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Regularization of star bodies by random
hyperplane cut off
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To Professor Aleksander Pełczyński, to Olek,
with our great respect and admiration

Abstract. We present a general result on regularization of an arbitrary convex body
(and more generally a star body), which gives and extends global forms of a number
of well known local facts, like the low M∗-estimates, large Euclidean sections of finite
volume-ratio spaces and others.

1. Introduction. In this paper, we consider random polytopes given
by few linear inequalities. We first introduce a large class of probability
measures, convenient for applications to random hyperplane cut off. For
any a ≥ b > 0, let Mn(a, b) be the set of symmetric probability measures µ
on Rn satisfying, for all t > 0 and x ∈ Rn,

�
et(x,u) dµ(u) ≤ ea2t2|x|2/2n,

�
|(x, u)|2 dµ(u) ≥ b2|x|2

n
·(1)

The first inequality is of subgaussian type. It implies that for all x ∈ Rn,
�
|(x, u)|2 dµ(u) ≤ a2|x|2

n
·

Equivalently, for a random vector X in Rn, we write X ∈Mn(a, b) if the law
of X belongs to Mn(a, b). Clearly, if X ∈ Mn(a, b) then X/b ∈ Mn(a/b, 1).
It is sometimes convenient to introduce this parameter b, which is a matter
of normalization. In applications, it will be mostly 1, so that we will set
Mn(a) = Mn(a, 1). As a standard example of a measure in Mn(1), we have in
mind the Gaussian measure with covariance matrix n−1 Id where Id denotes
the identity matrix.

We use the following standard notation. The space Rn is equipped with
the canonical Euclidean scalar product (·, ·) and the associated Euclidean
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norm | · |. Its unit ball is denoted by D. For any 1 ≤ p <∞, the linear space
Rn equipped with the norm (

∑ |xi|p)1/p, for x ∈ Rn, is denoted by `np . Let
K be a convex body in Rn with 0 in its interior. Its polar K◦ is defined as
usual by

K◦ = {x ∈ Rn; (x, y) ≤ 1 for every y ∈ K}.
The convex hull of a set A ⊂ Rn is denoted by conv(A). Although the article
concerns mostly convex bodies, some results are valid for a larger class of
star shaped bodies. A subset A of Rn is star shaped or a star body if λx ∈ A
for every x ∈ A and λ ∈ [0, 1].

We define
M∗K =

�

Sn−1

sup
x∈K

(x, t) dσn(t),

where σn denotes the rotation invariant probability measure on the sphere
Sn−1. It is half of the mean width of K.

For every u = (u1, . . . , uk) ∈ (Rn)k and any α > 0, the set

Cylk(α, u) =
⋂

1≤i≤k
{x ∈ Rn; (x, ui) ≤ α}

will be called a k-cylinder . This is indeed a cylinder if k ≤ n, the case we
shall be interested in. If X1, . . . ,Xk are random vectors in Rn, then

Cylk(α,X1, . . . ,Xk)

will denote the random cylinder Cylk(α,X1(·), . . . ,Xk(·)).
Let A and B be two subsets of Rn. The covering number N(A,B) is

defined as usual as

N(A,B) = min{]Λ; Λ ⊂ Rn, A ⊂ Λ+B}.
The volume of a measurable subset A of Rn is denoted by |A|. Let σ > 0

and let K be a convex compact subset of Rn with 0 in its interior. We say
that an ellipsoid E of Rn is an M-ellipsoid of K with constant σ, or briefly
an M -ellipsoid of K, if setting λ = (|K|/|E|)1/n in order that |K| = |λ E|,
we have

N(K,λE) ≤ eσn, N(K◦, λ E) ≤ eσn.
It is proved in [M1] (see also [M2] and [Pi] for simplified proofs) that there
exists a universal constant such that for every n, every n-dimensional sym-
metric convex body has an M -ellipsoid with respect to this constant. An im-
portant feature of such ellipsoids is that they give reverse Brunn–Minkowski
inequalities. Many interesting properties of centrally symmetric convex bod-
ies and corresponding normed spaces have been revealed using M -ellipsoids.
We refer to a survey [M3] and to an extension for non-centrally symmetric
bodies in [M-P1].
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Using a new approach and a simple deviation inequality of Bernstein–
Chernov type, we prove the theorem below; the global form of so-called low
M∗-estimates is one of its particular cases.

Theorem. Let 1 ≤ k ≤ n. Let a > 0 and let X1, . . . ,Xk ∈ Mn(a) be
i.i.d. random vectors. There exist α = α(a) > 0 and β = β(a) > 0 such
that for any compact star subset K of Rn with 0 in its interior and so that
N(K,D) ≤ eαk, we have

Cylk

(
β

4
√
k
,X1, . . . ,Xk

)
∩K ⊂ β

√
n

k
D

with probability larger than 1− 2e−αk.

This investigation was triggered by some question left open in [M-P3]
concerning random regularization.

If a body K satisfies N(K,D) ≤ eαk and N(K◦,D) ≤ eαk with α as
above, then the Theorem applies to K and its polar (Theorem 5). After
2k operations, with k small with respect to the dimension, first by taking
the convex hull of k points with Euclidean norm of order

√
k, and then

by intersection with half-spaces of the type (·, u) ≤ c/
√
k, the body K is

transformed into a body which is close to the intersection of a Euclidean
ball and a cylinder of the type Cylk(β/4

√
k ,X1, . . . ,Xk). There is of course

a dual version, which transforms K into a body which is close to the convex
hull of a Euclidean ball and k almost orthogonal vectors. We are thus faced
with two new families of convex bodies (dual to each other), which seem to
capture many of the properties of general convex bodies.

2. Preliminaries. The measures inMn(a, b) are almost isotropic (in the
sense that the covariance matrix is not far from a multiple of the identity),
normalized as the rotation invariant probability measure on the sphere (the
variance of linear forms is of order 1/n), and linear forms associated to a
unit vector have uniformly bounded Orlicz norm in the space Lψ2(µ), where
ψ2(t) = exp(t2)− 1, t ≥ 0.

Besides the Gaussian measure, the rotation invariant probability measure
on the sphere belongs to Mn(1). Another example is the uniform measure
on the vertices of the cube [−1/

√
n, 1/

√
n ]n. Indeed, if µ is symmetric, then

�
et(x,u) dµ(u) =

�
cosh(t(x, u)) dµ(u) ≤

�
et

2(x,u)2/2 dµ(u).

Let K be a centrally symmetric convex body in Rn and let X be a
uniformly distributed random vector on K. The body K is called isotropic
if it is of volume 1 and if the covariance matrix of X (or the inertia tensor
of K) is a multiple of the identity, so

E(x,X)2 = L2
K |x|2
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for any x ∈ Rn, where LK is the so-called isotropic constant of K. It is
unknown whether (x,X) satisfies a ψ2-estimate of type (1), with a uniform
bound depending on dimension, even for a single x. But it is definitely
not true for every K and every x. It has been checked for some classes
of convex bodies such as the isotropic ball of `np for p ≥ 2 (see for ex-
ample [B-K]) that a uniformly distributed random vector X on K belongs
to Mn(αpLK

√
n,LK

√
n) for some universal constant αp > 0, and it is well

known (see for example [M-P2]) that the isotropic constants are uniformly
bounded over all p ∈ [1,∞]. It is still an open problem whether the isotropic
constants are uniformly bounded over the set of all convex bodies (see [M-P2]
for a discussion and related problems).

However, in our main application, we do not need the strong assumption
that any linear form satisfies a ψ2-estimate (1). We use this only for some
Euclidean 1/3-net of `n2 . We do not know how much this increases the family
of convex bodies to which our results are applicable for uniform volume
distribution on these bodies.

Bobkov and Nazarov [B-N1] showed that a ψ2-estimate like (1) holds
for a random vector uniformly distributed on an unconditional convex body
(symmetric with respect to each coordinate hyperplane), for the direction
(1, 1, . . . , 1). A stronger and more precise result was proved recently by the
same authors in [B-N2]. They show that, except for a set of “small” measure
on the sphere, in the worst case, the tails of linear functionals are “almost”
Gaussian.

Let Xi ∈ Mn(a, b), i = 1, . . . , k, be a collection of independent random
vectors. Then it is clear from (1) that for any real numbers (αi),

∑

1≤i≤k
αiXi ∈Mn(aα, bα) with α2 =

∑

1≤i≤k
α2
i .(2)

Let X ∈ Mn(a, b). Then it is easy to check (and classical) that for any
x ∈ Sn−1,

P((x,X) ≥ u) ≤ e−nu2/2a2
for any u ≥ 0.(3)

3. Random hyperplane cut

Lemma 1. Let a, b > 0 and X be a random vector in Mn(a, b).

(i) For any non-zero vector x ∈ Rn and any v ∈ (0, 1), we have

P[(x,X) > v(E(x,X)2)1/2] ≥ c(a, b)(1− v2)2(4)

for some function c(a, b) depending only on a and b.
(ii) Let 1 ≤ k ≤ n be integers, t > 0 and X1, . . . ,Xk independent copies

of X. Then



Regularization of star bodies 251

P
[
|x|2 ≥ t2

∑

1≤i≤k
|(x,Xi)|2 for all x ∈ Rn

]
≥ 1− e−n/18a2t2+2(n+k).(5)

Proof. (i) Let X ∈Mn(a, b). By applying the decomposition

E((x,X)2) = E((x,X)2 �
(x,X)2>s2) + E((x,X)2 �

(x,X)2≤s2)

with s = v(E(x,X)2)1/2, we get (1− v2)E((x,X)2) ≤ E((x,X)2 �
(x,X)2>s2).

By the Cauchy–Schwarz inequality, we have

(1− v2)E((x,X)2) ≤ (E(x,X)4)1/2(P[(x,X)2 > v2E((x,X)2)])1/2

(we could use a Hölder inequality and optimize to get better numerical
constants). To estimate E(x,X)4, we use (1) with the choice t = 2

√
n/a|x|

to get E(x,X)4 ≤ 12a4|x|4/n2· Combining these estimates and using the
symmetry of the random variable, we conclude that

P[(x,X) > v(E(x,X)2)1/2] ≥ (1− v2)2

2
· (E(x,X)2)2

E((x,X)4)
≥ b4(1− v2)2

24a4

for any v ∈ (0, 1).
(ii) Let (ei) be the canonical basis of `k2. Let G : `k2 → `n2 be the random

operator defined by Gei = Xi for all i = 1, . . . , k. We note first that

Ω =
{
ω; |x|2 ≥ t2

∑

1≤i≤k
|(x,Xi(ω))|2 for all x ∈ Rn

}
= {ω; ‖G(w)‖ ≤ 1/t}.

Now let Λ(k) and Λ(n) be 1/3-nets of the unit balls of `k2 and `n2 in their
own metrics and with cardinality less than 7k and 7n respectively (see for
example [M-S]). We have

‖G‖ ≤ 3 max{(x,Gy); x ∈ Λ(n), y ∈ Λ(k)}.
Property (2) gives

Gy =
∑

1≤i≤k
yiXi ∈Mn(a, b)

where y =
∑

1≤i≤k yiei ∈ Sk−1. By applying inequality (3) to X = Gy with
x ∈ Sn−1, we conclude that

1− P(Ω) ≤ 7n+ke−n/18a2t2 ≤ e−n/18a2t2+2(n+k).

Remark. Suppose k ≤ n. Then choosing t = 1/a
√

90 in the previous
inequality yields 1− P(Ω) ≤ e−n/18a2t2+2(n+k) ≤ e−n. Therefore

P
[
|x|2 ≥ 1

90a2

∑

1≤i≤k
|(x,Xi)|2 for all x ∈ Rn

]
≥ 1− e−n.(6)
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4. Regularization of star bodies. Our main technical tool is:

Theorem 2. Let 0 < k ≤ n be integers and a > 0. There exist c(a) > 0
and c′(a) > 0, depending only on a, such that for every x0 ∈ Rn, x0 6= 0,
every X ∈Mn(a) and any k independent copies X1, . . . ,Xk of X, we have

Cylk

( |x0|
4
√
n
,X1, . . . ,Xk

)
∩B

(
x0, c

′(a)|x0|
√
k

n

)
= ∅

with probability larger than 1− 2e−kc(a).

Remark. Since k ≤ n, Cylk(v|x0|/2
√
n,X1, . . . ,Xk) is a cylinder and

when the measure has no atom, the vector space
⋂

1≤i≤k{x ; (x,Xi) = 0} is
almost surely of codimension k.

Proof of Theorem 2. Let x0 ∈ Rn, x0 6= 0 and X ∈ Mn(a), and let
X1, . . . ,Xk be independent copies of X. Let Z be a 0-1 valued random
variable so that

p = P[Z = 1] = P{(x0,X) > v|x0|/
√
n}.(7)

From Lemma 1 and (1), we see that for 0 < v < 1,

p ≥ P[(x0,X) > v(E(x0,X)2)1/2] ≥ c(a, 1)(1− v2)2.

For any integer m, 1 ≤ m ≤ k, set

Ωm(x0, v)

= {ω; (x0,Xi(ω)) > v|x0|/
√
n for at least m indices i ∈ {1, . . . , k}}.

Hence, if ω ∈ Ωm(x0, v), then there is a subset I of {1, . . . , k} with cardi-
nality m such that

(x0,Xi(ω)) > v|x0|/
√
n for all i ∈ I.(8)

Suppose moreover that ω is such that

|z| ≥ t
(∑

i∈I
|(z,Xi(ω))|2

)1/2
for all z ∈ Rn.(9)

Let x ∈ Cylk(v|x0|/2
√
n,X1(ω), . . . ,Xk(ω)). This means

(x,Xi(ω)) ≤ v|x0|
2
√
n

for all i = 1, . . . , k.(10)

Assuming the validity of (8)–(10) yields

|(x− x0,Xi(ω))| ≥ (x0,Xi(ω))− (x,Xi(ω)) ≥ 1
2
v|x0|

1√
n

for every i ∈ I and

|x− x0| ≥ t
(∑

i∈I
|(x− x0,Xi(ω))|2

)1/2
≥ 1

2
tv|x0|

√
m

n
.(11)
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Therefore

Cylk

(
v|x0|
2
√
n
,X1(ω), . . . ,Xk(ω)

)
∩B

(
x0,

tv|x0|
2

√
m

n

)
= ∅.

It is left to estimate the probability that the relations (8) and (9) hold.
We first use (5) to handle (9). Next we observe that if Z1, . . . , Zk are k i.i.d.
copies of Z, then

1− P(Ωm(x0, v)) = P[Z1 + . . .+ Zk < m].

From the Chernov inequality, for m ≤ kp, we have

P[Z1 + . . .+ Zk < m] ≤ e−2k(p−m/k)2
.

We choose m = kp/2 in the last estimate. This allows us to control the
probability that (8) happens:

1− P(Ωm(x0, v)) ≤ e−kp2/2.

Now choose v = 1/2; then p ≥ c(a, 1)(1 − v2)2 ≥ (9/16)c(a, 1). This com-
pletes the proof as we can choose t such that

Cylk

(
v|x0|
2
√
n
,X1(ω), . . . ,Xk(ω)

)
∩B

(
x0,

tv|x0|
2

√
kp

2n

)
= ∅

with probability larger than 1 − e−kp2/2 − e−n/18a2t2+2(n+k) ≥ 1 − 2e−kc(a)

for some function c(a) depending only on a.

Theorem 3. Let 1 ≤ k ≤ n. Let a > 0 and let X1, . . . ,Xk ∈ Mn(a) be
i.i.d. random vectors. There exist α = α(a) > 0 and β = β(a) > 0 such
that for any compact star subset K of Rn with 0 in its interior and so that
N(K,D) ≤ eαk, we have

Cylk

(
β

4
√
k
,X1, . . . ,Xk

)
∩K ⊂ β

√
n

k
D

with probability larger than 1− 2e−αk.

Proof. Let % > 0 and x0 ∈ Rn be such that |x0| = %. We first apply
Theorem 2 to get

Cylk

(
%

4
√
n
,X1, . . . ,Xk

)
∩B

(
x0, c

′(a)%

√
k

n

)
= ∅

with probability larger than 1− 2e−kc(a). Now we use this reasoning for the
union of eαk balls centered on a net, to see that if the covering number
satisfies

N

(
K ∩ %Sn−1, c′(a)%

√
k

n
D

)
≤ eαk,
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then with probability larger than 1− 2eαke−kc(a),

Cylk

(
%

4
√
n
,X1, . . . ,Xk

)
∩ (K ∩ %Sn−1) = ∅.

Now note that if a star body C containing 0 satisfies C ∩ %Sn−1 = ∅, then
C ⊂ %D. Since K is star shaped and contains 0, the previous remark applies
to Cylk(%/4

√
n,X1, . . . ,Xk) ∩K. Hence, we have proved that

Cylk

(
%

4
√
n
,X1, . . . ,Xk

)
∩K ⊂ %D.

Finally, set % =
√
n/k/c′(a), α = c(a)/2 and β = 1/c′(a).

Remark. It is worthwhile to observe that because we deal with the
non-centrally symmetric case, the probability p defined by (7) is smaller
than 1/2. Therefore, in the proof of the theorem,

P[Z1 + . . .+ Zk ≤ m] ≥ (1− p)m ≥ 1/2m ≥ 1/2k.

Considering symmetric cut off by hyperplanes yields a completely differ-
ent and much stronger quantitative statement than Theorem 2. Indeed, the
proof now involves an estimate of P{|(x0,X)| > v|x0|/

√
n} which may be

chosen near 1. In that case, the parameter α is arbitrary. Below we formulate
the corresponding statement concerning symmetric cut off, but we omit the
proof as it runs along similar lines to the one above.

Corollary 4. Let 1 ≤ k ≤ n. Let a > 0 and let X1, . . . ,Xk ∈ Mn(a)
be i.i.d. random vectors. For every α > 0, there exists β = β(a, α) > 0 such
that if K is any compact star subset of Rn with 0 in its interior and such
that N(K,D) ≤ eαk, then

⋂

1≤i≤k

{
x ∈ Rn; |(x,Xi)| ≤

β

4
√
k

}
∩K ⊂ β

√
n

k
D

with probability larger than 1− e−αk.

Theorem 3 gives rise to a natural dual statement:

Theorem 5. Let 1 ≤ k ≤ n. Let a > 0 and let X1, . . . ,Xk ∈ Mn(a) be
i.i.d. random vectors. There exist α = α(a) > 0 and β = β(a) > 0 such that
if K is any compact star subset of Rn with 0 in its interior and such that
N(K◦,D) ≤ eαk, then

1
β

√
k

n
D ⊂ conv

(
4
√
k

β
{X1, . . . ,Xk} ∪K

)

with probability larger than 1− 2e−αk.
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5. Applications. From the above two theorems, we can see the follow-
ing interesting fact. Fix ε > 0. Then every n-dimensional convex body can be
transformed, after a small number k = εn of operations (small with respect
to the dimension), first by intersection with half-spaces of type (·, u) ≤ c/

√
k

and then by taking the convex hull with a small number k of points with
Euclidean norm c

√
k, into a body which is close to the convex hull of a

Euclidean ball and a k-dimensional simplex. Indeed, for k proportional to n,
there exists a linear transformation of the body K, the so-called M -position,
for which Theorems 3 and 5 may be applied. Dually of course, every convex
body can be transformed, by an equally small number of such operations,
into a body which is close to the intersection of a Euclidean ball and a small
number of slabs or half-spaces.

Theorem 3 and Corollary 4 lead to different patterns. In the first case,
non-symmetric, we get the convex hull of a Euclidean ball and k almost
orthogonal vectors of norm of order

√
n; in the second case, the convex

hull of a Euclidean ball and the
√
n homothety of a k-dimensional `k1 ball

in Rn.
It is worthwhile to notice that in order to apply Theorem 3 and obtain a

cylinder as intersection of half-spaces, we need accurate information about
entropy; that is, the asymptotic behaviour of N(K, tD) as t grows or, at
least, the size of t for which N(K, tD) will come below the level eαk, which
is critical in Theorem 3. Corollary 4 gives a weaker conclusion, since it con-
structs intersection of symmetric slabs, but we need much less information
about the entropy function.

The following statement is an application of Theorem 3. In the case when
the Xi are uniformly distributed on the unit Euclidean sphere, it should be
seen as a global form of well known low-M ∗ estimates (see [M4], [P-T], [G]).

Corollary 6. Let 1 ≤ k ≤ n. Let a > 0 and let X1, . . . ,Xk ∈Mn(a) be
i.i.d. random vectors. There exist α = α(a) > 0 and β = β(a) > 0 such that
for any compact star subset K of Rn with 0 in its interior and half mean
width M∗ = M∗(K), we have

Cylk

(√
n/k βM∗

4
√
k

,X1, . . . ,Xk

)
∩K ⊂ n

k
βM∗D

with probability larger than 1− 2e−αk.

Proof. Recall the Sudakov inequality [Su]: there exists a numerical con-
stant c > 0 such that for every t > 0,

N(K, tD) ≤ exp(cn(M∗/t)2).

Specifying t = M∗
√
cn/αk, we infer that N(t−1K,D) = N(K, tD) ≤ eαk.

ThusKt = t−1K satisfies the assumption of Theorem 3 and the result follows
from Theorem 3 by a standard homogeneity argument.
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Remarks. (i) The classical form of the low-M ∗ estimate follows by
considering E =

⋂
1≤i≤k{x; (x,Xi) = 0}. When the law of the Xi has

no atom, E is almost surely a codimension k subspace contained in the

cylinder Cylk
(√n/k βM∗

4
√
k

,X1, . . . ,Xk

)
. Therefore its intersection with K is

in (n/k)βM∗D, which is the so-called low-M ∗ estimate.
(ii) The previous result, with a slightly different hypothesis, is in the

spirit of Proposition 3.3 of [M-S], where symmetric slabs are involved. Clas-
sical estimates in this spirit, involving the parameter M ∗, suggest that the
estimate (n/k)M∗ may not be optimal. At least for convex bodies K, we
would expect here

√
n/kM∗, in accordance with [P-T], which corresponds to

the case of the rotation invariant measure on Sn−1. Actually, in Corollary 6,
our set is embedded in

√
n/kM∗D, which would recover the best estimates

mentioned above. The standard way to achieve this uses an additional piece
of information. It is known that if we consider a random projection of rank
k of a convex body, then its diameter, with high probability, shrinks by a
factor of

√
k/n up to the time that it achieves M ∗.

(iii) However, an important application we have in mind is the case of
uniform counting measure on the vertices of the cube {±1}n. Such form of
the low-M∗ estimate was not known to us before. Note that again it may be
improved to

√
n/kM∗ using the same idea as in (ii). However, this time it

uses a recent result of [A] stating that under some Rademacher projection
type operation of rank k, with high probability the diameter of a convex
body shrinks by a factor

√
k/n till achieving M ∗.

The next result combines Theorem 3 and its dual form. It shows that k
random cut offs by half-spaces at distance of order 1/

√
k from the origin and

the dual operation, convex hull with k random points of Euclidean norm of
order

√
k, reduce isomorphically any symmetric convex body to a generic

pattern: the convex hull of the unit Euclidean ball and k almost orthogonal
vectors of Euclidean norm of order

√
k.

Theorem 7. Let 0 < ε < 1, let n be an integer and set k = [εn]. Let
a > 0 and let X1, . . . ,Xk, Y1, . . . , Yk ∈ Mn(a) be i.i.d. random vectors. Let
X = (±X1, . . . ,±Xk). There exist c = c(a, ε), c′ = c′(a, ε), λ = λ(a, ε) and
λ′ = λ′(a, ε) > 0 such that for any convex compact subset K of Rn, with 0
in its interior , and such that D is an M-ellipsoid for K, we have

λE ⊂ conv(Cylk(1/
√
ck,X) ∩K,±

√
ck Y1, . . . ,±

√
ck Yk) ⊂ λ′E

with probability larger than 1− e−c′n, where

E = conv(D,±
√
ck Y1, . . . ,±

√
ck Yk).

Proof. We will need two technical facts concerning a uniform bound for
the norm of the vectors |Xi| and the covering number of their convex hull.
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First let X1 ∈Mn(a). As in the proof of (5) in Lemma 1, we have

|X1| ≤ 2 max{(X1, x); x ∈ Λ(n)}
where Λ(n) is a 1/2-net of the unit ball of `n2 in its own metric and with
cardinality less than 5n. From (3), it follows that for every v > 0,

P(|X1| > v) ≤ 2 · 5ne−n(v/2)2/2a2
.

We conclude that there exists v = v(a) > 0 such that if X1, . . . ,Xk ∈Mn(a)
are random vectors, we have

P(∀i ≤ k, |Xi| ≤ v) ≥ 1− e−n.
Now let A be the convex hull of 2k vectors ±u1,±u2, . . . ,±uk of Euclidean
norm less than v

√
k. It is known ([C-P]) that for any integer m ≥ 1,

N

(
A, dv

√
k

m
log
(
k

m
+ 1
)
D

)
≤ em

for some number d = d(v). Therefore, for any α > 0, there exists d(a, α) > 0
such that

N

(
A

d(a, α)
,D

)
≤ eαk/2.

We now proceed to the proof of the theorem. Since D is an M -ellipsoid
for K, it follows that there exists α = α(ε) > 0 such that

N(K,D) ≤ eαk/2, N(K◦,D) ≤ eαk/2.
We first apply Corollary 4 to K that satisfies N(K,D) ≤ eαk. We deduce
that there exists β = β(a, α) > 0 such that

Cylk

(
β

4
√
k
,±X1, . . . ,±Xk

)
∩K ⊂ β

√
n

k
D

with probability larger than 1− e−αk. This can be written as

B = Cylk

(
1√
k
,±X1, . . . ,±Xk

)
∩ (4K/β) ⊂ 4

√
n

k
D.

We will now restrict X1, . . . ,Xk to the subset where |Xi| ≤ v for all i ≤ k,
which is of probability larger than 1− e−n. This restriction may only affect
the constant c′, when computing the probability for which the conclusion of
the theorem is valid.

Now B◦ is the convex hull of ±
√
kX1, . . . ,±

√
kXk and of (4K/β)◦. The

first set is of the type studied above and may be denoted by A so that

B◦ ⊂ A+ (β/4)K◦.

Since

N

(
A

d(a, α)
,D

)
≤ eαk/2, N(K◦,D) ≤ eαk/2,
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it follows that

N

(
A

2d(a, α)
+
K◦

2
,D

)
≤ eαk.

Therefore there exists c′′ = c′′(α, β) such that N((c′′B)◦,D) ≤ eαk. Recall
that (tB)◦ = t−1B◦. Applying Corollary 4 to (c′′B)◦ and using duality, we
find that

1
4

√
k

n
D ⊂ conv

(√
k{±Y1, . . .± Yk)} ∪

(
β

4
c′′B

))

with probability larger than 1 − e−αk. The final result is obtained after
normalization and using homogeneity.

For centrally symmetric bodies, a result with non-symmetric slabs can
be obtained. We will say that D is a regular M-ellipsoid (of order 1) for a
convex body K if |D| = |K| and there exists a constant c > 0 such that for
any t > 0,

N(K, tD) ≤ ecn/t, N(D, tK) ≤ ecn/t.
It is proved in [M1] and [Pi] that any centrally symmetric convex body has
an affine image K ′ such that D is a regular M -ellipsoid for K ′. Pisier shows
that the same result is true for any order 0 < α < 2, meaning that the
entropy is not greater than ecn/t

α
for any t > 0 [Pi, Corollary 7.15].

Theorem 8. Let 0 < ε < 1, let n be an integer and set k = [εn]. Let
a > 0 and let X1, . . . ,Xk, Y1, . . . , Yk ∈ Mn(a) be i.i.d. random vectors. Let
X = (X1, . . . ,Xk). There exist c = c(a, ε), c′ = c′(a, ε), λ = λ(a, ε) and
λ′ = λ′(a, ε) > 0 such that for any centrally symmetric convex compact
subset K of Rn, with 0 in its interior , and such that D is a regular M-
ellipsoid for K, we have

λE ⊂ conv(Cylk(1/
√
ck,X) ∩K,

√
ck Y1, . . . ,

√
ck Yk) ⊂ λ′E

with probability larger than 1− 4e−c
′n, where

E = conv(D,
√
ck Y1, . . . ,

√
ck Yk).

Proof. Let α and β be as in Theorems 3 and 5. Since D is an M -ellipsoid
for K, there exists c(α, ε) > 0 such that

N(K, c(α, ε)D) ≤ eαk/2, N(K◦, c(α, ε)D) ≤ eαk/2.
We first apply Theorem 3 to K/c(α, ε) that satisfies N(K/c(α, ε),D) ≤ eαk.
We get

Cylk

(
β

4
√
k
,X1, . . . ,Xk

)
∩ (K/c(α, ε)) ⊂ β

√
n

k
D

with probability larger than 1− 2e−αk and with the constant β specified by
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these theorems. This can be written as

B = Cylk

(
1√
k
,X1, . . . ,Xk

)
∩ (4K/βc(α, ε)) ⊂ 4

√
n

k
D.

Now B◦ is the convex hull of
√
kX1, . . . ,

√
kXk and of (4K/βc(α, ε))◦. As

in the preceding proof and using the same notation, we will now restrict
X1, . . . ,Xk to the subset where |Xi| ≤ v for all i ≤ k. Recall that this
subset has probability larger than 1 − e−n. The first set is the convex hull
of less than 2k points of norms less than v

√
k. Denote it by A, so that

B◦ ⊂ A+ (βc(α, ε)/4)K◦.

As in the proof above,

N

(
A

d(a, α)
,D

)
≤ eαk/2, N(K◦, c(α, ε)D) ≤ eαk/2.

Therefore

N

(
A

2d(a, α)
+

K◦

2c(α, ε)
,D

)
≤ eαk

and thus there exists c′′ = c′′(a, α, ε) such that N((c′′B)◦,D) ≤ eαk. Apply-
ing Theorem 5 to c′′B shows that

1
4

√
k

n
D ⊂ conv(

√
k {Y1, . . . , Yk} ∪ (β/4)c′′B)

with probability larger than 1 − 2e−αk. The final result is obtained after
normalization and using homogeneity.

Remark. Let k = [εn] as above and let Y1, . . . , Yk be i.i.d. uniformly
distributed on the sphere or Gaussian vectors with covariance matrix n−1I.
Let T be the operator from `k2 onto the linear subspace of `n2 generated by
Y1, . . . , Yk, mapping the canonical basis onto Y1, . . . , Yk. It is known (see
[D-S]) that ‖T‖ · ‖T−1‖ is bounded for ε < 1/2. As a consequence, regu-
larization using a “cubical” cylinder as in Corollary 4 leads to a canonical
pattern E = conv(D ∪ √nBk

1 ), where Bk
1 denotes the unit ball of `k1.

The next application concerns another important geometric parameter,
the so-called volume ratio.

Theorem 9. Let 0 < ε < 1, let n be an integer and set k = [εn]. Let
a > 0 and let X1, . . . ,Xk ∈Mn(a) be i.i.d. random vectors. Let r > 0. There
exist c = c(a, ε, r) and c′ = c′(a, ε, r) > 0 such that for any convex body K
in Rn satisfying D ⊂ K and |K|/|D| ≤ rn, we have

⋂

1≤i≤k

{
x ∈ Rn; |(x,Xi)| ≤

c

4
√
k

}
∩K ⊂ cD

with probability larger than 1− e−c′n.
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Proof. Let K ′ = K −K. From [R-S] we have |K ′| ≤
(2n
n

)
|K| ≤ 4n|K|.

Since D ⊂ K ′, for any t > 0 one has (see [M-S])

N(K ′, tD) ≤
(

1 +
2
t

)n
(4r)n.

Since K ⊂ K ′, the result follows from Corollary 4.

Remark. With the previous notation, considering the linear space E =⋂
1≤i≤k{x ∈ Rn; (x,Xi) = 0} with dimension larger than (1−ε)n, we recover

a well known result from [S-T] on large nearly Euclidean sections of finite
volume-ratio spaces. However, Theorem 9 gives a global form. Note that
choosing the Xi to be, for example, vectors with ±1 coordinates gives a
special kind of Euclidean section.
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