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Extremal sections of complex lp-balls, 0 < p ≤ 2

by

Alexander Koldobsky and Marisa Zymonopoulou (Columbia, MO)

Abstract. We study the extremal volume of central hyperplane sections of com-
plex n-dimensional lp-balls with 0 < p ≤ 2. We show that the minimum corresponds
to hyperplanes orthogonal to vectors ξ = (ξ1, . . . , ξn) ∈ Cn with |ξ1| = . . . = |ξn|, and
the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero
coordinate.

1. Introduction. This article continues the study of extremal sections
of lp-balls. We denote by Bp(Rn) and Bp(Cn) the unit balls of the real and
complex n-dimensional lp-spaces, lp(Rn) and lp(Cn), respectively.

The extremal hyperplane sections of the cube are known in both real
and complex cases. Hadwiger [Ha] proved that the minimal volume of hy-
perplane sections of the real unit cube is equal to 1 and corresponds to the
sections parallel to the faces. Different proofs of this fact were later given by
Vaaler [V], who generalized the result to sections of arbitrary dimensions,
Hensley [He] and Ball [B]. It was shown in [BK] that this property of the
cube is in some sense stable, i.e. for every 0 < t < 3/4 the slab parallel
to the face has minimal volume among all central slabs of the cube with
fixed width t. The exact upper bound

√
2 for the volume of hyperplane sec-

tions of the real unit cube was found by Ball [B] and corresponds to the
hyperplane orthogonal to the vector (1, 1, 0, . . . , 0). The case of the com-
plex cube was studied by Oleszkiewicz and Pełczyński [OP], who proved
that the minimal sections are the ones orthogonal to vectors with only one
non-zero coordinate, and the maximal sections are orthogonal to vectors of
the form ej + σek, where j 6= k, ej and ek are standard basic vectors, and
σ ∈ C, |σ| = 1. Note that the “minimal” part also follows from an earlier
result of Meyer and Pajor [MP, Corollary 2.5].

The critical sections of lp-balls, 0 < p < ∞, are different for p > 2 and
p < 2. Meyer and Pajor [MP] proved that the section orthogonal to the
vector (1, 0, . . . , 0) is minimal for p > 2 and maximal for 1 ≤ p < 2. The

2000 Mathematics Subject Classification: 52A21, 46B07.

[185]



186 A. Koldobsky and M. Zymonopoulou

latter result also holds for 0 < p < 1, as proved by Caetano [Ca]. In the
same paper, Meyer and Pajor proved that the minimal hyperplane section
of B1(Rn) is the one perpendicular to the vector (1, . . . , 1) and conjectured
that this is also true for every p ∈ [1, 2]. This conjecture was proved in [K1]
for 0 < p ≤ 2. It is still an open question what are the maximal sections of
Bp(Rn) when 2 < p < ∞. Oleszkiewicz [O] showed that the answer must
depend on p and the dimension.

In this article we characterize the extremal sections of complex lp-balls
Bp(Cn) for 0 < p ≤ 2.

Theorem 1. Let 0 < p ≤ 2. For ξ = (ξ1, . . . , ξn) ∈ Cn, ξ 6= 0 denote
by Hξ = {x ∈ Cn : (x, ξ) = 0} the complex hyperplane in Cn orthogonal
to ξ. The (n−1)-dimensional complex volume of Bp(Cn)∩Hξ is minimal if
|ξ1| = . . . = |ξn|, and it is maximal if ξ has only one non-zero coordinate.

The part of this theorem related to the maximal sections was established
earlier by Meyer and Pajor [MP, Corollary 2.5] for 1 ≤ p ≤ 2, and by Barthe
[Ba] for 0 < p < 1. In fact, these papers cover a more general case of the
unit balls of the real spaces lnp (lm2 ) and show that, for every integer k, the
“standard” sections of these balls of dimension km are minimal for p ≥ 2
and maximal for 0 < p ≤ 2.

We prove Theorem 1 by generalizing the method of [K1] to the complex
case. As in the real case in [K1], the minimal and maximal sections are
identified simultaneously.

2. Preliminaries and notation. We identify lp(Cn) with the real 2n-
dimensional space equipped with the norm

(1) ‖x‖p = [(x2
1 + x2

2)p/2 + . . .+ (x2
2n−1 + x2

2n)p/2]1/p,

where

Cn 3 x = (x1 + ix2, . . . , x2n−1 + ix2n) 7→ (x1, x2, . . . , x2n−1, x2n) ∈ R2n.

It is easily seen that this mapping identifies the complex hyperplane Hξ with
a (2n− 2)-dimensional subspace Eξ of R2n, orthogonal to the vectors

η = (ξ1, ξ2, . . . , ξ2n−1, ξ2n), ϑ = (−ξ2, ξ1, . . . ,−ξ2n, ξ2n−1).

Let H⊥ξ be the set of vectors in Cn perpendicular to Hξ. This set corre-
sponds to a 2-dimensional subspace in R2n, which is denoted by E⊥ξ and
is orthogonal to Eξ. Let | · | be the Euclidean norm in R2n. If |ξ| = 1 the
vectors η, ϑ form an orthonormal basis in E⊥ξ .

The (n− 1)-dimensional complex volume of the section of Bp(Cn) by Hξ

is defined as the (2n− 2)-dimensional volume of the section of the unit ball
of the norm ‖ · ‖p by the subspace Eξ. We write

volcn−1(Bp(Cn) ∩Hξ) = vol2n−2(Bp(Cn) ∩ Eξ),
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using the same notation Bp(Cn) for the unit ball of the complex lp-space
and for the unit ball of the norm ‖ · ‖p in R2n:

Bp(Cn) =
{

(x1 + ix2, . . . , x2n−1 + ix2n) ∈ Cn :
n∑

j=1

(x2
2j−1 + x2

2j)
p/2 ≤ 1

}

=
{

(x1, x2, . . . , x2n−1, x2n) ∈ R2n :
n∑

j=1

(x2
2j−1 + x2

2j)
p/2 ≤ 1

}
.

3. The Fourier transform formula for sections of Bp(Cn). As in
many of the papers cited in the introduction, our result is based on a certain
Fourier transform formula for the volume of sections. We use the following
general result proved in [K2, Th. 2]: for any infinitely smooth symmetric star
body K in Rn, the volume of its section by an (n−k)-dimensional subspace
H of Rn, 1 ≤ k < n, is equal to

voln−k(K ∩H) =
1

n− k
�

Sn−1∩H
‖x‖−n+k

K dx(2)

=
1

(2π)k
1

n− k
�

Sn−1∩H⊥
(‖x‖−n+k

K )∧(θ) dθ,

where ‖ · ‖K is the Minkowski functional of K. Although the bodies Bp(Cn)
are not always smooth, we assume that formula (2) holds for the norm ‖ · ‖p
introduced in (1). In Section 5 we present a simple approximation argument
proving this assumption.

Throughout this paper we use the Fourier transform of distributions. We
denote by S the space of rapidly decreasing infinitely differentiable functions
(test functions) on R2n with values in C. By S ′ we denote the space of
distributions over S. Every locally integrable real-valued function f on R2n

with power growth at infinity represents a distribution acting by integration:
for every φ ∈ S,

〈f, φ〉 =
�

R2n

f(x)φ(x) dx.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for
every test function φ, where

φ̂(x) =
�

R2n

φ(ξ) exp(−i(x, ξ)) dξ

is the Fourier transform of φ.

Lemma 1. Let 0 < p < ∞, y = (y1, . . . , y2n) ∈ R2n. Then the Fourier
transform of ‖ · ‖−2n+2

p (in the sense of distributions in R2n) is equal to a
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locally integrable function on R2n:

(‖ · ‖−2n+2
p )∧(y)

=
p

Γ
(

2n−2
p

)
∞�

0

t
( n∏

j=1

�

R2

e−it(y2j−1x2j−1+y2jx2j)e−(x2
2j−1+x2

2j)
p/2

dx2j−1 dx2j

)
dt.

Proof. From the definition of the Gamma function, we have

(3) ‖x‖−2n+2
p =

p

Γ
(

2n−2
p

)
∞�

0

t2n−3e−t
p‖x‖pp dt.

We first fix t > 0 and compute the Fourier transform of the function x 7→
e−t

p‖x‖pp : for any y ∈ R2n, making a change of variables tx = z we get

(4) (e−t
p‖x‖pp)∧(y) =

�

R2n

e−i(y,x)e−t
p‖x‖pp dx =

�

R2n

e−i(y,z/t)e−‖z‖
p
pt−2n dz

= t−2n
n∏

j=1

�

R2

e−i(y2j−1z2j−1/t+y2jz2j/t)e−(z2
2j−1+z2

2j)
p/2

dz2j−1 dz2j .

The function ‖x‖−2n+2
p is locally integrable on R2n. Using (3), (4), Fubini

and the change of variables 1/t = s, we get, for any even test function φ,

〈(‖ · ‖−2n+2
p )∧, φ〉 = 〈‖x‖−2n+2

p , φ̂〉

=
�

R2n

‖x‖−2n+2
p φ̂(x) dx =

p

Γ
(

2n−2
p

)
�

R2n

(∞�

0

t2n−3e−t
p‖x‖pp dt

)
φ̂(x) dx

=
p

Γ
(

2n−2
p

)
∞�

0

t2n−3
�

R2n

e−t
p‖x‖pp φ̂(x) dx dt

=
p

Γ
(

2n−2
p

)
∞�

0

t2n−3
�

R2n

(e−t
p‖x‖pp)∧(y)φ(y) dy dt

=
p

Γ
(

2n−2
p

)
∞�

0

t2n−3t−2n

×
�

R2n

( n∏

j=1

�

R2

e−i(y2j−1z2j−1/t+y2jz2j/t)e−(z2
2j−1+z2

2j)
p/2
dz2j−1 dz2j φ(y) dy

)
dt

=
p

Γ
(

2n−2
p

)
�

R2n

φ(y)

×
∞�

0

s
( n∏

j=1

�

R2

e−is(y2j−1z2j−1+y2jz2j)e−(z2
2j−1+z2

2j)
p/2

dz2j−1 dz2j

)
ds dy.

Since φ is an arbitrary even test function, the result follows.
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Remark 1. We define a function g on R2 by

g(y2j−1, y2j) :=
�

R2

e−i(y2j−1z2j−1+y2jz2j)e−(z2
2j−1+z2

2j)
p/2

dz2j−1 dz2j .

The function (z2j−1, z2j) 7→ e−(z2
2j−1+z2

2j)
p/2

is a radial function on R2, so is
its Fourier transform. Therefore,

g(ty2j−1, ty2j) = g(t
√
y2

2j−1 + y2
2j , 0),

f(t(y2
2j−1 + y2

2j)
1/2) =

�

R2

e−it(y
2
2j−1+y2

2j)
1/2z2j−1e−(z2

2j−1+z2
2j)

p/2
dz2j−1 dz2j .

The latter formula defines a function f on R that we are going to use
throughout the paper:

f(u) =
�

R2

e−iuz2j−1e−(z2
2j−1+z2

2j)
p/2

dz2j−1 dz2j , u ∈ R.

Theorem 2. Let 0 < p ≤ 2, ξ ∈ Cn, |ξ| = 1, and Hξ = {x ∈ Cn :
(x, ξ) = 0}. Then the complex volume of the section of the unit ball Bp(Cn)
by the complex hyperplane Hξ is

(∗) volcn−1(Bp(Cn) ∩Hξ)

=
1

2π
1

2n− 2
p

Γ
(

2n−2
p

)
∞�

0

t
n∏

j=1

f(t(ξ2
2j−1 + ξ2

2j)
1/2) dt.

Proof. Using the definition of complex volume and formula (2) with
K = Bp(Cn) and H = Eξ (via the approximation argument of Section 5),
we get

volcn−1(Bp(Cn) ∩Hξ) = vol2n−2(Bp(Cn) ∩ Eξ)

=
1

(2π)2

1
2n− 2

�

S2n−1∩E⊥ξ

(‖x‖−2n+2
p )∧(y) dy.

By Lemma 1, Remark 1 and Fubini’s theorem, the latter quantity equals

(5)
1

(2π)2

1
2n− 2

p

Γ
(

2n−2
p

)
�

S2n−1∩E⊥ξ

∞�

0

t
n∏

j=1

f(t(y2
2j−1 + y2

2j)
1/2) dt dy

=
1

(2π)2

1
2n− 2

p

Γ
(

2n−2
p

)
∞�

0

t
�

S2n−1∩E⊥ξ

n∏

j=1

f(t(y2
2j−1 + y2

2j)
1/2) dy dt.

We shall now prove that the function under the inner integral in (5) is
constant on S2n ∩E⊥ξ . As mentioned in Section 2, E⊥ξ = span{η, ϑ}, where
η = (ξ1, . . . , ξ2n), ϑ = (−ξ2, ξ1, . . . ,−ξ2n, ξ2n−1). Let y ∈ E⊥ξ ; then y can
be written as a linear combination of η, ϑ, i.e. there exist λ1, λ2 ∈ R so
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that y = λ1η + λ2ϑ and, for all j = 1, . . . , n, y2j−1 = λ1ξ2j−1 − λ2ξ2j ,
y2j = λ1ξ2j + λ2ξ2j−1. Therefore,

y2
2j−1 + y2

2j = (λ2
1 + λ2

2)(ξ2
2j−1 + ξ2

2j), j = 1, . . . , n,

and hence

|y|2 = y2
1 + y2

2 + . . .+ y2
2n−1 + y2

2n = (λ2
1 + λ2

2)(ξ2
1 + ξ2

2 + . . .+ ξ2
2n−1 + ξ2

2n)

= (λ2
1 + λ2

2)|ξ|2 = λ2
1 + λ2

2,

since |ξ| = 1. Thus, if y ∈ S2n−1 ∩ E⊥ξ then λ2
1 + λ2

2 = 1, and we get
n∏

j=1

f(t(y2
2j−1 + y2

2j)
1/2) =

n∏

j=1

f(t(λ2
1 + λ2

2)1/2(ξ2
2j−1 + ξ2

2j)
1/2)

=
n∏

j=1

f(t(ξ2
2j−1 + ξ2

2j)
1/2).

Hence, the inner integral in (5) is equal to

�

S2n−1∩E⊥ξ

n∏

j=1

f(t(y2
2j−1 + y2

2j)
1/2) dy =

�

S2n−1∩E⊥ξ

n∏

j=1

f(t(ξ2
2j−1 + ξ2

2j)
1/2) dy

= 2π
n∏

j=1

f(t(ξ2
2j−1 + ξ2

2j)
1/2),

since S2n−1 ∩E⊥ξ is a 2-dimensional unit circle. The latter equality and (5)
imply (∗).

4. Proof of Theorem 1. The result of Theorem 1 immediately follows
from Theorem 2 and the following lemma.

Lemma 2. If 0 < p ≤ 2 then the function f(
√· ) is log-convex on [0,∞).

Proof. For every 0 < p ≤ 2, the function exp(−| · |p/2) is completely
monotone, so by Bernstein’s Theorem (see [W]), there exists a measure µp
on [0,∞) so that, for every t ∈ R,

e−|t|
p/2

=
∞�

0

e−ut dµp(u),

which implies

e−|t|
p

=
∞�

0

e−ut
2
dµp(u),

and so

e−(x2
1+x2

2)p/2
=
∞�

0

e−u(x2
1+x2

2) dµp(u), x1, x2 ∈ R.



Extremal sections 191

Therefore, by Fubini’s theorem,

�

R
e−isx1e−(x2

1+x2
2)p/2

dx1 =
�

R
e−isx1

∞�

0

e−u(x2
1+x2

2) dµp(u) dx1

=
∞�

0

e−ux
2
2

�

R
e−isx1e−ux

2
1 dx1 dµp(u)

=
√
π

∞�

0

e−ux
2
2

1√
u
e−s

2/4u dµp(u).

Now integrate the latter in x2 over R. Using Fubini and the well known
identity � R e−t

2
dt =

√
π, we get the following expression for the function f :

f(s) =
�

R

�

R
e−isx1e−(x2

1+x2
2)p/2

dx1 dx2 =
√
π

�

R

∞�

0

e−ux
2
2

1√
u
e−s

2/4u dµp(u) dx2

=
√
π

∞�

0

1√
u
e−s

2/4u
( �

R
e−ux

2
2 dx2

)
dµp(u)

and hence

f(s) = π

∞�

0

1
u
e−s

2/4u dµp(u).

Now, for any α1, α2 > 0, using the latter formula and the Cauchy–Schwarz
inequality, we get
(
f

(√
a1 + a2

2

))2

= π2
[∞�

0

1√
u
e−a1/8ue−a2/8u 1√

u
dµp(u)

]2

≤ π2
(∞�

0

1
u
e−a1/4u dµp(u)

)(∞�

0

1
u
e−a2/4u dµp(u)

)

= f(
√
a1)f(

√
a2),

which implies that f(
√·) is log-convex.

Now, to prove Theorem 1, note that the log-convexity of f immediately
implies that for any 0 < α1 < β1 < β2 < α2 with α2

1 + α2
2 = β2

1 + β2
2 = 1,

we have
f(tβ1)f(tβ2) ≤ f(tα1)f(tα2), ∀t > 0.

Therefore, the integrand in the formula of Theorem 2 decreases pointwise
when we change the vector ξ = (ξ1, . . . , ξn) ∈ Cn so that it remains a
unit vector but the absolute values of any two coordinates become closer
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to each other. In particular, the integrand is maximal when only one of
the coordinates is non-zero, and minimal when the absolute values of the
coordinates are equal. The latter property immediately implies the result of
Theorem 1.

5. An approximation argument for Bp(Cn). We prove in this sec-
tion that formula (2) can be applied to the bodies Bp(Cn) and subspaces
Eξ in spite of the fact that these bodies are not always smooth. This will
give a formally correct proof of the formula of Theorem 2.

For ε > 0, we introduce a star body Bp,ε(Cn) defined as the unit ball of
the norm

‖x‖p,ε = [((x2
1 + x2

2) + ε(x2
3 + . . .+ x2

2n))p/2 + . . .

+ . . .+ ((x2
2n−1 + x2

2n) + ε(x2
1 + . . .+ x2

2n−2))p/2]1/p.

Clearly, ‖x‖p,ε is a continuous function of ε, and ‖ · ‖p,ε ∈ C∞(S2n−1).
Moreover, ‖x‖p,ε → ‖x‖p as ε→ 0+, uniformly with respect to x ∈ S2n−1.

Applying formula (2) to K = Bp,ε(Cn) and H = Eξ, we get

(6)
�

Sn−1∩Eξ
‖x‖−2n+2

p,ε dx =
1

(2π)2

�

Sn−1∩E⊥ξ

(‖x‖−2n+2
p,ε )∧(θ) dθ.

Obviously, the left-hand side of the latter equality converges to the same
integral with ‖x‖p in place of ‖x‖p,ε, as ε → 0. Therefore, it suffices to
prove that the same happens on the right-hand side.

Recall that the measure µp, 0 < p ≤ 2, introduced in Section 4 has the
property that, for any x1, . . . , x2n ∈ R and ε > 0,

(7) e−(x2
1+x2

2+ε(x2
3+...+x2

2n))p/2
=
∞�

0

e−v(x2
1+x2

2+ε(x2
3+...+x2

2n)) dµp(v),

where ε > 0. Let u = (u1, . . . , un) ∈ Rn+ = [0,∞) × . . . × [0,∞). We shall
use the same notation µp to denote the product measure on Rn+, µp(u) =
µp(u1) . . . µp(un).

Following the steps of Lemma 1 and using formula (7), one can easily
show that the Fourier transform of ‖ · ‖−2n+2

p,ε (in the sense of distributions)
is given by the formula

(8) (‖ · ‖−2n+2
p,ε )∧(y)

=
p

Γ
(

2n−2
p

)
∞�

0

t−3
�

Rn+

n∏

j=1

π

Uj(u)
e
− 1

4Uj (u)t2
(y2

2j−1+y2
2j)
dµp(u) dt,

where Uj(u) = uj + ε
∑n
i=1, i6=j ui. Therefore, the right-hand side of (6) is
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equal to

(9)
1

(2π)2

p

Γ
(

2n−2
p

)

×
∞�

0

t−3
�

Rn+

�

S2n−1∩E⊥ξ

n∏

j=1

π

Uj(u)
e
− 1

4Uj (u)t2
(y2

2j−1+y2
2j)
dy dµp(u) dt.

In the same way as in the proof of Theorem 2, one can show that for
every y ∈ S2n−1 ∩ E⊥ξ ,

n∏

j=1

π

Uj(u)
e
− 1

4Uj (u)t2
(y2

2j−1+y2
2j) =

n∏

j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(ξ2

2j−1+ξ2
2j)
,

so the inner integral in (9) equals

2π
n∏

j=1

π

Uj(u)
e
− 1

4Uj(u)t2
(ξ2

2j−1+ξ2
2j)
,

and the expression in (9) equals

(10)
1

2π
p

Γ
(

2n−2
p

)
∞�

0

t−3
�

Rn+

n∏

j=1

π

Uj(u)
e
− 1

4Uj (u)t2
(ξ2

2j−1+ξ2
2j)
dµp(u) dt.

It remains to prove that the latter quantity converges to

(11)
1

2π
p

Γ
(

2n−2
p

)
∞�

0

t−3
�

Rn+

n∏

j=1

π

uj
e
− 1

4ujt
2 (ξ2

2j−1+ξ2
2j)
dµp(u) dt

as ε→ 0, because (11) is equal to

1
(2π)2

�

Sn−1∩E⊥ξ

(‖x‖−2n+2
p )∧(θ) dθ,

which follows from Lemma 1 and (7), in the same way as it was done for
the norm ‖ · ‖p,ε.

The pointwise convergence of functions under the integral in (10) is ob-
vious, so we can apply the dominated convergence theorem to finish our
argument. To do that, recall the properties of the measure µp on R (see
for example [Z]). The measure µp has density that decreases at infinity like
|v|−1−p/2. Moreover, � ∞0 v−1 dµp(v) <∞. Now, break the integral over dt in
(10) into two integrals: from 1 to ∞ and from 0 to 1. To find a dominating
function in the integral from 1 to ∞, just estimate the exponential by 1.
In the integral from 0 to 1, use the fact that exp(−1/x2) ≤ kx1+p/8 for
every x ∈ [0,∞) and some fixed k > 0. The integrability of the dominating
function follows from the order of decay of the density of the measure µp.



194 A. Koldobsky and M. Zymonopoulou

Acknowledgments. The work of the first named author was supported
in part by the NSF grant DMS-0136022.

References

[B] K. Ball, Cube slicing in Rn, Proc. Amer. Math. Soc. 97 (1986), 465–473.
[Ba] F. Barthe, Extremal properties of central half-spaces for product measures,

J. Funct. Anal. 182 (2001), 81–107.
[BK] F. Barthe and A. Koldobsky, Extremal slabs in the cube and the Laplace transform,

Adv. Math. 174 (2003), 89–114.
[Ca] A. M. Caetano, Weyl numbers in sequence spaces and sections of unit balls,

J. Funct. Anal. 106 (1992), 1–17.
[Ha] H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math.

76 (1972), 410–418.
[He] D. Hensley, Slicing the cube in Rn and probability (bounds for the measure of a

central cube slice in Rn by probability methods), Proc. Amer. Math. Soc. 73 (1979),
95–100.

[K1] A. Koldobsky, An application of the Fourier transform to sections of star bodies,
Israel J. Math. 106 (1998), 157–164.

[K2] —, A functional analytic approach to intersection bodies, Geom. Funct. Anal. 10
(2000), 1507–1526.

[MP] M. Meyer and A. Pajor, Sections of the unit ball of lnp , J. Funct. Anal. 80 (1988),
109–123.

[O] K. Oleszkiewicz, On p-pseudostable random variables, Rosenthal spaces and lnp ball
slicing , in: GAFA Seminar Volume, Lecture Notes in Math. 1807, Springer, 2003,
to appear.

[OP] K. Oleszkiewicz and A. Pełczyński, Polydisc slicing in Cn, Studia Math. 142
(2000), 281–294.

[V] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J.
Math. 83 (1979), 543–553.

[W] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, NJ,
1941.

[Z] V. M. Zolotarev, One-dimensional stable distributions, Amer. Math. Soc., Provi-
dence, RI, 1986.

Department of Mathematics
University of Missouri-Columbia
Columbia, MO 65211, U.S.A.
E-mail: koldobsk@math.missouri.edu

marisa@math.missouri.edu

Received October 23, 2002
Revised version March 31, 2003 (5062)


