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Subspaces of Lp, p > 2, determined by
partitions and weights

by

Dale E. Alspach (Stillwater, OK) and Simei Tong (Eau Claire, WI)

Abstract. Many of the known complemented subspaces of Lp have realizations as
sequence spaces. In this paper a systematic approach to defining these spaces which uses
partitions and weights is introduced. This approach gives a unified description of many
well known complemented subspaces of Lp. It is proved that the class of spaces with such
norms is stable under (p, 2) sums. By introducing the notion of an envelope norm, we
obtain a necessary condition for a Banach sequence space with norm given by partitions
and weights to be isomorphic to a subspace of Lp. Using this we define a space Yn with
norm given by partitions and weights with distance to any subspace of Lp growing with n.
This allows us to construct an example of a Banach space with norm given by partitions
and weights which is not isomorphic to a subspace of Lp.

1. Introduction. Prior to Rosenthal’s 1970 paper [R], only a few com-
plemented subspaces of Lp were known: `p, `2, `p⊕ `2, (

∑
`2)p and Lp itself

([P], [F]). Rosenthal’s paper added several new spaces but more importantly
it was seminal. In 1975 Schechtman [S] combined Rosenthal’s results with a
tensor product construction to show that there are infinitely many isomor-
phically distinct complemented subspaces of Lp. A few years later, it was
shown by Bourgain, Rosenthal and Schechtman that up to isomorphism,
there are uncountably many complemented subspaces of Lp (see [B-R-S]).
Recently the first author proposed a new approach to describing the com-
plemented subspaces of Lp[0, 1], p > 2. For any partition P = {Ni} of N and
weight function W : N→ (0, 1] define

‖(ai)‖P,W =
(∑

i

(∑

j∈Ni
a2
jw

2
j

)p/2)1/p
.

Now suppose that P = (Pk,Wk)k∈K is a family of pairs of partitions and
functions as above. Define

‖(ai)‖P = sup
k∈K
‖(ai)‖(Pk,Wk).(1.1)
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There are two fundamental questions which we begin to study in this
paper. What conditions on (Pk,Wk)k∈K imply that ‖(ai)‖P defines a norm
on a space of sequences X so that X is isomorphic to a complemented
subspace of Lp[0, 1]? Is every complemented subspace of Lp (other than Lp)
isomorphic to a space of this form?

This paper includes four major sections in addition to this introduction.
Unless otherwise noted we will assume that p > 2 throughout. We will also
assume that the scalar field is R.

In Section 2, we present well known examples of complemented subspaces
of Lp with norm given by partitions and weights. We discuss some natural
conditions on the families and in particular normalization of the basis by
inclusion of discrete partitions. We also prove that the natural sums of such
Banach spaces are stable under these norms, i.e., have norms which are also
given by partitions and weights.

In Section 3, we first observe that if the norm on a space X is given by
finitely many partitions and weights, then X is isomorphic to a subspace
of Lp. Then we give the definition of an envelope norm and we prove the ex-
istence of the envelope norm generated by a family of partitions and weights.
We also give a lower bound on a norm which is necessary for a space to be
isomorphic to a subspace of Lp. Finally we show that if a space with norm
given by partitions and weights is isomorphic to a subspace of Lp, then its
norm is equivalent to the associated envelope norm.

In Section 4, we construct examples which demonstrate the difference
between a norm given by partitions and weights and the corresponding enve-
lope norm. As a consequence we obtain an estimate of the distance between
a certain Banach space Yn with norm given by partitions and weights and⊗n

k=1Xp. Finally we give an example of a Banach space with norm given
by partitions and weights which is not isomorphic to a subspace of Lp by
applying the results from Section 3. Thus we find that not every sequence
space with norm given by partitions and weights is a Lp space. (See [L-P]
and [L-R].)

In the last section we pose some questions for further study. In particular
we discuss the Bourgain, Rosenthal and Schechtman construction and define
spaces Xα

p with norm given by partitions and weights which are natural
candidates for sequence space realizations of the spaces Rαp .

We will use standard terminology and reults in Banach theory as may
be found in the books [L-T-1], [L-T-2] and [J-L]. Many results on subspaces
of Lp may be found in the exposition [A-O] and its references.

2. Norms determined by partitions and weights. In this section,
we examine some examples of complemented subspaces of Lp in order to
motivate the idea of a norm given by partitions and weights. Then we develop
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the formal definition of a norm given by an admissible family of partitions
and weights. Finally we give some results about sums of spaces with these
norms.

In the following we will see that many well known complemented sub-
spaces of Lp have equivalent norms of the form defined in the Introduction.
Here it is sometimes convenient to take partitions and weights defined on
sets other than N. For each example we will have a family of partitions (Pk)
of Nm for some m and weights (Wk) for k in some index set K.

Example 2.1 (examples with one partition and weight; K = {1}).
(1) If P = {{i} : i ∈ N} and W = (wn) is any sequence of positive

numbers, then X ∼ `p since

‖(xn)‖ = ‖(xn)‖P,W =
( ∞∑

n=1

(|xn|2w2
n)p/2

)1/p
=
( ∞∑

n=1

|xn|pwpn
)1/p

.

(2) If P = {N} and W = (wn) is any sequence of positive numbers, then
X ∼ `2 since

‖(xn)‖ =
(( ∞∑

n=1

|xn|2w2
n

)p/2)1/p
=
( ∞∑

n=1

|xn|2w2
n

)1/2
.

(3) If the index set is N× N, the partition P = {{n} × N : n ∈ N}, and
W = (wn,m)n,m∈N, then X ∼ (

∑
`2)`p since

‖(xn)‖ =
( ∞∑

n=1

( ∞∑

m=1

|xn,m|2w2
n,m

)p/2)1/p
.

Example 2.2 (examples with two partitions and weights; K = {1, 2}).
(1) If P1 = {{n}} with weight W1 = (1) and P2 = {N} with weight

W2 = (wn), then X is the space Xp,W2 , defined by Rosenthal, with norm

‖(ai)‖ = max
{(∑

|an|p
)1/p

,
(∑

|wnan|2
)1/2}

.

Rosenthal [R] proved the following:

(a) If infnwn > 0, then Xp,W2 ∼ `2.

(b) If
∑
w

2p/(p−2)
n <∞, then Xp,W2 ∼ `p.

(c) If there is some ε > 0 for which {n : wn ≥ ε} and {n : wn < ε} are
both infinite and for which

∑
wn<ε

w
2p/(p−2)
n <∞, then Xp,W2 ∼ `2 ⊕ `p.

(d) For each ε > 0,

(∗)
∑

wn<ε

w2p/(p−2)
n =∞.

If W2 satisfies (∗), then Xp,W2 ∼ Xp.
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(2) If P1 = {{(i, j)}} with weight W1 = (1) and P2 = {{n} × N}
with weight W2 = (wn,m) where wn,m = (1/n) for all n,m, then X ∼
(
∑

nXp,(1/n))p. Moreover, Xn = Xp,(1/n) is isomorphic to `2 and we have
supn∈N d(Xn, `2) =∞, so X ∼ Bp, as defined by Rosenthal.

Example 2.3 (an example with four partitions and weights). Let K =
{0, 1, 2, 3}. Let i represent the first index and j represent the second index
in the set N× N. Assume the sequences (wi) and (w′j) satisfy (∗). Let

P0 = {N× N} with weight W0 = (wi · w′j),
P1 = {{n} × N : n ∈ N} with weight W1 = (1 · w′j),
P2 = {N× {n} : n ∈ N} with weight W2 = (wi · 1),

P3 = {{(i, j)} : i, j ∈ N} with weight W3 = (1 · 1).

Then this is Schechtman’s [S] basic example X ∼ Xp ⊗Xp, with norm

(2.1) max
{(∑

i,j

|ai,j |2w2
iw
′2
j

)1/2
,
(∑

i

(∑

j

|ai,j |2w′2j
)p/2)1/p

,

(∑

j

(∑

i

|ai,j |2w2
i

)p/2)1/p
,
(∑

i,j

|ai,j |p
)1/p}

≈
∥∥∥
∑

i,j

ai,j(xi ⊗ yj)
∥∥∥
Lp(I×I)

.

This example can be generalized by using the index set Nn. If |K| = 2n

and the partitions and weights are chosen in a manner similar to the above,
then X ∼ ⊗n

k=1Xp. Thus we get isomorphs of Schechtman’s examples.
Additional detail about these examples is contained in Section 4.

We will now give a general definition of a space with norm given by
partitions and weights. Below A is any countable set.

Definition 2.4. Let P = {Ni} be a partition of A and W : A → (0, 1]
be a function, which we refer to as the weights. Let xj ∈ R and wj = W (j)
for all j ∈ A. Define

‖(xj)j∈A‖P,W =
(∑

i

(∑

j∈Ni
x2
jw

2
j

)p/2)1/p
.

Suppose that (Pk,Wk)k∈K is a family of pairs of partitions and functions
as above. Define a (possibly infinite) norm on the real-valued functions on
A, (xi)i∈A, by ‖(xi)‖ = supk∈K ‖(xi)‖(Pk,Wk) and let X be the subspace of
elements of finite norm. In this case we say that X has a norm given by
partitions and weights.

Remark 2.5. Because of the nature of this norm, X will have a natu-
ral unconditional basis. Thus this approach to describing the complemented
subspaces of Lp is limited to complemented subspaces of Lp with uncondi-
tional basis. At this time, no complemented subspace of Lp without uncon-
ditional basis is known.
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Proposition 2.6. Suppose that X has a norm given by partitions and
weights. Then X is a Banach space.

We leave the straightforward proof to the reader.

Proposition 2.7. Suppose X is a Banach space with norm given by one
partition and weight. Then X ∼ `p, X ∼ `2, X ∼ `2⊕ `p, or X ∼ (

∑⊕`2)`p.

Notice that these are the spaces given in Example 2.1 and their direct
sums. The proof is a routine computation after normalization of the basis.

Since normalization of the basis is an important first step to under-
standing the spaces, we now introduce admissible families of partitions and
weights to incorporate this and some other properties.

Definition 2.8. The partition {{a} : a ∈ A} of A will be called the
discrete partition. The partition {A} of A will be called the indiscrete par-
tition.

Definition 2.9. A family of partitions and weights is called admissible
if it contains the discrete partition with the trivial weight (w(a))a∈A = (1)
and the indiscrete partition with some weight.

The discrete partition is included to force the natural coordinate basis
to be normalized. This requirement is not really a restriction because every
normalized unconditional basic sequence in Lp has a lower `p estimate. (See
the Preliminaries section of [A-O].) The indiscrete partition gives a candi-
date for a natural `2 structure on the space X. Because we are concerned
with embedding these spaces into Lp, p > 2, there always must be some `2
structure on the space.

Notice that in the previous examples, Rosenthal’s space and Schecht-
man’s space have norms given by admissible families of partitions and
weights. Each of the other cases can be equivalently renormed using an
admissible family of partitions and weights. Unless otherwise noted we will
assume from now on that a Banach space X with norm given by parti-
tions and weights is actually given by an admissible family of partitions and
weights.

Next we are going to prove some stability results for sums of spaces when
the spaces are equipped with these norms.

Definition 2.10. Let (Xn) be a sequence of subspaces of Lp(Ω, µ) for
some probability measure µ, and let (wn) be a sequence of real numbers,
0 < wn ≤ 1. For any sequence (xn) such that xn ∈ Xn for all n, let

‖(xn)‖p,2,(wn) = max
{(∑

‖xn‖pp
)1/p

,
(∑

‖xn‖22w2
n

)1/2}
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and let

X =
(∑

Xn

)
(p,2,(wn))

= {(xn) : xn ∈ Xn for all ‖(xn)‖p,2,(wn) <∞}.

We will say that X is the (p, 2, (wn)) sum of {Xn}.
Let A be a countable set and let (Xa)a∈A be a family of Banach spaces

of functions defined on sets (Ba)a∈A, respectively. That is, for each a ∈ A,
Xa has a norm given by a family of partitions of Ba and weights on Ba.
Let Ia denote the index set of the corresponding family for Xa. For each
i(a) ∈ Ia, let P a,i(a) be a partition of Ba and W a,i(a) be a weight function,
i.e., W a,i(a) : Ba → (0, 1]. For each a ∈ A and i(a) ∈ Ia, the norm on Xa

with respect to P a,i(a),W a,i(a) is given by

‖(xa,b)b∈Ba‖Pa,i(a),W a,i(a) =
( ∑

Q∈P a,i(a)

(∑

b∈Q
(xa,b)2(wa,i(a)(b))2

)p/2)1/p
.

For each a, we assume that there is one distinguished indiscrete partition
and weight. We will denote the index of this partition and weight as ( ). Let
P a,( ) = {Ba}, and W a,( ) be the associated weight. For each a, define

‖(xa,b)b∈Ba‖2 =
(∑

b∈Ba
(xa,b)2(wa,( )(b))2

)1/2
.

Suppose that for the index set A, we have an associated weight function
W : A → (0, 1]. Let (

∑
a∈AXa)p,2,W be defined on B =

∐
a∈ABa as above

using the norm ‖(xa,b)b∈Ba‖2 as the ‖·‖2 in the definition. Let I =
∏
a∈AIa∪

{( )}. Let (i(a))a∈A ∈ I. Then there is a natural partition of B and weight
on B given by P(i(a)) = {{a} × P : P ∈ P a,i(a), a ∈ A} and W(i(a)) =

(wa,i(a)
b )b∈Ba,a∈A. We define as a special case the partition and weight for ( )

as P( ) = {∐a∈ABa} and W( ) = (W (a)wa,( )(b))b∈Ba,a∈A.
If we expand the definition of the norm we have

(2.2) ‖(xa,b)a∈A,b∈Ba‖p,2,W
= max

{(∑

a∈A
‖(xa,b)b∈Ba‖pXa

)1/p
,
(∑

a∈A
‖(xa,b)b∈Ba‖22(W (a))2

)1/2}

= max
{(∑

a∈A
sup

i(a)∈Ia
{‖(xa,b)b∈Ba‖pPa,i(a),W a,i(a)}

)1/p
,

(∑

a∈A
W (a)2

∑

b∈Ba
(wa,( )(b))2|xa,b|2

)1/2}
.

Notice that for each a ∈ A, we take a supremum over Ia, then we take
summation of those supremums, and finally we take the maximum of two
sums. If we consider the index (i(a)) which for each a approximates the
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supremum, it is one element in I. So instead of taking the maximum over
each Ia, we can compute the norm for each index in I, and then take the
supremum of them only once. Hence the norm becomes

‖(xa,b)a∈A,b∈Ba‖p,2,W = sup
(i(a))∈I

‖(xa,b)b∈Ba‖P(i(a)),W(i(a)) .

This gives us the following result:

Proposition 2.11. Let (Xa)a∈A be a family of Banach spaces each
with norm given by partitions and weights. Then the norm of the space
(
∑

aXa)p,2,W can also be expressed as a norm given by partitions and
weights. In other words, the class of spaces with norm given by partitions
and weights is stable under (p, 2) sums.

Corollary 2.12. Let (Xa)a∈A be a family of Banach spaces with norm
given by an admissible family of partitions and weights. Then the norm of
the space (

∑
aXa)`p can also be expressed with partitions and weights.

Proof. Choose W such that
∑

a∈AW (a)2p/(p−2) < 1 in the previous re-
sult.

3. Embedding into Lp. In this section, we first show that any space
X with norm given by finitely many partitions and weights is isomorphic
to a subspace of Lp. Then we give the definition of an envelope norm. We
prove the existence of the envelope norm generated by a family of partitions
and weights. We also determine a necessary condition for a space with un-
conditional basis to be isomorphic to a subspace of Lp, p > 2, by giving a
lower bound on the Lp norm of elements of any subspace of Lp with uncon-
ditional basis in terms of blocks relative to the basis. Finally we show by
using this necessary condition that if a space with norm given by partitions
and weights is isomorphic to a subspace of Lp, then its norm is equivalent
to the natural envelope norm.

Proposition 3.1. Any sequence space X with norm given by finitely
many partitions and weights is isomorphic to a subspace of Lp.

Proof. Let X be the sequence space with partitions and weights
(Pn,Wn)Nn=1. Let Xn be the space of sequences with norm given by one
partition and weight (Pn,Wn), 1 ≤ n ≤ N . Then it is easy to see that

( N∑

n=1

Xn

)
`∞
∼
( N∑

n=1

Xn

)
`p

Take the isometric embedding from X into (
∑N

n=1Xn)`∞ defined by x 7→
(x)Nn=1. Since for each n = 1, . . . , N , Xn is isomorphic to a complemented
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subspace of Lp by Proposition 2.7, we see that (
∑N

n=1Xn)`p is isomorphic
to a complemented subspace of Lp. Hence X is isomorphic to a subspace
of Lp.

This trivial approach fails if there are infinitely many partitions and
weights. We do not know any general sufficient condition on the partitions
and weights to guarantee that the space is isomorphic to a subspace of Lp.
By using the fact that these spaces have unconditional basis, we can give a
useful necessary condition.

Definition 3.2. Let X = {(ab)b∈B} be a Banach space defined on a
countable set B with norm given by a set of partitions and weights P =
{(P j ,W j) : j ∈ K}. Then P has the envelope property if for any partition Q
of B and any function i : Q→ K, the partition and weight (P0,W0) belongs
to P where

P0 = {K ′ : K ′ = q ∩Ki(q) 6= ∅ for some q ∈ Q, some Ki(q) ∈ P i(q)}
and

W0 = (wi(q)b )b∈q,q∈Q where W i(q) = (wi(q)b )b∈B .

In this case we will say that ||| · ||| = supi∈K ‖ · ‖P i,W i is an envelope norm.

Note that the function i in this definition induces a map φ : Q → P by
φ(q) = (P i(q),W i(q)). Conversely any map φ : Q→ P induces a correspond-
ing map i. In what follows we will often start with φ when applying the
definition.

Example 3.3. Let Xp be Rosenthal’s space with the norm

‖(ai)‖ = max
{(∑

|an|p
)1/p

,
(∑

|wnan|2
)1/2}

where (wn) satisfies (∗). Let P1 = {{n}} with weight W1 = (1) and P2 = {N}
with weight W2 = (wn). Then P = {(P1,W1), (P2,W2)} defines the norm
on Xp. It is easy to see that P does not have the envelope property. To get
a family of partitions and weights which has the envelope property we need
to add all the possible combinations of the given two. Let Q be the set of
all partitions on N. Let Q ∈ Q and T : Q→ P. Define

P (Q,T ) = {K : K = {n} if n ∈ q and T (q) = (P1,W1) for some q ∈ Q}
∪ {K : K = q if T (q) = (P2,W2) for some q ∈ Q}

and

W (Q,T ) = (w(n))n∈q,q⊂N where w(n) =
{

1 if n ∈ q, T (q) = (P1,W1),

wn if n ∈ q, T (q) = (P2,W2).

Then an equivalent envelope norm is defined by sup(P,W )∈P̃ ‖ · ‖(P,W ) where

P̃ = {(P (Q,T ),W (Q,T )) : Q ∈ Q, T : Q→ P}.
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Remark 3.4. In the case of the norm of Xp in Example 3.3 the envelope
norm can be written in the form

max
q⊂N

(∑

n∈q
|an|p +

(∑

n6∈q
|an|2w2

n

)p/2)1/p
.

Next we show by generalizing the construction above that there is a
natural envelope norm associated to each norm given by partitions and
weights.

Proposition 3.5. Suppose X is a Banach space defined on a countable
set B with norm given by a family P of partitions and weights. Then there
exists a natural family of partitions and weights P̃ (defined below) such that
||| · ||| = sup(P,W )∈P̃ ‖ · ‖P,W is an envelope norm.

Proof. Let Q be the set of all partitions of B. Let P = {(Pi,Wi) :
i ∈ K} be the given family of partitions and weights for X. Let Q ∈ Q.
Letting T be a map from Q into P denote T (q) by (P i(q),W i(q)) for all
q ∈ Q. Define P (Q,T ) = {K : K = q ∩ p 6= ∅, q ∈ Q, p ∈ P i(q)}
and W (Q,T ) = (wi(q)(b))b∈q, q∈Q where W i(q) = (wi(q)(b))b∈B . Let P̃ =
{(P (Q,T ),W (Q,T )) : Q ∈ Q, T : Q → P}. Define a norm on X as
|||(xi)||| = sup(P,W )∈P̃ ‖(xi)‖P,W . We claim that P̃ has the envelope prop-
erty and thus ||| · ||| is an envelope norm.

Let Q be any partition of B. Let S be any map from Q into P̃ , i.e.,

S(q) = (P (Qq , Tq),W (Qq , Tq))

for all q ∈ Q. For any q ∈ Q, let Tq(q0) = (P i(q,q0),W i(q,q0)) for all q0 ∈ Qq
and let Q = {q 6= ∅ : q = q0 ∩ q, q ∈ Q, q0 ∈ Qq}. Because Q and Qq are
partitions, q uniquely determines q ∈ Q and q0 ∈ Qq such that q = q0 ∩ q.
From Definition 3.2 we have P0 = {K 6= ∅ : K = q ∩ Kq , q ∈ Q, Kq ∈
P (Qq , Tq)}, which is exactly what the definition above gives for the partition
P (Q,S) of B determined by Q and S. Thus

P0 = P (Q,S)

= {K : K = q ∩Kq 6= ∅, q ∈ Q, Kq ∈ P (Qq , Tq)}
= {K : K = q ∩ (q0 ∩ p) 6= ∅, q ∈ Q, q0 ∈ Qq , p ∈ P i(q,q0)}(3.1)

= {K : K = (q ∩ q0) ∩ p 6= ∅, q ∩ q0 ∈ Q, p ∈ P i(q,q0)}(3.2)

= {K : K = q ∩ p 6= ∅, q = q ∩ q0 ∈ Q, p ∈ P i(q,q0)}(3.3)

where (3.1) follows from the definition of P (Qq , Tq), (3.2) by the definition

of Q, and (3.3) by the uniqueness of q and q0. Define T : Q → P by
T (q ) = (P i(q,q0),W i(q,q0)) where q = q ∩ q0, q0 ∈ Qq , q ∈ Q. Then we have

shown that P (Q,S) = P (Q,T ).
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Because Tq(q) = (P i(q,q),W i(q,q)) = (P i(q,q), (wi(q,q)(b))b∈B), we have

S(q) = (P (Qq , Tq),W (Qq , Tq)) = (P (Qq , Tq), (wi(q,q)(b))b∈q, q∈Qq ).

Suppose W0 = (wb)b∈B . If q ∈ Q and b ∈ q, then as in Definition 3.2,
wb = wi(q,q0)(b) where b ∈ q0 and q0 ∈ Qq . Hence for b ∈ q = q ∩ q0,

wi(q,q0)(b) is also the choice specified by T (q ). Hence W0 = W (Q,T ). So
(P0,W0) ∈ P̃.

Corollary 3.6. If X has a norm defined by a finite number of parti-
tions and weights, then there is an equivalent envelope norm on X.

The next result follows by simply checking that all the partitions and
weights in the construction are required for the envelope property.

Proposition 3.7. Suppose P is a family of partitions and weights on B.
Then P̃ as in Proposition 3.5 is the minimal family of partitions and weights
on B containing P and having the envelope property.

Corollary 3.8. Let P be a non-empty family of partitions and weights
on B. Let (Pλ)λ∈Λ be any chain of families of partitions and weights on B
such that each Pλ contains P and has the envelope property. Then

⋂
λ∈Λ Pλ

has the envelope property.

Our purpose in introducing envelope norms is to show that the envelope
norm is related to a property of subspaces of Lp with unconditional basis
that we will now explain.

Let X be a Banach space defined on B with a norm given by partitions
and weights. Let φ be a one-to-one map from N onto B such that xn =
eφ(n) where (eb)b∈B is the natural unit vector basis of X. Then (xn) is an
unconditional basis for X. Let x =

∑∞
n=1 anxn for some (an). Let Q be

any partition of B. Let {Fk}∞k=1 be the corresponding partition of N, i.e.,
φ(Fk) = q for some q ∈ Q. Then

x =
∞∑

k=1

∑

n∈Fk
anxn =

∞∑

k=1

zk =
∑

q∈Q
z′q

where

zk =
∑

n∈Fk
anxn =

∑

n∈Fk
aneφ(n) =

∑

b∈q=φ(Fk)

aφ−1(b)eb = z′φ(Fk) = z′q.

Since (xn) is an unconditional basis and (zk) (hence (z′q)) is a block of (xn),
we see that (zk) is an unconditional basic sequence with unconditional con-
stant 1.

Remark 3.9. We are abusing the terminology a little here. It would
be more correct to use partitions {Fk} containing only finite subsets of N
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and the map φ which has the property that for all k, if n ∈ φ−1(Fk) and
m ∈ φ−1(Fk+1) then n < m.

In the lemma below we use the notation introduced in Proposition 3.5.

Lemma 3.10. Let P = {(P i,W i) : i ∈ K} be a family of partitions and
weights on B. Let X be the corresponding Banach space defined on B. If X
is isomorphic to a subspace of Lp, then there exists a constant C, depending
only on the Banach–Mazur distance of X to a subspace of Lp, such that for
any partition Q of B and any map T : Q→ P, ‖x‖ ≥ C‖x‖(P (Q,T ),W (Q,T ))

where T (q) = (P i(q),W i(q)).

Proof. Let φ : N → B be as above and T : Q → P such that T (q) =
(P i(q),W i(q)). If X is isomorphic to a subspace of Lp, with isomorphism R,
then (Rzk) (hence (Rz′q)) is a block of (Rxn) which is an unconditional basic
sequence in Lp with constant λ. So

‖x‖X =
∥∥∥
∞∑

k=1

zk

∥∥∥ ≥ ‖R‖−1
∥∥∥
∑

k

Rzk

∥∥∥
Lp

≥ ‖R‖−1λ−1
(∑

k

‖Rzk‖pp
)1/p

(3.4)

≥ ‖R‖−1λ−1
(∑

k

‖zk‖pX
‖R−1‖p

)1/p

=
λ−1

‖R‖ ‖R−1‖
(∑

q∈Q
‖zq‖pX

)1/p

≥ C
(∑

q∈Q

∑

r∈P i(q)

( ∑

φ(n)∈r∩q
|an|2(wi(q)φ(n))

2
)p/2)1/p

(3.5)

= C
( ∑

q∈P (Q,T )

( ∑

φ(n)∈q
|an|2(wi(q)φ(n))

2
)p/2)1/p

= C‖x‖P (Q,T ),W (Q,T )

where (3.4) follows from the standard lower `p estimate [A-O], and (3.5) is
true since zq =

∑
n∈Fk,φ(Fk)=q anxn, and ‖z′q‖X ≥ ‖z′q‖P i(q),W i(q) . In (3.5),

q is the unique element of Q such that q ⊂ q.

Theorem 3.11. Suppose X has a norm given by a family P of partitions
and weights and X is isomorphic to a subspace of Lp. Then there is an
envelope norm ||| · ||| such that ||| · ||| ∼ ‖ · ‖X .

Proof. If we take a supremum over all the choices of Q and T in Lem-
ma 3.10, we have ‖x‖X ≥ C|||x|||, where ||| · ||| is the envelope norm defined by
P̃ in the proof of Proposition 3.5. On the other hand, since P ⊂ P̃ , we get
‖x‖X ≤ |||x|||. Hence ‖x‖X ∼ |||x|||.
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Remark 3.12. Because the natural basis of a space with norm given by
partitions and weights is 1-unconditional, the unconditional constant of the
image of any block basis under an isomorphism R is at most ‖R‖ ‖R−1‖.
Hence the constant λ in the proof of Lemma 3.10 and consequently the
equivalence in Theorem 3.11 depend only on the distance to a subspace
of Lp.

Proposition 3.13. Let (Xa)a∈A be a family of Banach spaces each with
norm given by partitions and weights which satisfies the envelope property.
Then the norm of the space (

∑
aXa)p,2,W can also be expressed as a norm

given by partitions and weights which also satisfies the envelope property.

Proof. This follows from equation (2.2). Indeed, if Q is any partition of∐
a∈ABa and φ : Q → {(P (i(a)),W (i(a))) : (i(a)) ∈ I} then for each q ∈ Q

let φ(q) = (P (i(a),q),W (i(a),q)). Then (Qa,Wa), where Qa = {q ∩ q′ 6= ∅ :
q ∈ Q, q′ ∈ P i(a),q} and Wa = (wa,i(a,q)b )b∈Ba , must be one of the partitions
and weights in {(P a,i(a),W a,i(a)) : i(a) ∈ Ia} since this family of partitions
and weights has the envelope property.

Next we consider the Lp tensor product of spaces with norms given
by partitions and weights. Because the tensor product is only defined for
subspaces of Lp, we will assume that the two spaces are also isomorphic
to subspaces of Lp and thus the defining families of partitions and weights
must have the envelope property.

Proposition 3.14. Suppose that P and Q are families of partitions and
weights defined on sets A and B, respectively , and having the envelope prop-
erty. Let X and Y be the corresponding spaces on A and B and let (xa)a∈A
and (yb)b∈B , respectively , be the natural bases. Suppose that S is an isomor-
phism from X into Lp[0, 1] and T is an isomorphism from Y into Lp[0, 1].
Then there is a constant C > 0 such that for any constants (ca,b)a∈A, b∈B
with only finitely many non-zero, any (P, (wa)) ∈ P and any (Q, (w′b)) ∈ Q,
∥∥∥
∑

ca,bSxa ⊗ Tyb
∥∥∥
p
≥ C

( ∑

p∈P, q∈Q

( ∑

a∈p, b∈q
|ca,b|2(wa)2(w′b)

2
)p/2)1/p

.

Proof. With the given notation we can directly estimate the norm as
follows:

∥∥∥
∑

ca,bSxa ⊗ Tyb
∥∥∥
p

p
=

1�

0

1�

0

∣∣∣
∑

ca,bSxa(s)Tyb(t)
∣∣∣
p
dt ds

=
1�

0

1�

0

∣∣∣
∑

b∈B

(∑

a∈A
ca,bSxa(s)

)
Tyb(t)

∣∣∣
p
dt ds
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=
1�

0

∥∥∥T
(∑

b∈B

(∑

a∈A
ca,bSxa(s)

)
yb

)∥∥∥
p

p
ds

∼
1�

0

max
(Q1,(w′′b ))∈Q

(∑

q∈Q1

(∑

b∈q

∣∣∣
∑

a∈A
ca,bSxa(s)

∣∣∣
2
(w′′b )2

)p/2)
ds

(since T is an isomorphism)

≥
1�

0

(∑

q∈Q

(∑

b∈q

∣∣∣
∑

a∈A
ca,bSxa(s)

∣∣∣
2
(w′b)

2
)p/2)

ds

∼
∑

q∈Q

1�

0

1�

0

∣∣∣
∑

b∈q

∑

a∈A
ca,bSxa(s)w′brb(u)

∣∣∣
p
du ds

(by Khinchin’s inequality, where (rb)b∈B is a sequence of Rademacher func-
tions)

=
∑

q∈Q

1�

0

∥∥∥
∑

a∈A

(∑

b∈q
ca,bw

′
brb(u)

)
Sxa(s)

∥∥∥
p
du

∼
∑

q∈Q

1�

0

max
(P1,(w′′a ))∈P

(∑

p∈P1

(∑

a∈p

(∑

b∈q
ca,bw

′
brb(u)

)2
w′′a

2
)p/2)

du

(since S is an isomorphism)

≥
∑

q∈Q

1�

0

(∑

p∈P

(∑

a∈p

(∑

b∈q
ca,bw

′
brb(u)

)2
w2
a

)p/2)
du

=
∑

q∈Q

∑

p∈P

1�

0

(∑

a∈p

(∑

b∈q
ca,bw

′
bwarb(u)

)2)p/2
du

∼
∑

q∈Q

∑

p∈P

1�

0

1�

0

∣∣∣
∑

b∈q

∑

a∈p
ca,bw

′
bwarb(u)r′a(w)

∣∣∣
p
dw du

where (r′a)a∈A is another sequence of Rademacher functions, independent
of (rb)b∈B)

∼
∑

q∈Q

∑

p∈P

(∑

b∈q

∑

a∈p
c2
a,b(w

′
b)

2w2
a

)p/2
.

In the proof above there are two inequalities which result from taking
only one of the partitions and weights defining the norm. If the norm is
equivalent to a norm given by finitely many partitions and weights, then
we can remove the inequality lines, insert maximums, and complete the
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argument as above except that at a few places we must interchange the
maximum with an integral. This is possible with a constant depending on
the number of partitions and weights. Therefore we have

Corollary 3.15. If X and Y have norms given by finitely many parti-
tions and weights, then the Lp tensor product of X and Y also has a norm
given by finitely many partitions and weights.

Corollary 3.16. With the same hypothesis as in Proposition 3.14,
there is a constant C ′ > 0 such that for any partition R of A × B and
partitions and weights (Pr, (wr,a))r∈R and (Qr, (w′r,a))r∈R such that for each
r ∈ R, there exist pr ∈ Pr and qr ∈ Qr with r ⊂ pr × qr, we have

∥∥∥
∑

ca,bSxa ⊗ Tyb
∥∥∥ ≥ C ′

(∑

r∈R

(∑

a,b∈r
|ca,b|2(wr,a)2(w′r,b)

2
)p/2)1/p

.

Proof (sketch). Because SX ⊗ TY is a subspace of Lp, this follows by
the argument given in the proof of Lemma 3.10.

4. An isomorph of
⊗n

j=1Xp. In this section, we construct an example
which demonstrates the difference between a norm given by partitions and
weights and the corresponding envelope norm. We also obtain an estimate
of the distance between a certain Banach space Yn, isomorphic to

⊗n
j=1Xp,

with norm given by partitions and weights, and any subspace of Lp. Finally
we give an example of a Banach space with norm given by partitions and
weights which is not isomorphic to a subspace of Lp.

We will define Yn to be a Banach space with norm given by partitions
and weights which has essentially the same form as the norm on the se-
quence space realization of

⊗n
j=1Xp introduced by Schechtman [S] in 1975.

First we will estimate the distance between Yn and Yn with the associated
envelope norm for the case n = 3. Then for any n ∈ N we can easily extend
the argument to Yn with the original norm given by partitions and weights
and Yn with the corresponding envelope norm. Consequently, we prove that
not every sequence space with norm given by partitions and weights is iso-
morphic to a subspace of Lp and the envelope norm on the sequence space
realization of

⊗n
j=1Xp may be a better choice for some purposes.

We will define Y3 on N2×N2×N2. Let (wi)∞i=1 be a sequence of weights
such that wi → 0 as i→∞. Let i1, i2, and i3 represent indices for the first,
second and third pair of coordinates, respectively. Define weights on N2 by
wi = w(m,n) = wm where i = (m,n) for all m,n ∈ N. Let (ei1,i2,i3)2

i1,i2,i3∈N
be the natural unit vector basis of Y3. The partitions of N2 × N2 × N2 and
the corresponding weights are given as follows:



Subspaces of Lp, p > 2 221

P0 = {N2 × N2 × N2}, W0 = (wi1 · wi2 · wi3),

P1 = {{(m,n)} × N2 × N2 : m,n ∈ N}, W1 = (1 ·wi2 · wi3),

P2 = {N2 × {(n,m)} × N2 : m,n ∈ N}, W2 = (wi1 · 1 · wi3),

P3 = {N2 × N2 × {(m,n)} : m,n ∈ N}, W3 = (wi1 · wi2 · 1),

P4 = {{(m,n)} × {(s, t)} × N2 : m,n, s, t ∈ N}, W4 = (1 · 1 · wi3),

P5 = {N2 × {(m,n)} × {(s, t)} : m,n, s, t ∈ N}, W5 = (wi1 · 1 · 1),

P6 = {{(m,n)} × N2 × {(s, t)} : m,n, s, t ∈ N}, W6 = (1 ·wi2 · 1),

P7 = {{(l,m, n, s, t, u)} : l,m, n, s, t, u ∈ N}, W7 = (1 · 1 · 1).

Then the norm on Y3 can be calculated by
∥∥∥
∑

i1,i2,i3

ai1,i2,i3ei1,i2,i3

∥∥∥
Y3

= max
I⊂{1,2,3}

{(∑

i:k∈I

( ∑

il:l∈Ic
|ai1,i2,i3 |2

∏

l∈Ic
(wil)

2
)p/2)1/p}

= max
{( ∑

i1,i2,i3

|ai1,i2,i3 |2(wi1)2(wi2)2(wi3)2
)1/2

,

(∑

i1

(∑

i2,i3

|ai1,i2,i3 |2(wi2)2(wi3)2
)p/2)1/p

,

(∑

i2

(∑

i1i3

|ai1,i2,i3 |2(wi1)2(wi3)2
)p/2)1/p

,

(∑

i3

(∑

i1,i2

|ai1,i2,i3 |2(wi1)2(wi2)2
)p/2)1/p

,

(∑

i1,i2

(∑

i3

|ai1,i2,i3 |2(wi3)2
)p/2)1/p

,
(∑

i2,i3

(∑

i1

|ai1,i2,i3 |2(wi1)2
)p/2)1/p

,

(∑

i1,i3

(∑

i2

|ai1,i2,i3 |2(wi2)2
)p/2)1/p

,
( ∑

i1,i2,i3

|ai1,i2,i3 |p
)1/p}

= max{Si}7i=0

where Si for i = 0, 1, . . . , 7 are the sums in the previous expression in the
same order.

Let Z3 denote Y3 with the envelope norm generated. Next we will show
that

sup
x∈Y3

‖x‖Z3

‖x‖Y3

≥ 31/p.

Since wi → 0 as i → ∞, for any given ε, 0 < ε ≤ 3, there exists an N
such that if n > N , then wn < (ε/3)1/2 ≤ (ε/3)1/p. Let n1, n2, n3 > N .
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Choose integers K1,K2,K3 such that

wn1K
1/2−1/p
1 > (3/ε)1/p ≥ 1, wn2K

1/2−1/p
2 > (3/ε)1/p ≥ 1,

wn3K
1/2−1/p
3 > (3/ε)1/p ≥ 1.

Now take three blocks with constant coefficients as follows:

• a block x1 of size K1 with coefficient (wn1)−1K
−1/2
1 and support

{(n1, 1, n2, 1, n3, 1), (n1, 2, n2, 1, n3, 1), . . . , (n1,K1, n2, 1, n3, 1)},

• a block x2 of size K2 with coefficient (wn2)−1K
−1/2
2 and support

{(n1,K1 + 1, n2, 2, n3, 2), (n1,K1 + 1, n2, 3, n3, 2),

. . . , (n1,K1 + 1, n2,K2 + 1, n3, 2)},

• a block x3 of size K3 with coefficient (wn3)−1K
−1/2
3 and support

{(n1,K1 + 2, n2,K2 + 2, n3, 3), (n1,K1 + 2, n2,K2 + 2, n3, 4),

. . . , (n1,K1 + 2, n2,K2 + 2, n3,K3 + 2)}.

Now we estimate the eight sums to get an estimate of the norm of the
element

x1 + x2 + x3 =
(n1,K1)∑

i1=(n1,1)

w−1
n1
K
−1/2
1 ei1,n2,1,n3,1(4.1)

+
(n2,K2+1)∑

i2=(n2,2)

w−1
n2
K
−1/2
2 en1,K1+1,i2,n3,2

+
(n3,K3+2)∑

i3=(n3,3)

w−1
n3
K
−1/2
3 en1,K1+2,n2,K2+2,i3.

First,

S0 = [(wn1)−2K−1
1 (wn1)2(wn2)2(wn3)2K1

+ (wn2)−2K−1
2 (wn1)2(wn2)2(wn3)2K2

+ (wn3)−2K−1
3 (wn1)2(wn2)2(wn3)2K3]1/2

= [(wn2)2(wn3)2 + (wn1)2(wn3)2 + (wn1)2(wn2)2]1/2 < ε1/2,

S1 = [((wn1)−2K−1
1 (wn2)2(wn3)2)p/2K1 + ((wn2)−2K−1

2 (wn2)2(wn3)2K2)p/2

+ ((wn3)−2K−1
3 (wn2)2(wn3)2K3)p/2]1/p

= [(wn1K
1/2−1/p
1 )−p(wn2)p(wn3)p + (wn3)p + (wn2)p]1/p < ε1/p.
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Similarly we have S2 < ε1/p and S3 < ε1/p. Next,

S4 = (K1((wn1)−2K−1
1 (wn3)2)p/2

+K2((wn2)−2K−1
2 (wn3)2)p/2 + ((wn3)−2K−1

3 (wn3)2K3)p/2)1/p

= ((wn1K
1/2−1/p
1 )−p(wn3)p + (wn2K

1/2−1/p
2 )−p(wn3)p + 1)1/p

< (ε+ 1)1/p.

Similarly S5 < (ε+ 1)1/p and S6 < (ε+ 1)1/p. Finally,

S7 = ((wn1K
1/2−1/p
1 )−p + (wn2K

1/2−1/p
2 )−p + (wn3K

1/2−1/p
3 )−p)1/p < ε1/p.

Since ε can be arbitrarily small, if we take the maximum of these eight sums,
the norm will be as close to 1 as we want.

Now let us look at the envelope norm of the element x1 +x2 +x3 in (4.1).
Let Q be a partition of N2 × N2 × N2 such that the support of each of

the above three blocks is an element of Q. (The other sets in the partition
do not matter.) Let P be the given family of weights and partitions, i.e.,
P = {(Pi,Wi) : i = 0, 1, . . . , 7}. Let T : Q → P be a map such that
T (suppx1) = (P6,W6), T (suppx2) = (P5,W5), and T (suppx3) = (P4,W4).
Then the envelope norm of x1 + x2 + x3 can be estimated from below using
P (Q,T ):

∣∣∣
∣∣∣
∣∣∣

(n1,K1)∑

i1=(n1,1)

w−1
n1
K
−1/2
1 ei1,n2,1,n3,1 +

(n2,K2+1)∑

i2=(n2,2)

w−1
n2
K
−1/2
2 en1,K1+1,i2,n3,2

+
(n3,K3+2)∑

i3=(n3,3)

w−1
n3
K
−1/2
3 en1,K1+2,n2,K2+2,i3

∣∣∣
∣∣∣
∣∣∣

≥
(( (n1,K1)∑

i1=(n1,1)

(w−1
n1
K
−1/2
1 )2w2

i1

)p/2

+
((n2,K2+1)∑

i2=(n2,2)

(w−1
n2
K
−1/2
2 )2w2

i2

)p/2
+
((n3,K3+2)∑

i3=(n3,3)

(w−1
n3
K
−1/2
3 )2w2

i3

)p/2)1/p

≥ (((wn1)−2K−1
1 (wn1)2K1)p/2

+ ((wn2)−2K−1
2 (wn2)2K2)p/2 + ((wn3)−2K−1

3 (wn3)2K3)p/2)1/p = 31/p.

Hence the envelope norm on Y3 is at best 31/p-equivalent to the given norm.
Next we will describe how this computation can be generalized. We define

Yn for any n ∈ N on N2× . . .×N2 (n times). Let wi = ws,t = ws for i = (s, t),
s, t ∈ N, as above. Let I ⊂ {1, . . . , n}. Define
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PI =
{ n∏

k=1

Ak : Ak = N2, k 6∈ I; Ak = {(mk, lk)}, k ∈ I, mk, lk ∈ N
}

and
WI =

(∏

k 6∈I
wik

)
.

For a given sequence (wi) such that wi → 0 as i → ∞ and any 0 < ε ≤ 1,
there exists N such that if m > N , then wm < (ε/n)1/2 ≤ (ε/n)1/p.

Let m1, . . . ,mn > N . We choose n blocks with size Kl for l = 1, . . . , n
in (N2)n so that wmlKl

1/2−1/p > (n/ε)1/p.
The block of size Kl+1 would have coefficient w−1

ml+1
K
−1/2
l+1 and support

(m1,K1 + l,m2,K2 + l, . . . ,ml+1, l + 1, . . . ,mn, l + 1)

(m1,K1 + l,m2,K2 + l, . . . ,ml+1, l + 2, . . . ,mn, l + 1)
...

(m1,K1 + l,m2,K2 + l, . . . ,ml+1, l +Kl+1, . . . ,mn, l + 1)

where 0 ≤ l ≤ n− 1.
By applying similar arguments to that for n = 3 we deduce that the value

of the envelope norm of the sum of these blocks is at least n1/p while the
value of the norm given by partitions and weights remains approximately 1.

Theorem 4.1. The distance from Yn to a subspace of Lp goes to ∞
with n, i.e., there is a sequence (K(n)), K(n) → ∞, such that for all iso-
morphisms T : Yn → Z ⊂ Lp, ‖T‖ ‖T−1‖ ≥ K(n).

Proof. If T : Yn → Z ⊂ Lp is an isomorphism, then by Theorem 3.11,
the norm of Yn given by partitions and weights is equivalent to the envelope
norm with a constant depending on ‖T‖ ‖T−1‖. Since the envelope norm of
some element of Yn of norm 1 has value at least n1/p, we have

‖T‖ ‖T−1‖ ≥ λ−1n1/p ≥ n1/p

‖T‖ ‖T−1‖ .

Corollary 4.2. The distance between Yn and
⊗n

j=1Xp goes to ∞
with n.

Corollary 4.3. (
∑

n Yn)`p with norm given by partitions and weights
is not isomorphic to a subspace of Lp.

5. Remarks and open problems. We introduced the envelope prop-
erty to show that there is a space with norm given by partitions and weights
which is not isomorphic to a subspace of Lp. It seems unlikely that this prop-
erty alone determines whether a space with norm given by partitions and
weights is isomorphic to a subspace of Lp.
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Question 5.1. Is there a space with norm given by partitions and
weights which has the envelope property but is not isomorphic to a subspace
of Lp?

Question 5.2. What are necessary and sufficient conditions for a space
with norm given by partitions and weights to be isomorphic to a subspace
of Lp?

We showed that the tensor product of two spaces with norms given by
finitely many partitions and weights is isomorphic to a space with norm
given by partitions and weights.

Question 5.3. Suppose X and Y have norms given by partitions and
weights and are each isomorphic to a subspace of Lp. Is X⊗Y isomorphic to
a subspace of Lp? What if X and Y are each isomorphic to a complemented
subspace of Lp?

The construction of uncountably many complemented subspaces of Lp
given by Bourgain, Rosenthal and Schechtman is based on two fundamental
operations. If X and Y are subspaces of Lp[0, 1] then a distributional version
of the `p sum is used, X ⊕p Y, with each space being isometrically mapped
to a space supported on half the interval in a canonical way. The second
operation is used with sequences of subspaces of Lp. Let (Xn) be such a
sequence with each Xn containing the constant functions and let Xn,0 denote
the subspace of mean zero functions in Xn. An infinite sum is created by
placing (isometrically) Xn,0 onto an infinite product of probability spaces
as functions depending only on the nth coordinate. The space (

∑
Xn)I is

the span of these transported copies of Xn, n = 1, 2, . . . , and the constant
functions.

With these two operations an induction on ω1 is used to construct the
spaces. Let R0

p be the constant functions on [0, 1]. If Rαp has been defined,

define Rα+1
p = Rαp ⊕p Rαp . If α is a limit ordinal, define Rαp = (

∑
β<αR

β
p )I .

These operations and the construction are investigated in [A]. In partic-
ular it is shown there that the constant functions do not play an important
role in the construction. If we make a few adjustments we can mimic this
construction using (p, 2,W ) sums. For the `p sum of two spaces, we use
the (p, 2,W1) sum with two equal weights, W1 = (2(2−p)/(2p), 2(2−p)/(2p)).
For the independent sum we use the (p, 2,W2) sum with W2 equal to the
constantly 1 sequence. In each case we will also assume that we take the
envelope norm generated. In addition in order to strengthen the correspon-
dence between this construction and the very distributional construction of
Rαp , we will use at each step the fact that the space Rαp,0 has an unconditional
basis which is orthogonal in L2. Define Y 0

p = [1[0,1/2)−1[1/2,1]]. This is just a
one-dimensional space. Let X0

p be the sequences of length one. If Y α
p and Xα

p
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have been defined, define Y α+1
p = Y α

p ⊕pY α
p and Xα+1

p = (Xα
p ,X

α
p )(p,2,W1). If

α is a limit ordinal, let Y α
p = (

∑
β<α Y

β
p )I and Xα+1

p = (
∑

β<αX
β
p )(p,2,W2).

It follows from the results in Chapter 2 of [A] that for α < ω2 the spaces
Rαp , Y α

p , and Xα
p are isomorphic. The choice of weights W1 and W2 is such

that the natural mapping from (Y α
p , ‖·‖2) to (Xα

p , ‖·‖2) will be an isometry.

Question 5.4. Is Xα
p isomorphic to Rαp for all α < ω1?

We think it unlikely to be true but it would be nice to know the answer
to the following simple question.

Question 5.5. Is Lp isomorphic to a space with norm given by parti-
tions and weights?

Finally we note that the envelope norm suggests that a useful alternative
form of Rosenthal’s inequality for a sequence of mean zero independent
random variables (fn) might be

cp max
Q⊂N

{(∑

n6∈Q
‖fn‖pp +

(∑

n∈Q
‖fn‖22

)p/2)1/p}

≤
∥∥∥
∑

n

fn

∥∥∥
p
≤ Cp max

Q⊂N

{(∑

n6∈Q
‖fn‖pp +

(∑

n∈Q
‖fn‖22

)p/2)1/p}
.

Question 5.6. What are the best constants in this form of Rosenthal’s
inequality?

(See [J-S-Z] for results on the constants in the original form.)
At this time very little is known about the isomorphic properties of

the whole class of spaces with norm given by partitions and weights. The
development of the isomorphic properties for Xp by Rosenthal [R] suggests
that it is very helpful to be able to choose special representations of Xp

which allow the use of standard gliding hump arguments. In the case of Xp

a weight sequence in which every weight is repeated infinitely often is such
a special representation. The proof that any Xp,w with w = (wn) satisfying
(∗) is isomorphic to Xp and hence to the special representation of Xp relies
on the ability to construct projections on special blockings. This type of
detailed result for general spaces with norm given by partitions and weights
seems unlikely. Among more restrictive classes of these spaces such as the
Lp spaces similar results are far more likely.
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