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The existence of solutions for
elliptic systems with nonuniform growth

by

Yongqiang Fu (Harbin)

Abstract. We study the Dirichlet problems for elliptic partial differential systems
with nonuniform growth. By means of the Musielak–Orlicz space theory, we obtain the
existence of weak solutions, which generalizes the result of Acerbi and Fusco [1].

1. Introduction. Let Ω ⊂ Rn be a bounded Lipschitz domain. It is our
purpose to study the following systems:

(1.1)
∂Aiα
∂xα

(x, u(x),Du(x)) = Bi(x, u(x),Du(x)), x ∈ Ω, i = 1, . . . , N,

(1.2) ui(x) = 0, x ∈ ∂Ω, i = 1, . . . , N,

where u : Ω → RN is a vector-valued function. We use the summation
convention throughout with i, j running from 1 to N and α, β running from
1 to n.

Because problems with nonuniform growth have important applications
in mechanics, in recent years numerous papers have been devoted to the
study of elliptic equations with nonuniform growth (see [2], [3], [7]–[10], [13],
[14], [16] and the references therein). The results of these papers show that
problems with nonuniform growth conditions are much more complicated
than those with standard growth conditions. These works motivate our study
of the Dirichlet problem (1.1)–(1.2) in the setting of Musielak–Orlicz spaces.

In this paper, we suppose that the coefficients of (1.1) satisfy:

(H1) Aiα : Ω × RN × MN×n → R, Bi : Ω × RN × MN×n → R are
Carathéodory functions, i = 1, . . . , N , α = 1, . . . , n.

(H2) |A(x, s, ξ)| ≤ C1|ξ|p(x)−1 +C2|s|p(x)−1 +G(x), where G ∈ Lp′(·)(Ω),
C1, C2 ≥ 0 and C2 small.

(H3) |B(x, s, ξ)| ≤ C ′1|ξ|p(x)−1 +C ′2|s|p(x)−1 +G(x), where G ∈ Lp′(·)(Ω),
C ′1, C

′
2 ≥ 0 and small.
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(H4) Aiα(x, s, ξ)ξiα ≥ λ0|ξ|p(x) − C|s|p(x) + h(x), where λ0 > 0, C ≥ 0
small and h ∈ L1(Ω).

(H5) For almost every x0 ∈ Ω, s0 ∈ RN , the mapping ξ 7→ A(x0, s0, ξ)
satisfies

�

G

Aiα(x0, s0, ξ0 +Dz(x))zi,α(x) dx ≥ ν
�

G

|Dz(x)|p(x) dx

for each ξ0 ∈ MN×n, G ⊂ Rn, z ∈ C1
0 (G,RN ) where ν > 0 and

(Du(x))iα = ∂ui(x)/∂xα = ui,α(x).

Here p : Ω → [1,∞] is a measurable function and p′ is its conjugate function
(see Section 2).

For a simple case of (1.1), the Euler–Lagrange systems:
n∑

α=1

∂

∂xα
F iui,α(x, u(x),Du(x))−F iu(x, u(x),Du(x)) = 0, x ∈ Ω, i = 1, . . . , N,

which can be reduced to finding the stationary points of the functional
�

Ω

F i(x, u(x),Du(x)) dx, i = 1, . . . , N,

it is immediate to obtain the existence of weak solutions in Sobolev spaces
by applying Acerbi and Fusco [1]. From this point of view, the existence
of weak solutions for (1.1) in a Musielak–Orlicz space (Theorem 3.1) is a
generalization of their result.

2. Preliminaries

Definition 2.1. LetMN×n be the set of realN×n matrices. A function
f : Rn × RN ×MN×n → R is called a Carathéodory function if it satisfies:
for all (s, ξ) ∈ RN ×MN×n, x 7→ f(x, s, ξ) is measurable; for almost every
x ∈ Rn, (s, ξ) 7→ f(x, s, ξ) is continuous.

Lemma 2.1 (see [6]). f : Rn × RN × MN×n → R is a Carathéodory
function if and only if for each compact set K ⊂ Rn and every ε > 0, there
exists a compact set Kε ⊂ K satisfying meas(K \ Kε) < ε such that f is
continuous on Kε × RN ×MN×n.

Lemma 2.2 (see [5]). Let G ⊂ Rn be measurable and meas(G) < ∞.
Suppose that {Mk} is a sequence of subsets of G such that for some ε > 0,

meas(Mk) ≥ ε for each k ∈ N.
Then there exists a subsequence {Mkh} such that

⋂
h∈NMkh 6= ∅.

Lemma 2.3 (see [1]). Let {fk} be a sequence of bounded functions in
L1(Rn). For each ε > 0 there exists (Aε, δ, S) (where Aε is measurable and
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meas(Aε) < ε, δ > 0, S is an infinite subset of N) such that for each k ∈ S,
�

B

|fk(x)| dx < ε

where B and Aε are disjoint and meas(B) < δ.

Definition 2.2. For u ∈ C1
0 (Rn), define

(M∗u)(x) = (Mu)(x) +
n∑

α=1

(MDαu)(x)

where
(Mu)(x) = sup

r>0

1
meas(Br(x))

�

Br(x)

f(x) dx,

Br(x) = {y ∈ Rn : |y − x| < r} and Dαu = ∂u/∂xα.

Lemma 2.4 (see [12]). If u ∈ C∞0 (Rn), then M∗u ∈ C0(Rn) and for all
x ∈ Rn,

|u(x)|+
n∑

α=1

|Dαu(x)| ≤ (M∗u)(x).

Furthermore, if p > 1, then

‖M∗u‖Lp(Rn) ≤ C(n, p)‖u‖W 1,p
0 (Rn)

and if p = 1, then

meas({x ∈ Rn : (M∗u)(x) ≤ λ}) ≤ C(n)
λ
‖u‖W 1,1(Rn)

for all λ > 0.

Lemma 2.5 (see [12]). Let u ∈ C∞0 (Rn). Define

U(x, y) =
|u(y)− u(x)−∑n

α=1Dαu(x)(yα − xα)|
|y − x| .

For all x ∈ Rn, r > 0, we have
�

Br(x)

U(x, y) dy ≤ 2 meas(Br(x))(M∗u)(x).

Lemma 2.6 (see [1]). Let u ∈ C∞0 (Rn) and λ > 0. Set

Hλ = {x ∈ Rn : (M∗u)(x) < λ}.
Then for all x, y ∈ Hλ, we have

|u(y)− u(x)| ≤ C(n)λ|y − x|.
Lemma 2.7 (see [15]). Let X be a metric space, E a subspace of X, and

k a positive number. Then any k-Lipschitz mapping from E into R can be
extended to a k-Lipschitz mapping from X into R.
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Let P(Ω) be the family of all Lebesgue measurable functions p(·) :
Ω → [1,∞]. For p(·) ∈ P(Ω), we put Ωp(·)

1 = {x ∈ Ω : p(x) = 1}, Ωp(·)
∞ =

{x ∈ Ω : p(x) = ∞}, Ωp(·)
0 = Ω \ (Ωp(·)1 ∪ Ωp(·)∞ ), p∗ = essinf

x∈Ωp(·)
0

p(x)

and p∗ = esssup
Ω
p(·)
0

p(x) if meas(Ωp(·)0 ) > 0, p∗ = p∗ = 1 if meas(Ωp(·)0 ) = 0.
We use the convention 1/∞ = 0.

Let p(·) ∈ P(Ω). On the set of all functions on Ω, we define %p(·) and
‖ · ‖Lp(·)(Ω) by

%p(·)(f) =
�

Ω\Ωp(·)
∞

|f(x)|p(x) dx+ esssup
x∈Ωp(·)

∞

|f(x)|,

‖f‖Lp(·)(Ω) = inf{λ > 0 : %p(·)(f/λ) ≤ 1}.

The space Lp(·)(Ω) is the class of all functions f such that %p(·)(λf) <∞
for some λ = λ(f) > 0. Thus Lp(·)(Ω) is a Musielak–Orlicz space.

Given p(·) ∈ P(Ω), we define the conjugate function p′(·) ∈ P(Ω) by

p′(x) =





∞ if x ∈ Ωp(·)1 ,
1 if x ∈ Ωp(·)∞ ,
p(x)

p(x)− 1
if x ∈ Ωp(·)0 .

Lemma 2.8. Let p(·) ∈ P(Ω). Then
�

Ω

|f(x)g(x)| dx ≤ C(p(·))‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω)

for every f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω).

We shall say that {fn} ⊆ Lp(·)(Ω) converges modularly to a function
f ∈ Lp(·)(Ω) if limn→∞ %p(·)(f − fn) = 0.

Lemma 2.9. (1) The topology of Lp(·)(Ω) given by the norm coincides
with the topology of modular convergence if and only if p∗ <∞.

(2) Lp(·)(Ω) is complete.
(3) The dual space to Lp(·)(Ω) is Lp

′(·)(Ω) if and only if p(·) ∈ L∞(Ω).
(4) The space Lp(·)(Ω) is reflexive if and only if 1 < p∗ ≤ p∗ <∞.

Lemma 2.10. Let p(·) ∈ P(Ω) ∩ L∞(Ω).

(1) C∞0 (Ω) is dense in Lp(·)(Ω),
(2) Lp(·)(Ω) is separable.
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Given a multiindex α = (α1, . . . , αN ) ∈ NN , we set |α| = α1 + . . .+ αN
and Dα = Dα1

1 . . .DαN
N , where Di = ∂/∂xi is the generalized derivative

operator.
The space W k,p(·)(Ω) is the class of all functions f on Ω such that

Dαf ∈ Lp(·)(Ω) for every multiindex α with |α| ≤ k, endowed with the
norm

‖f‖Wk,p(·)(Ω) =
∑

|α|≤k
‖Dαf‖Wk,p(·)(Ω).

We denote by W k,p(·)
0 (Ω) the subspace of W k,p(·)(Ω) which is the closure of

C∞0 (Ω) with respect to the norm of W k,p(·)(Ω).

Lemma 2.11. W k,p(·)(Ω) and W
k,p(·)
0 (Ω) are Banach spaces, which are

separable if p(·) ∈ L∞(Ω) and reflexive if p(·) satisfies

1 < p∗ ≤ p∗ <∞.

We shall say that a function p(·) ∈ P(Ω) is ∗-continuous on Ω if

lim
y→x, y∈Ω

p(y) = p(x) for every x ∈ Ω

(i.e. even if p(x) =∞).
Throughout this paper, we suppose that p(·) is ∗-continuous on Ω and

p(·) ∈ L∞(Ω).

Lemma 2.12. (1) Let p(·), q(·) ∈ P(Ω). If q(x) ≤ p(x) for a.e. x ∈ Ω,
then the embedding W k,p(·)(Ω) ⊆W k,q(·)(Ω) is continuous.

(2) Let p(·) ∈ P(Ω). If p(·) is ∗-continuous on Ω, then the embedding
W

k,p(·)
0 (Ω) ⊆ Lp(·)(Ω) is compact.

Lemma 2.13. Let p(·) ∈ P(Ω) ∩ L∞(Ω). Then for every G in the dual
space (W k,p(·)

0 (Ω))∗, there exists a unique system {gα ∈ Lp
′(·)(Ω) : |α| ≤ k}

of functions such that

〈G, f〉 =
∑

|α|≤k

�

Ω

Dαf(x)gα(x) dx, f ∈W k,p(·)
0 (Ω).

In view of Lemma 2.13, we denote (W k,p(·)
0 (Ω))∗ by W−k,p

′(·)(Ω) and
endow it with the norm

‖v‖W−k,p′(·)(Ω) = sup
u∈Wk,p(·)

0 (Ω)

|〈u, v〉|.

We refer to O. Kováčik and J. Rákosnik [11] for the notions and lemmas
mentioned above.
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Lemma 2.14. If p(·) ∈ L∞(Ω) and u ∈W 1,p(·)
0 (Ω), then

�

Ω

|u|p(x) dx ≤ C
�

Ω

|Du|p(x) dx

where C is a constant depending on Ω.

Proof. Set R = diamΩ. By translation, we may assume that 0 < xn < R
in Ω. Then we can extend u to be zero outside Ω, so

u(x) =
xn�

0

Dnu(x′, t) dt a.e. x = (x′, xn) ∈ Ω.

Integrating with respect to xn, we have
R�

0

( |u(x′, xn)|
R

)p(x)

dxn

≤
R�

0

( xn�

0

|Dnu(x′, t)|
R

dt

)p(x)

dxn

≤
R�

0

xn�

0

(
xn|Dnu(x′, t)|

R

)p(x)

dt |xn|p(x)−1 dxn

≤ C
R�

0

xn�

0

|Dnu(x′, t)|p(x) dt dxn = C

R�

0

R�

t

|Dnu(x′, t)|p(x) dxn dt

= C

R�

0

(R− t)|Dnu(x′, t)|p(x) dt ≤ C
R�

0

|Dnu(x′, t)|p(x) dt

= C

R�

0

|Dnu(x)|p(x) dxn.

Finally we integrate with respect to x′ over Rn−1 and the conclusion fol-
lows.

Lemma 2.15. If p(·) ∈ L∞(Ω), then

lim
meas(E)→0

‖uχE‖Lp(·)(Ω) = 0

for all u ∈ Lp(·)(Ω).

Proof. By Lemma 2.10, for each ε > 0 and each u ∈ Lp(·)(Ω) there
exists w ∈ C∞0 (Ω) such that ‖u− w‖Lp(·)(Ω) < ε. Suppose that |w(x)| ≤ C

for all x ∈ Ω. Let meas(E) < 1. Then ‖χE‖Lp(·)(Ω) ≤ (meas(E))1/p∗ → 0
as meas(E) → 0. So there exists δ > 0 such that if meas(E) < δ, then
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‖χE‖Lp(·)(Ω) < ε/(2C). Now we get

‖uχE‖Lp(·)(Ω) ≤ ‖(u− w)χE‖Lp(·)(Ω) + ‖wχE‖Lp(·)(Ω)

≤ ‖u− w‖Lp(·)(Ω) + C‖χE‖Lp(·)(Ω) < ε,

that is to say, limmeas(E)→0 ‖uχE‖Lp(·)(Ω) = 0.

Lemma 2.16. Suppose that p(·) ∈ L∞(Ω). Let {uk}∞k=1 be bounded in
Lp(·)(Ω). If uk → u a.e. on Ω, then uk ⇀ u weakly in Lp(·)(Ω).

Proof. Suppose that ‖uk‖Lp(·)(Ω) ≤ C for each integer k. By Fatou’s
Lemma,

�

Ω

(
u

C

)p(x)

dx =
�

Ω

lim
k→∞

(
uk
C

)p(x)

dx ≤ lim inf
k→∞

�

Ω

(
uk
C

)p(x)

dx ≤ 1,

hence ‖u‖Lp(·)(Ω) ≤ C. Let ε > 0 and g ∈ Lp
′(·)(Ω). By Lemma 2.15,

limmeas(E)→0 ‖gχE‖Lp′(·)(Ω) = 0 and so there exists δ > 0 such that for all
E satisfying meas(E) < δ, we have

‖gχE‖Lp′(·)(Ω) <
ε

4C
.

By Egorov’s Theorem, there exists a set B such that uk → u uniformly on
B and meas(Ω \B) < δ. Finally choose K such that k > K implies

max
x∈B
|u− uk| · ‖g‖Lp′(·)(Ω)‖χΩ‖Lp(·)(Ω) <

ε

2

for all x ∈ B. Thus taking E = Ω \B, we have
∣∣∣

�

Ω

ug dx−
�

Ω

ukg dx
∣∣∣ ≤

�

B

|uk − u| · |g| dx+
�

Ω\B
|uk − u| · |g|dx

≤ ‖g‖Lp′(·)(Ω)‖χΩ‖Lp(·)(Ω) max
x∈B
|uk−u|+‖uk−u‖Lp(·)(Ω)‖gχΩ\B‖Lp′(·)(Ω) < ε

for all k > K, that is to say, uk ⇀ u weakly in Lp(·)(Ω).

3. Main theorem

Theorem 3.1. Under the conditions (H1)–(H5), the Dirichlet problem
(1.1)–(1.2) has at least one weak solution in W

1,p(·)
0 (Ω,RN ), that is to say ,

there exists at least one u ∈W 1,p(·)
0 (Ω,RN ) satisfying

(3.1)
�

Ω

[Aiα(x, u,Du)zi,α(x) +Bi(x, u,Du)zi(x)] dx = 0

for all z ∈W 1,p(·)
0 (Ω,RN ).
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Proof. Set V = W
1,p(·)
0 (Ω,RN ). For u ∈ V , define T : V → V ∗ in the

following way: for each w ∈ V ,

(3.2) (Tu,w) =
�

Ω

[Aiα(x, u,Du)wi,α(x) +Bi(x, u,Du)wi(x)] dx = 0.

Now we only need to show that there exists u ∈ V such that (Tu,w) = 0
for all w ∈ V . We will prove this in several steps.

1) T is strong-weakly continuous. Suppose that uk → u strongly in
W

1,p(·)
0 (Ω,RN ). Then ‖u‖V ≤ C for some constant C independent of k.

By (H2)–(H3), Aiα(x, uk,Duk) and Bi(x, uk,Duk) are bounded in Lp
′(·)(Ω).

Then by (H1) and Lemma 2.16, we know

(3.3) lim
k→∞

(Tuk, w) = (T ( lim
k→∞

uk), w) = (Tu,w).

That is to say, T is strong-weakly continuous.
2) T is coercive, i.e.

(3.4) lim
‖u‖V→∞

(Tu, u)
‖u‖V

= +∞.

By (H1)–(H2) and Lemma 2.14,

(Tu, u) ≥
�

Ω

[λ0|Du|p(x) − C|u|p(x) + h(x)− C ′1|Du|p(x)−1|u|

− C ′2|u|p(x) −G(x)|u|] dx
≥

�

Ω

[λ0|Du|p(x) − C|u|p(x) + h(x)− C ′1|Du|p(x) − C ′1|u|p(x)

− C ′2|u|p(x) − µ|u|p(x) − C(µ)(G(x))p
′(x)] dx

≥
�

Ω

[(λ0 − C ′1 − C∗(C + C ′1 + C ′2 + µ))|Du|p(x)

+ h(x)− C(µ)(G(x))p
′(x)] dx

where C∗ is the constant in Lemma 2.14.
When C,C ′1, C

′
2, µ are small, we can get

λ0 − C ′1 − C∗(C + C ′1 + C ′2 + µ) > 0.

By Lemma 2.12, we have

(3.5) (1 + C∗1 )‖ |Du| ‖Lp(·)(Ω) ≥ ‖u‖Lp(·)(Ω,RN ) + ‖ |Du| ‖Lp(·)(Ω) ≥ ‖u‖V
where C∗1 is the imbedding constant. In view of (3.5), it is easy to see that
‖ |Du| ‖Lp(·)(Ω) →∞ as ‖u‖V →∞. Taking ε sufficiently small, for example

ε =
1
2

(‖ |Du| ‖Lp(·)(Ω) − e
2

p∗+1 ln ‖ |Du| ‖
Lp(·)(Ω)),
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we have
�
Ω
|Du|p(x) dx

‖u‖V
=

�

Ω

( |Du|
‖ |Du| ‖Lp(·)(Ω) − ε

(‖ |Du| ‖Lp(·)(Ω) − ε)
)p(x) 1

‖u‖V
dx

≥
�

Ω

( |Du|
‖ |Du| ‖Lp(·)(Ω) − ε

)p(x)

dx
(‖ |Du| ‖Lp(·)(Ω) − ε)p∗

‖u‖V

≥
(‖ |Du| ‖Lp(·)(Ω) − ε)(p∗+1)/2

(1 + C∗1 )‖ |Du| ‖Lp(·)(Ω)
(‖ |Du| ‖Lp(·)(Ω) − ε)(p∗−1)/2

≥ 1
1 + C∗1

(‖ |Du| ‖Lp(·)(Ω) − ε)(p∗−1)/2 →∞

as ‖u‖V → ∞. As
�
Ω

[h(x) − C(µ)(G(x))p
′(x)] dx is bounded, we conclude

that (3.4) holds.
3) Now we construct an approximating sequence. By Lemma 2.10, we

can choose a basis {wk} of V such that the union of subspaces finitely
generated from {wk} is dense in V . Let Bs be the subspace of V generated
by w1, . . . , ws. By the coerciveness of T and Morrey [15], there exists us ∈ Bs
such that

(Tus, w) = 0

for all w ∈ Bs. By the coerciveness of T again, we know that ‖us‖V ≤ C
where C is independent of s. As V is reflexive, we can extract a subsequence
{uk} such that

uk ⇀ u0 weakly in V, Tuk ⇀ ξ weakly in V ∗, (ξ, w) = 0

where w is in a dense subset of V . For fixed ξ, by the continuity of (ξ, ·), we
get (ξ, w) = 0 for all w ∈ V . Considering (Tuk, uk − u0), we have

(Tuk, uk − u0) = (Tuk, uk)− (Tuk, u0) = −(Tuk, u0)→ 0

as k →∞. Set zk = uk − u0. Then

zk ⇀ 0 weakly in V as k →∞.
Consider (Tuk, uk − u0) once more:

(Tuk, uk − u0)

=
�

Ω

[Aiα(x, u0 + zk,Du0 +Dzk)zik,α +Bi(x, u0 + zk,Du0 +Dzk)zik] dx→ 0

as k →∞. By applying Lemma 2.12, we get

(3.6) zk → 0 strongly in Lp(·)(Ω,RN ).

In view of (H3) and (3.6), it is immediate that
�

Ω

Bi(x, u0 + zk,Du0 +Dzk)zik dx→ 0
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as k →∞, that is to say,

(3.7)
�

Ω

Aiα(x, u0 + zk,Du0 +Dzk)zik,α dx→ 0

as k →∞.
Now if we can prove that there exists a subsequence of {zk} which is

strongly convergent in V , then from the strong-weak continuity of T , we get
Tuk ⇀ Tu0 = ξ weakly in V as k → ∞ and u0 will be a weak solution of
(1.1)–(1.2).

4) We will find a subsequence of {zk} which is strongly convergent in V .
For each measurable set S ⊂ Ω, define

F (v, S) =
�

S

Aiα(x, u0 + v,Du0 +Dv)vi,α dx

where v ∈ W 1,p(·)
0 (Ω,RN ). Similarly to the remark in step 1, we can show

F (v, S) is strongly continuous in W 1,p(·)
0 (Ω,RN ). Since C∞0 (Ω,RN ) is dense

in W
1,p(·)
0 (Ω,RN ), there exists {fk} ⊂ C∞0 (Ω,RN ) such that

‖fk − zk‖V < 1/k, |F (fk, Ω)− F (zk, Ω)| < 1/k.

So we can suppose {zk} is in C∞0 (Ω,RN ) and bounded in W
1,p(·)
0 (Ω,RN ).

Next we define

zk(x) = 0 when x ∈ Rn \Ω.
In this way, we extend the domain of zk to Rn and {zk} ⊂W 1,p(x)

0 (Rn,RN )
and {zk} is bounded and supp zk ⊂ Ω.

Let η : R+ → R+ be a continuous increasing function satisfying η(0) = 0
and for each measurable set B ⊂ Ω,

sup
k

�

B

[(g(x))p
′(x) + h(x) + 1 + C(|u0|p(x) + |Du0|p(x) + |zk|p(x))] dx

≤ η(meas(B))

where C = C1 + C2 and C1, C2 are the two constants in (H2).
Let {εj} be a positive decreasing sequence with εj → 0 as j →∞. For ε1,

applying Lemma 2.3 to each of the N sequences {(M ∗zik)p(x)}, 1 ≤ i ≤ N ,
we get a subsequence {zk1}, a set Aε1 ⊂ Ω satisfying meas(Aε1) < ε1, and
a real number δ1 > 0 such that

�

B

(M∗zik1
)p(x) dx < ε1

for all k1, 1 ≤ i ≤ N and B ⊂ Ω \Aε1 satisfying meas(B) < δ1. By Lemma
2.4, we can choose λ > 1 so large that for all i and k1,

meas({x ∈ Rn : (M∗zik1
)(x) ≥ λ}) ≤ min{ε1, δ1}.
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For all i and k1, define

Hλ
i,k1

= {x ∈ Rn : (M∗zik1
)(x) < λ}, Hλ

k1
=

N⋂

i=1

Hλ
i,k1

.

By Lemma 2.6, we have

|zik1
(y)− zik1

(x)|
|y − x| ≤ C(n)λ

for all x, y ∈ Hλ
k1

and 1 ≤ i ≤ N . From Lemma 2.7, there exists a Lipschitz
function gik1

which extends zik1
outside Hλ

k1
and the Lipschitz constant of

gik1
is no more than C(n)λ. As Hλ

k1
is an open set, we have gik1

(x) = zik1
(x)

and Dgik1
(x) = Dzik1

(x) for all x ∈ Hλ
k1

, and

‖ |Dgik1
| ‖L∞(Rn) ≤ C(n)λ.

In view of Lemma 2.4, we can further suppose that

‖gik1
‖L∞(Rn) ≤ ‖zik1

‖L∞(Hλk1
) ≤ λ, ‖gk1‖W 1,p(·)(Ω,RN ) ≤ C.

By the boundedness of ‖gk1‖W 1,∞(Ω,RN ), there exists a subsequence of {gik1
}

(still denoted by {gik1
}) such that

(3.8) gik1
→ vi ∗ -weakly in W 1,∞(Ω) as k1 →∞

for 1 ≤ i ≤ N . Set (g1
k1
, . . . , gNk1

) = gk1 and (v1, . . . , vN ) = v. We have

F (zk1 , Ω) = F (gk1 , (Ω \Aε1) ∩Hλ
k1

) + F (zk1 , Aε1 ∪ (Ω \Hλ
k1

))(3.9)

= F (gk1 , Ω \Aε1) + F (gk1 , (Ω \Aε1) \Hλ
k1

)

+ F (zk1 , Aε1 ∪ (Ω \Hλ
k1

)).

Since

meas((Ω \ Aε1) ∩Hλ
k1

) ≤
N∑

i=1

meas((Ω \ Aε1) ∩Hλ
i,k1

) ≤ N min(ε1, δ1)

from (H2), (H4) and the choice of Aε1 , we get

(3.10) |F (gk1 , (Ω \ Aε1) \Hλ
k1

)|
≤

�

(Ω\Aε1 )\Hλk1

|Aiα(x, u0 + gk1 ,Du0 +Dgk1)gik1,α| dx

≤
�

(Ω\Aε1 )\Hλk1

[C1|Du0 +Dgk1 |p(x)−1|Dgk1 |

+ C2|u0 + gk1 |p(x)−1|Dgk1 |+G(x)|Dgk1 |] dx
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≤
�

(Ω\Aε1 )\Hλk1

[C1|Du0 +Dgk1 |p(x) + C1|Dgk1 |p(x) + C2|u0 + gk1 |p(x)

+ C2|Dgk1 |p(x) + (G(x))p
′(x) + |Dgk1 |p(x)] dx

≤
�

(Ω\Aε1 )\Hλk1

[C12p
∗−1|Du0|p(x) + C12p

∗−1|Dgk1 |p(x)

+ C1|Dgk1 |p(x) + C22p
∗−1|u0|p(x) + C22p

∗−1|gk1 |p(x)

+ C2|Dgk1 |p(x) + (G(x))p
′(x) + |Dgk1 |p(x)] dx

≤ 2p
∗−1η(meas((Ω \Aε1) \Hλ

k1
))

+ 2p
∗−1(C1 + C2 + 1)

�

(Ω\Aε1 )\Hλk1

(|gk1 |p(x) + |Dgk1 |p(x)) dx

≤ 2p
∗−1C(n,Ω,C1 + C2)

�

(Ω\Aε1 )\Hλk1

λp(x) dx+ 2p
∗−1η(Nε1)

≤ 2p
∗−1C(n,Ω,C1 + C2)

N∑

i=1

�

(Ω\Aε1 )\Hλi,k1

(M∗zik1
)p(x) dx+ 2p

∗−1η(Nε1)

≤ 2p
∗−1η(Nε1) + 2p

∗−1C(n,Ω,C1 + C2)Nε1 = V1(ε1),

while

(3.11) F (zk1 , Aε1 ∪ (Ω \Hλ
k1

))

=
�

Aε1∪(Ω\Hλk1
)

Aiα(x, u0 + zk1 ,Du0 +Dzk1)zik1,α dx

=
�

Aε1∪(Ω\Hλk1
)

Aiα(x, u0 + zk1 ,Du0 +Dzk1)(ui0,α + zik1,α) dx

−
�

Aε1∪(Ω\Hλk1
)

Aiα(x, u0 + zk1 ,Du0 +Dzk1)ui0,α dx

≥
�

Aε1∪(Ω\Hλk1
)

[λ0|Du0 +Dzk1 |p(x) − C|u0 + zk1 |p(x) + h(x)] dx

−
�

Aε1∪(Ω\Hλk1
)

[C1|Du0 +Dzk1 |p(x)−1|Du0|

+ C2|u0 + zk1 |p(x)−1|Du0|+G(x)|Du0|] dx
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≥
(

λ0

2p∗−1 − µ
) �

Aε1∪(Ω\Hλk1
)

|Dzk1 |p(x) dx

− C(µ, λ0, p(·), C1, C2, C)η(meas(Aε1 ∪ (Ω \Hλ
k1

)))

where µ > 0 is arbitrary. Taking

0 < µ <
λ0

2(p∗−1)/2
,

we have

F (zk1 , Aε1 ∪ (Ω \Hλ
k1

)) ≥ λ0

2(p∗−1)/2

�

Aε1∪(Ω\Hλk1
)

|Dzk1 |p(x) dx− V2(ε1)

where V1(ε), V2(ε)→ 0 as ε→ 0+.
Set Aε1 ∪ (Ω \Hλ

k1
) = U1

ε1,k1
, α0 = λ0/2(p∗−1)/2, V3(ε) = V1(ε) + V2(ε).

From (3.9)–(3.11), we get

(3.12) F (zk1 , Ω) ≥ F (gk1 , Ω \ Aε1) + α0

�

U1
ε1,k1

|Dzk1 |p(x) dx− V3(ε1).

Next, set
hk1 = gk1 − v

where v is defined by (3.8). Then

hk1 ⇀ 0 ∗ -weakly in W 1,∞(Ω,RN ) as k1 →∞
and

‖hk1‖L∞(Ω,RN ) ≤ 2λ, ‖ |Dhk1 | ‖L∞(Ω) ≤ 2C(n)λ.

Set G = {x ∈ Ω : v(x) 6= 0}. According to Acerbi and Fusco [1], we have

meas(G) ≤ (N + 1)ε1

and

(3.13) F (gk1 , Ω \Aε1)

= F (hk1 , (Ω \ Aε1) \G) + F (gk1 , (Ω \ Aε1) ∩Hλ
k1
∩G)

+ F (gk1 , (Ω \ Aε1) ∩ (G \Hλ
k1

))

= F (hk1 , (Ω \ Aε1) \G) + F (zk1 , (Ω \ Aε1) ∩Hλ
k1
∩G)

+ F (gk1 , (Ω \ Aε1) ∩ (G \Hλ
k1

)).

Define
U2
ε1 = (Ω \ Aε1) \G,

U3
ε1,k1

= (Ω \ Aε1) ∩Hλ
k1
∩G,

U4
ε1,k1

= (Ω \ Aε1) ∩ (G \Hλ
k1

).
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Similarly to the proof of (3.12), we get

(3.14) F (zk1 , U
3
ε1,k1

) ≥ α0

�

U3
ε1,k1

|Dzk1 |p(x) dx− V4(ε1).

On U4
ε1,k1

, we have
�

U4
ε1,k1

(|gk1 |p(x) + |Dgk1 |p(x)) dx ≤ NC(n,Ω)ε1.

Then similarly to the proof of (3.10), we have

|F (gk1 , U
4
ε1,k1

)| ≤ C(C1, C2, p(·))NC(n,Ω)ε1 + η((N + 1)ε1)(3.15)

= V3(ε1).

From (3.13)–(3.15), we get

F (gk1 , Ω \ Aε1) ≥ F (hk1 , U
2
ε1) + α0

�

U3
ε1,k1

|Dzk1 |p(x) dx− V4(ε1)− V5(ε1).

Define
U5
ε1,k1

= U3
ε1,k1

∪ U1
ε1,k1

.

From (3.12),

(3.16) F (zk1 , Ω) ≥ F (hk1 , U
2
ε1) + α0

�

U5
ε1,k1

|Dzk1 |p(x) dx− V6(ε1)

where V6(ε) = V3(ε) + V4(ε) + V5(ε).
Choose an open set Ω′ ⊂ Ω which contains U2

ε1 such that

|F (hk1 , Ω
′)− F (hk1 , U

2
ε1)| < ε1.

In view of (3.16), we get

F (zk1 , Ω) ≥ F (hk1 , Ω
′) + α0

�

U5
ε1,k1

|Dzk1 |p(x) dx− V7(ε1)

where V7(ε) = V6(ε) + ε.
Next approximateΩ′ by hypercubes with edges parallel to the coordinate

axes, i.e. construct




Hj =
⋃Ij
s=1Dj,s,

meas(Ω′ \Hj)→ 0 as j →∞,
meas(Dj,s) = 1/2nj , 1 ≤ s ≤ Ij ,
Hj ⊂ Ω′.
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Let j > 0 be so large that for all k1 > 0,

(3.17) |F (hk1 , Ω
′)− F (hk1 ,Hj)| < ε1,

�

Ω′\Hj
|Dhk1 |p(x)dx < ε1

and

meas(Ω′ \Hj) < min(ε1, δ1).

Then

(3.18) F (zk1 , Ω) ≥ F (hk1 ,Hj) + α0

�

U5
ε1,k1

|Dzk1 |p(x) dx− V8(ε1)

where V8(ε) = V7(ε) + ε.
Let

M = 2C(n)λ ≥ ‖ |Dhk1 | ‖L∞(Ω)

and α > 0 be so large that for E = {x ∈ Ω′ : a(x) ≤ α}, we have

meas(Ω′ \E) ≤ ε1/M,
�

Ω′\E
a(x) dx ≤ ε1

where

a(x) = 2p
∗−1[(1 + C1 + C2)|Du0(x)|p(x) + C2|u0(x)|p(x) + (G(x))p

′(x)].

For x ∈ Ω, s ∈ RN , ξ ∈MN×n, define

f(x, s, ξ) := Aiα(x, u0(x) + s,Du0(x) + ξ)ξiα.

By Lemma 2.1, there exists a compact subset K ⊂ Hj such that f(x, s, ξ)
is continuous on K × RN ×MN×n and

meas(Hj \K) <
ε1

α+M
.

Divide each Dj,s into 2nm hypercubes Qmh,s,j with edge length 2−jm, 1 ≤
h ≤ 2nm. For all j, s,m, h, take xmh,s,j ∈ Qmh,s,j ∩K ∩E (if this set is empty,
take xmh,s,j ∈ Qmh,s,j) such that

a(xmh,s,j) meas(Qmh,s,j) ≤
�

Qmh,s,j

a(x) dx.

Then

(3.19) F (hk1 ,Hj)

= F (hk1 ,Hj ∩K ∩E) + F (hk1 ,Hj \E) + F (hk1 , (Hj ∩E) \K)
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≥ F (hk1 ,Hj ∩K ∩E)−
�

Hj\E
a(x) dx−

�

(Hj∩E)\K
a(x) dx

− 2p
∗−1(1 + C1 + C2)

( �

Hj\E
[|Dhk1 |p(x) + |hk1 |p(x)] dx

+
�

(Hj∩E)\K
[|Dhk1 |p(x) + |hk1 |p(x)] dx

)

= F (hk1 ,Hj ∩K ∩E)− V9(ε1)

= ajk1
+ bm,jk1

+ cm,jk1
+ dm,jk1

− V9(ε1)

where

ajk1
=

�

Hj∩K∩E
[f(x, hk1(x),Dhk1(x))− f(x, 0,Dhk1(x))] dx

bm,jk1
=
∑

h,s

�

Qmh,s,j∩K∩E
[f(x, 0,Dhk1(x))− f(xmh,s,j , 0,Dhk1(x))] dx

cm,jk1
=
∑

h,s

�

Qmh,s,j

f(xmh,s,j , 0,Dhk1(x)) dx

dm,jk1
= −

∑

h,s

�

Qmh,s,j\(K∩E)

f(xmh,s,j , 0,Dhk1(x)) dx.

By the uniform continuity of f on bounded sets of K × RN ×MN×n and
(3.7), we have

lim
k1→∞

ajk1
= 0, lim

k1→∞
F (zk1 , Ω) = 0

and the pointwise convergence of u0(xmh,s,j), Du0(xmh,s,j) implies

lim
m→∞

hm,jk1
= 0

uniformly with respect to k1, for fixed j, and

|dm,jk1
| ≤

∑

h,s

�

Qmh,s,j\(K∩E)

[a(xmh,s,j) + 2p
∗
(1 + C1 + C2)M ] dx

≤ C(α+M) meas((Hj ∩ E) \K) + C
�

Hj\E
[a(x) +M ] dx

≤ C(C1, C2, p(·))ε1.

Now we suppose that m is so large that |bm,jk1
| < ε1 for each k1 > 0 and there

exists k1 > 0 such that F (zk1 , Ω) < ε1, |ajk1
| < ε1 for k1 > k1. Therefore

from (3.7), (3.18) and (3.19), we have
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ε1 ≥ F (zk1 , Ω)(3.20)

≥ cm,jk1
+ α0

�

U5
ε1,k1

|Dzk1 |p(x) dx− V8(ε1)− V9(ε1)

− 2ε1 − C(C1, C2, p(·))ε1

= cm,jk1
+ α0

�

U5
ε1,k1

|Dzk1 |p(x) dx− V10(ε1).

As hk1 ⇀ 0 weakly in W 1,∞(Ω,RN ) as k1 →∞, we obtain

Rk1,m
h,s,j = ‖ |hk1 | ‖L∞(Qmh,s,j) → 0 as k1 →∞

for fixed m.
Define a hypercube Ek1,m

h,s,j contained in Qmh,s,j with edge length 1/2jm −
2Rk1,m

h,s,j such that

dist(∂Qmh,s,j , E
k1,m
h,s,j ) = Rk1,m

h,s,j .

Next define

fk1(x) =

{
0, x ∈ ∂Qmh,s,j ,
hk1(x), x ∈ Ek1,m

h,s,j .

Since fk1 is a Lipschitz mapping on the set where it is defined and its Lip-
schitz constant is no more than 2C(n)λ, by Lemma 2.7, fk1 can be extended
to the whole Qmh,s,j , where it is also a Lipschitz mapping with the same
Lipschitz constant. We still denote the extension by fk1 and suppose that it
is defined on the whole Hj . Then by [4],

Dfk1(x)−Dhk1(x)→ 0 a.e. on Hj .

So there exists a k1 > k1 such that for all k1 > k1, we have
�

Hj

|Dfk1 −Dhk1 |p(x) dx ≤ ε1

2
,

∣∣∣
∑

h,s

�

Qmh,s,j

[f(xmh,s,j , 0,Dhk1)− f(xmh,s,j , 0,Dfk1)] dx
∣∣∣ ≤ ε1

2
.

In view of (H5),

cm,jk1
=
∑

h,s

�

Qmh,s,j

f(xmh,s,j , 0,Dhk1) dx ≥
∑

h,s

�

Qmh,s,j

f(xmh,s,j , 0,Dfk1) dx− ε1

2

≥
∑

h,s

ν
�

Qmh,s,j

|Dfk1 |p(x) dx− ε1

2
≥ ν

2p∗−1

�

Hj

|Dhk1 |p(x) dx− (ν + 1)ε1

2
.
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Thus in (3.20) for k1 ≥ k1, we have

ε1 ≥ α0

�

U5
ε1,k1

|Dzk1 |p(x) dx+
ν

2p∗−1

�

Hj

|Dhk1 |p(x) dx− (ν + 1)ε1

2
− V10(ε1).

Set

K(ε) =
V10(ε) + (ν + 3)ε/2
min(α0, ν/2p

∗−1)
.

Then

(3.21)
�

Hj

|Dhk1 |p(x) dx+
�

U5
ε1,k1

|Dzk1 |p(x) dx ≤ K(ε1)

for k1 > k1. From (3.17) and (3.21), we deduce that
�

Ω′

|Dhk1 |p(x) dx ≤ K(ε1) + ε1,
�

U5
ε1,k1

|Dzk1 |p(x) dx ≤ K(ε1).

According to the definition of Ω′, we have
�

U2
ε1

|Dgk1 |p(x) dx ≤ K(ε1) + ε1.

Since Dgk1(x) = Dzk1(x) for each x ∈ Hλ
k1

, we get
�

U2
ε1
∩Hλk1

|Dzk1 |p(x) dx ≤ K(ε1) + ε1.

By the definition of U2
ε1 and U5

ε1,k1
, it is immediate that

(U2
ε1 ∩Hk1) ∪ U5

ε1,k1
= Ω,

which implies that
�

Ω

|Dzk1 |p(x) dx ≤ 2K(ε1) + ε1 = W (ε1)

where W (ε)→ 0 as ε→ 0+.
For ε2 > 0 and the sequence {zk1}, repeating the above arguments we

can extract a subsequence of {zk1}, denoted by {zk2}, such that
�

Ω

|Dzk2 |p(x) dx ≤W (ε2)

whenever k2 > k2 for some k2. If {zkn} has been obtained, repeating the
above process, we can extract a subsequence of {zkn}, denoted by {zkn+1},
which satisfies �

Ω

|Dzkn+1 |p(x) dx ≤W (εn+1)
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whenever kn+1 > kn+1 for some kn+1. Finally, by a diagonal argument we
get a subsequence {zki}∞i=1 of {zk} which satisfies

�

Ω

|Dzki |p(x) dx→ 0 as i→∞.

By Lemma 2.9, we have

‖ |Dzki | ‖Lp(·)(Ω) → 0 as i→∞

and furthermore {zki}∞i=1 converges to zero strongly in W
1,p(·)
0 (Ω,RN ) as

i→∞. This completes the proof of Theorem 3.1.

If we choose p(x) ≡ p, 1 < p <∞, then we get

Corollary 3.1. Assume the following conditions:

(G1) The same as (H1).
(G2) |A(x, s, ξ)| ≤ C1|ξ|p−1 +C2|s|p−1 +G(x), where G ∈ Lp′(Ω), C1, C2

≥ 0 and C2 is small , 1/p+ 1/p′ = 1.
(G3) |B(x, s, ξ)| ≤ C ′1|ξ|p−1 +C ′2|s|p−1 +G(x), where G ∈ Lp′(Ω), C ′1, C

′
2

≥ 0 and are small.
(G4) Aiα(x, s, ξ)ξiα ≥ λ0|ξ|p −C|s|p + h(x), where λ0 > 0, C ≥ 0 is small

and h ∈ L1(Ω).
(G5) For almost every x0 ∈ Ω, s0 ∈ RN , the mapping ξ 7→ A(x0, s0, ξ)

satisfies
�

G

Aiα(x0, s0, ξ0 +Dz(x))zi,α(x) dx ≥ ν
�

G

|Dz(x)|p dx

for each ξ0 ∈MN×n, G ⊂ Rn, z ∈ C1
0 (G,RN ) where ν > 0.

Then the system (1.1)–(1.2) has at least one weak solution which satisfies

u ∈W 1,p
0 (Ω,RN )

and �

Ω

[Aiα(x, u,Du)zi,α(x) +Bi(x, u,Du)zi(x)] dx = 0

for all z ∈W 1,p
0 (Ω,RN ).
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