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Vector-valued wavelets and the Hardy space H!(R", X)
by

Tuomas HYTONEN (Turku)

Abstract. We prove an analogue of Y. Meyer’s wavelet characterization of the Hardy
space H'(R™) for the space H'(R", X) of X-valued functions. Here X is a Banach space
with the UMD property. The proof uses results of T. Figiel on generalized Calderon—
Zygmund operators on Bochner spaces and some new local estimates.

1. Introduction. One of the main aspects of the theory of Hardy spaces
is the equivalence of their various definitions. In the real-variable theory, one
finds (at least) four major types of characterizations of H': integrability of
maximal functions, integrability of square functions, integrability of conju-
gate functions (the Hilbert transform, or its variants), and atomic decompo-
sitions. In the present paper, we contribute to this theory by establishing a
number of characterizations of the square function type for the Hardy space
H'(R", X) of Banach-space-valued functions, which is initially defined in
terms of the atomic decomposition as follows:

We say that f € HY(R", X) if f € L'(R", X) has an expansion

f(x) = Zai(aj), suppa; C B, Sai(aj) dx =0,
i=1

where the B; are balls in R”, and we have

o0
(1.1) > " laillpore, x| Bil 7 < o0,

i=1
where p€|1, oo is fixed, and p’ denotes the conjugate exponent, 1/p+1/p'=1.
The norm ||f|| g1 ®n, x) is defined as the infimum of the values (1.1) taken
over all such decompositions. Its numerical value depends on the choice of

€ ]1,00[, but it is well known that each p € |1, o[ (actually also p = o)

gives the same space H'(R", X) with an equivalent norm (cf. [16] for a
treatment in the vector-valued setting).
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Let us note that this atomic definition of H!(R", X) is known to agree
with one given in terms of various maximal functions, even for an arbitrary
Banach space X. Actually one can check that the proof of this fact in the
scalar case, as given e.g. in E. M. Stein’s book [21], goes through word for
word in the general setting. For n = 1, the “conjugate Hardy space”, defined
as the domain of the Hilbert transform on L!(R, X) with the graph norm,
is always (i.e., without any conditions on the Banach space X) contained in
the atomic Hardy space, and agrees with it exactly when X is a UMD space.
(See the papers of O. Blasco [1], J. Bourgain [3] and D. L. Burkholder [5] in
this connection.) None of these results, however, will play a role in the proof
of our main characterization theorem, but we always work with the atomic
definition.

The square function description of H!(R™, X) that we have in mind in-
volves the wavelet expansion of a function, and extends Y. Meyer’s [18]
characterization of H'(R"™). Recall (cf. [18] for more details) that a wavelet
basis of L2(R™) is a complete orthonormal system (v)xea, Where A is the
set of dyadic n-vectors of the form A\ = k277 + n277~! (j € Z, k€ Z",
n € {0,1}*\ {0}), and ty(x) = 277/2"(27x — k), where 1" € L?*(R™),
n € {0,1}™\ {0}, are the 2" — 1 mother wavelets. The basis is called r-regular
if |0y (z)| < Cr(1+|z])~™ and {2z (z) dx = 0 for all |of < r, allm € N
and all n € {0,1}"\ {0}. Meyer’s theorem is the following:

1.2. THEOREM ([18]). Let (¥x)xea be a 1-reqular wavelet basis of L*(R™).
The following conditions are equivalent for the distribution f(x) =

> xea aa(z):

(1.3) f e HYR™),
g e [ e, <o
(1.5 (;wamw-)\?)l Pepan,

-
(1.6 (Z 0 PIQM) g () € L),
(1.7 (3 PR 1ry () € 1@,
where -

e the first supremum in (1.4) is taken over all finite subsets F' of A,
e Q(N\) :=277([0,1[" + k) for A = k279 + 27771,
o R(\) :=277(A" + k), where A" is any non-degenerate cube.



Vector-valued wavelets 127

For historical reflection, we note that Meyer’s theorem was preceded by a
similar characterization using spline bases of order r > 2 obtained by S.-Y. A.
Chang and Z. Ciesielski [7]. Moreover, the direction from the square function
estimates to the atomic decomposition in Meyer’s proof is a variant of ideas
that already appeared in similar situations in a number of earlier works,
apparently for the first time in A. P. Calderén’s treatment of “parabolic” HP
spaces [6], and then in the papers of Chang and R. Fefferman [8, 9].

Theorem 1.2 can also be viewed as a wavelet analogue of B. Davis’ in-
equality for martingales [11], as both assert that the L' norm of a certain
square function gives an equivalent norm on H'. In fact, if we could, for
n = 1, take our wavelet basis to be the Haar system on L?(R), then the
function appearing in (1.5), as well as that in (1.6), would be the martingale
square function of f with respect to the dyadic filtration of the real line.
However, the Haar system, although a wavelet basis, is not 1-regular, and
actually the square function condition just described does not characterize
the membership of f in H'(R) but in the smaller dyadic Hardy space, which
indeed coincides with the martingale Hardy space related to the dyadic fil-
tration (cf. [18]). Thus, while the results are analogous, they do not cover
each other.

It is the martingale Hardy space that seems to have been more inten-
sively studied in the vector-valued context, which is rather natural since the
fundamental UMD condition—which one typically needs to impose on the
Banach space X in order to have some deeper-lying analytic results—is itself
stated in terms of martingales. Recall that a Banach space X is UMD if for
some (and then all, cf. [5]) 1 < p < oo there is a finite constant C' so that

(18) H ;ekdk‘ LP(2,X) = CH kzzldk‘

for all n € Z,, whenever (e;)}_; € {—1,+1}" and (di)}_, € LP(£2, X)" is
a martingale difference sequence on an arbitrary probability space ({2, A, u)
(i.e., there are sub-o-algebras Ag C A; C --- C A, C A such that for
all k = 1,...,n, the function dj is Ag-measurable and SA di dp = 0 for all
A € Ag_1). P. F. X. Miiller and G. Schechtman [20] have extended Davis’
inequality, with the square function rewritten in terms of a Rademacher
average, to the UMD-space-valued H'.

Other vector-valued results closely related to the present investigation
are due to T. Figiel [13|. He established the unconditionality of wavelet
decompositions in LP(R™, X)) when X is a UMD space and 1 < p < oo.
While the result itself does not involve martingales, its proof is based on
martingale techniques, and in particular on the unconditionality of the Haar
system on LP(R™, X). This is an easy consequence of the UMD inequality,
as the Haar functions (with X-valued coefficients) on [0, 1], in their natural

LP(2,X)
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ordering, constitute a martingale difference sequence for which (1.8) applies;
the resulting estimate is readily transferred to the Haar system on R™. Let
us also recall a theorem of B. Maurey [17], which asserts that the validity
of (1.8) for this particular choice already implies the full UMD condition.

A similar approach based on the defining inequality (1.8) of UMD spaces
does not seem available in the case of our interest, because of the already
mentioned reason that the Haar system does not span the full H'(R", X)
space but only its dyadic analogue. On the contrary, we will be concerned
with the Calder6n—Zygmund-theoretic properties of UMD spaces, which were
revealed by the works of D. L. Burkholder [4], J. Bourgain [3] and T. Figiel
[14] in the 80’s: They established the LP(R"™, X)-boundedness, respectively,
of the Hilbert transform, of all singular convolution operators with a stan-
dard kernel, and finally of generalized Calderén-Zygmund operators as in
the T'(1) theorem of G. David and J.-L. Journé [10]. Conversely, Bourgain
also showed that the Hilbert transform boundedness again implies the UMD
condition (1.8).

We now come to the statement of our main theorem. As in Miiller
and Schechtman’s formulation of the UMD-valued Davis’s inequality, and
in many other results of analysis of vector-valued functions, we replace the
square functions in (1.5) through (1.7) by Rademacher averages. We denote
by €, independent random variables on some probability space {2 with dis-
tribution P(ey = +1) = P(ey = —1) = 1/2. E. denotes the corresponding
expectation. Then we have:

1.9. THEOREM. Let X be a UMD space, let (¥x)xea be a l-regular

wavelet basis of L*>(R"), and o € XA The following conditions are equivalent
for the X -valued distribution f(x) = > y\c 4 aat¥a():

(1.10) feH (R" X),

1.11 su su EaY . < 00,

(1.11) w3 SOXO] .

(1.12) S E. ZE,\a)\w)\(:r)‘Xd:U < 00,
R*  Aed

(1.13) S E. Zzs)\a)\\Q()\)\_lle(/\)(m)‘Xdx < 00,
R*  AeA

(1.14) e AEZAswm@u)rlﬂm@xm\xd:c <o,

where F, A\, Q()\) and R(\) = 277(A" + k) have the same meaning as in
Theorem 1.2. Moreover, the expressions (1.11) through (1.14) define equiv-
alent norms on H'(R™, X). Consequently, the wavelet series of f converges
unconditionally to f in the HY(R™, X) norm.
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Note that the condition (1.14) a priori depends on the choice of the cubes
A" defining the R(\)’s. However, the proof will show that the validity of this
condition for any one choice of the A"’s already implies it for all possible
choices. Also recall that (1.10) has an implicit dependence on the exponent
p € ]1, 0o[ appearing in the definition of H!(R", X), but no such dependence
is present in the other four conditions. Thus, as a by-product, we also obtain
a new proof of the p-independence of the atomic definition of H'(R", X)
when X is a UMD space.

To simplify the proof of Theorem 1.9 to be given in the following sections,
note that it suffices to establish the equivalence of the different norms in the
case of (a))xe finitely non-zero. The general case then follows by standard
methods, using the density in H'(R", X) of such functions.

The paper is organized as follows: In Sec. 2 we show that (1.10) implies
the other conditions; the main arguments here are based on Figiel’s T'1 the-
orem [14]. The reverse direction, which consists of constructing an atomic
decomposition for a function f satisfying a randomized “square-function” es-
timate, is given in Sec. 3 and involves some new local estimates. We conclude
with a discussion of the vector-valued BMO space and its duality with H*
in Sec. 4.

1.15. REMARK. The validity of Theorem 1.9 on H'(R, X) actually char-
acterizes the UMD property of X. Indeed, let X be any complex Banach
space and let the conclusions of Theorem 1.9 be satisfied. Let (¢))xea be
the Littlewood—Paley wavelet basis of Meyer [18]. Since Uy € D(R) is sup-
ported away from the origin (where the multiplier of the Hilbert transform
has a discontinuity), and since the Hilbert transform is an isometry on L?(R),
it follows that (H1y)xeA, too, is an infinitely regular wavelet basis of L%(R).

But then, according to our assumption, the H'(R, X) norms of both
f(x) = > axtp(z) and Hf(z) = > axHyy(z) are comparable (with con-
stants independent of f) to the quantity (1.13). In particular, || H f|| g1 x) <
C|fll 1 (r,x), and so H is bounded on H'(R, X). This is equivalent to its
LP(R, X )-boundedness (a result due to Blasco [1]), and thus to the UMD
property of X. Since Blasco’s proof is given in the slightly different periodic
setting, let us briefly indicate the argument for the present case: For an oper-
ator with a standard kernel, the H'(R, X )-boundedness implies boundedness
from L (R, X) |[compactly supported L functions with vanishing integral,
equipped with the norm of L>(R, X)| to BMO(R, X). See [16, p. 49] for an
argument valid in the vector-valued setting. Then we just use interpolation;
again cf. [16].

Acknowledgments. I wish to thank Dr. Hans-Olav Tylli, who brought
the results of T. Figiel to my attention; Prof. Tadeusz Figiel himself, who
kindly supplied me with further pieces of his work; and Prof. Oscar Blasco,
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2. Implications using Calder6n—Zygmund operators. In proving
Theorem 1.9, we will need to apply several transformations of the wavelet
series. All these transformations will have the generic form of an integral
operator

Tf(@) = | ke,y) /() dy,
RTL
where the kernel k is actually bounded and integrable. What is important is
to obtain appropriate uniform bounds for operator norms of different oper-
ators T of this kind.

T. Figiel [14] has generalized the famous T'1 theorem of G. David and
J.-L. Journé to the setting of X-valued L spaces. (See also [15], where an
intermediate estimate omitted in [14] is proved in detail.) A rather general
formulation of this result is given in [14]; for our purposes, the following
version is sufficient:

2.1. PROPOSITION ([14]). Let k(z,y) € L'(R™ x R") satisfy the standard
estimates

|k(z,y)| < Klo—y|™"  |[Vak(z,9)]| + [Vyk(z,y)| < wlz —y[7" 7
Assume, moreover, that T is bounded on L?(R™) with operator norm at
most k. Then T is also bounded on LP(R™, X), where X is any UMD space,
with norm < Cp(X)k, for all p € ]1,00[, and it is bounded from H'(R", X)
to LY(R™, X) with norm < C1(X)k. If, in addition,

[T'1)(y) == | k(z,y)dz =0,
Rn

then T is bounded on H'(R"™, X) with norm < Co(X)x.

This proposition is essentially a statement of the fact that for an operator
defined in terms of a kernel which satisfies the standard estimates, the con-
ditions of the T'1 theorem are necessary and sufficient: Since T' is bounded
on L?(R™), it satisfies these conditions, but then the vector-valued version
applies to give the boundedness on LP(R"™, X). For our purposes, we would
actually only need a special T'1 theorem, i.e., the case T1 =0 = T"1.

It is a well known fact, in which the vector-valued situation brings no com-
plications, that an integral operator satisfying the standard estimates and
bounded on LP(R™, X) is also bounded from H'(R", X) to L'(R", X). As for
the H'(R", X )-boundedness under the additional assumption, see Y. Meyer
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and R. Coifman [19, Th. 3 of Ch. 7]. (This is also an extension argument,
which goes through in the vector-valued setting without modifications.)

2.2. COROLLARY. Let (ay)xea, (bx)aca be orthogonal sets in L?(R™)
satisfying
onj/2 o o onj/2+j
- < -
T A G e sy Ty i 7
for all X = k279 + 7027971 and all m € N, with similar estimates for the
(bx)xea. Consider the integral operators with kernels given by

k(z,y) = Z vaax(z)ba(y),

AEF

lax(2)] < O

where ' C A is any finite set and vy € C, |va| < 1. These are uniformly
bounded on LP(R", X), and from H'(R", X) to L'(R", X), with the operator
norms depending only on p € |1, 00, the UMD constant of the space X, and
the quantities C,,, m € N. If the ay’s have vanishing integral, then we also
have boundedness on H'(R"™, X) with a similar estimate for the norm.

Proof. From the assumed pointwise estimates, it easily follows that ||ay||2
< C, which depends only on the C,,’s, and similarly ||by]l2 < C. Then a
bound depending only on the C,,’s is easily derived for the operator norm
of f =3 scrvaax(bx, f) on L?(R™), using the orthogonality of the two sets
(ax) and (by).

It is also a routine exercise to verify the standard estimates for the ker-
nel k, with the constant only depending on the C),’s. Then the assertion
follows from Prop. 2.1. =

Now the first steps in our main theorem follow at once:

Proof of (1.10)=-(1.11)=-(1.12). The first implication is immediate from
the fact that, for any ' C A and € € {+1}/,

> exa(@)da(y)
AEF
are kernels of the kind considered in Cor. 2.2. Clearly the integral operator
with the kernel given above maps f to Y ycpexanya(-).
The second implication is obvious, since the L' norm on the probability
space {2 is dominated by the L°° norm. m

For the proof of further implications, we will need regular wavelet bases
with the mother wavelet non-vanishing at a preassigned point. This is a
somewhat untypical need, since usually it is the cancellation and vanishing
properties of the wavelets which are desired.

2.3. LEMMA. For every x € R, there exists an infinitely reqular wavelet
¥ on R such that () # 0.
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Proof. The proof is based on a modification of Meyer’s construction of
the Littlewood—Paley multiresolution analysis ([18, §2.2]), and the related
wavelet ([18, §3.2]). In that construction, one starts with an even, non-
negative function § € D(R) such that 6(§) = 1 for |¢] < 27/3, 8(§) = 0
for |¢] > 4m/3, and 6%(&) + 6?(2m — €) = 1 for £ € [0,27]. Our modifi-
cation consists in choosing an n € C°°(R), which is required to be 0 on
[—27/3, 27 /3] but otherwise arbitrary, and taking 9¥(¢) := 6(€)e(€). We set
¢ = 0, the inverse Fourier transform.

It follows, for m(&) := 3" ¢, that

oo 27

| S cwste =0 = o Im@9@ I3 = 5= 3§ im(©)o(e +2mj) 2 de
j=—00 0
2
= o= § m(©)P de =" lel

0

since S [9(¢ + 27j)|? = 1, as is easily verified, and so ¢(- — k), k € Z, are
the orthonormal basis of a closed subspace Vy of L?(R), which gives rise to
a multiresolution analysis of L?(R).

We then pass to the construction of the corresponding wavelet 1. Fol-
lowing [18, §3.2], we compute the auxiliary coefficients

o0 3 o . k
= _goo % ¢<§)¢(x + k) do = % _50019(25)1%96’“5 dé = % <z>(5),

since ¥(£) = 1 on the support of ¥(2¢).
Then

mo(§) == Y ape™t = > 9(=2(¢ + 2kn))

k=—o00 k=—o00

by Poisson’s summation formula, and (£) := e~%/29 (¢), where

V(£/2), § € x[dm/3,8m/3],
91(€) :=mo(§/2 + m)9(£/2) = § V(=€ +2m), €€ £[2n/3,47/3],
0, else,

where the last equality follows readily upon taking into account the sets on
which ¥ equals 1 or 0. Note that ¥1|+[2r/3 47 /3] is obtained from 91| (4r/3 87/3]
by reflecting and scaling about the point +47/3; in fact

D14 /3 — €) = 9(2m/3 +¢),
V(4 /34 28) =927 /3+&) for £ € ]0,27/3],
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and similarly on the negative axis. Thus

1T :
(2.4) Pz +1/2) = o S @1/ ~1E/2 (¢ g
27 /3
= S (@(27‘-/3 + g)ei(4ﬂ'/3*£)w + 219(27_‘_/3 + f)ei(47r/3+2£)w) df
0
+ an integral over the negative half-line.

Now the phase of ¥ on £[47/3,87/3] is under control; moreover, it can

be adjusted independently on the positive and negative line segments. By
symmetry, it then suffices to show that we can make the integral Sgﬂ/g(. L) dg
above non-vanishing by an appropriate choice of this phase. We choose this
phase in such a way that
2m/3 2w
Re | 0(2r/3+&)eWm/3+207 ge > = {1927 /3 + )| d¢;
0 0

=~

then the integral in (2.4) is estimated by
27 /3 2m/3 27 /3

|V a@+menae = | | meael- | ne)a
0 0 0

3 27/3
> <§ - 1) | [9@2r/3+¢)de > 0.
0

Thus, for an arbitrary = € R, we have constructed a wavelet v such that
(x4 1/2) # 05 in fact, one with |[¢(z 4+ 1/2)| > ¢, where ¢ > 0 does not
depend on z. =

The n-dimensional version follows readily by a tensor product construc-
tion. Recall that the 2" — 1 mother wavelets in the n-dimensional setting
are naturally indexed by n € {0,1}" \ {0}. We denote by ¢ := (1,...,1) the
n-vector all of whose entries are 1.

2.5. COROLLARY. For any © € R"™, there exists an infinitely regular
wavelet basis of L*(R™) such that *(z) # 0.

Proof. Let ;0 := ¢, i1 := 1; be (infinitely regular) father, resp.
mother, wavelets on R for i = 1,...,n. For n € {0,1}", y € R", define

1(y) = [ [ i (wa)-
i=1

Then ¢", n € {0,1}™\{0}, is the set of (infinitely regular) mother wavelets for
a multiresolution analysis of L2(R"). By choosing the 1-dimensional wavelets
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i1 in such a way that ;1 (z;) # 0 for a given = = (z1,...,xy), we clearly
ensure the condition ¥*(z) # 0. =

Proof of (1.10) = VA" : (1.14)=(1.13). Let A", n € {0,1}"\ {0}, be
non-degenerate cubes, and define

A= U A,
n€{0,1}7\{0}
this is a compact set.

For every x € A, we choose an infinitely regular wavelet basis (15 x)xea
such that ¢%(z) # 0. By continuity of ¢%, we have 1%, (U,) # 0 for some neigh-
bourhood U, of z, and then by compactness we can choose finitely many,
say m, infinitely regular wavelet bases (1; x)xea such that Y ", |t(z)| >
¢ > 0 for all x € A. Now the kernels

Y. @22z — k)ds(y)
AEF :n=mno
satisfy the assumptions of Cor. 2.2; hence they define uniformly bounded
integral operators from H'(R", X) to L'(R", X), and thus

SoE | Y erand 2t — k)| _de < Ol f e x)-
=1 R XeF

The contraction principle permits replacing Vi (2z—k) by its absolute value
above, and using the fact that Y " | [¢)}(272—Fk)| > clan(2/x—k) = clg\ ()
and the contraction principle again, we finally deduce
E. | |2 exanl@) ™ 1a0 )] do < Cllf i an x):
R XeF
The fact that (1.14) for all A" implies (1.13) is evident, since (1.13) is
just the special case of (1.14) with A7 =[0,1[". =

Proof of (1.12) = JA" : (1.14). It suffices to observe that necessarily
| ()| > ¢ > 0 for all z in some cube A"; then the expression in (1.14) can
be dominated by that in (1.12) according to the contraction principle. =

Now we have shown that

(1.10) = (1.11) = (1.12) = 3A" : (1.14), and

(1.10) = VA" : (1.14) = (1.13) = A" : (1.14)
(where the last implication was not mentioned explicitly before, but it is
trivial).

3. Construction of the atomic decomposition. To complete the
proof of Theorem 1.9, we need to show that the condition (1.14), for any
cubes A" whatsoever, implies the existence of an atomic decomposition for f;
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moreover, the H' norm of f computed in terms of this decomposition should
be controlled in terms of the expression in (1.14). Note that, without loss
of generality, we may take the A" to be dyadic cubes of side-length < 1,
since the expression in (1.14) decreases when the sets A" (and hence R(\))
decrease. When this is done, it follows that the R()\) are dyadic cubes as well.

To achieve the atomic decomposition, we are going to modify the con-
struction used by Meyer [18]. Certain parts of the proof are in almost one-
to-one correspondence with the scalar-valued case; however, there are also
significant departures from Meyer’s reasoning.

Let us fixan o € {0,1}"\{0}, and consider f =3, , _ axir(z), where
the summation runs over all X of the form k277 4+ n277~1 where n = no. It
clearly suffices to decompose each of the 2™ — 1 series of this kind. Then we
can use a different indexing system which is more convenient in the present
context: Let R be the collection of all the cubes R(\) = 277(A" + k) such
that n = 7ng. Then, instead of A, we can use R as our index set, and we write
e instead of €). Moreover, write ag := a) for R = R(\) and 1 = 7. Since
|Q(N)| and |R()A)| only differ by a multiplicative constant independent of A
(as long as 1 = g is fixed), we can further replace the factor |Q(\)|~'/2 in
our equations by |R|~!/2.

Following [18], we set

o(x) == E.| Y crarl R 1r(a)| ;
ReR
then o € L'(R") by the standing assumption (1.14).
We further adopt the following notations:
Ep:={z:0(z) > 2%}, Cp.:={ReR:|RNE>pBR|},
Ay = Cp \ Ct1,

where we fix some [ € ]0,1[. Note that, if ag # 0, then o(x) > |ag|x for all
x € R. Thus R C Ej, and hence R € Ci, for all small enough k.

The maximal members of Cj, will be denoted by R(k,[), where [ runs over
an appropriate index set, and

A(k,l):={R € Ay : R C R(k,1)}.

Note that

(3.1) D Rk, <> BT Rk D) N Ey| < 87 By
l l

and

(3.2) > 2ME < 2lo]|i@n)-

k=—o00
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We then come to a key estimate in the proof of (1.14)=-(1.10). The
statement of this estimate is little more than a vector-valued analogue of
the corresponding step in [18]; however, the proof is substantially longer and
very different in spirit. The proof in [18] (where p = 2) exploits the Hilbert
space structure of the scalar-valued L? space, which at first seems to give
little hope of extending the result beyond the Hilbert space framework. In
view of this, it is perhaps surprising that the argument given below actually
requires no geometric restrictions on the underlying Banach space X. The
proof is very local in spirit; it essentially involves going through every cube
R € R one by one, in sharp contrast to the “global” argument in [18] in
terms of the orthogonal expansions.

3.3. LEMMA. With the notation adopted above, we have the estimate

p
S Ea’ Z erag| RV 1g(z) Xd:n
R™  ReA(k,l)
1 172 p (k+1)p
< — < .
<75 B Y cnonlR @) do < e T IROD)
R(E\Exsr  REA(K)

Proof. The second inequality is clear from Kahane’s inequality
E Y eiwils < cp(B| Y eixi|x)P and the fact that o(z) < 28! for = ¢
FE11. Therefore we will concentrate on the first inequality.

Observe that if Ry N Ry # @,Nthen necessarily Ry C Ry or Ry C Ry,
since Ry, Ry are dyadic cubes. If R € A(k,1) is minimal, in the sense that
RC R= R¢ A(k,l), then for z € R we have

(34) Bo| > eronlR P in@)| = E. )
REA(K,L) ReA(kl), ROR

Z ERQR’R|_1/2 x’

Le., this expression is constant for x € R.
More generally, if R € A(k,1), and

(3.5) Ry:=R\ |J R,
ReA(k,D)
RCR

then (3.4) holds for all z € Ry.

It suffices to establish the assertion of the lemma in the case when only
finitely many a(Q)) are non-zero, since the general case then follows from the
monotone convergence theorem. Then the summations involved are finite,
and we can avoid all convergence problems in the following. Replacing A(k, 1)
by {R € A(k,l) : ar # 0} if necessary, we can assume that A(k,1) is finite.

Let R be one of the maximal members of A(k,[). It clearly suffices to
prove, for all such R, that
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~ P
36 (E| X 5§a§]R|_1/21§(:r)‘de
R ReA(k,|l), RCR

1
<=5 | B

~ P
Z epag|R| 1/21}:3(36) de.
R\Ej41 ReA(k,l), RCR

To prove this inequality, we need to introduce some notation. We say that

R is a A-subcube of R if R C R and R e A(k,l). We say that R is a first
order A-subcube of R if, in addition, the following property holds: there is no
R € A(k,1) with R C R C R. We label the first order A-subcubes of R by R;,
where 7 runs over an appropriate finite index set. The first order A-subcubes
of R;, which are labelled R;;, are called the second order A-subcubes of R,
and so on. The mth order A-subcubes of R will be denoted by R, where
Q= aqq...qp, is a string of m indices. We further define Ry := R, \ U Rai,
which is obviously equivalent to the earlier definition (3.5). For convenience,
we also set E := Ej1.

Since the proof of the inequality (3.6) in the general situation involves a
large amount of indices, it is helpful to consider first a special case in which
only first and second order A-subcubes of R are involved. If S C R, we
denote by I(S) the integral over S of the same integrand as in (3.6), and
wu(S) :=1(5)/|S| if |S| > 0, and p(S) := 0 otherwise.

Now in our special situation, the cube R is decomposed into disjoint parts
as follows:

(3.7) R=RouJRUU (Rou U Ra),
iel jeJ keK;

where R;, i € I, are those first order A-subcubes of R which have no further
A-subcubes, whereas R; = ng{o}qu R, j € J, are those first order A-
subcubes of R which do have some further A-subcubes, namely the Rj,

k el\?’j.
I(R \OZ) — I(Ro\ E) + 2; I(Ri\ E) + Z; (1(Rjo\ B) + ;;; I(Ry\ B))
= |Ro\ Elp(Ro) + ; rRi\E|;(RZ-> ]
+ 3 (1Rio \ Blu(Ryo) + Y- [Rje\ Elu(Ry) ),
jed keK;

since the integrand is constant on each of the sets Ry, R;, Rjo, Rk, as was
observed above.

We want to show that the above displayed quantity is at least (1 — 3)I(R)
=: tI(R), where t := 1 — (3. To see this, observe that |[RNE| = |RN Eg 1| <
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B|R|, hence |R\ E| > (1 — B)|R] for all R € A, C Cf,; by the definition of
Ck+1. Now

HI(R) = t|Rolu(Ro)+_ tRilu(Ri)+ (HRjolu(Rio)+ 3 tRsulu(Rsn)),

iel jeJ kEK;
and hence
I(R\ E) —tI(R) = (|Ro \ E| — t|Ro)(Ro) + > (IRi \ E| — t| Ril ) us(Rs)
el
+ ) [(!Rjo \ Bl = t|Rjo[)u(Rjo) + Y (IR \ Bl — t| Rk )p(Ry) |,
jeJ keK;

and if we set 7(S) := |S\ E| — t|S| (whence 7(R) > 0 for all R € Ay), this
can be further written as

= [T(Ro)+27 +Z Z ] Ry)

iel Jj€J ke{0}UK;
+ Y (R w(Bo) + 3 ({ > m(Rie) plu(By0) - u(Ro))
iel jeJ ke{0}UK;
+ 3 T(Rip) (u(Rix) — n(Ry0)) )
kEKj
Noting that the quantity in brackets [---] is simply 7(R), whereas that in

braces {---} is 7(R;), we find that all the terms appearing above are non-
negative, and hence I(R\ E) > tI(R), which we wanted to prove.

The special case treated above already contains the essence of the mat-
ter, and it is essentially the notation which is more difficult in the general
case where A-subcubes of higher orders are allowed. Now R is disjointly
decomposed as

(3.8) &= RoUJ (U Bas U Reo)

where « runs over an appropriate set of strings of indices, and ¢ and j over
appropriate sets (possibly different for different «) of single indices. Note
that the possibility of @ being the empty string is allowed. The decomposi-
tion (3.8) should be compared with the special case in (3.7).

We have

I(R\ E) — tI(R) = (|Ro \ E| — t[Ro|)u(Ro)
£ 3 [S2URai\ Bl = tiReil)is(Re) + 3 (1Rego \ Bl = tRajol)ie(Rao)]
« % J

1(Ro) + Z (Z 7(Raoi) pt(Rai) + Z Rajo)p oéjo)).
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We claim that this is equal to

{T(RO) +> (Z T(Rai) + ) T(Raj0)> }M(Ro)
« % 7
+ Z Z 7T(Rai) (1(Rai) = p(Rao))

+ZZ[ Rajo +Z (Z Rajok +Z Rajpio )} 1(Rajo) — (Rao))-

a g

In the expression above, the quantity in braces {--- } is 7(R) > 0 and that in
brackets [- -] is 7(Rqj) > 0, so that all the terms appearing above are non-
negative. Hence it suffices to verify the claimed equality, i.e., the vanishing
of the expression

(39) > m(Rai)u(Ro) + Z Rajo)it
- ZT(RM)N(RQO) - ZT(RQJ'Q),LL(RQO)

oyt a,j

+ 2 (ZT(Rajﬁk) + ZT(Rajmo))M(Rajo)

agB k l
- Z (Z T<Rajﬁk) + Z T(Raj,b’l())):u'(Rao)-
agB k l

When « runs over all strings, and j over all single indices, «j clearly runs
over all strings except for the empty string. Hence the second-to-last term
in (3.9) is equal to

Z [Z Rapk +Z Ragio }M Rao)

a,f k
_ Z T(ng)u(Ro) — ZT(Rﬁlo)M(RO)-
Bk pil

Similarly, replacing the pair (j,3) by 3 alone in the last term of (3.9), we
find that this last term is equal to

23 [Z Rapi) + 31 Rapio) () + 3 (Rl o)
+ Z Raio)(Rao)-

Now it is clear that the different terms in (3.9) cancel each other, so our
claim, and hence the assertion of the lemma, is verified. =



140 T. Hytonen

Now we define
Aga(z,e) = > erag|RI7*1g(2);
ReA(k,)
note that
o
S Au(me) = crar|RTV1g().
k=—oco I ReR
A modification of this series will give us the required atomic decomposition
of f. Observe that supp Ay ,(-,€) C R(k,l) by the definition of A(k,).
Moreover, by Lemma 3.3, we have
(3.10) Y 1Akl Lo(xn x| R(E, D[
k,l
< D e/P1 = B) PRk DIP IRk, DY
k,l

< 2¢/7(1 1/p22kZ\Rkl

(3.1) 1/ ~1/pa—1 k

< 20/P(1—=B)7PETEY 2K By
k

B2 o/ ~1/pg—1
< Ae,/P(1=B)PB ol Ly (mny-
The quantity on the left of this estimate should be compared with the defi-

nition of the H! norm in (1.1).
Now we are ready to finish the proof of Theorem 1.9.

Conclusion of the proof of (1.14)=-(1.10). Now we construct the atomic
decomposition of f, or more precisely, of each of the subseries

Fao(@) = D aata(@) =D arar(

AEA:n=n0 ReR

where \(R) := 277k + 27771y for R = 277(A™ + k).

Consider a basis (¥)) e of compactly supported, 1-regular wavelets. The
existence of such wavelet bases is well known ([18]). Now that A™ is a non-
degenerate cube, we have supp ¥, jo 1, 4 2-jo-1,, = SUPP 2J0m/ 2o (290 — ko) C
A" for some suitable jo > 0 and kg € Z".

Define Wnk := W, for A\ =279k +2771p, and set ¢ := lp;z)oko,

70

and

big = 2n]/2¢( C—k) = on(i+370)/2gmo (2jo (2j - —k) — ko) = ]-‘r]o 20 kt-ko

Since jo > 0, we see that (@) ez, kezn is a subset of (¢))rea, thus or-
thonormal (but not complete, of course) in L?(R").
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Now that ¢ is bounded and supported on A™, we have
|6(x)] < ClA™| 7 gm0 (),
where C' = ||¢||oo|A™|/2, and then by scaling
|6r(2)] = |dj1(2)] < C|R|™*1g(z)
for R =277(A™ + k). Then the contraction principle gives

p _ P
X Eg‘ E EROROR(T) de <C S Ee‘ g erar| RV 1R(x) Xda:.
R*  ReA(k) R™  ReA(k,l)

Now we apply Cor. 2.2 with
> erpya(@)drpy(v)

AEA:n=no
to get
P p
< —1/2 .
S ’ Z ay/u(x)‘xdx_ S ’ Z eragr|R|”“1g(x) Xdac
R™  AeA:n=no, R™  ReA(k,l)

RO\EA(K,D)

Taking the expectation E. of the right-hand side and combining this with
the previous inequality, we have shown, for

api(r) = Y aaa(x),
A€A:n=no,
ROV)EA (k)

the estimate

(3.11) lakillr@n,x) < Cll Akl Lr (xR X)-

Since each of the wavelets 1) has a vanishing integral, so does a; ;. Con-
sider two cases:

The case of compactly supported wavelets. Since A" is a non-degenerate
cube and " has compact support, we have suppy”? C (A")* where Q*
denotes the cube concentric with ¢ and having ¢ times the side length
of @, where ¢ is a sufficiently large constant. Then ¢?,k = Yo-ipyo-i-1p =
20m/24p1(27 - —k) satisfies supp ¢Zk = 277 (supp " + k) C 277 ((AM)* + k) =
(277(A" + k))*, i.e., supp ¥y C R(N)*.

Thus, if R(\) € A(k,l), hence R(\) C R(k,l), we have suppy, C
R(k,1)*. This means that supp ar; C R(k,1)*, and then

I fmollirr o x) < Y Narllogn, xRk, [V
k.l

(3.11) . (3.10)
< CZHAk,lHLP(QxR”,X)|R(k7l)|1/p < Cllollpimny.-
Tl
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Thus we obtain a norm estimate for f;,, and then for f = Zne{o 117\ {0} I
of the desired form.

The general case. By the special case considered above, we obtain
a¥. H <Cllo n
| X x|, gy, < Cllollisen,
AeA

where (¥))aeca is a compactly supported 1-regular wavelet basis as above.
Then it suffices to apply the H'(R", X )-boundedness assertion of Cor. 2.2 to

> (@) Ta(y)

to deduce the desired norm estimate for f = >~ a1y, where (¥))xea is any
1-regular wavelet basis. This completes the proof of (1.14)=-(1.10), and of
Theorem 1.9. =

4. On BMO(R", X) and duality. One can also generalize the wavelet
characterization of the space BMO(R") from [18] to the UMD-valued situ-
ation. This generalization is not as exciting as that of the characterization
of H'(R™); in essence, we just need to replace classical L? estimates used
in [18] by the application of Cor. 2.2, but otherwise the proof follows the
lines of [18].

4.1. PROPOSITION. Let X be a UMD space and (Yx)rea a 1-regular
wavelet basis. If b € BMO(R™, X), p € |1,00[ and ) := (b, ), then

42) | E[Y 5,\(1,\1/1)\(3:)‘1; de < kP|Q] YFcC{Aed:Q(\) cC Qb
R AEF

where k& < Cpl|bllBmo(rn,x)-
Conversely, if (4.2) holds for some set of coefficients (ax)rea C X and
all finite sets F' as above, then the series

Z axr(r)

reA
converges unconditionally in L}, (R", X)/X to a function in BMO(R", X)
with norm at most Cyk.

By convergence in L}, (R", X)/X we mean the following: For every com-

pact K C R", there exist “renormalization constants” ¢y € X such that
Y oaealann(-) + ¢x) converges in LP(K, X).

Proof. We give the proof in the case of compactly supported wavelets,
since the additional considerations required by the general case do not involve
the vector-valuedness of the functions in any way. The required modifications
are left as an exercise for the reader in Meyer’s book [18], and we follow him
here. Thus, under the additional assumption, we have supp ¢y C Q(\)*.
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Necessity of (4.2). Writing
b:=(b— bQ*)lQ* + (b— bQ*)l(Q*)c + bgx =: by + b2 + b3,
where bg+ == |Q*|™? SQ* b(z) dz, we find that (by,%,) = 0if Q(\) C Q (since

then suppy, C Q*), and (bs, 1)) = 0 for all A € A, since (¢ (z)dz = 0.
Thus, when Q(A) C @, we have

axn = (b,1hy) = ((b—bo)1g=, ¥y),

and so

p
S E. Z exaxvy(x) N dx < C||(b—bo-)1o- s @n x)
Rn QMNCR

e llo| L —
This completes the first half of the proof.

Sufficiency of (4.2). Let B be a ball of radius r. We investigate separately
the two series

Z axta(z) and Z arxiy(x).

[RIVIZIB |QN[>|B

Concerning the first series, if z € B and 2 € supp )y C Q(\)* for some z,
then BN Q(A\)* # 0, and from the size assumption |Q(\)| < |B] it follows
that Q(\) C B, where the x designates expansion about the same centre
by a sufficiently large factor which only depends on the expansion factor
implicit in the notation Q(A)*. Thus

P
(4.3) S EE‘ Z B sAa,\sz(a:)‘de
R AEF | QVIIBY,
Bnsupp ¥, #0
P _
< SEE Z -~‘Xd:c§cmp]B|.

Rm AeF:Q(\)CB”*

From this estimate, which is uniform for finite sets /' C A, and the fact
that cg ¢ X for X UMD, it follows that the series ) eya¥x(+) (summation
over A € A with |Q()\)| < |B| and B Nsuppty # 0) converges almost
surely (with respect to the €)’s) in LP(R", X'). But due to the LP(R", X)-
boundedness of the integral transformations with kernels >~ exty(z)Y, (),
it actually converges surely, i.e., > a ¥y (z) (summation restricted as above)
converges unconditionally. For « € B, this series agrees with

> anihx(z),

AEA, QNI B

which hence converges unconditionally in LP(B, X).
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We then consider summation over |Q(\)| > |B|. For each fixed size
279" = |Q())], there are at most a bounded number, say m, of dyadic cubes

Q(A) such that Q(A)* N B # (). Moreover, denoting by zg the centre of B,
we have, for = € B,

[a(x) — ¥a(wo)| < |(x — z0) - Veha ()] < C29/Hr,
where 7 is the radius of B and A = 277k +277~15. From (4.2) it follows that
|| x < CKk27™9/2. Combining these observations yields

(1.4) S laalxl9a(@) — (o)
|QN)[>|B, Q(\)*NB#0
< Z mK2/20ni /24Ty < ck Z Wy < CK,
2-in>|B| 27 <p—1
and this shows that )5\ 5 @ (¥a(x) — ¥a(20)) converges absolutely in
X, uniformly on B; thus Z\Q(A)|>| B axx(z) converges unconditionally on
LP(B,X)/X.
The asserted convergence of > a\1x(x) has now been established. More-
over, the estimates (4.3) and (4.4) combined give

[ Y an@+ Y aa@a@ —waw)|, de < Cwr|Bl,

B 1QW)I<|B] lQN)I>|B]
which shows the membership of the limit element in BMO(R"™, X), and the
asserted norm estimate. m

Finally, we wish to exploit the wavelet framework to give a new point
of view on the H'-BMO duality in the UMD-valued situation. It should be
noted that C. Fefferman’s duality theorem [12] holds in the vector-valued
situation under much milder geometric assumptions (see O. Blasco [1]), but
requires a different approach.

4.5. PROPOSITION. Let X (and then also X') be a UMD space and
(¥a)rea (and then also (\)xea) a 1-regular wavelet basis of L>(R™). Let

=) _a\¥y(z) e BMOR",X'), o) = (b)) € X,
AeA

where the convergence is unconditional in L} (R", X")/X'. Then

(4.6) A = A(D axn) =D ah ()

AeA AeA
converges unconditionally for every f =3\, axhy € HY(R"™, X), and de-
fines an element of H'(R™, X)" with || Al| g1 @n xy < ClIbllpmo®n, x7)-
Conversely, every Ac H'(R™, X)' is of the form (4.6), where Y \c 4, 0AYy
converges in Lj, (R"X")/X'to be BMO(R", X) which satisfies ||b|lgmo(rn, x7)
< Ol Al e xy -
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Proof. Let F C A be finite. Then

(4.7) > dh(an) = § (3 ahta(@), Y- aptn(e)) de.
\EF R" AeF pEF

According to Prop. 4.1, the BMO(R", X) norms of bp := >, pcA®, are
bounded by C||b|lgmorn,x) for all ' C A. On the other hand, from The-
orem 1.9 it follows that the H'(R", X) norms of fp := > ek Outy are
uniformly bounded, and also that | fr| g1 (r», x) can be made smaller than
any positive € as soon as ' C F?, where F; is a sufficiently large set.

Now fr has an atomic decomposition ) a;, where supp a; C B;, {a; =0,
and Z||aiHLp/(Rn7X)]§i|1/p < 2| fllg1(rn,x)- Since the atomic series con-
verges in L'(R", X), and br € L®(R", X'), we have

o oo
O ) < 3 1m0l < 3 lorlmmogen xol Bl Y lall Ly g x
i=1 i=1
< 20bllBmown, x| fE | 1w, x)
where a standard estimate for the pairing of a BMO function and an H*!
atom was used in the second step.

From this estimate and the unconditional convergence of fr to f in
HY(R"™ X) as F' T A, it follows that > xea @ () converges unconditionally
to a complex number of absolute value at most ||bl|gyvo(we, x| £l #1 e x)-
This proves the first assertion.

The converse implication. Let now A € H'(R™, X)' be arbitrary. Define
o) € X' by o/\(z) := A(x1py) for x € X. Since ), , axthy converges uncon-
ditionally to f in H'(R™, X), it follows that Y, 4 A(axtn) = > ,cq A (@)
converges unconditionally to A(f). Set by := Y, @)ty for finite F C A.

We estimate the BMO(R", X') norm of bp. Let B be a ball, and f €
LP (B, X). Then

{br = (bF)p, f) = (br, [ = [51p) = {(br)plE, [) + (bF, f515),
and the last two terms are both equal to |B|{(br)35, f5). Furthermore, note
that (bp,g) = (br, gr) = A(gr) for any g € H'(R", X). Thus
[(br — (bF) 5, )| = [A(f = f515)F)| < |Allm @ xy I(f = fE518) Pl ®e x)
< WAl xy 1 = 515 ey /B

Taking the supremum over all f € LPI(E, X) of norm at most 1, and observ-
ing that the unit ball of L?' (B, X) is norming for LP(B, X'), we deduce

[(br — (bF) )15l Lr@rr x1) < 2|’AHH1(R”,X)/|§|1/F’
and thus [|br|lgymomn,x) < 2| Al g1 (®e x)- From Prop. 4.1 it follows that
this uniform estimate for by implies that bp — b as F' T A, unconditionally
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in the space L}, (R™, X')/X’, and ||b]|gmorn,x7) < C||All g1 (rn,x)- Then, by
the first part of tAI}e proof, b defines via duality an element Ae H! (R™, X)".
It is clear that A(f) = (bp, f) = A(f) if f = > ycponty and F C A is

finite; since such f are dense in H'(R™, X), we see that A = A, i.e., A is of
the asserted form. m

The previous proposition shows that H!(R", X)' = BMO(R", X) for X
UMD, which, as already mentioned, actually holds under more general con-
ditions. While restricted to the UMD setting, the present approach has the
virtue of providing the explicit formula (4.6) for the evaluation of the dual-
ity pairing (b, f). Note that the wavelet coefficients oy of b and a of f are
uniquely determined by the functions b and f, and moreover explicitly given
by the formulae oy = (b,9,), ax = (f,%,). On the other hand, the atomic
decomposition of f, in terms of which the H'-BMO duality is often defined
by (b, f) = > :2,(b,a;) is far from being unique.

From the previous proof we also readily see the following, recalling that
UMD spaces are reflexive:

4.8. COROLLARY. Let X be a UMD space, and ({\)reca a l-regular
wavelet basis. Then, for every b € BMO(R", X), the wavelet erpansions

ZA€F<b,E/\>¢)\ converge unconditionally to b in the weak® topology
o(BMO(R", X), H'(R", X")) as F T A.
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