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Abstract. The geometry of random projections of centrally symmetric convex bodies
in RY is studied. It is shown that if for such a body K the Euclidean ball Bév is the ellipsoid
of minimal volume containing it and a random n-dimensional projection B = Py (K) is
“far” from Pp(B2) then the (random) body B is as “rigid” as its “distance” to P (B3")
permits. The result holds for the full range of dimensions 1 < n < AN, for arbitrary
A€ (0,1).

0. Introduction. The systematic study of random quotients of [7's
begun with the acclaimed solution by E. D. Gluskin of the problem of di-
ameters of Minkowski compacta [G1]. Soon after, several papers followed in
which optimal estimates of basic constants or symmetry constants for such
quotients were given [S1], [G2], [M1]. It was J. Bourgain who first used this
line of argument in the context of general finite-dimensional Banach spaces,
and this approach was further developed by the authors in a series of papers
(cf. e.g. [MT1], [MT?2]). We refer the reader to the survey [MT3] for more
information on the subject.

The present paper is a further development of the study, begun in [MT4],
of geometric and linear properties of families of “random” projections of
symmetric convex bodies. Here we investigate symmetry properties of such
random projections in terms of the existence of well bounded operators on
associated Banach spaces, and we relate these properties to average geomet-
ric distance of the projections to the Euclidean ball.
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We consider the concept of “randomness” in the following context, nat-
ural in the asymptotic theory of finite-dimensional normed spaces. Given a
symmetric convex body K embedded in RY in a certain natural way, for any
1 < n < N the randomness on the set of all rank n orthogonal projections
in RY is determined by the Grassmann manifold G ~,n of all n-dimensional
subspaces of RV, with the normalized Haar measure s Non-

Our main result has a dichotomous character similar to the results in
[MT4]. Intuitively speaking it shows that for an arbitrary symmetric convex
body K C RY as above, if a random orthogonal projection B = P(K) of K
is “far” from the Euclidean ball, then the body B is as “rigid” as it can be
and every well bounded operator on B must be “close” to a multiple of the
identity. In particular every projection on B of rank proportional to dim B
must have the norm as large as it can be (with the given distance to the
Euclidean ball), and the basis constant and other symmetry invariants of B
must be of the same order.

Let us now describe the content of the paper in more detail. Section 1
contains all basic definitions as well as the statements of the results. Here let
us only mention that the rigidity of the body in the above sense is measured
by the so-called mixing constant, which is known to control how “close” well
bounded operators are to a multiple of the identity. In more precise terms,
our main theorem (Theorem 1.1) provides a lower estimate for the mixing
constant of random orthogonal projections of K by the average geometric
distance of the projections of K to the corresponding projections of the
Euclidean ball. Thus, this and other results have similar form to those in
[MT4], and, in particular, they are valid in the full range of dimensions
1 <n < AN, for any 0 < A < 1, which was achieved in [MT4] for the first
time in this type of problems.

Our result, like many earlier results for random quotients of general
normed spaces, makes an essential use (in Theorems 1.3 and 1.4) of a cer-
tain volumetric invariant of convex bodies, which was also used in other
papers (cf. [MT3] and the references therein, and [MT4]). In fact, in the
earlier papers the whole series of similar invariants was introduced, depend-
ing on a particular problem on hand. A new element of the present paper,
which might be of an independent interest, is a realization that most of the
invariants of this type are in fact equivalent. This is closely connected with
the deep fact of existence of M-ellipsoids, and is described in Section 2.

Section 3 describes a reformulation of Theorem 1.3 in the Gaussian set-
ting, and Sections 4 and 5 are devoted to the details of the proof of the
corresponding Gaussian problem (Theorem 3.4). The general strategy of
this proof goes back to papers [S1], [S2] and [M2], which treated the case
of the unit ball in [}, and to [B] and [MT?2], for the general case. All these
results were based on a probabilistic approach, but the underlying proba-
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bilities were not rotation invariant. We also refer the reader to the survey
[MT3] for details and further references.

1. Mixing operators on families of random projections. We shall
use the standard notation in the asymptotic theory of Banach spaces as
for example in [Pi], [T] and [MiS1]. In particular, the n-dimensional real
Euclidean space is denoted by (R",|| - ||2). For 1 < k < n, G, denotes
the Grassmann manifold of k-dimensional linear subspaces of R™ equipped
with the normalized rotation invariant measure p,, . By a symmetric convex
body in R™ we always mean a centrally symmetric convex body. For two such
bodies By, By the geometric distance is defined by

dg(Bl,Bg) = min{)\g/)\l | MB1 C By C )\231}.

We denote by [g] for o € R the smallest integer greater than or equal
to 0. Let us recall the definitions of a mixing operator and mizing constant,
the first of which is due to S. J. Szarek [S2] (however, this notion was im-
plicit in [G2], [S1] and almost explicit in [M1]), while the second notion was
introduced in [MT3]. For 0 < x < 1/2 and a > 0 we say that a linear
operator T : R™ — R" is (kn, a)-mizing provided that there exists a linear
subspace E C R" with dim F = [kn| satisfying

(1.1) dist(Tz, B) = | PyiTz||2 > a|z||2

for every x € E. The set of all (kn,«)-mixing operators on R" is denoted
by Mix, (kn, a). For a symmetric convex body B C R™ the mizing constant
of B is defined by

(1.2) m(B, k) =inf{||T: B — BJ| | T € Mix,(sn, 1)}

for [kn] < n/2 and m(B, k) = co otherwise.
It follows directly from the definition that for every 0 < k < 1/2,

(1.3) dg(B, By) > m(B, k) > dg(B, By)™!
and
(1.4) m(B, k) =m(B° k),

where B° denotes the polar of B.

It is known that the invariant m(B, k) is a good measure of the rigidity of
the body B. Namely, for a well bounded operator acting on B, it controls how
“close” this operator is to a multiple of the identity (cf. [MT3, Theorem 16]).

For a symmetric convex body B C R™ we shall consider (as in [MT4])
the expected Fuclidean distance, defined for 1 < m < n by

(1.5) Edg(B,m) = | dg(PL(B), PL(BY)) dpnm(L).
G,
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Clearly, Edg(B,m) is monotone in m, that is,
(1.6) Edg(B,m1) > Edg(B, m2)  whenever m; > mg > 1.

Now let us recall important concepts connected to Dvoretzky’s theorem
([Mi2], cf. also [MT4, (1.1)—(1.3)], and for the fundamentals of the theory
also [MiS1]). Let K C RY be a symmetric convex body. We define a tran-
sition dimension k*(K) (cf. [MT4, (1.1)—(1.3)]) as the largest dimension k
such that the set
(1.7) A ={H € Gny | (1/2)M}; Py (BY) C Py(K) C 2M}, Py (BY)}
has measure
(1.8) pn g (Ag) =1 —e ™",
where M} is defined by

M= | ||2llxo du(z).
SN—I

We have
(1.9) d(Mj;/a)?’N < k*(K) < C'(Mj:/a)*N,

where a > 0 denotes the smallest number such that KX C aBY, and C' >
¢ > 0 are numerical constants.

To describe in a uniform way some concentration of measure phenomena
which, for a fixed symmetric convex body K C RY, depend on dimension
1 < n < N, we define the concentration function

exp(—n) for k*(K) <n < N,
ag(n) =
exp(—k*(K)) for1<n <k*(K).

We are now ready to state the main result of this paper.

(1.10)

THEOREM 1.1. For every 0 < A < 1,0 < Kk <1/2 and 0 < n < K/2
there exists ¢ = c(\, k,n) > 0 with the following property: Let K C RY be a
symmetric convex body such that the Euclidean unit ball BY is the ellipsoid
of minimal volume containing K. Letn™! <n < AN and set m = [(k—n)n].
Then the set of all H € G, satisfying

(1.11) m(Py(K), k) > cEdy (P (K),m)
has measure larger than or equal to 1 — 2a g (n). In particular
\ m(Py(K), k) dpnn(H) > cEdg(K,m).
GN,n

REMARK. Note that in view of (1.4), by a standard duality argument,
the analogous theorem holds for every symmetric convex body B in RY for
which Bév is the ellipsoid of maximal volume inscribed in B, with projections
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Py (K) replaced by sections H N B and Ed,(Py(K), m) replaced by

Edg(B,m) =\ dy(LNB,LNBY)dpnm(L).
Gn,m

REMARK. Recall that by John’s theorem every symmetric convex body
B C RY admits a position u(B) (where u is a linear automorphism of R)
such that BY is the unique ellipsoid of minimal volume containing u(B).
Thus, in the theorem above, the assumption on the ellipsoid of minimal
volume may be viewed as the choice of a proper position K = u(B) in the
case of an arbitrary symmetric convex body B. It provides the norm with
respect to which the mixing constants are computed and induces the Haar
measure on the family of projections of the body K.

Let us note that in Theorem 1.1 the assumption that Bév is the ellipsoid
of minimal volume containing K and the drop of dimension to m in the
conclusion are both essential. This can be shown by the same examples as
in [MT4, Examples 2.4 and 2.5 respectively]. We sketch the argument only
for the latter case, and refer the reader to [MT4] for details.

EXAMPLE 1.2. Let [ > 1. Set N = 4l, n = 2] and k = 1/2. Let RN =
R3 & R! and set

K = conv{B}' ® B.}.

For most H € Gy, the projections Py (K') are isomorphic, up to a numerical
constant C' > 0, to the orthogonal sum Z = X H@Bé, where X7 is a suitable
[-dimensional projection of B%l. Let P, : Z — Z be the orthogonal projection
onto Xg and J : Xy — Bé be the formal identity map. It follows directly
from the definition that JPy : Z — Z is in Mix,,(1/2,1). Since X C BY the
norm of JP; : Z — Z is bounded by 1. This implies m(Py(K),1/2) < C.

On the other hand, if m = [(1 + n)l] for n > 0 then Edy(Pg(K),m) >
cy/n for some ¢ = ¢(n) > 0.

In a complete analogy to the approach in [MT4], inequality (1.11) for
the mixing invariant of a typical projection of a body K will be obtained
in two independent steps. The first will provide a lower estimate for the
invariant in terms of a certain volumetric invariant of the projections of the
body, while the second will relate the volumetric invariant to the Euclidean
distances of random projections. These steps are the content of Theorems
1.3 and 1.4.

For a Borel subset B of a k-dimensional subspace E C R™ we denote by
| B| the k-dimensional Lebesgue measure of B. Following [MT4] we consider
a volumetric invariant which plays an essential role in our considerations.
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For a symmetric convex body B C R" and 1 <[ <k <n, let

I
1.12 W(B, k,l) = inf su ,
(112) (B = igtsup (372 )
where the infimum is taken over all k-dimensional subspaces £ C R" and
the supremum is taken over all [-dimensional subspaces F' C E.
To state the next inequalities in a compact form we need one more
notation. For a symmetric convex body K € RY and 1 <n < N, let

n 1/2 or k* n
et = { 1) for °(K) <0 < .

Theorem 1.1 is a direct consequence of the following two results.

THEOREM 1.3. For every 0 < A < 1,0 < k < 1/2, 0 < ¢ < min{k, A,
(1 —=X)}/4 and every 0 < 0 < k — 3¢ there ezists ¢ = c(\, k,0,&) > 0 with
the following property: Let K be a symmetric convex body in RN such that
the Fuclidean unit ball Bév is the ellipsoid of minimal volume containing K.
Then for every et < n < AN and every én < 1 < (k — 2¢)n the set of all
H € Gy, satisfying

(1.14) m(Py(K), k) > corg(n)W (Py(K), [(k —2¢)n],1)

has measure larger than or equal to 1 — ac(n). Moreover,

[ m(Pu(K), 5) dyunn ()
GnNon
> cor(n) | W(Py(K),[(x = 2e)n],1) dunn(H).
GnN,n

The next theorem is a version of Theorem 2.3 of [MT4], where the invari-
ant W (Pg(K),n/2,0n) is considered with respect to a slightly more general
Euclidean ball. Here we state it for the minimal volume ellipsoid, and with
kn replacing n/2. The minimal volume ellipsoid clearly satisfies the assump-
tions discussed in [MT4] (cf. the comment before (1.5) in [MT4]). The proof
for arbitrary « is fully analogous to the proof there.

THEOREM 1.4. For every 0 < k < 1/2 and 0 < § < k/2 there exists
c = c(k,0) > 0 with the following property: Let K C RN be a symmetric
convez body such that the Euclidean unit ball BY is the ellipsoid of minimal
volume containing K. For every max{0~!,(k —26)7'} <n < N, let m =
[(k —20)n]. Then the set of all H € G, satisfying

(1.15) i (M)W (Pu(K), [kn], [0n]) = cEdg(Ppu (K), m)

has measure larger than or equal to 1 — ag(n). Moreover there exists ¢ =
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d(k,8) > 0 such that

pr(n) | W(PH(K), [kn], [on]) dunn(H) > Bdg(K,m).
GnN,n

Despite the fact that the mixing invariant of a body K depends on the
Euclidean norm on R™ and therefore depends on the particular position of
K it is well known that it provides lower estimates for several structural or
symmetry parameters of the Banach space induced by K (cf. [MT3, Sec. 5]).
Examples of such parameters are the basis constant, be(-), the symmetry
constant, sym(-), the factorization constant through a space with a Schauder
basis, complexification constants and so on. Theorems 1.1 and 1.3 yield
analogous results for all these parameters. Here we shall just state the variant
of Theorem 1.1 for the basis and symmetry constants. It is a straightforward
consequence of the following known estimates: be(B) > (1/2)m(B,1/2),
sym(B) > (1/4)m(B,1/20) (cf. [MT3, comments after Definition 11 and
Theorem 20]).

COROLLARY 1.5. Let 0 < A < 1 and K C RY be as in Theorem 1.1 and
let 1 > 0 be sufficiently small. Let n=' < n < AN. Consider the following
two sets:

(1.16)  {H € Gnpn | be(Pu(K)) = e1iEdg(Pr(K), [(1/2 —n)n])},
(1.17)  {H € Gy | sym(Pu(K)) = codg(Pr(K), [(1/20 —n)n])},

where ¢c; = c¢(A\,1/2,n) and ca = ¢(X\,1/20,n) are as in Theorem 1.1. Then
each of these sets has measure larger than or equal to 1 — 2a(n).

2. Volumetric invariants and ellipsoids. In this section we shall
discuss the behaviour of the invariant W. First we consider the case of
ellipsoids. In general, an ellipsoid € in R"™ is of the form & = u(BY) for a
certain isomorphism u of R™. Let s1(u) > ... > s,(u) > 0 be a sequence
of s-numbers of u. It easy to see that this sequence does not depend on a
particular choice of the isomorphism w and that A;(£) = s;(u) fori =1,...,n
are the lengths of the semiaxes of £.

Let £ be an ellipsoid in R and P € L(R™) be an orthogonal projection
of rank m. Then P(£) is an ellipsoid in F' = P(R"™) and we have

(2.1) Aitn-m(E) < XN (P(E)) < Ni(€)

for i = 1,...,m. Indeed, A\;(P(€)) = s;(Pu) for i = 1,...,m, where u is
any isomorphism of R™ such that & = u(B%). This immediately implies the
right hand estimate, and the left hand estimate follows from the formula
$i(T) = min{||T" — S|| | rank S < i} for i = 1,2,..., valid for any operator
T on a Hilbert space.
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It is not difficult to show using (2.1) that
k —1/1
(2.2) W(E, k1) = ( I1 /\i(é'))
i=k—l+1
forany 1 <1<k <n.
Combining (2.2) and (2.1) we get, for £ <m <mn,

(2.3) W(E k1) < W(P(E),k,1) < W(E, k+n—m,l).

Similarly, for any F C R"™ with dim F = m, estimates analogous to (2.1)
hold for sections £ N E, and it follows that for £ < m < n,

(2.4) W(E k1) <W(ENE, k1) <W(E k+n—m,l).

REMARK. The left and right estimates in both (2.3) and (2.4) are sharp.
For the left hand estimates this can be seen by considering the subspaces
spanned by the largest m semiaxes of £, and the corresponding projections
and sections. For the right hand estimates we consider the subspaces spanned
by the smallest m semiaxes of £.

For a general symmetric convex body B C R" the invariant W (B, k, 1) is
closely related to the same invariant for an M-ellipsoid of B. This depends on
a striking property of such an ellipsoid £ that volumes of its proportional-
dimensional sections and projections are comparable to those of B, and this
property is also shared by B 4+ £y and BN Eyy (where B+ &y = {z + y |
x € B, y € &y} is the Minkowski sum). The existence of such ellipsoids (first
proved by Milman in [Mil] and consecutive papers) is highly non-trivial, and
they have become a very useful part of the theory by now. Rather than give
here the usual definition of an M-ellipsoid we shall summarize below its
properties needed in this paper. It is well known to specialists that these
properties can be easily derived directly from the definition (for example in
the form put forward in [Pi], and in fact are equivalent to this definition).
For more information on M-ellipsoids we refer the reader to [Mi2] and the
references therein, as well as to [Pi] and [MiS2].

Fact 2.1. There exists a numerical constant Cy > 1 such that for every
n > 1 and every symmetric convex body B C R™ there exists an ellipsoid
Enr (called an M-ellipsoid for B) such that |Ep| = |B| and:
(i) |B+Em|V™ < Co | BNEM|M™. In particular, |B+Ep|Y™ < Co | BIY™
and |B N Ey |V > (1/Co) |En V™.
(ii) For any 0 < A < 1 and any subspace E C R™ with | = dim E = An
we have
(B+ &) NE[V <y BnéynE M,

|P(B + Ex)|M' < CY | Pe(B N &)V
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As a consequence one has

COROLLARY 2.2. Let B C R" be a symmetric conver body. Let Epy be
an M -ellipsoid for B and let Cy be as in Fact 2.1. Let 0 < § < 1. For every
on <l <k <n we have:

(i) Set By = B, By = &y, Bs = B+ &y and By = BN Eyy. Then for
alli,7 =1,...,4 we have

W (B, k,1) < Co/° W(Bj, k,1).
(ii) For every k <m <n and E C R" with dim E = m, we have
Cy W (B, k,1) < W(Pg(B), k1) < C2°W (B, k +n —m,1).

Condition (i) follows from Fact 2.1, while (ii) follows from (i) and (2.3).

Besides the invariant W considered up to now, one can define some
other related volumetric invariants. For example, one such invariant arises
naturally in arguments in the last two sections which contain the technical
kernel of this paper. Namely, we consider an invariant similar to W(,-,-)
but based on projections rather than sections, that is,

1/1

E g \PF(B)> ’
where the infimum is taken over all k-dimensional subspaces £ C R"™ and
the supremum is taken over all [-dimensional subspaces F' C E.

Clearly, W (B, k,l) < W (B, k,l). Much more is in fact true: these invari-
ants are well equivalent on proportional levels. Indeed, if £ is an ellipsoid,
the same argument as in (2.2) yields the same formula for W (&, k,1), and
hence W(S, k,l) = W(E, k,l). Corollary 2.2 says in particular that on pro-
portional levels the invariants W (B, -, -) and W (&, -, -) are well comparable.
The same holds for the invariant W(, +,+). Therefore for all on <1 <k <mn
we have

(2.6) Coy W (B, k1) < W (B, k,1) < W(B,k,1).

Also, the same holds for invariants of “mixed type” involving both sections
and projections as considered in [MT1] (cf. also [MT3, Section 7]).

We illustrate this circle of ideas by the following proposition which is
a strengthening, in a sense, of an analogous result from [MT4, Proposition
3.2]. It can be proved directly by geometric considerations similar to Propo-
sitions 4.1 and 3.2 from [MT4]; however, we provide here a formal argument
based on (2.6). It is not clear whether the assumption o < 1/2 below is
necessary.

N !
(2.5) W(B,k,l)zinfsup( |B|

PROPOSITION 2.3. For every 0 < o < 1/2 and 0 < § < «/4 there
exist ¢ = c1(e,0) > 0 and c2 = c2(a, ) > 0 such that for every symmetric
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conver body B C R™ with Pg(B) D Pgr(BY) for some k-dimensional subspace
E C R™ with k = [an] — 1, the measure of the set

{H € Gy p—3fsn) | Pu(B) D c1Pu(By)}
s greater than or equal to 1 — e~ "™,

Proof. Let | = [on]. Then Pg(B) D Pg(BY) yields W(B,k,1) < 1.
Thus, by (2.6), we get W (B, k,) < C’g/é. Let F' C E be the linear subspace
spanned by the largest 2k semiaxes of £, where £ is an M-ellipsoid for B.
By the remark following (2.4) we have W (&, k,1) = W(ENF, k,1). By Corol-

lary 2.2(i) we get W(B, k,1) > Cy */*W (B, k,1), where B = BN F. Thus

W(E,k:,l) < C’S/ % The proof is completed by applying first Lemma 4.2

from [MT4] to B (note that k = [an] = (dim F')/2) and then using Propo-
sition 3.2 therein. =

3. Gaussian version of Theorem 1.3. We denote by v a standard
N(0,1) distributed (real-valued) Gaussian random variable. For an N-di-
mensional Hilbert space H, by a normalized Gaussian vector g : & — H we
mean a random vector of the form g = N—1/2 ZZJ\L 1 Yiui, where the v; are
independent copies of v, and {u;} is any orthonormal basis in H. Thus g
has distribution N (0, N~'Iy) (where Iy denotes the identity matrix on H).
Its density is equal to (N/2m)N/2exp(—N||z||3/2) and is clearly rotation
invariant.

Let us recall the following basic fact (cf. e.g. [MT3] where it is used in a
similar context).

Facr 3.1. Let g be a normalized Gaussian vector in an N -dimensional
Hilbert space H. Then

(i) For every k-dimensional subspace E C H, \/N/k Pgg is a normalized
Gaussian vector in E.
(ii) For every orthogonal pair of subspaces E1, E5 C H the random vectors
Pr,g and Pg,g are independent.
(iii) For every Borel set B C H we have

P{w € Q| g(w) € B} < "?|B|/|By.
Now we pass to a description of Gaussian matrices. For n, N > 1, let
Iy = I, Nw be an n x N random matrix with independent N(0,1/N)
distributed entries. We shall treat I, y as a linear random operator from

RY to R™. The following fact is well known (cf. [MaS, Fact 3.2 and the
comments afterwards]).

FAcT 3.2. Let 0 < A <1 and A > 0. There exist C = C(A) > 0 and
c=c(A,\) > 0 such that for every 1 <n < AN, letting E,, = (ker I}, )"
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for w € Q, we have
(3.1) Plwe|c|zlz < |[Innwxl2 < Cllz|2 for every z € E,}
>1- e AN,

For A > 0and 0 < A < 1 let Q' = Q'(A4,\) be the subset of  from
Fact 3.2. The definition of € easily implies that for w € €’ we have

(3.2) WL Nw(K), k1) <W(Pg,(K), k1) <CW ([ Nw(K), k1)
and
(3.3)  (¢/C)m(I Nw(K), k) < m(Pg,(K), k) < (C/e)m(I N w(K), £),
where C, ¢ > 0 are from Fact 3.2. Indeed, observe that I, o = I N PE,,
and set S, = I, Nw|E,. Thus S, is a good isomorphism for w € €. In
particular it allows a good control of the volumes on every subspace, which
in turn implies (3.2). Furthermore, S,, is an isometry from (E,, Pg_(K))
onto (R", I, nw(K)) and hence for every T' € L(E,) we have ||T||p, (x) =
15T S5 I, xo (k) Clearly T € Mixg, (k,1) implies that (C/c)S,TS," €
Mixy (k, 1) for every T' € L(E,,). This easily yields (3.3).

For an arbitrary Borel subset 7 C Gy, let

QF)={we Q| (kerTno)" € F}.

The rotation invariance of the distribution of Gaussian matrices implies that
P(2(F)) = punn(F). Therefore for any subset Q; C Q we have

(3.4) punn({E € Gnp | E = (ker I, v)* for some w € Q1}) > P(Q).

We shall also need the following tail estimates for the operator norm and
the determinant of a Gaussian square matrix (cf. e.g. [MT4, Facts 1.4(i)
and 1.5]).

Fact 3.3. (i) For every A > 1 there is C = C(A) > 1 such that for all
N>1,
P{we Q| |[ITynollz <C}>1—e 4V,

(ii) For every A > 1 there is o = o(A) > 0 such that for all N > 4,

P{w e Q| |det Iy no| > o™} >1—e AN,

2

Moreover, we may take o = ce 24, where ¢ > 0 is a suitable numerical

constant.
The following theorem is a Gaussian version of Theorem 1.3.

THEOREM 3.4. For every 0 < A < 1,0 < k < 1/2, 0 < ¢ < min{k, A,
(1 —=X)}/4 and every 0 < 0 < k — 2¢ there ezists ¢ = c(\, k,0,&) > 0 with
the following property: Let K be a symmetric convex body in RN such that
the Fuclidean unit ball Bév is the ellipsoid of minimal volume containing K.
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Then for every max{e~ !, k*(K)} <n < AN and every on <1 < (k — 2e)n
we have

P{w e Q| m(I Nw(K), k) > c/n/NW (I Nw(K), [(k—2e)n],1)}
>1—ag(n)/2.

Assuming the truth of Theorem 3.4 we complete the proof of Theorem
1.3 as follows.

Proof of Theorem 1.3. First note that it is enough to consider only the
case when n > k*(K). The remaining case is a direct consequence of the
definition of £*(K) and (1.13) and (1.9) (note that a = 1 for the ellipsoid of
minimal volume). Let €’ be the subset of Q from Fact 3.2 for A =4 and A,
and let Q" be the subset of € considered in Theorem 3.4. Combining (3.2)
and (3.3) we infer that for w € Q; = Q' N Q" we have

(3.5) m(Pg, (K), k) = o (n)W(Pg, (K), [(x - 2¢)n],1),

where ¢ = ¢/(\, K, d,¢) depends on A, k, § and € only. The proof of (1.14)
is completed by observing that by the definition of €, and by (3.4) the
Haar measure of the subset considered in (1.14) is greater than or equal to
1 —ag(n)/2—e 4 >1—ag(n).

To prove the integral part of the theorem note that by (3.5) we have

(3:6) | m(Pu(K), ) dyu ()
GNn
> dor(n) | W(Pu(K), [(x = 2¢)n],1) dun o (H),
A

where A is the subset of Gy, on which the inequality (3.5) is satisfied. Also

3.7) | m(Py(K),k)duna(H)
GNn
> or(n) | W(Pu(K),[(k—2¢)n],1) duyn(H)
Gy \A

for a suitable numerical constant ¢”” > 0. Indeed, since
(3.8) N7V2BN c K

we have W(Py(K), [(k — 2¢)n],1) < N2 for every H € Gx.,. Thus the
integral on the right hand side of (3.7) is less than or equal to ax(n)v/N. On
the other hand, by the well known fact on shrinking of diameter of random
projections of a symmetric convex body (which follows from Milman’s proof
of Dvoretzky’s theorem; cf. [MiS1, Th. 4.2], see also [MT4, Proposition 4.3]),
there is a numerical constant C' > 0 such that the inclusion

(3.9) Py(K) C C(n/N)'/? Py (BY)
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holds on a subset H of G, with measure close to 1. Thus, by (3.8), (3.9)
and (1.3), for H € H we have m(Py(K),x) > 1/C+/n. Hence (3.7) follows
by the definitions of @i (n) and ax(n).

Finally, the integral inequality in Theorem 1.3, with ¢ = min{c/,"}/2,
follows by adding (3.6) and (3.7). =

A well known strategy of proving results like Theorem 3.4 is based on
two steps. The first is to provide an estimate for the probability “for a
single operator”, and the second is a continuity argument based on finding
an appropriate net in the set of operators considered and using the previous
probability estimate. We present this argument in two separate sections
which follow.

4. Estimate for a single operator. A new technical point of The-
orem 3.4 compared with a finite-dimensional result from [MT2] is made
possible by an effective use of the geometry of contact points between a
convex body and its John ellipsoid. This idea was already used in a similar
way in [MT4].

We shall need the following version of Proposition 5.2 of [MT4].

ProprOSITION 4.1. Let n,m > 1 and B C R" be a symmetric convex
body. Let hi,...,hy be independent normalized Gaussian vectors in R™.
Fori=1,...,m consider random vectors

7
yi= ) bijh;
7j=1

with bj; > 0 fori =1,...,m. Let 1 < k < n, and let S € L(R™) be
an operator such that for some k-dimensional subspace E C R™ we have
|Sz||2 > ||z||2 for every x € E. Let w; € R™ for i =1,...,m. Then for any
1 <1<k,
e —1 —
P{w; + Sy € B fori=1,...,m} < (H bj,j) (en /)™ 2(W (B, k, 1)),
j=1

where W(B,k,l) is defined in (2.5).

If the vectors w; belong to the range of S then the proposition follows
from Proposition 5.2 of [MT4]. The general case treated here needs a mod-
ification of the argument applied there, with the vectors w; replacing Sz;.
This, in turn, requires the use of the invariant W instead of W. We leave
the further details to the reader.

Let us recall some basic facts concerning the ellipsoid of minimal volume.
Let K ¢ RN be a symmetric convex body such that Bév is the ellipsoid of
minimal volume containing B. A classical result by Dvoretzky and Rogers
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says that there exist contact points x1,...,zy (that is, ||z;||x = ||zil]l2 = 1)
and orthonormal vectors uy, ..., uy in (RY, || -||2) such that
i
(4.1) vi = biju; and by > (N —i+1)/N)"/?
j=1

fori =1,...,N (cf. e.g. [T, §15]). By rotating the body K if necessary,
we may assume that u; = e;, where {e;} is the standard unit vector basis
in RN,

Let A, §, k, € and K be as in Theorem 3.4 and let z1,...,xxy be contact
points of K satisfying (4.1). Fix n as in Theorem 3.4. For i = 1,...,N
consider random Gaussian vectors in R" defined by g; = I, ve;, and set

% %
(4.2) yi=Tonawi =Y bijTane; =Y bijg.
pst =1

Let 0 = {n+1,n+2,...,n+[en]}, where [en| denotes the largest integer
smaller than or equal to en. Given a mixing operator 1" we want to estimate
the probability of the set of w € €2 such that

(4.3) Ty; € eIy Nw(K)  forie o,

for some ¢ > 0. Proposition 4.1 provides an estimate of this type when
the convex set on the right hand side is fixed. In our case, when the set
depends on w we will replace (4.3) with a stronger condition of the form
Shi(ws2) € B(wy) with B(w;) and h;(w2) being independent. This will require
several notations.

Let @ be the random orthogonal projection in R™ with ker @ = span{g; |
i € o}. Note that for w € Q,

(4.4) QN = QI NP,

where P is the orthogonal projection in RN with ker P = span{e; | i € o}.
To make the argument more transparent, we shall assume as we may
that
(Q,P) = (Ql,Pl) X (QQ,PQ)

and we shall write w = (w1, w2). Moreover, we shall assume that the g;(w)
for i € o depend only on w9 while the remaining g;(w)’s depend only on wy.
In particular, by (4.4) we have

(45) QFn,N,w(K) = QFn,N,wﬁ(K))
and since P(K) C span{e; | i < N and i € o} we infer that the set
(4.6) B(w) = Iy P(K) CR”

depends only on wy (which is the first step in the direction described above).
Let £(w1) C R™ be an M-ellipsoid for B(w1). (The use of the M-ellipsoid is
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required in the last section to control the cardinality of nets in the class of
mixing operators.) Finally, let

(4.7) B(wi) = B(w1) + E(w1) C R™,
(4.8) B(w1) = QB(w1) C QR",
and note that both B(w;) and B(w;) depend only on wy, i.e., do not depend

on wo.
Let €2y be the subset of €2 consisting of all w such that

(4.9) |det I}, No|R"| > (0/n/N)",
(4.10) | T v o RPTEM |y < CV/(1 4 €)n/N,

where both ¢ and C are taken from Fact 3.3 for A = 4. Since the normal-
ization of a random matrix I, y depends on N, in order to use Fact 3.3
to restrictions of the matrices above, a suitable normalization is required.
After such a normalization we get

(4.11) P(Qg) > 1 —2e~ 4",
Set
(4.12) 2] ={w1 € 21 | (w1, ws) € Qg for some wy € 25}

We shall use the following obvious properties of 2. Since the matrix in
(4.9) depends only on wy, it follows that if w; € §2] then for every Wy € (29,

(4.13) |detg;(@)[izi| = (ev/n/N)",
where @ = (wy,ws). For every w € Q and every i = 1,...,n + [en],
(4.14) ”Fn,N,wmiHQ < 20\/77,/]\7.

Till the end of the paper, in order to avoid tedious considerations, we
shall assume that both kn and en are integers. The general case follows the
same line of argument.

In the notation above we have

LEMMA 4.2. Let A\, 9, K, €, n, | and K be as in Theorem 3.4. There
exists C1 = C1(\, 9, k,€) such that for every wi € (21, every a > 0 and every
operator T' € Mix,((k — €)n, 1) one has

Po{ws € 25 | QTy; € A(a)é(wl) fori e o, (w,ws) € Qo} < (Cra)™™,
where
(4.15) A(a) = ay/n/N W (B(w:), (k — 2¢)n, 1).

Proof. Fix T' € Mix,((k —&)n, 1) and let E be a linear subspace in R”
with dim F = (k — ¢)n such that

(4.16) |PpiTz||2 > ||z]]2  for every x € E.
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For i € o set hl(w2) = Pggi(w2) and hl(w2) = Ppigi(w2). Thus gi(ws) =
hi(w2) + hY(w2). Since by Fact 3.1(ii), h}(w2) and h(ws) are independent
Gaussian vectors we may assume that (Qg,]P’g) = (25, P%) x (£25,P7) and
that for every i € o, h] depends only on wj, while h depends only on
wy. Therefore we may write hl(wj) (resp., hl/(w})) instead of hl(w2) (resp.,
h(w2)). Note that since g;’s for i = 1,..., N are independent, the collection
of vectors {h;, b7 | i,j € o} is independent as well.

Note that the projection @ depends on wy = (wh, w2) However, in order
to apply Proposition 4.1 we need the dependence on w4 only. This is achieved
by composing with one more orthogonal projection. FIX w4 (and therefore
the vectors hf(w4)). Since dim P T'(E) = (k — €)n there exists a subspace
F C Py T(F) with dim F = (k — 2¢)n orthogonal to span{h/ | i € o}. Note
that F' C E* is orthogonal to span{h/(w}) | i € o} C E for every w) € (2}
as well. Hence F' is orthogonal to ker Q and we have PrQ = Pp.

Define the operator

(4.17) S = PpT|E : E — Py T(E).
By (4.16) and (4.17) there exists a subspace Ey C E with dim Ey = (k—2¢)n
such that
(4.18) |Sz||2 > ||z]|]2  for z € Ej.

Since wy is fixed and g;’s for j = 1,...,n depend only on wq, and g;’s
for j € o depend only on ws, using the fact that wf is fixed, by (4.2), for
every ¢ € o, we can write

i
(4.19) v =Wi+ Y bighf(wh),
j=n+1
where
n
Wi =) _bijgi(wn) + Z bi jhij ()
7j=1 j=n+1
Thus for each i € o by (4.19) we have
i
(4.20) PFTyi = w; + PFT( Z bm‘h;(wé)),
j=n+1

where w; = PrTw;.
Since Pp = Pr@, by (4.20) and (4.17), we have

(4.21) {wh € 25| QTy; € A(a)B(wy) for i € o and (w1, ws) € o}
Py{wh € 12, | PeTy; € A( )Pp(B(w1)) for every i € o}

+s( Z bi; ]> € A(a)Pp(B(w1)) for every i € a}.

Jj=n+1

:P/{ 2692
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Now, Proposition 4.1 applied to h; = \/N/(/-i —e)n h}(w}), the operator
S :E — F and B = A(a)\/N/(r — e)n Pr(B(w;)) shows that the latter
probability is less than or equal to

(4.22)  A(a)T™(N/(k — e)n)="/?
n—+en

< (TT baa) " (/D2 (Pr(Bon)), (o — 22)m, 1)

j=n+1
(note that the invariant W( -,-) is homogeneous of degree —1, so

W (0Pr(B(w1)), k,1) = 0~ ' W(Pp(B(w1)), k, 1)

for every o > 0). By (4.1), since n +en < (1 + 3\)N/4 we deduce that
H?ﬁiil bj,; > ¢ for suitable ¢ = ¢(\, k,€). Thus by (2.6), Corollary 2.2(ii)
and the definition of A(«) we infer that the right hand side of (4.21) is less
than or equal to (C1a)¥™, where C; = C1(\, k,d,¢) depends on A, x, § and
¢ only. The proof of the lemma is completed by combining this estimate
with (4.21) and (4.22) and integrating the resulting inequality with respect
tows. m

5. The e-net argument. For every fixed w; € {21 and every a > 0 let
A, = {T € L(R") | Tyi(w) € aB(w,) for every i = 1,...,n},
where y;(w)’s and B(wy) are defined in (4.2) and (4.7) respectively. Set
Ay = Ay NMix, ((k — 26)n, 1).

Observe that each y; for j = 1,...,n depends on g;(wy) for i =1, ..., j only.

Thus Ka and therefore A, depend on w; only. Recall that 2] is defined in
(4.12).

LEMMA 5.1. Let A, k, 0, € and K be as in Theorem 3.4. For every w € 2

and every o > 0 the set A, of operators admits a (1/4C1)\/N/n-net Ny
with respect to the operator norm on L(BY,aB(w1)) with

2
card NV, < Cpy,

where Cp = C(4) is taken from Fact 3.3(1) and Cy > 0 is a suitable numerical
constant.

REMARK. Observe that the net N, depends only on w; and a.

Proof. Fix wy € 2] and note that by Fact 2.1,
[aB(w1)| < Cla(w)l,



332 P. Mankiewicz and N. Tomczak-Jaegermann

where Cy > 0 is a numerical constant. By (4.1) and the Stirling formula we
get "
jconv{tx; | i =1,...,n} = |BY| [ [ bis = c§1BYI,
i=1
where ¢y > 0 is a suitable numerical constant. By (4.13), for w; € 2] we
have |det[g;(w1)]?1| > (0y/n/N)", where o = p(4) is taken from Fact 3.3.
Thus

lconv{ty;(w1) | i =1,...,n} = |det[gi(w1)]i;| |conv{tz; | 1 <i < n}
> (coov/n/N)"|BY|.

Finally, by (4.14) we have ||y;(w1)||2 = || [ nZill2 < 2C14/n/N for every i =
1,...,n. Thus Proposition 5.3 in [MT4] and the Remark following it yield the
existence of a (1/4C1)y/N/n-net N, in A, with card N, < (4CC1Cy/co0)™,
where C' > 0 is a numerical constant. m

PROPOSITION 5.2. There exists ag = ao(\, K, d,€) such that if A\, K, 0,
g, k, n and l are as in Theorem 3.4 and A(ag) and B are defined by (4.15)
and (4.8) respectively, then for every wy € 2] we have

Py{ws € 2 | there exists T' € Mixy,(kn, 1) such that
QTy;i(w) € A(ag)B(wi) for everyi=1,...(1+¢)n
and w = (w1, wz) € N} < e .
Proof. Fix wy € 2] and fix oy > 0 to be specified later. Let @ () be the
subset of {25 considered in the proposition. For each T' € Mix,,((k — ¢)n, 1)
set

O(T, 2ap) = {ws € 2o | QTyi(w1,wa) € 24()B(wy) for 1 < i < (1 +¢)n}.
We shall split the condition appearing in the definition of ©(ag) into two

separate conditions. Since w; is fixed so are the y;’s for 1,...,n, while the
yi’'sfori=n-+1,...,n+ en depend on wy. We shall use the condition
(5.1) QTyi(w1) € A()B(wy) fori=1,...,n

in order to control the cardinality of a net in a suitable set of operators. The
second condition

(5.2) QTyi(w2) € A(ag)B(wy) fori=n+1,....,n+en
will provide a probability estimate for individual operators in the net, via
Lemma 4.2.

Let NV be the net in A 4(,,) constructed in Lemma 5.1.

CLAIM.

O(an) = ) (S, 2a0).
SeN
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Indeed, let wa € O(agp) and pick T € Mixy,(kn, 1) such that both (5.1)
and (5.2) are satisfied. By a standard “lifting” argument, condition (5.1)
implies the existence of an operator 77 € L(R"™) satisfying
(5.3) Tvyi(w1) € A(ag)B(wy) fori=1,...,n, QT1=QT.

Hence Ti|(ker Q)+ = T'|(ker Q). Since dimker Q = en it is easy to check
that T' € Mix, (xkn, 1) implies that 71 € Mix,((k—¢&)n, 1). Thus Ty € A 4(q)-
Pick Tp € N with
(5.4) |Ty — Tp : BY — A(ag)B(w1)|| < (1/4C1)\/N/n
and arbitrary i € {n+ 1,...,n+en}. By (4.14), for (w1,w2) € Qo we have
llyi(w2)]l2 < 2C14/n/N. Hence by (5.2)—(5.4) we get
QToyi(w2) = QTyi(w2) + Q(To — T1)yi(w2)

€ QTiyi(w2) + (A(a0)/2)Q(B(w1))

= QTyi(w2) + (A(a0)/2) B(w1) C 24(ag) B(w1),
which implies that QToyi(ws) € 2A(ag)B(wi) for every i € {n+1,...,
n +en}. On the other hand, since Ty € N C A 4(q,) we have QToy;(w2) €
A(a0)Q(B)(w1)=A(ag)B(w) for every i = 1,...,n. Hence wy € O(Tp, 2a),

which concludes the proof of the Claim.

Returning to the proof of Proposition 5.2 note that for each w; € (21 the
Claim and Lemmas 4.2 and 5.1 yield

(5.5) Py < Y Py(6(S. 2a0)) < CF (Cr(A, K, 6,)200)7".

SeN
Since [ > dn we may choose ag = agp(A, k,0,¢) > 0 small enough to ensure
that the right hand side term in (5.5) is less than e ™™, u

_ Proof of Theorem 3.4. Since, by (4.4), (4.6), (4.7) and (4.8), we have
B(w1) = Q(B(w1)) = Q(B(w1) + £(w1)), where £(wy) is an M-ellipsoid for
B(w1) and B(w1) = QI N (w; w») (K), by Corollary 2.2 for every w1 € {4
we get
(5.6)  W(B(w1), (k—2¢)n,1) > 2/6 W(B(w1) + E(wr), (k — 2¢)n, 1)
>Cy 3/5 W(B(w1), (k — 2¢e)n,1)
5

= Cy " W(QL N (i o) (), (5 — 2),1)

W (I N (w1 w0) (K), (5 — 28)n,1).
Let €7 be the subset of €2 consisting of those w for which the inequality

in Theorem 3.4 is violated with ¢ = aoC|, 5% Note that if w = (w1, wa) €
Q1 N (§2] x §29) then there exists an operator T' € Mix,,(kn, 1) for which

>y 553
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Tyi(w) € eIy Nw(K) foralli=1,...,N.

In particular, applying the projection @ to both sides of (5.7) and using (5.6)
we infer that wo belongs to the set considered in Proposition 5.2. Thus, by
integrating with respect to wy € 2] we get

P(Q N (12 x 25)) < e

The proof is concluded by observing that by (4.11) and (4.12),
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