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A new characterization of the Sobolev space

by

Piotr Hajłasz (Warszawa)

Abstract. The purpose of this paper is to provide a new characterization of the
Sobolev space W 1,1(Rn). We also show a new proof of the characterization of the Sobolev
space W 1,p(Rn), 1 ≤ p <∞, in terms of Poincaré inequalities.

The Sobolev space W 1,p(Rn), 1 ≤ p < ∞, consists of functions u ∈
Lp(Rn) such that |∇u| ∈ Lp(Rn). It is a Banach space with respect to the
norm

‖u‖1,p = ‖u‖p + ‖∇u‖p.
Let us point out that from the point of view of Banach spaces the structure
of various Sobolev type spaces, with the particular emphasis on W 1,1, has
been investigated by A. Pe lczyński, M. Wojciechowski and others; see e.g.
[4], [40]–[43] and references therein.

The purpose of this paper is to provide a new characterization of the
Sobolev space W 1,1(Rn). Here, however, we emphasize future applications
in geometric analysis and analysis on metric spaces rather than the theory of
Banach spaces. Actually one of the reasons for finding new characterizations
of the Sobolev space is the development of analysis on metric spaces; see e.g.
[1], [2], [5], [6], [12], [13], [15]–[19], [21], [23], [24], [28]–[31], [38], [47]–[49],
[51]. More references will be given later. In order to define a Sobolev type
space on a metric-measure space we need a characterization of the space
W 1,p(Rn) that does not involve derivatives. One such characterization is
given in the following result.

Theorem 1 ([19]). u ∈W 1,p(Rn), 1 < p <∞, if and only if u ∈ Lp(Rn)
and there exists 0 ≤ g ∈ Lp(Rn) such that

|u(x)− u(y)| ≤ |x− y|(g(x) + g(y)) a.e.(1)
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Moreover
‖∇u‖p ≈ inf

g
‖g‖p,

where the infimum is taken over the class of functions g satisfying (1).

Inequality (1) holds a.e. in the sense that there is a set E ⊂ Rn of
measure zero such that (1) holds for all x, y ∈ Rn \ E. Writing A ≈ B we
mean that there is a constant C ≥ 1 such that C−1B ≤ A ≤ CB.

Let us note that yet another characterization of the Sobolev space has
been obtained recently in [9] and [10].

The above theorem was a point of departure in [19] for the definition of
a Sobolev space on an arbitrary metric space equipped with a locally finite
Borel measure. For further results involving this approach see e.g. [3], [8],
[13], [15], [16], [18], [20]–[22], [24]–[30], [32]–[37], [39], [44], [45], [49], [52], [53].

If u ∈W 1,p(Rn), 1 ≤ p <∞, then we have an elementary inequality ([7],
[19])

|u(x)−u(y)| ≤ C(n)|x−y|(M2|x−y||∇u|(x)+M2|x−y||∇u|(y)) a.e.(2)

where
MRg(x) = sup

r<R

�
B(x,r)

|g(z)| dz

is the restricted Hardy–Littlewood maximal function. Here and in what
follows the integral average of a function u over a set E is denoted by

uE =
�
E

u dx =
1
|E| �

E

u dx,

where |E| denotes Lebesgue measure of E. Moreover C will always stand
for a general constant that can change its value even in the same string of
estimates. Writing C = C(n) we will emphasize that the constant depends
on n only.

If we take R = ∞ in the definition of MR, then we obtain the classical
Hardy–Littlewood maximal function

Mu(x) = sup
r>0

�
B(x,r)

|u| .

Hence it follows from inequality (2) that

|u(x)− u(y)| ≤ C|x− y|(M |∇u|(x) +M |∇u|(y)) a.e.

This and the boundedness of the maximal function in Lp for p > 1 (see [50])
imply (1) with g = CM |∇u| ∈ Lp(Rn). The implication in the opposite
direction in Theorem 1 follows from the lemma.

Lemma 2 ([20, Proposition 1]; cf. [28, Remark 5.13]). If u ∈ L1
loc(Rn)

and 0 ≤ g ∈ L1
loc(Rn) satisfy inequality (1) a.e., then ∇u ∈ L1

loc(Rn) in
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the weak sense and
|∇u| ≤ C(n)g a.e.(3)

This lemma is relatively easy and its proof is based on the observation
that (1) implies absolute continuity of u on almost all lines parallel to co-
ordinate axes. If we know in addition that g ∈ Lp(Rn), then inequality (3)
implies that |∇u| ∈ Lp(Rn), which completes the proof of Theorem 1.

Observe that the only place in the proof of Theorem 1 where the as-
sumption p > 1 was employed was the application of the boundedness of
the maximal function in Lp. It turns out that the assumption p > 1 is es-
sential because Theorem 1 does not hold for p = 1. This follows from the
next example.

Example 3 ([20]). Let Ω = (−1/2, 1/2) and u(x) = −x/(|x| log |x|).
Then u ∈ W 1,1(Ω) because u′(x) = |x|−1(log |x|)−2 ∈ L1(Ω). Suppose now
that there exists 0 ≤ g ∈ L1(−1/2, 1/2) such that (1) holds a.e. Then for
a.e. 0 < x < 1/2 we have |u(x)− u(−x)| ≤ 2x(g(x) + g(−x)) and hence

−2
log x

≤ 2x(g(x) + g(−x)),

which, in turn, yields
1/2

�
−1/2

g(x) dx =
1/2

�
0

(g(x) + g(−x)) dx ≥
1/2

�
0

−dx
x log x

=∞.

This contradicts integrability of g. The function u is defined on the interval
(−1/2, 1/2) only, but one can extend it to a function in W 1,1(R) to fit into
the setting of Theorem 1.

The main result of the present paper is the following characterization of
W 1,1(Rn).

Theorem 4. u ∈ W 1,1(Rn) if and only if u ∈ L1(Rn) and there exist
0 ≤ g ∈ L1(Rn) and σ ≥ 1 such that

|u(x)− u(y)| ≤ |x− y|(Mσ|x−y|g(x) +Mσ|x−y|g(y)) a.e.(4)

Moreover if (4) holds, then |∇u| ≤ C(n, σ)g a.e.

The implication from left to right follows from the elementary inequality
at (2). It turns out, however, that the implication from right to left is much
more difficult than the corresponding one in Theorem 1.

The proof that inequality (4) implies u ∈ W 1,1(Rn) is split into two
steps. In the first step we prove that (4) implies the family of Poincaré type
inequalities �

B

|u− uB | ≤ Cr
�

3σB

g(5)
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for every ball B of any radius r. Here and in what follows, 3σB denotes the
ball concentric with B and with radius 3σ times that of B. Observe that
inequality (5) with 3σB replaced by B would readily follow from (1) upon
integration over x, y ∈ B. In our situation, however, we cannot integrate
(4) because the maximal function of an L1 function need not be integrable.
This is the main difficulty in the proof and, actually, this first step is the
main new ingredient in the proof.

In the second step we show that the family of inequalities (5) on every
ball B imply that u ∈ W 1,1(Rn) with |∇u| ≤ Cg a.e. This implication has
previously been proved in [15]. Here we provide a new, simpler proof.

Both steps are direct consequences of the following more general results
applied to p = 1. We will prove the lemmas in the whole generality, i.e. for
all 1 ≤ p < ∞. This way we will clearly see what kind of new difficulties
have to be faced when passing from the case p > 1 to p = 1.

Lemma 5. Let u ∈ L1
loc(Rn), 0 ≤ g ∈ Lploc(R

n), 1 ≤ p < ∞, and σ ≥ 1.
Then the inequality

|u(x)−u(y)| ≤ |x−y|((Mσ|x−y|g
p(x))1/p+(Mσ|x−y|g

p(y))1/p) a.e.(6)

implies that �
B

|u− uB | ≤ C(n, p, σ)r
( �

3σB

gp
)1/p

(7)

for every ball B of any radius r.

For p > 1 Lemma 5 was proved in [24] and [29]. The case p = 1 turns
out to be much more difficult.

Lemma 6. Assume that u ∈ L1
loc(Rn), 0 ≤ g ∈ Lploc(R

n), 1 ≤ p < ∞,
and σ ≥ 1 are such that �

B

|u− uB | ≤ r
( �
σB

gp
)1/p

(8)

for every ball B of any radius r. Then u ∈W 1,p
loc (Rn) and

|∇u| ≤ C(n)g a.e.

If u ∈ W 1,p
loc (Rn), then by the classical Poincaré inequality [14, p. 142],

we have �
B

|u− uB| ≤ C(n)r
�
B

|∇u| ≤ Cr
( �
σB

|∇u|p
)1/p

,

which shows that we also have the opposite implication in Lemma 6, and
thus (8) is a necessary and sufficient condition for u to be in W 1,p

loc (Rn).
As already mentioned, the case p = 1 of Lemma 6 was proved in [15].

The case 1 < p <∞ was proved earlier in [36]. If we assume, however, that
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1 ≤ p < ∞, and in addition g ∈ Lq for some q > p, then Lemma 6 follows
essentially from the work of Calderón [11].

Proof of Lemma 5. All the constants C in the proof will depend on n, p
and σ only. First let us sketch the proof for p > 1. We will clearly see why
this proof cannot be extended to the case p = 1.

It follows from (6) that for x, y ∈ B,

|u(x)− u(y)| ≤ |x− y|((M(gpχ3σB)(x))1/p + (M(gpχ3σB)(y))1/p) a.e.

Employing the Cavalieri principle we obtain�
B

|u− uB| ≤
�
B

�
B

|u(x)− u(y)| dx dy

≤ 4r
�
B

(M(gpχ3σB)(x))1/p dx

= 4r|B|−1
∞

�
0

|{x ∈ B; (M(gpχ3σB)(x))1/p > t}| dt

= 4r|B|−1
( t0

�
0

+
∞

�
t0

)
.

For 0 < t ≤ t0 we estimate the integrand by the measure of the ball B, and
for t > t0 we estimate it by the weak type estimate for the maximal function
(see [50]). This gives

�
B

|u− uB| ≤ 4r|B|−1
( t0

�
0

|B| dt+
∞

�
t0

(
C(n)
tp �

3σB

gp
)
dt

)

= 4r|B|−1
(
t0|B|+ C(n, p)t1−p0 �

3σB

gp
)
.

Now taking t0 = (|B|−1 �
3σB g

p)1/p yields the result. Observe that the as-
sumption p > 1 was employed to integrate t−p from t0 to ∞.

Now assume that p = 1. We will employ some ideas from the proof of
the Sobolev embedding theorem in [19]. Fix a ball B. Replacing u by u− b,
where b is any constant, will not affect inequalities (6) and (7). Hence by
subtracting a suitable constant from u we can assume that ess infE |u| = 0,
where E ⊂ B is any set of positive Lebesgue measure. The set E will be
chosen later.

For x, y ∈ B we have

|u(x)− u(y)| ≤ |x− y|(Mh(x) +Mh(y)),(9)
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where h = gχ3σB. Now it suffices to prove that�
B

|u− uB | ≤ Cr
�

3σB

h.(10)

If h = 0 a.e. then u is constant in B and hence (10) follows. Thus we can
assume that h > 0 on a set of positive measure and hence �

3σB h > 0.
Moreover we can assume that

h ≥ 1
2

�
3σB

h > 0 on 3σB and h = 0 on Rn \ 3σB,(11)

otherwise we replace h by

h+
( �

3σB

h
)
χ

3σB .

We will prove that any integrable function h with properties (9) and (11)
satisfies (10) as well. For k ∈ Z let

Ek = {x ∈ B; Mh(x) ≤ 2k} and ak = sup
Ek

|u|.

Since

�
B

|u− uB | ≤ 2 �
B

|u| ≤ 2
∞∑

k=−∞
ak|Ek \Ek−1|(12)

we need to find good estimates for ak in order to estimate the left hand side
of (10).

From Ek ⊆ Ek+1 it follows that ak ≤ ak+1. In order to estimate the
growth of ak we have to estimate ak in terms of ak−1 first. By (9) the function
u restricted to Ek is 2k+1-Lipschitz. Hence for x ∈ Ek and y ∈ Ek−1 we have

|u(x)| ≤ |u(x)− u(y)|+ |u(y)| ≤ 2k+1|x− y|+ ak−1.(13)

To obtain a good estimate for the right hand side we have to show that for
a given x ∈ Ek there exists y ∈ Ek−1 with a relatively small distance to x,
|x− y|. Choose x ∈ Ek arbitrarily and observe that

|B(x, r) ∩B| ≥ ωn(r/2)n for r ≤ diamB.(14)

Here ωn denotes the volume of the unit ball. Assume that |Ek−1| > 0. Choose
r < diamB such that

ωn(r/2)n > |B \Ek−1|.(15)

Then (14) and (15) imply that there exists y ∈ Ek−1 such that |x− y| < r.
Since the lower bound for r satisfying (15) is 2ω−1/n

n |B\Ek−1|1/n we conclude
from (13) upon taking the supremum over x ∈ Ek that

ak ≤ ak−1 + C2k|B \Ek−1|1/n.
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Invoking the weak type estimate for the maximal function (see [50]), we
obtain

|B \Ek−1| = |{x ∈ B; Mh(x) > 2k−1}| ≤ C

2k �
3σB

h ,

and hence

ak ≤ ak−1 + C2k(1−1/n)
(

�
3σB

h
)1/n

.

Assume now that n ≥ 2. The case n = 1 can be treated in a similar way, we
leave the details to the reader.

Iterating this inequality yields

ak ≤ ak0 + C
( k∑

i=k0+1

2i(1−1/n)
)(

�
3σB

h
)1/n

(16)

≤ ak0 + C2k(1−1/n)
(

�
3σB

h
)1/n

for k > k0, provided |Ek0 | > 0. For k ≤ k0 we will use the estimate ak ≤ ak0 .
Choose k0 such that

|Ek0−1| < |B|/2 ≤ |Ek0 |.(17)

Such a k0 exists because Ek = ∅ for sufficiently small k, due to the lower
bound (11) for h, and |Ek| → |B| as k → ∞. Since Ek0 6= ∅, there exists
x ∈ B such that

1
2

�
3σB

h ≤Mh(x) ≤ 2k0 .(18)

The left inequality at (18) follows from (11). On the other hand the left in-
equality at (17) along with the weak type estimates for the maximal function
implies

|B|
2

< |B \Ek0−1| = |{x ∈ B; Mh(x) > 2k0−1}| ≤ C

2k0 �
3σB

h.(19)

The two inequalities (18) and (19) yield

2k0 ≈
�

3σB

h.(20)

As mentioned at the beginning of the proof, we can assume that ess infEk0
|u|

= 0. Since u is 2k0+1-Lipschitz on Ek0 we have

ak0 ≤ 2k0+1 diamB ≤ C diamB
�

3σB

h .(21)
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Now (12) together with the estimates (16), (20) and (21) implies

�
B

|u− uB | ≤ 2
∞∑

k=−∞
ak|Ek \Ek−1|

≤ 2
( k0∑

k=−∞
ak0 |Ek \Ek−1|

+
∞∑

k=k0+1

(
ak0 + C2k(1−1/n)

(
�

3σB

h
)1/n)

|Ek \Ek−1|
)

≤ 2
( ∞∑

k=−∞
ak0 |Ek \Ek−1|+ C

(
�

3σB

h
)1/n ∞∑

k=k0+1

2k(1−1/n)|B \Ek−1|
)

≤ C diamB
( �

3σB

h
)
|B|+ C

(
�

3σB

h
)1/n ∞∑

k=k0+1

2k(1−1/n)2−k �
3σB

h

≤ C diamB �
3σB

h,

which completes the proof of Lemma 5.

Proof of Lemma 6. At the beginning we will follow the argument of
Calderón [11, Theorem 4] (cf. [19, proof of Theorem 1]); then, however, we
have to use different ideas because Calderón’s argument relies on the Lq/p

integrability of the maximal function of gp under the additional assumption
that g ∈ Lq for some q > p.

All the constants C in the proof will depend on n only.
Let ψ ∈ C∞0 (Bn(0, 1)) with ψ ≥ 0 and � ψ = 1 be a generating mollifier.

As usual we set ψε(x) = ε−nψ(x/ε) and consider a smooth approximation
of u defined by u ∗ ψε.

The distributional derivative ∂u/∂xi, i = 1, . . . , n, is a functional on
C∞0 (Rn) defined by

∂u

∂xi
[ϕ] := − � u ∂ϕ∂xi for ϕ ∈ C∞0 (Rn).

Note that
∂u

∂xi
[ϕ] = − lim

ε→0 � (u ∗ ψε)
∂ϕ

∂xi
= lim

ε→0 �
(
u ∗ ∂ψε

∂xi

)
ϕ.(22)

Since � ∂ψε/∂xi = 0 we conclude that
(
u ∗ ∂ψε

∂xi

)
(x) = (u− uB(x,ε)) ∗

∂ψε
∂xi

(x)
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and hence∣∣∣∣u ∗
∂ψε
∂xi

∣∣∣∣(x) ≤ C �
B(x,ε)

|u(y)− uB(x,r)| dy · ε−n−1 ≤ C
( �
B(x,σε)

gp
)1/p

.

For a compact set K ⊂ Rn we have

�
K

∣∣∣∣u ∗
∂ψε
∂xi

∣∣∣∣
p

≤ Cp �
K

�
B(x,σε)

gp(y) dy dx(23)

= Cpω−1
n (σε)−n �

Kσε

gp(y) �
K

χ
B(y,σε)(x) dx dy

≤ Cp �
Kσε

gp(y) dy,

where Kσε is the set of points in Rn with distance to K less than σε. Now
(22), (23) and Hölder’s inequality yield

∣∣∣∣
∂u

∂xi
[ϕ]

∣∣∣∣ ≤ lim inf
ε→0

(
� |ϕ|p′

)1/p′
(

�
suppϕ

∣∣∣∣u ∗
∂ψε
∂xi

∣∣∣∣
p)1/p

(24)

≤ C
(

� |ϕ|p′
)1/p′(

�
suppϕ

gp
)1/p

,

where 1/p+ 1/p′ = 1 with p′ =∞ if p = 1.
Assume for the time being that 1 < p < ∞. Fix a ball B. Then (24)

applied to ϕ ∈ C∞0 (B) implies that

ϕ 7→ ∂u

∂xi
[ϕ](25)

extends to a continuous functional in (Lp
′
(B))∗ = Lp(B). Hence ∂u/∂xi ∈

Lp(B) and (

�
B

∣∣∣∣
∂u

∂xi

∣∣∣∣
p)1/p

≤ C
(

�
B

gp
)1/p

.(26)

Inequality (26) applied to balls that converge to Lebesgue points readily
shows that ∣∣∣∣

∂u

∂xi

∣∣∣∣ ≤ Cg a.e.

In the case p = 1 we have∣∣∣∣
∂u

∂xi
[ϕ]
∣∣∣∣ ≤ C‖ϕ‖∞ �

suppϕ

g.(27)

Hence (25) extends to a continuous linear functional on C0(Rn), the space
of continuous functions vanishing at infinity. Thus according to the Riesz
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representation theorem [46],

∂u

∂xi
[ϕ] = � ϕdµ

for some signed Radon measure µ. We will show that µ is absolutely contin-
uous with respect to the Lebesgue measure. By contradiction assume that
there is a compact set K of Lebesgue measure zero and such that µ(K) 6= 0.
Let ϕi ∈ C∞0 (K1/i) with 0 ≤ ϕi ≤ 1 and ϕi|K ≡ 1 be a decreasing sequence
of functions. Here as before K1/i stands for the 1/i-neighborhood of K. We
have

0 < |µ(K)| ←
∣∣∣ � ϕi dµ

∣∣∣ ≤ C‖ϕi‖∞ �
K1/i

g → 0

as i→∞, which is a contradiction. Thus according to the Radon–Nikodym
theorem and the definition of the weak derivative we have

dµ =
∂u

∂xi
dx,

∂u

∂xi
∈ L1

loc .

Hence inequality (27) implies that
∣∣∣∣ � ϕ ∂u

∂xi

∣∣∣∣ ≤ C‖ϕ‖∞ �
B

g

for every ϕ ∈ C∞0 (B). Since the sign function sgn(∂u/∂xi) can be approxi-
mated in L1 by ϕ ∈ C∞0 (B) with ‖ϕ‖∞ ≤ 1 we conclude that

�
B

∣∣∣∣
∂u

∂xi

∣∣∣∣ ≤ C �
B

g

for every ball B. Then the argument with Lebesgue points yields
∣∣∣∣
∂u

∂xi

∣∣∣∣ ≤ Cg a.e.

This completes the proof of Lemma 6 and hence that of Theorem 4.

If we put all the results together we obtain the following theorem as a
direct consequence.

Theorem 7. For u ∈ Lp(Rn), 1 ≤ p < ∞, the following conditions are
equivalent :

(i) u ∈W 1,p(Rn).
(ii) There exists 0 ≤ g ∈ Lp(Rn) such that�

B

|u− uB| ≤ r
�
B

g

for every ball B of any radius r.
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(iii) There exist 0 ≤ g ∈ Lp(Rn), 1 ≤ q ≤ p and σ ≥ 1 such that�
B

|u− uB | ≤ r
( �
σB

gq
)1/q

for every ball B of any radius r.
(iv) There exist 0 ≤ g ∈ Lp(Rn), 1 ≤ q ≤ p and σ ≥ 1 such that

|u(x)− u(y)| ≤ |x− y|((Mσ|x−y|g
q(x))1/q + (Mσ|x−y|g

q(y))1/q) a.e.

Moreover each of the inequalities in (ii)–(iv) implies that

|∇u| ≤ Cg a.e.

Observe that Theorem 1 is not included here. Theorem 7 extends to the
case of a regular domain replacing Rn. Part of the implications extend even
to the more general setting of metric spaces equipped with a doubling mea-
sure (see [15], [22], [21], [24], [29], [36]). For a direct proof of the implication
(iii)⇒(iv) see [24, Theorem 3.2].
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