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Abstract. The geometry of random projections of centrally symmetric convex bodies
in RN is studied. It is shown that if for such a body K the Euclidean ball BN2 is the ellipsoid
of minimal volume containing it and a random n-dimensional projection B = PH(K) is
“far” from PH(BN2 ) then the (random) body B is as “rigid” as its “distance” to PH(BN2 )
permits. The result holds for the full range of dimensions 1 ≤ n ≤ λN , for arbitrary
λ ∈ (0, 1).

0. Introduction. The systematic study of random quotients of ln1 ’s
begun with the acclaimed solution by E. D. Gluskin of the problem of di-
ameters of Minkowski compacta [G1]. Soon after, several papers followed in
which optimal estimates of basic constants or symmetry constants for such
quotients were given [S1], [G2], [M1]. It was J. Bourgain who first used this
line of argument in the context of general finite-dimensional Banach spaces,
and this approach was further developed by the authors in a series of papers
(cf. e.g. [MT1], [MT2]). We refer the reader to the survey [MT3] for more
information on the subject.

The present paper is a further development of the study, begun in [MT4],
of geometric and linear properties of families of “random” projections of
symmetric convex bodies. Here we investigate symmetry properties of such
random projections in terms of the existence of well bounded operators on
associated Banach spaces, and we relate these properties to average geomet-
ric distance of the projections to the Euclidean ball.
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We consider the concept of “randomness” in the following context, nat-
ural in the asymptotic theory of finite-dimensional normed spaces. Given a
symmetric convex body K embedded in RN in a certain natural way, for any
1 ≤ n ≤ N the randomness on the set of all rank n orthogonal projections
in RN is determined by the Grassmann manifold GN,n of all n-dimensional
subspaces of RN , with the normalized Haar measure µN,n.

Our main result has a dichotomous character similar to the results in
[MT4]. Intuitively speaking it shows that for an arbitrary symmetric convex
body K ⊂ RN as above, if a random orthogonal projection B = P (K) of K
is “far” from the Euclidean ball, then the body B is as “rigid” as it can be
and every well bounded operator on B must be “close” to a multiple of the
identity. In particular every projection on B of rank proportional to dimB
must have the norm as large as it can be (with the given distance to the
Euclidean ball), and the basis constant and other symmetry invariants of B
must be of the same order.

Let us now describe the content of the paper in more detail. Section 1
contains all basic definitions as well as the statements of the results. Here let
us only mention that the rigidity of the body in the above sense is measured
by the so-called mixing constant, which is known to control how “close” well
bounded operators are to a multiple of the identity. In more precise terms,
our main theorem (Theorem 1.1) provides a lower estimate for the mixing
constant of random orthogonal projections of K by the average geometric
distance of the projections of K to the corresponding projections of the
Euclidean ball. Thus, this and other results have similar form to those in
[MT4], and, in particular, they are valid in the full range of dimensions
1 ≤ n ≤ λN , for any 0 < λ < 1, which was achieved in [MT4] for the first
time in this type of problems.

Our result, like many earlier results for random quotients of general
normed spaces, makes an essential use (in Theorems 1.3 and 1.4) of a cer-
tain volumetric invariant of convex bodies, which was also used in other
papers (cf. [MT3] and the references therein, and [MT4]). In fact, in the
earlier papers the whole series of similar invariants was introduced, depend-
ing on a particular problem on hand. A new element of the present paper,
which might be of an independent interest, is a realization that most of the
invariants of this type are in fact equivalent. This is closely connected with
the deep fact of existence of M -ellipsoids, and is described in Section 2.

Section 3 describes a reformulation of Theorem 1.3 in the Gaussian set-
ting, and Sections 4 and 5 are devoted to the details of the proof of the
corresponding Gaussian problem (Theorem 3.4). The general strategy of
this proof goes back to papers [S1], [S2] and [M2], which treated the case
of the unit ball in ln1 , and to [B] and [MT2], for the general case. All these
results were based on a probabilistic approach, but the underlying proba-
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bilities were not rotation invariant. We also refer the reader to the survey
[MT3] for details and further references.

1. Mixing operators on families of random projections. We shall
use the standard notation in the asymptotic theory of Banach spaces as
for example in [Pi], [T] and [MiS1]. In particular, the n-dimensional real
Euclidean space is denoted by (Rn, ‖ · ‖2). For 1 ≤ k ≤ n, Gn,k denotes
the Grassmann manifold of k-dimensional linear subspaces of Rn equipped
with the normalized rotation invariant measure µn,k. By a symmetric convex
body in Rn we always mean a centrally symmetric convex body. For two such
bodies B1, B2 the geometric distance is defined by

dg(B1, B2) = min{λ2/λ1 | λ1B1 ⊂ B2 ⊂ λ2B1}.
We denote by d%e for % ∈ R the smallest integer greater than or equal

to %. Let us recall the definitions of a mixing operator and mixing constant,
the first of which is due to S. J. Szarek [S2] (however, this notion was im-
plicit in [G2], [S1] and almost explicit in [M1]), while the second notion was
introduced in [MT3]. For 0 < κ ≤ 1/2 and α > 0 we say that a linear
operator T : Rn → Rn is (κn, α)-mixing provided that there exists a linear
subspace E ⊂ Rn with dimE = dκne satisfying

dist(Tx,E) = ‖PE⊥Tx‖2 ≥ α‖x‖2(1.1)

for every x ∈ E. The set of all (κn, α)-mixing operators on Rn is denoted
by Mixn(κn, α). For a symmetric convex body B ⊂ Rn the mixing constant
of B is defined by

m(B, κ) = inf{‖T : B → B‖ | T ∈Mixn(κn, 1)}(1.2)

for dκne ≤ n/2 and m(B, κ) =∞ otherwise.
It follows directly from the definition that for every 0 < κ ≤ 1/2,

dg(B,Bn
2 ) ≥m(B, κ) ≥ dg(B,Bn

2 )−1(1.3)

and
m(B, κ) = m(B◦, κ),(1.4)

where B◦ denotes the polar of B.
It is known that the invariant m(B, κ) is a good measure of the rigidity of

the bodyB. Namely, for a well bounded operator acting onB, it controls how
“close” this operator is to a multiple of the identity (cf. [MT3, Theorem 16]).

For a symmetric convex body B ⊂ Rn we shall consider (as in [MT4])
the expected Euclidean distance, defined for 1 ≤ m ≤ n by

Edg(B,m) =
�

Gn,m

dg(PL(B), PL(Bn
2 )) dµn,m(L).(1.5)
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Clearly, Edg(B,m) is monotone in m, that is,

Edg(B,m1) ≥ Edg(B,m2) whenever m1 ≥ m2 ≥ 1.(1.6)

Now let us recall important concepts connected to Dvoretzky’s theorem
([Mi2], cf. also [MT4, (1.1)–(1.3)], and for the fundamentals of the theory
also [MiS1]). Let K ⊂ RN be a symmetric convex body. We define a tran-
sition dimension k∗(K) (cf. [MT4, (1.1)–(1.3)]) as the largest dimension k
such that the set

Ak = {H ∈ GN,k | (1/2)M∗KPH(BN
2 ) ⊂ PH(K) ⊂ 2M∗KPH(BN

2 )}(1.7)

has measure

µN,k(Ak) ≥ 1− e−k,(1.8)

where M∗K is defined by

M∗K =
�

SN−1

‖x‖K◦ dµ(x).

We have

c′(M∗K/a)2N ≤ k∗(K) ≤ C ′(M∗K/a)2N,(1.9)

where a > 0 denotes the smallest number such that K ⊂ aBN
2 , and C ′ ≥

c′ > 0 are numerical constants.
To describe in a uniform way some concentration of measure phenomena

which, for a fixed symmetric convex body K ⊂ RN , depend on dimension
1 ≤ n ≤ N , we define the concentration function

αK(n) =
{

exp(−n) for k∗(K) ≤ n ≤ N,
exp(−k∗(K)) for 1 ≤ n ≤ k∗(K).

(1.10)

We are now ready to state the main result of this paper.

Theorem 1.1. For every 0 < λ < 1, 0 < κ ≤ 1/2 and 0 < η < κ/2
there exists c = c(λ, κ, η) > 0 with the following property : Let K ⊂ RN be a
symmetric convex body such that the Euclidean unit ball BN

2 is the ellipsoid
of minimal volume containing K. Let η−1 ≤ n ≤ λN and set m = d(κ−η)ne.
Then the set of all H ∈ GN,n satisfying

m(PH(K), κ) ≥ cEdg(PH(K),m)(1.11)

has measure larger than or equal to 1− 2αK(n). In particular
�

GN,n

m(PH(K), κ) dµN,n(H) ≥ cEdg(K,m).

Remark. Note that in view of (1.4), by a standard duality argument,
the analogous theorem holds for every symmetric convex body B in RN for
which BN

2 is the ellipsoid of maximal volume inscribed in B, with projections
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PH(K) replaced by sections H ∩B and Edg(PH(K),m) replaced by

Ed◦g(B,m) =
�

Gn,m

dg(L ∩B,L ∩Bn
2 ) dµn,m(L).

Remark. Recall that by John’s theorem every symmetric convex body
B ⊂ RN admits a position u(B) (where u is a linear automorphism of RN )
such that BN

2 is the unique ellipsoid of minimal volume containing u(B).
Thus, in the theorem above, the assumption on the ellipsoid of minimal
volume may be viewed as the choice of a proper position K = u(B) in the
case of an arbitrary symmetric convex body B. It provides the norm with
respect to which the mixing constants are computed and induces the Haar
measure on the family of projections of the body K.

Let us note that in Theorem 1.1 the assumption that BN
2 is the ellipsoid

of minimal volume containing K and the drop of dimension to m in the
conclusion are both essential. This can be shown by the same examples as
in [MT4, Examples 2.4 and 2.5 respectively]. We sketch the argument only
for the latter case, and refer the reader to [MT4] for details.

Example 1.2. Let l ≥ 1. Set N = 4l, n = 2l and κ = 1/2. Let RN =
R3l ⊕ Rl and set

K = conv{B3l
1 ⊕Bl

2}.

For mostH ∈ GN,n the projections PH(K) are isomorphic, up to a numerical
constant C > 0, to the orthogonal sum Z = XH⊕Bl

2, where XH is a suitable
l-dimensional projection ofB3l

1 . Let P1 : Z → Z be the orthogonal projection
onto XH and J : XH → Bl

2 be the formal identity map. It follows directly
from the definition that JP1 : Z → Z is in Mixn(1/2, 1). Since XH ⊂ BN

2 the
norm of JP1 : Z → Z is bounded by 1. This implies m(PH(K), 1/2) ≤ C.

On the other hand, if m = d(1 + η)le for η > 0 then Edg(PH(K),m) ≥
c
√
n for some c = c(η) > 0.

In a complete analogy to the approach in [MT4], inequality (1.11) for
the mixing invariant of a typical projection of a body K will be obtained
in two independent steps. The first will provide a lower estimate for the
invariant in terms of a certain volumetric invariant of the projections of the
body, while the second will relate the volumetric invariant to the Euclidean
distances of random projections. These steps are the content of Theorems
1.3 and 1.4.

For a Borel subset B of a k-dimensional subspace E ⊂ Rn we denote by
|B| the k-dimensional Lebesgue measure of B. Following [MT4] we consider
a volumetric invariant which plays an essential role in our considerations.
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For a symmetric convex body B ⊂ Rn and 1 ≤ l ≤ k ≤ n, let

W (B, k, l) = inf
E

sup
F

( |Bl
2|

|B ∩ F |

)1/l

,(1.12)

where the infimum is taken over all k-dimensional subspaces E ⊂ Rn and
the supremum is taken over all l-dimensional subspaces F ⊂ E.

To state the next inequalities in a compact form we need one more
notation. For a symmetric convex body K ⊂ RN and 1 ≤ n ≤ N , let

ϕK(n) =
{

(n/N)1/2 for k∗(K) ≤ n ≤ N,
(k∗(K)/N)1/2 for 1 ≤ n ≤ k∗(K).

(1.13)

Theorem 1.1 is a direct consequence of the following two results.

Theorem 1.3. For every 0 < λ < 1, 0 < κ ≤ 1/2, 0 < ε ≤ min{κ, λ,
(1 − λ)}/4 and every 0 < δ < κ − 3ε there exists c = c(λ, κ, δ, ε) > 0 with
the following property : Let K be a symmetric convex body in RN such that
the Euclidean unit ball BN

2 is the ellipsoid of minimal volume containing K.
Then for every ε−1 ≤ n ≤ λN and every δn ≤ l ≤ (κ − 2ε)n the set of all
H ∈ GN,n satisfying

m(PH(K), κ) ≥ cϕK(n)W (PH(K), d(κ− 2ε)ne, l)(1.14)

has measure larger than or equal to 1− αK(n). Moreover ,
�

GN,n

m(PH(K), κ) dµN,n(H)

≥ cϕK(n)
�

GN,n

W (PH(K), d(κ− 2ε)ne, l) dµN,n(H).

The next theorem is a version of Theorem 2.3 of [MT4], where the invari-
ant W (PH(K), n/2, δn) is considered with respect to a slightly more general
Euclidean ball. Here we state it for the minimal volume ellipsoid, and with
κn replacing n/2. The minimal volume ellipsoid clearly satisfies the assump-
tions discussed in [MT4] (cf. the comment before (1.5) in [MT4]). The proof
for arbitrary κ is fully analogous to the proof there.

Theorem 1.4. For every 0 < κ ≤ 1/2 and 0 < δ < κ/2 there exists
c = c(κ, δ) > 0 with the following property : Let K ⊂ RN be a symmetric
convex body such that the Euclidean unit ball BN

2 is the ellipsoid of minimal
volume containing K. For every max{δ−1, (κ − 2δ)−1} ≤ n ≤ N , let m =
d(κ− 2δ)ne. Then the set of all H ∈ GN,n satisfying

ϕK(n)W (PH(K), dκne, dδne) ≥ cEdg(PH(K),m)(1.15)

has measure larger than or equal to 1 − αK(n). Moreover there exists c′ =
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c′(κ, δ) > 0 such that

ϕK(n)
�

GN,n

W (PH(K), dκne, dδne) dµN,n(H) ≥ c′Edg(K,m).

Despite the fact that the mixing invariant of a body K depends on the
Euclidean norm on Rn and therefore depends on the particular position of
K it is well known that it provides lower estimates for several structural or
symmetry parameters of the Banach space induced by K (cf. [MT3, Sec. 5]).
Examples of such parameters are the basis constant, bc(·), the symmetry
constant, sym(·), the factorization constant through a space with a Schauder
basis, complexification constants and so on. Theorems 1.1 and 1.3 yield
analogous results for all these parameters. Here we shall just state the variant
of Theorem 1.1 for the basis and symmetry constants. It is a straightforward
consequence of the following known estimates: bc(B) ≥ (1/2)m(B, 1/2),
sym(B) ≥ (1/4)m(B, 1/20) (cf. [MT3, comments after Definition 11 and
Theorem 20]).

Corollary 1.5. Let 0 < λ < 1 and K ⊂ RN be as in Theorem 1.1 and
let η > 0 be sufficiently small. Let η−1 ≤ n ≤ λN . Consider the following
two sets:

{H ∈ GN,n | bc(PH(K)) ≥ c1Edg(PH(K), d(1/2− η)ne)},(1.16)

{H ∈ GN,n | sym(PH(K)) ≥ c2Edg(PH(K), d(1/20− η)ne)},(1.17)

where c1 = c(λ, 1/2, η) and c2 = c(λ, 1/20, η) are as in Theorem 1.1. Then
each of these sets has measure larger than or equal to 1− 2αK(n).

2. Volumetric invariants and ellipsoids. In this section we shall
discuss the behaviour of the invariant W . First we consider the case of
ellipsoids. In general, an ellipsoid E in Rn is of the form E = u(Bn

2 ) for a
certain isomorphism u of Rn. Let s1(u) ≥ . . . ≥ sn(u) > 0 be a sequence
of s-numbers of u. It easy to see that this sequence does not depend on a
particular choice of the isomorphism u and that λi(E) = si(u) for i = 1, . . . , n
are the lengths of the semiaxes of E .

Let E be an ellipsoid in Rn and P ∈ L(Rn) be an orthogonal projection
of rank m. Then P (E) is an ellipsoid in F = P (Rn) and we have

λi+n−m(E) ≤ λi(P (E)) ≤ λi(E)(2.1)

for i = 1, . . . ,m. Indeed, λi(P (E)) = si(Pu) for i = 1, . . . ,m, where u is
any isomorphism of Rn such that E = u(Bn

2 ). This immediately implies the
right hand estimate, and the left hand estimate follows from the formula
si(T ) = min{‖T − S‖ | rankS < i} for i = 1, 2, . . . , valid for any operator
T on a Hilbert space.
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It is not difficult to show using (2.1) that

W (E , k, l) =
( k∏

i=k−l+1

λi(E)
)−1/l

(2.2)

for any 1 ≤ l ≤ k ≤ n.
Combining (2.2) and (2.1) we get, for k ≤ m ≤ n,

W (E , k, l) ≤W (P (E), k, l) ≤W (E , k + n−m, l).(2.3)

Similarly, for any E ⊂ Rn with dimE = m, estimates analogous to (2.1)
hold for sections E ∩E, and it follows that for k ≤ m ≤ n,

W (E , k, l) ≤W (E ∩E, k, l) ≤W (E , k + n−m, l).(2.4)

Remark. The left and right estimates in both (2.3) and (2.4) are sharp.
For the left hand estimates this can be seen by considering the subspaces
spanned by the largest m semiaxes of E , and the corresponding projections
and sections. For the right hand estimates we consider the subspaces spanned
by the smallest m semiaxes of E .

For a general symmetric convex body B ⊂ Rn the invariant W (B, k, l) is
closely related to the same invariant for anM -ellipsoid of B. This depends on
a striking property of such an ellipsoid EM that volumes of its proportional-
dimensional sections and projections are comparable to those of B, and this
property is also shared by B + EM and B ∩ EM (where B + EM = {x + y |
x ∈ B, y ∈ EM} is the Minkowski sum). The existence of such ellipsoids (first
proved by Milman in [Mi1] and consecutive papers) is highly non-trivial, and
they have become a very useful part of the theory by now. Rather than give
here the usual definition of an M -ellipsoid we shall summarize below its
properties needed in this paper. It is well known to specialists that these
properties can be easily derived directly from the definition (for example in
the form put forward in [Pi], and in fact are equivalent to this definition).
For more information on M -ellipsoids we refer the reader to [Mi2] and the
references therein, as well as to [Pi] and [MiS2].

Fact 2.1. There exists a numerical constant C0 ≥ 1 such that for every
n ≥ 1 and every symmetric convex body B ⊂ Rn there exists an ellipsoid
EM (called an M -ellipsoid for B) such that |EM | = |B| and :

(i) |B+EM |1/n ≤ C0 |B∩EM |1/n. In particular , |B+EM |1/n ≤ C0 |B|1/n
and |B ∩ EM |1/n ≥ (1/C0) |EM |1/n.

(ii) For any 0 < λ < 1 and any subspace E ⊂ Rn with l = dimE = λn
we have

|(B + EM ) ∩ E |1/l ≤ C1/λ
0 |B ∩ EM ∩ E |1/l,

|PE(B + EM )|1/l ≤ C1/λ
0 |PE(B ∩ EM )|1/l.
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As a consequence one has

Corollary 2.2. Let B ⊂ Rn be a symmetric convex body. Let EM be
an M -ellipsoid for B and let C0 be as in Fact 2.1. Let 0 < δ < 1. For every
δn ≤ l ≤ k ≤ n we have:

(i) Set B1 = B, B2 = EM , B3 = B + EM and B4 = B ∩ EM . Then for
all i, j = 1, . . . , 4 we have

W (Bi, k, l) ≤ C1/δ
0 W (Bj, k, l).

(ii) For every k ≤ m ≤ n and E ⊂ Rn with dimE = m, we have

C
−2/δ
0 W (B, k, l) ≤W (PE(B), k, l) ≤ C2/δ

0 W (B, k + n−m, l).
Condition (i) follows from Fact 2.1, while (ii) follows from (i) and (2.3).
Besides the invariant W considered up to now, one can define some

other related volumetric invariants. For example, one such invariant arises
naturally in arguments in the last two sections which contain the technical
kernel of this paper. Namely, we consider an invariant similar to W (·, ·, ·)
but based on projections rather than sections, that is,

W̃ (B, k, l) = inf
E

sup
F

( |Bl
2|

|PF (B)|

)1/l

,(2.5)

where the infimum is taken over all k-dimensional subspaces E ⊂ Rn and
the supremum is taken over all l-dimensional subspaces F ⊂ E.

Clearly, W̃ (B, k, l) ≤W (B, k, l). Much more is in fact true: these invari-
ants are well equivalent on proportional levels. Indeed, if E is an ellipsoid,
the same argument as in (2.2) yields the same formula for W̃ (E , k, l), and
hence W̃ (E , k, l) = W (E , k, l). Corollary 2.2 says in particular that on pro-
portional levels the invariantsW (B, ·, ·) and W (EM , ·, ·) are well comparable.
The same holds for the invariant W̃ (·, ·, ·). Therefore for all δn ≤ l ≤ k ≤ n
we have

C
−2/δ
0 W (B, k, l) ≤ W̃ (B, k, l) ≤W (B, k, l).(2.6)

Also, the same holds for invariants of “mixed type” involving both sections
and projections as considered in [MT1] (cf. also [MT3, Section 7]).

We illustrate this circle of ideas by the following proposition which is
a strengthening, in a sense, of an analogous result from [MT4, Proposition
3.2]. It can be proved directly by geometric considerations similar to Propo-
sitions 4.1 and 3.2 from [MT4]; however, we provide here a formal argument
based on (2.6). It is not clear whether the assumption α ≤ 1/2 below is
necessary.

Proposition 2.3. For every 0 < α ≤ 1/2 and 0 < δ < α/4 there
exist c1 = c1(α, δ) > 0 and c2 = c2(α, δ) > 0 such that for every symmetric
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convex body B ⊂ Rn with PE(B) ⊃ PE(Bn
2 ) for some k-dimensional subspace

E ⊂ Rn with k = dαne − 1, the measure of the set

{H ∈ Gn,k−3dδne | PH(B) ⊃ c1PH(Bn
2 )}

is greater than or equal to 1− e−c2n.

Proof. Let l = dδne. Then PE(B) ⊃ PE(Bn
2 ) yields W̃ (B, k, l) ≤ 1.

Thus, by (2.6), we get W (B, k, l) ≤ C2/δ
0 . Let F ⊂ E be the linear subspace

spanned by the largest 2k semiaxes of E , where E is an M -ellipsoid for B.
By the remark following (2.4) we have W (E , k, l) = W (E ∩F, k, l). By Corol-
lary 2.2(i) we get W (B, k, l) ≥ C

−2/δ
0 W (B̃, k, l), where B̃ = B ∩ F . Thus

W (B̃, k, l) ≤ C
4/δ
0 . The proof is completed by applying first Lemma 4.2

from [MT4] to B̃ (note that k = dαne = (dimF )/2) and then using Propo-
sition 3.2 therein.

3. Gaussian version of Theorem 1.3. We denote by γ a standard
N(0, 1) distributed (real-valued) Gaussian random variable. For an N -di-
mensional Hilbert space H, by a normalized Gaussian vector g : Ω→ H we
mean a random vector of the form g = N−1/2∑N

i=1 γiui, where the γi are
independent copies of γ, and {ui} is any orthonormal basis in H. Thus g
has distribution N(0, N−1IH) (where IH denotes the identity matrix on H).
Its density is equal to (N/2π)N/2 exp(−N‖x‖22/2) and is clearly rotation
invariant.

Let us recall the following basic fact (cf. e.g. [MT3] where it is used in a
similar context).

Fact 3.1. Let g be a normalized Gaussian vector in an N -dimensional
Hilbert space H. Then

(i) For every k-dimensional subspace E ⊂ H,
√
N/k PEg is a normalized

Gaussian vector in E.
(ii) For every orthogonal pair of subspaces E1, E2 ⊂ H the random vectors

PE1g and PE2g are independent.
(iii) For every Borel set B ⊂ H we have

P{ω ∈ Ω | g(ω) ∈ B} ≤ eN/2|B|/|BN
2 |.

Now we pass to a description of Gaussian matrices. For n,N ≥ 1, let
Γn,N = Γn,N,ω be an n × N random matrix with independent N(0, 1/N)
distributed entries. We shall treat Γn,N as a linear random operator from
RN to Rn. The following fact is well known (cf. [MaS, Fact 3.2 and the
comments afterwards]).

Fact 3.2. Let 0 < λ < 1 and A > 0. There exist C = C(A) > 0 and
c = c(A, λ) > 0 such that for every 1 ≤ n ≤ λN , letting Eω = (kerΓn,N,ω)⊥



Random families of Banach spaces 325

for ω ∈ Ω, we have

(3.1) P{ω ∈ Ω | c‖x‖2 ≤ ‖Γn,N,ωx‖2 ≤ C‖x‖2 for every x ∈ Eω}
≥ 1− e−AN .

For A > 0 and 0 < λ < 1 let Ω′ = Ω′(A, λ) be the subset of Ω from
Fact 3.2. The definition of Ω′ easily implies that for ω ∈ Ω′ we have

cW (Γn,N,ω(K), k, l) ≤W (PEω(K), k, l) ≤ CW (Γn,N,ω(K), k, l)(3.2)

and

(c/C)m(Γn,N,ω(K), κ) ≤m(PEω(K), κ) ≤ (C/c)m(Γn,N,ω(K), κ),(3.3)

where C, c > 0 are from Fact 3.2. Indeed, observe that Γn,N,ω = Γn,N,ωPEω ,
and set Sω = Γn,N,ω|Eω. Thus Sω is a good isomorphism for ω ∈ Ω′. In
particular it allows a good control of the volumes on every subspace, which
in turn implies (3.2). Furthermore, Sω is an isometry from (Eω, PEω(K))
onto (Rn, Γn,N,ω(K)) and hence for every T ∈ L(Eω) we have ‖T‖PEω (K) =
‖SωTS−1

ω ‖Γn,N,ω(K). Clearly T ∈ MixEω(κ, 1) implies that (C/c)SωTS−1
ω ∈

Mixn(κ, 1) for every T ∈ L(Eω). This easily yields (3.3).
For an arbitrary Borel subset F ⊂ GN,n let

Ω(F) = {ω ∈ Ω | (kerΓn,N,ω)⊥ ∈ F}.
The rotation invariance of the distribution of Gaussian matrices implies that
P(Ω(F)) = µN,n(F). Therefore for any subset Ω1 ⊂ Ω we have

µN,n({E ∈ GN,n | E = (kerΓn,N,ω)⊥ for some ω ∈ Ω1}) ≥ P(Ω1).(3.4)

We shall also need the following tail estimates for the operator norm and
the determinant of a Gaussian square matrix (cf. e.g. [MT4, Facts 1.4(i)
and 1.5]).

Fact 3.3. (i) For every A ≥ 1 there is C = C(A) > 1 such that for all
N ≥ 1,

P{ω ∈ Ω | ‖ΓN,N,ω‖2 ≤ C} > 1− e−AN .
(ii) For every A ≥ 1 there is % = %(A) > 0 such that for all N ≥ 4,

P{ω ∈ Ω | |detΓN,N,ω| ≥ %N} > 1− e−AN .
Moreover , we may take % = ce−2A, where c > 0 is a suitable numerical
constant.

The following theorem is a Gaussian version of Theorem 1.3.

Theorem 3.4. For every 0 < λ < 1, 0 < κ ≤ 1/2, 0 < ε ≤ min{κ, λ,
(1 − λ)}/4 and every 0 < δ < κ − 2ε there exists c = c(λ, κ, δ, ε) > 0 with
the following property : Let K be a symmetric convex body in RN such that
the Euclidean unit ball BN

2 is the ellipsoid of minimal volume containing K.
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Then for every max{ε−1, k∗(K)} ≤ n ≤ λN and every δn ≤ l ≤ (κ − 2ε)n
we have

P{ω ∈ Ω |m(Γn,N,ω(K), κ) ≥ c
√
n/N W (Γn,N,ω(K), d(κ− 2ε)ne, l)}

≥ 1− αK(n)/2.

Assuming the truth of Theorem 3.4 we complete the proof of Theorem
1.3 as follows.

Proof of Theorem 1.3. First note that it is enough to consider only the
case when n ≥ k∗(K). The remaining case is a direct consequence of the
definition of k∗(K) and (1.13) and (1.9) (note that a = 1 for the ellipsoid of
minimal volume). Let Ω′ be the subset of Ω from Fact 3.2 for A = 4 and λ,
and let Ω′′ be the subset of Ω considered in Theorem 3.4. Combining (3.2)
and (3.3) we infer that for ω ∈ Ω1 = Ω′ ∩Ω′′ we have

m(PEω(K), κ) ≥ c′ϕK(n)W (PEω(K), d(κ− 2ε)ne, l),(3.5)

where c′ = c′(λ, κ, δ, ε) depends on λ, κ, δ and ε only. The proof of (1.14)
is completed by observing that by the definition of Ω1 and by (3.4) the
Haar measure of the subset considered in (1.14) is greater than or equal to
1− αK(n)/2− e−4n ≥ 1− αK(n).

To prove the integral part of the theorem note that by (3.5) we have

(3.6)
�

GN,n

m(PH(K), κ) dµN,n(H)

≥ c′ϕK(n)
�

A
W (PH(K), d(κ− 2ε)ne, l) dµN,n(H),

where A is the subset of GN,n on which the inequality (3.5) is satisfied. Also

(3.7)
�

GN,n

m(PH(K), κ) dµN,n(H)

≥ c′′ϕK(n)
�

GN,n\A
W (PH(K), d(κ− 2ε)ne, l) dµN,n(H)

for a suitable numerical constant c′′ > 0. Indeed, since

N−1/2BN
2 ⊂ K(3.8)

we have W (PH(K), d(κ − 2ε)ne, l) ≤ N 1/2 for every H ∈ GN,n. Thus the
integral on the right hand side of (3.7) is less than or equal to αK(n)

√
N . On

the other hand, by the well known fact on shrinking of diameter of random
projections of a symmetric convex body (which follows from Milman’s proof
of Dvoretzky’s theorem; cf. [MiS1, Th. 4.2], see also [MT4, Proposition 4.3]),
there is a numerical constant C > 0 such that the inclusion

PH(K) ⊂ C(n/N)1/2PH(BN
2 )(3.9)
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holds on a subset H of GN,n with measure close to 1. Thus, by (3.8), (3.9)
and (1.3), for H ∈ H we have m(PH(K), κ) ≥ 1/C

√
n. Hence (3.7) follows

by the definitions of ϕK(n) and αK(n).
Finally, the integral inequality in Theorem 1.3, with c = min{c′, c′′}/2,

follows by adding (3.6) and (3.7).

A well known strategy of proving results like Theorem 3.4 is based on
two steps. The first is to provide an estimate for the probability “for a
single operator”, and the second is a continuity argument based on finding
an appropriate net in the set of operators considered and using the previous
probability estimate. We present this argument in two separate sections
which follow.

4. Estimate for a single operator. A new technical point of The-
orem 3.4 compared with a finite-dimensional result from [MT2] is made
possible by an effective use of the geometry of contact points between a
convex body and its John ellipsoid. This idea was already used in a similar
way in [MT4].

We shall need the following version of Proposition 5.2 of [MT4].

Proposition 4.1. Let n,m ≥ 1 and B ⊂ Rn be a symmetric convex
body. Let h1, . . . , hm be independent normalized Gaussian vectors in Rn.
For i = 1, . . . ,m consider random vectors

yi =
i∑

j=1

bi,jhj

with bi,i > 0 for i = 1, . . . ,m. Let 1 ≤ k ≤ n, and let S ∈ L(Rn) be
an operator such that for some k-dimensional subspace E ⊂ Rn we have
‖Sx‖2 ≥ ‖x‖2 for every x ∈ E. Let wi ∈ Rn for i = 1, . . . ,m. Then for any
1 ≤ l ≤ k,

P{wi + Syi ∈ B for i = 1, . . . ,m} ≤
( m∏

j=1

bj,j

)−l
(en/l)lm/2(W̃ (B, k, l))−lm,

where W̃ (B, k, l) is defined in (2.5).

If the vectors wi belong to the range of S then the proposition follows
from Proposition 5.2 of [MT4]. The general case treated here needs a mod-
ification of the argument applied there, with the vectors wi replacing Szi.
This, in turn, requires the use of the invariant W̃ instead of W . We leave
the further details to the reader.

Let us recall some basic facts concerning the ellipsoid of minimal volume.
Let K ⊂ RN be a symmetric convex body such that BN

2 is the ellipsoid of
minimal volume containing B. A classical result by Dvoretzky and Rogers
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says that there exist contact points x1, . . . , xN (that is, ‖xi‖K = ‖xi‖2 = 1)
and orthonormal vectors u1, . . . , uN in (RN , ‖ · ‖2) such that

xi =
i∑

j=1

bi,juj and bi,i ≥ ((N − i+ 1)/N)1/2(4.1)

for i = 1, . . . , N (cf. e.g. [T, §15]). By rotating the body K if necessary,
we may assume that uj = ej, where {ej} is the standard unit vector basis
in RN .

Let λ, δ, κ, ε and K be as in Theorem 3.4 and let x1, . . . , xN be contact
points of K satisfying (4.1). Fix n as in Theorem 3.4. For i = 1, . . . , N
consider random Gaussian vectors in Rn defined by gi = Γn,Nei, and set

yi = Γn,Nxi =
i∑

j=1

bi,jΓn,Nej =
i∑

j=1

bi,jgj .(4.2)

Let σ = {n+1, n+2, . . . , n+[εn]}, where [εn] denotes the largest integer
smaller than or equal to εn. Given a mixing operator T we want to estimate
the probability of the set of ω ∈ Ω such that

Tyi ∈ cΓn,N,ω(K) for i ∈ σ,(4.3)

for some c > 0. Proposition 4.1 provides an estimate of this type when
the convex set on the right hand side is fixed. In our case, when the set
depends on ω we will replace (4.3) with a stronger condition of the form
Shi(ω2) ∈ B(ω1) with B(ω1) and hi(ω2) being independent. This will require
several notations.

Let Q be the random orthogonal projection in Rn with kerQ = span{gi |
i ∈ σ}. Note that for ω ∈ Ω,

QΓn,N = QΓn,N P̃ ,(4.4)

where P̃ is the orthogonal projection in RN with ker P̃ = span{ei | i ∈ σ}.
To make the argument more transparent, we shall assume as we may

that
(Ω,P) = (Ω1,P1)× (Ω2,P2)

and we shall write ω = (ω1, ω2). Moreover, we shall assume that the gi(ω)
for i ∈ σ depend only on ω2 while the remaining gi(ω)’s depend only on ω1.
In particular, by (4.4) we have

QΓn,N,ω(K) = QΓn,N,ωP̃ (K),(4.5)

and since P̃ (K) ⊂ span{ei | i ≤ N and i 6∈ σ} we infer that the set

B(ω1) = Γn,N,ωP̃ (K) ⊂ Rn(4.6)

depends only on ω1 (which is the first step in the direction described above).
Let E(ω1) ⊂ Rn be an M -ellipsoid for B(ω1). (The use of the M -ellipsoid is
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required in the last section to control the cardinality of nets in the class of
mixing operators.) Finally, let

B(ω1) = B(ω1) + E(ω1) ⊂ Rn,(4.7)

B̃(ω1) = QB(ω1) ⊂ QRn,(4.8)

and note that both B(ω1) and B̃(ω1) depend only on ω1, i.e., do not depend
on ω2.

Let Ω0 be the subset of Ω consisting of all ω such that

|detΓn,N,ω|Rn| ≥ (%
√
n/N)n,(4.9)

‖Γn,N,ω|Rn+[εn]‖2 ≤ C
√

(1 + ε)n/N,(4.10)

where both % and C are taken from Fact 3.3 for A = 4. Since the normal-
ization of a random matrix Γn,N depends on N , in order to use Fact 3.3
to restrictions of the matrices above, a suitable normalization is required.
After such a normalization we get

P(Ω0) ≥ 1− 2e−4n.(4.11)

Set

Ω′1 = {ω1 ∈ Ω1 | (ω1, ω2) ∈ Ω0 for some ω2 ∈ Ω2}.(4.12)

We shall use the following obvious properties of Ω0. Since the matrix in
(4.9) depends only on ω1, it follows that if ω1 ∈ Ω′1 then for every ω2 ∈ Ω2,

|det[gi(ω)]ni=1| ≥ (%
√
n/N)n,(4.13)

where ω = (ω1, ω2). For every ω ∈ Ω0 and every i = 1, . . . , n+ [εn],

‖Γn,N,ωxi‖2 ≤ 2C
√
n/N.(4.14)

Till the end of the paper, in order to avoid tedious considerations, we
shall assume that both κn and εn are integers. The general case follows the
same line of argument.

In the notation above we have

Lemma 4.2. Let λ, δ, κ, ε, n, l and K be as in Theorem 3.4. There
exists C1 = C1(λ, δ, κ, ε) such that for every ω1 ∈ Ω1, every α > 0 and every
operator T ∈Mixn((κ− ε)n, 1) one has

P2{ω2 ∈ Ω2 | QTyi ∈ A(α)B̃(ω1) for i ∈ σ, (ω1, ω2) ∈ Ω0} < (C1α)εln,

where

A(α) = α
√
n/N W (B̃(ω1), (κ− 2ε)n, l).(4.15)

Proof. Fix T ∈ Mixn((κ − ε)n, 1) and let E be a linear subspace in Rn
with dimE = (κ− ε)n such that

‖PE⊥Tx‖2 ≥ ‖x‖2 for every x ∈ E.(4.16)
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For i ∈ σ set h′i(ω2) = PEgi(ω2) and h′′i (ω2) = PE⊥gi(ω2). Thus gi(ω2) =
h′i(ω2) + h′′i (ω2). Since by Fact 3.1(ii), h′i(ω2) and h′′i (ω2) are independent
Gaussian vectors we may assume that (Ω2,P2) = (Ω′2,P′2) × (Ω′′2 ,P′′2) and
that for every i ∈ σ, h′i depends only on ω′2, while h′′i depends only on
ω′′2 . Therefore we may write h′i(ω

′
2) (resp., h′′i (ω

′′
2)) instead of h′i(ω2) (resp.,

h′′i (ω2)). Note that since gi’s for i = 1, . . . , N are independent, the collection
of vectors {h′i, h′′j | i, j ∈ σ} is independent as well.

Note that the projection Q depends on ω2 = (ω′2, ω
′′
2). However, in order

to apply Proposition 4.1 we need the dependence on ω′′2 only. This is achieved
by composing with one more orthogonal projection. Fix ω′′2 (and therefore
the vectors h′′i (ω

′′
2)). Since dimPE⊥T (E) = (κ− ε)n there exists a subspace

F ⊂ PE⊥T (E) with dimF = (κ−2ε)n orthogonal to span{h′′i | i ∈ σ}. Note
that F ⊂ E⊥ is orthogonal to span{h′i(ω′2) | i ∈ σ} ⊂ E for every ω′2 ∈ Ω′2
as well. Hence F is orthogonal to kerQ and we have PFQ = PF .

Define the operator

S = PFT |E : E → PE⊥T (E).(4.17)

By (4.16) and (4.17) there exists a subspace E0 ⊂ E with dimE0 = (κ−2ε)n
such that

‖Sx‖2 ≥ ‖x‖2 for x ∈ E0.(4.18)

Since ω1 is fixed and gj ’s for j = 1, . . . , n depend only on ω1, and gj’s
for j ∈ σ depend only on ω2, using the fact that ω′′2 is fixed, by (4.2), for
every i ∈ σ, we can write

yi = wi +
i∑

j=n+1

bi,jh
′
j(ω
′
2),(4.19)

where

wi =
n∑

j=1

bi,jgj(ω1) +
i∑

j=n+1

bi,jh
′′
j (ω
′′
2).

Thus for each i ∈ σ by (4.19) we have

PFTyi = wi + PFT
( i∑

j=n+1

bi,jh
′
j(ω
′
2)
)
,(4.20)

where wi = PFTwi.
Since PF = PFQ, by (4.20) and (4.17), we have

(4.21) P′2{ω′2 ∈ Ω′2 | QTyi ∈ A(α)B̃(ω1) for i ∈ σ and (ω1, ω2) ∈ Ω0}
≤ P′2{ω′2 ∈ Ω′2 | PFTyi ∈ A(α)PF (B̃(ω1)) for every i ∈ σ}

= P′2
{
ω′2 ∈ Ω′2

∣∣∣ wi +S
( i∑

j=n+1

bi,jh
′
j

)
∈ A(α)PF (B̃(ω1)) for every i ∈ σ

}
.
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Now, Proposition 4.1 applied to hi =
√
N/(κ− ε)nh′i(ω′2), the operator

S : E → F and B = A(α)
√
N/(κ− ε)nPF (B̃(ω1)) shows that the latter

probability is less than or equal to

(4.22) A(α)εln(N/(κ− ε)n)εln/2

×
( n+εn∏

j=n+1

bj,j

)−l
(en/l)εln/2W̃ (PF (B̃(ω1)), (κ− 2ε)n, l)−εln

(note that the invariant W̃ (·, ·, ·) is homogeneous of degree −1, so

W̃ (%PF (B̃(ω1)), k, l) = %−1W̃ (PF (B̃(ω1)), k, l)

for every % > 0). By (4.1), since n + εn ≤ (1 + 3λ)N/4 we deduce that∏n+εn
j=n+1 bj,j ≥ cεn for suitable c = c(λ, κ, ε). Thus by (2.6), Corollary 2.2(ii)

and the definition of A(α) we infer that the right hand side of (4.21) is less
than or equal to (C1α)εln, where C1 = C1(λ, κ, δ, ε) depends on λ, κ, δ and
ε only. The proof of the lemma is completed by combining this estimate
with (4.21) and (4.22) and integrating the resulting inequality with respect
to ω′′2 .

5. The ε-net argument. For every fixed ω1 ∈ Ω1 and every α > 0 let

Ãα = {T ∈ L(Rn) | Tyi(ω) ∈ αB(ω1) for every i = 1, . . . , n},
where yi(ω)’s and B(ω1) are defined in (4.2) and (4.7) respectively. Set

Aα = Ãα ∩Mixn((κ− 2ε)n, 1).

Observe that each yj for j = 1, . . . , n depends on gi(ω1) for i = 1, . . . , j only.
Thus Ãα and therefore Aα depend on ω1 only. Recall that Ω′1 is defined in
(4.12).

Lemma 5.1. Let λ, κ, δ, ε and K be as in Theorem 3.4. For every ω1∈Ω′1
and every α > 0 the set Aα of operators admits a (1/4C1)

√
N/n-net Nα

with respect to the operator norm on L(Bn
2 , αB(ω1)) with

cardNα ≤ Cn
2

0 ,

where C1 = C(4) is taken from Fact 3.3(i) and C0 ≥ 0 is a suitable numerical
constant.

Remark. Observe that the net Nα depends only on ω1 and α.

Proof. Fix ω1 ∈ Ω′1 and note that by Fact 2.1,

|αB(ω1)| ≤ Cn2 |αE(ω1)|,
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where C2 > 0 is a numerical constant. By (4.1) and the Stirling formula we
get

|conv{±xi | i = 1, . . . , n}| = |Bn
1 |

n∏

i=1

bi,i ≥ cn0 |Bn
1 |,

where c0 > 0 is a suitable numerical constant. By (4.13), for ω1 ∈ Ω′1 we
have |det[gi(ω1)]ni=1| ≥ (%

√
n/N)n, where % = %(4) is taken from Fact 3.3.

Thus

|conv{±yi(ω1) | i = 1, . . . , n}| = |det[gi(ω1)]ni=1| |conv{±xi | 1 ≤ i ≤ n}|
≥ (c0%

√
n/N)n|Bn

1 |.
Finally, by (4.14) we have ‖yi(ω1)‖2 = ‖Γn,Nxi‖2 ≤ 2C1

√
n/N for every i =

1, . . . , n. Thus Proposition 5.3 in [MT4] and the Remark following it yield the
existence of a (1/4C1)

√
N/n-netNα in Aα with cardNα ≤ (4CC1C2/c0%)n

2
,

where C > 0 is a numerical constant.

Proposition 5.2. There exists α0 = α0(λ, κ, δ, ε) such that if λ, κ, δ,
ε, k, n and l are as in Theorem 3.4 and A(α0) and B̃ are defined by (4.15)
and (4.8) respectively , then for every ω1 ∈ Ω′1 we have

P2{ω2 ∈ Ω2 | there exists T ∈ Mixn(κn, 1) such that

QTyi(ω) ∈ A(α0)B̃(ω1) for every i = 1, . . . (1 + ε)n

and ω = (ω1, ω2) ∈ Ω0} ≤ e−n
2
.

Proof. Fix ω1 ∈ Ω′1 and fix α0 > 0 to be specified later. Let Θ(α0) be the
subset of Ω2 considered in the proposition. For each T ∈ Mixn((κ− ε)n, 1)
set

Θ(T, 2α0) = {ω2 ∈ Ω2 | QTyi(ω1, ω2) ∈ 2A(α0)B̃(ω1) for 1 ≤ i ≤ (1 + ε)n}.
We shall split the condition appearing in the definition of Θ(α0) into two
separate conditions. Since ω1 is fixed so are the yi’s for 1, . . . , n, while the
yi’s for i = n+ 1, . . . , n+ εn depend on ω2. We shall use the condition

QTyi(ω1) ∈ A(α0)B̃(ω1) for i = 1, . . . , n(5.1)

in order to control the cardinality of a net in a suitable set of operators. The
second condition

QTyi(ω2) ∈ A(α0)B̃(ω1) for i = n+ 1, . . . , n+ εn(5.2)

will provide a probability estimate for individual operators in the net, via
Lemma 4.2.

Let N be the net in AA(α0) constructed in Lemma 5.1.

Claim.
Θ(α0) =

⋂

S∈N
Θ(S, 2α0).
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Indeed, let ω2 ∈ Θ(α0) and pick T ∈ Mixn(κn, 1) such that both (5.1)
and (5.2) are satisfied. By a standard “lifting” argument, condition (5.1)
implies the existence of an operator T1 ∈ L(Rn) satisfying

T1yi(ω1) ∈ A(α0)B(ω1) for i = 1, . . . , n, QT1 = QT.(5.3)

Hence T1|(kerQ)⊥ = T |(kerQ)⊥. Since dim kerQ = εn it is easy to check
that T ∈Mixn(κn, 1) implies that T1 ∈ Mixn((κ−ε)n, 1). Thus T1 ∈ AA(α0).
Pick T0 ∈ N with

‖T1 − T0 : Bn
2 → A(α0)B(ω1)‖ ≤ (1/4C1)

√
N/n(5.4)

and arbitrary i ∈ {n+ 1, . . . , n+ εn}. By (4.14), for (ω1, ω2) ∈ Ω0 we have
‖yi(ω2)‖2 ≤ 2C1

√
n/N . Hence by (5.2)–(5.4) we get

QT0yi(ω2) = QT1yi(ω2) +Q(T0 − T1)yi(ω2)

∈ QT1yi(ω2) + (A(α0)/2)Q(B(ω1))

= QTyi(ω2) + (A(α0)/2)B̃(ω1) ⊂ 2A(α0)B̃(ω1),

which implies that QT0yi(ω2) ∈ 2A(α0)B̃(ω1) for every i ∈ {n + 1, . . . ,
n + εn}. On the other hand, since T0 ∈ N ⊂ AA(α0) we have QT0yi(ω2) ∈
A(α0)Q(B)(ω1)=A(α0)B̃(ω1) for every i = 1, . . . , n. Hence ω2∈Θ(T0, 2α0),
which concludes the proof of the Claim.

Returning to the proof of Proposition 5.2 note that for each ω1 ∈ Ω1 the
Claim and Lemmas 4.2 and 5.1 yield

P2(Θ(α0)) ≤
∑

S∈N
P2(Θ(S, 2α0)) ≤ Cn2

0 (C1(λ, κ, δ, ε)2α0)εln.(5.5)

Since l ≥ δn we may choose α0 = α0(λ, κ, δ, ε) > 0 small enough to ensure
that the right hand side term in (5.5) is less than e−n

2
.

Proof of Theorem 3.4. Since, by (4.4), (4.6), (4.7) and (4.8), we have
B̃(ω1) = Q(B(ω1)) = Q(B(ω1) + E(ω1)), where E(ω1) is an M -ellipsoid for
B(ω1) and B(ω1) = QΓn,N,(ω1,ω2)(K), by Corollary 2.2 for every ω1 ∈ Ω1
we get

W (B̃(ω1), (κ− 2ε)n, l) ≥ C−2/δ
0 W (B(ω1) + E(ω1), (κ− 2ε)n, l)(5.6)

≥ C−3/δ
0 W (B(ω1), (κ− 2ε)n, l)

= C
−3/δ
0 W (QΓn,N,(ω1,ω2)(K), (κ− 2ε)n, l)

≥ C−5/δ
0 W (Γn,N,(ω1,ω2)(K), (κ− 2ε)n, l).

Let Ω1 be the subset of Ω consisting of those ω for which the inequality
in Theorem 3.4 is violated with c = α0C

−5/δ
0 . Note that if ω = (ω1, ω2) ∈

Ω1 ∩ (Ω′1 ×Ω2) then there exists an operator T ∈ Mixn(κn, 1) for which
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Tyi(ω) ∈ cΓn,N,ω(K) for all i = 1, . . . , N.(5.7)

In particular, applying the projection Q to both sides of (5.7) and using (5.6)
we infer that ω2 belongs to the set considered in Proposition 5.2. Thus, by
integrating with respect to ω1 ∈ Ω′1 we get

P(Ω1 ∩ (Ω′1 ×Ω2)) ≤ e−n2
.

The proof is concluded by observing that by (4.11) and (4.12),

P(Ω1 ∩ ((Ω1 \Ω′1)×Ω2)) ≤ 2e−4n.
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