtm(f) = SΛm(f)

with Λm satisfying (1.1). Consider first the case 2 < p < ∞ and estimate
‖Sdm(f)− SΛm(f)‖p, where

Sdm(f) :=
∑

k∈Q(m)

f̂(k)ei(k,x), Q(m) := {k : |k| ≤ m1/d}.

Then we have

Sdm(f)− SΛm(f) =
∑

k∈Q(m)\Λm
f̂(k)ei(k,x) −

∑

k∈Λm\Q(m)

f̂(k)ei(k,x)(2.7)

=: Σ1 −Σ2.

From the definition of Λm we get

(2.8) am+1(f) ≤ max
k 6∈Λm

|f̂(k)| ≤ t−1 min
k∈Λm

|f̂(k)| ≤ t−1am(f).
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Thus by the Hausdorff–Young theorem (see [Z, Chap. 12, Section 2]),

‖Σ1‖p ≤
( ∑

k∈Q(m)\Λm
|f̂(k)|p′

)1/p′

= O(am(f)m1/p′) = o(1).

Using the Hausdorff–Young theorem again and also the Hölder inequality
with parameter q/p′ we get

‖Σ2‖p ≤
( ∑

k∈Λm\Q(m)

|f̂(k)|p′
)1/p′

≤
( ∑

k∈Λm\Q(m)

|f̂(k)|q
)1/q

m1/p′−1/q(2.9)

≤
( ∑

k 6∈Q(m)

|f̂(k)|q
)1/q

m1/p′−1/q = o(1).

It remains to remark that ‖f − Sdm(f)‖p → 0 as m→∞.
Let us now consider the case p = ∞. We remark that the relation (2.5)

with r = d(1− 1/q) and the Hölder inequality imply

(2.10)
∑

n≤|k|<2n

|f̂(k)| = o(1).

First, observe that the cubic Fourier sums Sn(f) uniformly converge to
f as n→∞. Indeed, consider the de la Vallée Poussin sums

Vn(f) =
∑

|k|≤2n

d∏

j=1

min
(

1,
2n− |kj|

n

)
f̂(k)ei(k,x).

It is known (see [B]) that for any f ∈ C(Td),
(2.11) ‖Vn(f)− f‖∞ = o(1) (n→∞).

Further,
‖Sn(f)− Vn(f)‖∞ ≤

∑

k∈Zd, n<|k|≤2n

|f̂(k)|,

and by (2.10),

(2.12) ‖Sn(f)− Vn(f)‖∞ = o(1) (n→∞).

The relations (2.11) and (2.12) imply

(2.13) ‖Sn(f)− f‖∞ = o(1) (n→∞).

Thus, we obtain the uniform convergence of Sn(f) to f .
The rest of the proof is similar to the above case 2 < p < ∞ with the

only difference that instead of the Hausdorff–Young theorem we use the
inequality ‖f‖∞ ≤

∑
k |f̂(k)|. Theorem 1 is proved.

Let us now discuss the possibility of improving the assumption f ∈
Lp(Td) ∩ Forq, r = d(1/p′ − 1/q), in Theorem 1.
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Proposition 2.1. For each 2 < p ≤ ∞ there exists f ∈ Lp(Td) such
that

(2.14) |f̂(k)| = O(|k|−d(1−1/p))

(and therefore f ∈ DFrq with r = d(1/p′ − 1/q)) and the sequence {Gm(f)}
diverges in Lp.

Proof. We will apply a construction from [T1]. We make use of the
Rudin–Shapiro polynomials:

(2.16) RN (x) =
∑

|k|≤N
εke

ikx, εk = ±1, x ∈ T,

which satisfy the estimate

(2.17) ‖RN‖∞ ≤ CN1/2

for an absolute constant C. For s = ±1 define

Λ±1 := {k : R̂m(k) = ±1}.
The estimate (2.17) implies

(2.18)
∣∣|Λ1| − |Λ−1|

∣∣ = |Rm(0)| ≤ Cm1/2.

Let s = ±1 be such that |Λs| > |Λ−s|. Take a small positive δ and consider
the function

(2.19) fm,δ := Rm + sδDm,
where

Dm(x) :=
∑

|k|≤m
eikx, x ∈ T,

is the Dirichlet kernel. Since |f̂m,δ(k)| = 1+δ for k ∈ Λs and |f̂m,δ(k)| = 1−δ
for k ∈ Λ−s and |Λs| ≥ m, the frequencies of Gm(fm,δ) are in Λs and

(2.20) ‖Gm(fm,δ)‖∞ ≥ |Gm(fm,δ)(0)| = (1 + δ)m.

Next,

‖fm,δ‖p ≤ ‖Rm‖p + δ‖Dm‖p ≤ ‖Rm‖∞ + δ‖Dm‖2/p2 ‖Dm‖1−2/p
∞(2.21)

≤ Cm1/2 + δ(2m+ 1)1−1/p ≤ C1m
1/2

for δ ≤ m1/p−1/2. By the Nikol’skĭı inequality for trigonometric polynomials
the relation (2.20) implies

(2.22) ‖Gm(fm,δ)‖p ≥ C2m
−1/p‖Gm(fm,δ)‖∞ ≥ C2m

1−1/p.

Now define

fdm,δ(x) :=
d∏

j=1

fm,δ(xj)ei(4m)xj
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and

f :=
∞∑

l=1

2−d(1−1/p)lfd2l,δl(x), 0 < δl < 2−dl−3.

The relation (2.14) is obviously satisfied. Moreover, (2.21) implies that

(2.23) ‖f − V2n(f)‖∞ = O(2−d(1/2−1/p)n).

However, (2.22) shows that {Gm(f)} diverges in Lp.

Let us make some more comments. For a given set Λ define

EΛ(f)p := inf
ck,k∈Λ

∥∥∥f −
∑

k∈Λ
cke

i(k,x)
∥∥∥
p
.

Remark 2.1. Theorem 1 implies that if f ∈ Lp, 2 < p ≤ ∞, and

(2.24) EQ(n)(f)2 = o(n−(1/2−1/p))

then Gtm(f)→ f in Lp.
Indeed, (2.24) is equivalent to f ∈ For2 with r = d(1/2− 1/p).

Remark 2.2. The proof of Proposition 2.1 (see (2.23)) implies that there
is f ∈ Lp(Td) such that

EQ(n)(f)∞ = O(n1/p−1/2)

and {Gm(f)} diverges in Lp, 2 < p ≤ ∞.
Remark 2.3. There exists a continuous function f satisfying (2.10) such

that {Gm(f)} diverges in the uniform norm.
We construct an example in the univariate case. Define f :=

∑
k≥2 bk

with

bk := s
−1/2
k

sk∑

l=1

2−skf2sk ,δsk
ei4

sk+lx,

where {sk} is an increasing sequence such that all frequencies of bk+1 lie to
the right of the frequencies of bk. Then by (2.21) we get

‖bk‖∞ ≤ C1s
1/2
k 2−sk/2,

and therefore f ∈ C(T). The relation (2.10) is also satisfied. It is clear that

max
m
‖Gm(bk)‖∞ ≥ s1/2

k .

This implies the divergence of {Gm(f)}.
Remark 2.4. The construction in the proof of Proposition 2.1 can be

used to prove that the convergence set for greedy approximation {Gm}∞m=1
is not linear in Lp, 2 < p ≤ ∞.
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Indeed, consider

gm,δ :=
∑

|k|≤m
R̂m(k)(1− δk/m)eikx, hm,δ := fm,δ − gm,δ,

where fm,δ is defined by (2.19). Similarly to the definition of f (d = 1),

f :=
∞∑

l=1

2−(1−1/p)lf2l,δle
i2l+2x, 0 < δl < 2−l−3,

we define

g :=
∞∑

l=1

2−(1−1/p)lg2l,δle
i2l+2x, 0 < δl < 2−l−3,

h :=
∞∑

l=1

2−(1−1/p)lh2l,δle
i2l+2x, 0 < δl < 2−l−3.

Thus f = g + h. It has been proved in Proposition 2.1 that the sequence
{Gm(f)}∞m=1 diverges in Lp. However, it is easy to check that {Gm(g)}∞m=1
and {Gm(h)}∞m=1 converge uniformly. Indeed, h has an absolutely conver-
gent Fourier series and Gm(g) = SN (g) for some N (greedy ordering for
g coincides with the natural ordering). Then the uniform convergence of
{Gm(g)}∞m=1 follows from (2.23).

We note that the statement in Remark 2.1 can also be obtained from
some general inequalities for ‖f −Gm(f)‖p. We now define the m-term best
approximation to be

σm(f)p := inf
kj∈Zd,cj

∥∥∥f −
m∑

j=1

cje
i(kj ,x)

∥∥∥
p
.

It has been proved in [T1] that for any f ∈ Lp(Td) one has

‖f −Gm(f)‖p ≤ (1 + 3mh(p))σm(f)p, 1 ≤ p ≤ ∞,
where h(p) := |1/2 − 1/p|. Similarly to the above inequality one can prove
the following relation.

Theorem 2.2. For each f ∈ Lp(Td) and any 0 < t ≤ 1 we have

‖f −Gtm(f)‖p ≤ (1 + (2 + 1/t)mh(p))σm(f)p, 1 ≤ p ≤ ∞,
where h(p) := |1/2− 1/p|.

Proof. We repeat the proof of Theorem 2.1 from [T1] that corresponds
to the case t = 1 with one minor change. Let

Gtm(f) =
∑

k∈Λ′(t)
f̂(k)ei(k,x), |Λ′(t)| = m, Λ′ := Λ′(1).
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Then the change in the proof from [T1] to adjust it to the case of t < 1 is
the following. Instead of the obvious relation (see [T1, (2.10)]):

‖SΛ\Λ′(f)‖2 ≤ ‖SΛ′\Λ(f)‖2 for any Λ with |Λ| = m,

we make use of the inequality

(2.25) ‖SΛ\Λ′(t)(f)‖2 ≤ t−1‖SΛ′(t)\Λ(f)‖2 for any Λ with |Λ| = m,

which follows easily from the definition of Λ′(t).

We now prove one more inequality.

Proposition 2.2. Let 2 ≤ p ≤ ∞. Then for any f ∈ Lp(Td) and any Q
with |Q| ≤ m, we have

‖f −Gtm(f)‖p ≤ ‖f − SQ(f)‖p + (3 + 1/t)(2m)h(p)EQ(f)2.

Proof. As above, let Gtm(f) =
∑
k∈Λ′(t) f̂(k)ei(k,x). Then

(2.26) ‖f −Gtm(f)‖p ≤ ‖f − SQ(f)‖p + ‖SQ(f)− SΛ′(t)(f)‖p,
and by [T1, Lemma 2.2], g

(2.27) ‖SQ(f)− SΛ′(t)(f)‖p ≤ (2m)h(p)‖SQ(f)− SΛ′(t)(f)‖2.
Next,

(2.28) ‖SQ(f)− SΛ′(t)(f)‖2 ≤ ‖f − SQ(f)‖2 + ‖f − SΛ′(t)(f)‖2.
Using (2.25) with Λ = Λ′ we get

‖SΛ′(t)(f)− SΛ′(f)‖22 = ‖SΛ′(t)\Λ′(f)‖22 + ‖SΛ′\Λ′(t)(f)‖22
≤ (1 + t−2)‖SΛ′(t)\Λ′(f)‖22 ≤ (1 + t−2)σm(f)2

2.

Therefore,

‖f − SΛ′(t)(f)‖2 ≤ ‖f − SΛ′(f)‖2 + ‖SΛ′(t)(f)− SΛ′(f)‖2(2.29)

≤ (2 + 1/t)σm(f)2 ≤ (2 + 1/t)EQ(f)2.

Combining (2.26)–(2.29) we complete the proof of Proposition 2.2.

We now study the convergence of greedy approximations of univariate
functions of bounded Φ-variation. Let Φ : R+ → R+ be an increasing func-
tion and Φ(0) = 0. The class VΦ of functions of bounded Φ-variation is
defined as the set of functions f defined on T such that

vφ(f) = sup
∑

j

Φ(|f(bj)− f(aj)|) <∞,

where the supremum is taken over all possible finite systems of disjoint
intervals (aj , bj) ⊂ T. For Φ(u) = u the class VΦ is the class of functions of
bounded variation. Clearly, if Φ1(u) ≤ CΦ2(u), then VΦ2 ⊂ VΦ1 .

The classical Dirichlet–Jordan test asserts that if f ∈ C(T) is a function
of bounded variation then the Fourier series of f uniformly converges to f
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(see [Z, p. 57]). The convergence of Fourier series for functions of bounded
Φ-variation was studied by many authors; see related references in [O] where
it was shown that the uniform convergence of Fourier series on the class
C(T) ∩ VΦ is equivalent to the condition

1�

0

log(1/Φ(u)) du <∞.

We proceed to a proposition that shows that we need a stronger restriction
on Φ than the above one for convergence of greedy approximations.

Proposition 2.3. (a) If u2 = o(Φ(u)) (u → 0) and f ∈ C(T) ∩ VΦ,
then

‖f −Gtm(f)‖∞ → 0 as m→∞.
(b) For Φ(u) = u2 there exists a function f ∈ C(T) ∩ VΦ whose greedy

approximants {Gm(f)} diverge at x = 0.

Proof. Let 1 ≤ p ≤ ∞, δ > 0, and let ω(f, δ)p be the Lp modulus of
continuity of f :

ω(f, δ)p = sup
0≤h≤δ

‖f(·+ h)− f(·)‖p.

Let us estimate ω(f, δ)2 for f ∈ C(T)∩ VΦ. Take h > 0 and n = [2π/h] + 1.
We have

‖f(·+ h)− f(·)‖22

≤
nh�

0

|f(t+ h)− f(t)|2 dt =
n∑

j=1

jh�

(j−1)h

|f(t+ h)− f(t)|2 dt

=
h�

0

( n∑

j=1

|f(t+ jh)− f(t+ (j − 1)h)|2
)
dt

=
h�

0

o
( n∑

j=1

Φ(|f(t+ jh)− f(t+ (j − 1)h)|)
)
dt =

h�

0

o(2vφ(f)) dt = o(h).

Thus, ω(f, δ)2 = o(
√
δ) as δ → 0, and, by Jackson’s theorem [A, p. 200],

En(f)2 = o(n−1/2).

This means that f satisfies (2.24) with p=∞. By Remark 2.1, ‖f−Gtm(f)‖∞
→ 0 as m→∞.

To prove (b), we use the example from Remark 2.2 with p = ∞. We
have En(f)∞ = O(n−1/2). By Bernstein’s theorem [A, p. 206], this implies
ω(f, δ)∞ ≤ C

√
δ for some C. We show that the Φ-variation of f is finite for
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Φ(u) = u2. Indeed, for any disjoint intervals (aj , bj),∑

j

|f(bj)− f(aj)|2 ≤
∑

j

C2|bj − aj | ≤ 2πC2,

and so vφ(f) ≤ 2πC2. This completes the proof of Proposition 2.3.

In particular, Proposition 2.3 implies that weak greedy approximations
converge for any absolutely continuous function f ∈ C(T). The same is
true for f ∈ C(T2). We use the notion of absolute continuity of a function of
several variables suggested by L. Zaj́ıček and developed in [H]. Let γ ∈ (0, 1).
We say that a function f : Td → C is absolutely continuous if for each ε > 0
there is δ > 0 such that for each disjoint family {Bj := B(tj , rj)} of balls
in Td the inequality

∑
j V (Bj) < δ implies

∑

j

( sup
t′,t′′∈B(tj ,γrj)

|f(t′)− f(t′′)|)d < ε,

where B(t, r) = {t′ : |t− t′| ≤ r} and V (B) is the d-dimensional volume of
the ball B. It is proven in [H] that the definition does not depend on γ and
for d = 1 coincides with the classical definition.

Proposition 2.4. (a) If f is absolutely continuous on T2, then we have
‖f −Gtm(f)‖∞ → 0 as m→∞.

(b) For d > 2 there exists a function f absolutely continuous on Td such
that its greedy approximants {Gm(f)} diverge at x = 0.

Proof. It is shown in [H] that the gradient of any absolutely continuous
function f ∈ C(Td) belongs to Ld(Td). Therefore, in the case d = 2 this
implies (see [N]) that

EQ(n)(f)2 = o(n−1/2),

and by Remark 2.1 we have

‖f −Gtm(f)‖∞ → 0 as m→∞.
Further, from the example in Remark 2.2 it is easy to see that for d > 2
there exists a function f continuously differentiable on Td whose greedy
approximations diverge at x = 0. It follows from the definition that the class
of absolutely continuous functions contains all continuously differentiable
(and, moreover, all Lipschitzian) functions. This proves the proposition.

3. Conditions in terms of decreasing rearrangements of Fourier
coefficients. Proof of Theorem 2. Let us begin with the proof of The-
orem 2. We repeat the statement for convenience.

Theorem 2. Let 2 < p <∞ and let {An}∞n=1 be a decreasing sequence
satisfying

(3.1) An = o(n1/p−1) as n→∞.
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Then for any f ∈ Lp(Td) with an(f) ≤ An for n = 1, 2, . . . , we have

(3.2) lim
m→∞

‖f −Gtm(f, T )‖p = 0.

Proof. By the M. Riesz theorem (see [KS, Chap. 4, Section 3]), for any
f ∈ Lp(Td) with 1 < p <∞ we have

(3.3) ‖f − SN (f)‖p → 0 as N →∞.
We first consider the case t = 1. Let us estimate ‖Sdm(f)−Gm(f)‖p. Set

Σ1 := Sdm(f −Gm(f)) and Σ2 := (Id− Sdm)(Gm(f)). Then

Sdm(f)−Gm(f) = Sdm(f)− Sdm(Gm(f))− (Id− Sdm)(Gm(f)) = Σ1 −Σ2.

For the first sum, by the Paley theorem (see [Z, Chap. 12, Section 5]) we
get

(3.4) ‖Σ1‖p ≤ C(p, d)
( 2m+1∑

n=1

am(f)pnp−2
)1/p

= O(am(f)m1−1/p) = o(1).

We now proceed to the second sum Σ2. We first prove a general inequality.

Proposition 3.1. Let 2 ≤ p <∞ and u ∈ Lp, ‖u‖p 6= 0. Then for any
v ∈ Lp we have

‖u‖p ≤ ‖u+ v‖p + (‖u‖2p−2/‖u‖p)p−1‖v‖2.
Proof. Set F := ‖u‖1−pp ū|u|p−2. Then ‖F‖p′ = 1 and 〈F, u〉 = ‖u‖p.

Therefore,

‖u‖p = 〈F, u〉 = 〈F, u+ v〉 − 〈F, v〉 ≤ ‖u+ v‖p + ‖F‖2‖v‖2.
It remains to observe that ‖F‖2 = (‖u‖2p−2/‖u‖p)p−1.

Lemma 3.1. Let 2 ≤ p < ∞. Let f ∈ Lp(Td) and assume that an(f) =
o(n1/p−1). Then

‖(Id− Sdm)(Gm(f))‖p = o(1).

Proof. We use Proposition 3.1 with

u := (Id− Sdm)(Gm(f)), v := f − Sdm(f)− u.
Then

(3.5) ‖v‖2 ≤ ‖f −Gm(f)‖2 ≤
( ∑

n>m

an(f)2
)1/2

= o(m1/p−1/2).

By the Paley theorem,

(3.6) ‖u‖p−1
2p−2 = O

(( m∑

n=1

an(f)2p−2n2p−4
)1/2)

= o(m1/2−1/p).

Combining (3.5) and (3.6) and taking into account that ‖u + v‖p =
‖f − Sdm(f)‖p = o(1), by Proposition 3.1 we conclude that ‖u‖p = o(1).
Lemma 3.1 is now proved.
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The required estimate ‖Σ2‖p = o(1) follows from Lemma 3.1. This to-
gether with (3.4) completes the proof of Theorem 2 in the case t = 1. The
general case 0 < t ≤ 1 follows from the case t = 1 and Lemma 3.2 below.

Lemma 3.2. Let 2 ≤ p <∞, t ∈ (0, 1], and let f ∈ Lp(Td) be such that
an(f) = o(n1/p−1). Then

‖Gm(f)−Gtm(f)‖p → 0 as m→∞.
Proof. Let Gm(f) = SΛ(f) and Gtm(f) = SΛ(t)(f). Then

gm := Gm(f)−Gtm(f) =
∑

k∈Λ\Λ(t)

f̂(k)ei(k,x) −
∑

k∈Λ(t)\Λ
f̂(k)ei(k,x).

It is clear that
|f̂(k)| ≤ am(f), k ∈ Λ(t) \ Λ.

The relation (2.8) implies

|f̂(k)| ≤ t−1am(f), k ∈ Λ \ Λ(t).

Thus, for the Fourier coefficients of the function gm we have

|ĝm(k)| ≤ t−1am(f).

Taking into account that gm has at most 2m terms, the Paley theorem shows
that

‖gm‖p = O(am(f)m1−1/p) = o(1).

This proves the lemma.

Let us note that by the Hausdorff–Young theorem the condition
∞∑

n=1

Ap
′
n <∞, 2 < p <∞,

which is stronger than (3.1), implies that for any f such that an(f) ≤ An
its Fourier series converges in Lp unconditionally.

Proposition 3.2. Let 2 < p < ∞. Suppose that a decreasing sequence
{An}∞n=1 does not satisfy the condition (3.1) of Theorem 2, i.e.,

lim sup
n→∞

Ann
1−1/p > 0.

Then there is f ∈ C(T) with an(f) ≤ An for n = 1, 2, . . . such that {Gm(f)}
diverges in Lp.

Proof. We make use of the functions constructed in the proof of Propo-
sition 2.1. Let c > 0 and {nk} be such that

Ank ≥ cn
1/p−1
k , nk ≥ 4nk−1, n1 ≥ 4.
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Define mk := [nk/4] and

f := c
∞∑

k=1

n
1/p−1
k fmk,δke

inkx,

where the fm,δ are defined by (2.19). Then f is a continuous function satis-
fying an(f) ≤ An. The divergence of {Gm(f)} follows from (2.22).

4. Conditions in terms of decreasing rearrangements of Fourier
coefficients. Proof of Theorems 3–5. We begin with the proof of The-
orem 3. We reformulate it here for convenience.

Theorem 3. Let {An}∞n=1 be a decreasing sequence satisfying the con-
dition (A∞):

(4.1)
∑

M<n≤eM
An = o(1) as M →∞.

Then for any f ∈ C(T) with an(f) ≤ An for n = 1, 2, . . . , we have

(4.2) lim
m→∞

‖f − SΛm(f)‖∞ = 0,

where Λm is an arbitrary subset of Z satisfying

(4.3) |Λm| = m,

(4.4) min
k∈Λm

|f̂(k)| ≥ t max
k 6∈Λm

|f̂(k)|.

Proof. Set as above

Gm(f) =
m∑

n=1

f̂(k(n))eik(n)x.

Note that if k 6= k(n) for n ≤ m then |f̂(k)| ≤ am(f). Also, by (4.4), if
k 6∈ Λm then |f̂(k)| ≤ am(f)/t. Therefore,

(4.5) ‖SΛm(f)−Gm(f)‖∞ ≤ mam(f) +mam(f)/t.

It is clear that (4.1) implies An = o(n−1), and therefore

(4.6) am(f)m = o(1).

Relations (4.5) and (4.6) give

(4.7) ‖SΛm(f)−Gm(f)‖∞ = o(1).

Let us estimate ‖Vm(f) − Gm(f)‖∞, where Vm(f) is the de la Vallée
Poussin sum

Vm(f) =
∑

|k|≤2m

min
(

1,
2m− |k|

m

)
f̂(k)eikx.
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We have Vm(f)−Gm(f) = Σ1 −Σ2, where

Σ1 = Vm(f −Gm(f)), Σ2 = (Id− Vm)(Gm(f)).

For the first sum we get

‖Σ1‖∞ ≤
4m−1∑

n=1

am(f) ≤ 4mam(f).

Therefore, by (4.6), ‖Σ1‖∞ = o(1).
We proceed to the second sum Σ2. Consider

(4.8) f − Vm(f)−Σ2 =
∑

m<n≤eem , k(n)>m

λnf̂(k(n))eik(n)x + g =: Σ3 + g,

where 0 ≤ λn ≤ 1. Using (2.11) and the assumption (A∞) from (4.8) we get

(4.9) ‖Σ2 + g‖∞ ≤ ‖f − Vm(f)‖∞ + ‖Σ3‖∞ = o(1).

Next we have

(4.10) ‖g‖2 ≤
( ∑

n>eem

an(f)2
)1/2

= o(e−e
m/2).

We need the following lemma that we will prove a little later.

Lemma 4.1. Suppose that a function f with ‖f‖∞ = 1 has the form

f =
∑

k∈Λ
f̂(k)eikx, |Λ| ≤ m.

Then for any function g such that ‖g‖2 ≤ 1
4 (4πm)−m/2 we have

‖f + g‖∞ ≥ 1/4.

This lemma and (4.9) imply that ‖Σ2‖∞ = o(1). Together with (4.7)
this completes the proof of Theorem 3.

Proof of Lemma 4.1. Denote by ‖u‖ the distance from a real number u
to the closest integer. For a fixed j ∈ N define

Fj = {x ∈ T : ∀k ∈ Λ, ‖j(kx/(2π))‖ < 1/(4πm)}, F = F1.

Well known estimates for simultaneous diophantine approximation (see
[C, p. 13]) give

T =
⋃

j≤J
Fj , J = (4πm)m.

Note that µFj = µF for all j. Therefore,

1 ≤
∑

j≤J
µFj ≤ JµF,

or
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(4.11) µF ≥ (4πm)−m.

Let |f(x0)| = ‖f‖∞ = 1 and E = {x0 + y : y ∈ F}. For x = x0 + y ∈ E and
k ∈ Λ we have

|eikx − eikx0 | ≤ 2π‖ky/(2π)‖ < 1/(2m).

Therefore,

|f(x)− f(x0)| ≤
∑

k∈Λ
|f̂(k)| |eikx − eikx0 | ≤

∑

k∈Λ
1/(2m) ≤ 1/2.

Thus, |f(x)| ≥ 1/2 for x ∈ E.
Suppose that

(4.12) ‖f + g‖∞ < 1/4.

Then |g(x)| > 1/4 for x ∈ E, and by (4.11),

‖g‖22 ≥
�

E

|g(x)|2 dµ >
(

1
4

)2

(4πm)−m.

This contradicts the assumption of the lemma. Hence, (4.12) is not true,
and the proof is complete.

Remark 4.1. Actually, in the proof of Lemma 4.1 we have shown the
following. If

f =
∑

k∈Λ
f̂(k)eikx, |Λ| ≤ m,

and G ⊂ T has µG > 1− (4πm)−m, then

‖f‖∞ ≤ 2 sup
x∈G
|f(x)|.

Recently the first author and Nazarov have proved (unpublished) that the
last inequality holds under the assumption µG > 1 − cm for a small con-
stant c. This can be used to weaken the assumption on ‖g‖2 in Lemma 4.1.
However, it does not affect Theorem 3.

We proceed to the proof of Theorem 4 from the introduction. The core
of the proof is the following lemma.

Lemma 4.2. Fix ∆, δ > 0. Assume that positive integers m → ∞ and
M →∞ are such that

(4.13) logM = o(m).

Let m1 = m, m3 = m + M , m1 < m2 < m3. Let {An}∞n=1 be a decreasing
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sequence satisfying

(4.14) An ≤ ∆/n,

(4.15)
m2∑

n=m1+1

An =
m3∑

n=m2+1

An = 1,

(4.16) A2m > δAm.

Then for sufficiently large m there exists a trigonometric polynomial T (x) =
Tm(x) =

∑M
k=1 T̂ (k)eikx such that

ak(T ) ≤ Am+k (1 ≤ k ≤M),(4.17)

‖T‖∞ → 0 (m→∞),(4.18)

max
n
|Gn(T, T )(0)| > 0.01.(4.19)

Proof. Take independent random variables ηk (1 ≤ k ≤ M) so that
each ηk takes value n,m1 < n ≤ m3, with probability 1/(10M), and ηk = m1

with probability 0.9. A polynomial T is defined as

T (x) =
M∑

k=1

σηkAηke
ikx,

where σ(m1) = 0, σn = 1 for m1 < n ≤ m2, and σn = −1 for m2 < n ≤ m3.
We prove that T satisfies (4.17)–(4.19) with large probability. Probability,
expectation and variance will be denoted by P , E, and V , respectively. We
will estimate the probabilities of the following events:

E1 : ∃l ≥ 1 : |{k : m1 < ηk ≤ m1 + l}| > l,

E2 : ‖T‖∞ > 3(Am log(2πM2))1/2,

E3 :
∑

k :m1<ηk≤m2

Aηk ≤ 0.05.

Note that nonoccurrence of E1, E2, E3 implies (4.17), (4.18), (4.19), respec-
tively. In the case of E2 and (4.18) we apply (4.13) and (4.14) to prove that
Am log(2πM2) = o(1).

Consider the event

E1,l : |{k : m1 < ηk ≤ m1 + l}| > l.

We have

(4.20) P (E1) ≤
∑

l

P (E1,l).

Further,
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P (E1,l) =
M∑

j=l+1

(
M

j

)(
l

10M

)j(
1− l

10M

)M−j
(4.21)

≤
M∑

j=l+1

(
M

j

)(
l

10M

)j
.

For any j > l we have
(

l

10M

)j
< 10−l

(
l

M

)j
, 1 ≤ el

(
1− l

M

)M−l
≤ el

(
1− l

M

)M−j
.

Therefore,

M∑

j=l+1

(
M

j

)(
l

10M

)j
≤ (e/10)l

M∑

j=l+1

(
M

j

)(
l

M

)j(
1− l

M

)M−j

≤ (e/10)l.

By (4.20) and (4.21) we get

(4.22) P (E1) ≤
∑

l

(e/10)l < 1/2.

To estimate P (E2), we use the following theorem [Ka, pp. 68, 79].

Theorem A. Let E be a measurable space with measure µ and µ(E)<∞.
Let B be a linear space of measurable bounded functions on E, closed under
complex conjugation, and suppose that there exists % > 0 with the following
property : if f ∈ B and f is real , then there exists a measurable set I =
I(f) ⊂ E such that µ(I) > µ(E)/% and |f(t)| ≥ 1

2‖f‖∞ for t ∈ I. Consider
a random finite sum

P =
∑

ξkfk,

where
E(ξk) = 0, E(ξ2

k) = b2k, |ξk| ≤ 1.

Moreover , suppose that ‖fk‖∞ = 1 and r =
∑
b2k > log %. Then

P (‖P‖∞ ≥ 6(r log %)1/2) ≤ 4/%.

We apply Theorem A for E = T, B = {∑M
k=1 cke

i(k,x)}, fk = ei(k,x),
ξk = σηkAηk/Am. Note that

(4.23) P (x) = T (x)/Am.

One can guarantee the existence of the required set I(f) by taking

(4.24) % = 2πM2
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([Ka, p. 49]). Further, for k = 1, . . . ,M we have Eξk = 0, and by (4.16),

b2k = Eξ2
k =

1
10MA2

m

m3∑

n=m1+1

A2
n ≥

mδ2

10M
.

Therefore, r > mδ2/10, and by (4.13) and (4.24), for sufficiently large m
the condition r > log % holds. On the other hand,

(4.25)
m3∑

n=m1+1

A2
n ≤ Am

m3∑

n=m1+1

An = 2Am,

b2k ≤ 1/(5MAm), and r ≤ 1/(5Am). Thus, by (4.23),

P (‖P‖∞ ≥ 6(r log %)1/2) ≥ P (‖P‖∞ ≥ 3(log(2πM2)/Am)1/2)

= P (‖T‖∞ ≥ 3(Am log(2πM2))1/2),

and Theorem A gives

(4.26) P (E2) ≤ 4/% ≤M−2.

To estimate P (E3), we define the random variables ν1, . . . , νM as νk =
Aηk for m1 < ηk ≤ m2 and νk = 0 otherwise. The event E3 can be rewritten
as

E3 :
M∑

k=1

νk ≤ 0.05.

We have E(νk) = 1/(10M), and by (4.25),

V (νk) ≤ E(ν2
k) ≤ Am

5M
.

Hence,

E
( M∑

k=1

νk

)
= 0.1, V

( M∑

k=1

νk

)
≤ Am

5
,

and by Chebyshev’s inequality,

(4.27) P (E3) ≤ V (
∑M
k=1 νk)

(E(
∑M
k=1 νk)− 0.05)2

≤ 80Am.

So, by (4.22), (4.26), and (4.27), P (E1) +P (E2) +P (E3) < 1, and there
is a choice of T for which none of E1, E2, E3 holds. This completes the proof
of Lemma 4.2.

Theorem 4. Assume that a decreasing sequence {An}∞n=1 does not sat-
isfy the condition (A∞). Then there exists a function f ∈ C(T) with
an(f) ≤ An for n = 1, 2, . . . such that

lim sup
m→∞

‖f −Gm(f, T )‖∞ > 0.
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Proof. Without loss of generality we may suppose that

(4.28) lim sup
u→∞

∑

u<n≤eu
An > 8,

where u ∈ R. Also, we may assume that for sufficiently large n,

(4.29) An ≤ 10/n.

Indeed, if (4.29) fails for infinitely many n’s, we replace all An by A′n =
min(An, 10/n). If Am > 10/m for some large m, then

∑

logm<n≤m
A′n ≥

∑

logm<n≤m
10/m > 9,

and (4.28) holds for A′n. Now, observe that F (F (u)) > eu for sufficienly
large u and F (u) = e

√
u. Therefore,

∑

u<n≤eu
An ≤

∑

u<n≤F (u)

An +
∑

F (u)<n≤F (F (u))

An,

and (4.28) implies

(4.30) lim sup
u→∞

∑

u<n≤e
√
u

An > 4.

We now prove that there exists an arbitrarily large integer m such that

(4.31)
∑

m<n≤e3
√
m

An > 3,

(4.32) A2m ≥ Am/100.

Indeed, by (4.30), we can take a large u with
∑

u<n≤e
√
u

An > 4.

Let m0 = [u]. If Am0 ≥ 1/(2m0), then m = [m0/2] satisfies (4.31) and (4.32)
(we use (4.29) with n = m). If Am0 < 1/(2m0), we define mj = 2jm0. We
take for m the minimal mj satisfying (4.32). To show the existence of such
an m and to prove (4.31), we note that

∑

m0<n≤mj
An < 1

whenever Am1 < Am0/100, . . . , Amj < Amj−1/100. Hence, the number m
does exist, and moreover,

∑

m<n≤e
√
u

An > 3,

which clearly implies (4.31).
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We now take any large m = m1 satisfying (4.31) and (4.32) and define

m2 = min
{
m′ :

∑

m1<n≤m′
An ≥ 1

}
,

m3 = min
{
m′ :

∑

m2<n≤m′
An ≥

∑

m1<n≤m2

An

}
.

We have ∑

m1<n≤m3

An < 2 + 2am2 + am3 < 3.

This inequality combined with (4.31) shows that m3 < e3
√
m. We now apply

Lemma 4.2 to the sequence {A′n}, where

A′n =





( ∑

m1<k≤m2

Ak

)−1
An (n ≤ m2),

( ∑

m2<k≤m3

Ak

)−1
An (n > m2).

We get a polynomial T = Tm satisfying (4.17)–(4.19). Set

f(x) =
∑

m

Tm(x)einmx,

where the sum is taken over a sparse sequence of m’s with nm chosen to
make the sets of frequencies of Tm(x)einmx disjoint. This completes the proof
of Theorem 4.

Theorem 5. Assume that a decreasing sequence {An}∞n=1 is not sum-
mable. Then there exists f ∈ C(T) with an(f) ≤ An such that the partial
Fouries sums diverge at some point.

Theorem 5 is a simple corollary of the following lemma.

Lemma 4.3. Assume that a decreasing sequence {An}∞n=1 is not sum-
mable. Then for any l ∈ N and m0 ∈ N there exist a trigonometric polyno-
mial T (x) = Tl(x) and numbers m ≥ m0, N ∈ N such that

ak(T ) ≤ Am+k (k ≥ 1),(4.33)

‖T‖∞ → 0 (l→∞),(4.34)

|SN (T, 0)| → ∞ (l→∞).(4.35)

Proof of Lemma 4.3. By the conditions on {An}, for any l ∈ N we have∑
nA2ln =∞. Therefore, for any l > 1 we can find m1 > m0 and m2 > m1

such that

(4.36) (log l)−1/2 ≤
∑

m1<n≤m2

A2ln ≤ 2(log l)−1/2.
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We associate with any n, m1 < n ≤ m2, a trigonometric polynomial

Tn(x) = A2lne
iknx

l∑

j=1

sin(Kjx)
j

,

where K and kn satisfy

kn = N − n, K > m2, N > lK

for some positive integer N . We define

T =
∑

m1<n≤m2

Tn.

Let us prove (4.33) with m = 2m1. We observe that by the choice of kn
and K the spectra of Tn are disjoint, that is, for any j there exists at most
one n such that T̂n(j) 6= 0. We have

Tn(x) =
∑

1≤|j|≤l
T̂n(kn +Kj)ei(kn+Kj)x,

|T̂n(kn +Kj)| = A2ln/(2|j|).
Therefore,

|T̂n(kn +Kj)| ≤ A2ln ≤ A2ln−j (1 ≤ j ≤ l),
|T̂n(kn −Kj)| ≤ A2ln ≤ A2ln−n−j (1 ≤ j ≤ l).

Note that for n > m1, 1 ≤ j ≤ l, the numbers 2ln − j, 2ln − n − j are all
greater than 2m1 and pairwise distinct. This proves (4.33) with m = 2m1.

We now check (4.34) and (4.35). Using the well known estimate
∥∥∥∥

l∑

j=1

sin(ju)
j

∥∥∥∥
∞
≤ C

[Z, p. 61], we get
‖T‖∞ ≤ C

∑

m1<n≤m2

A2ln,

and by (4.36),
‖T‖∞ ≤ 2C(log l)−1/2.

Let us estimate SN (T, 0). We have

SN (Tn, 0) =
i

2
A2ln

l∑

j=1

1
j
.

Hence,

|SN (T, 0)| = 1
2

∑

m1<n≤m2

A2ln

l∑

j=1

1
j
,

and (4.35) follows from (4.36). The proof is complete.
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