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Ve
tor-valued wavelets and the Hardy spa
e H1(Rn, X)by
Tuomas Hytönen (Turku)Abstra
t. We prove an analogue of Y. Meyer's wavelet 
hara
terization of the Hardyspa
e H1(Rn) for the spa
e H1(Rn, X) of X-valued fun
tions. Here X is a Bana
h spa
ewith the UMD property. The proof uses results of T. Figiel on generalized Calderón�Zygmund operators on Bo
hner spa
es and some new lo
al estimates.1. Introdu
tion. One of the main aspe
ts of the theory of Hardy spa
esis the equivalen
e of their various de�nitions. In the real-variable theory, one�nds (at least) four major types of 
hara
terizations of H1: integrability ofmaximal fun
tions, integrability of square fun
tions, integrability of 
onju-gate fun
tions (the Hilbert transform, or its variants), and atomi
 de
ompo-sitions. In the present paper, we 
ontribute to this theory by establishing anumber of 
hara
terizations of the square fun
tion type for the Hardy spa
e

H1(Rn, X) of Bana
h-spa
e-valued fun
tions, whi
h is initially de�ned interms of the atomi
 de
omposition as follows:We say that f ∈ H1(Rn, X) if f ∈ L1(Rn, X) has an expansion
f(x) =

∞∑

i=1

ai(x), supp ai ⊂ Bi,
\
ai(x) dx = 0,where the Bi are balls in Rn, and we have(1.1) ∞∑

i=1

‖ai‖Lp(Rn,X)|Bi|
1/p′ <∞,where p∈ ]1,∞[ is �xed, and p′ denotes the 
onjugate exponent, 1/p+1/p′=1.The norm ‖f‖H1(Rn,X) is de�ned as the in�mum of the values (1.1) takenover all su
h de
ompositions. Its numeri
al value depends on the 
hoi
e of

p ∈ ]1,∞[, but it is well known that ea
h p ∈ ]1,∞[ (a
tually also p = ∞)gives the same spa
e H1(Rn, X) with an equivalent norm (
f. [16℄ for atreatment in the ve
tor-valued setting).2000 Mathemati
s Subje
t Classi�
ation: 42B30, 42C40, 46E40.Key words and phrases: wavelet basis, atomi
 de
omposition, generalized Calderón�Zygmund operators, UMD spa
e. [125℄



126 T. HytönenLet us note that this atomi
 de�nition of H1(Rn, X) is known to agreewith one given in terms of various maximal fun
tions, even for an arbitraryBana
h spa
e X. A
tually one 
an 
he
k that the proof of this fa
t in thes
alar 
ase, as given e.g. in E. M. Stein's book [21℄, goes through word forword in the general setting. For n = 1, the �
onjugate Hardy spa
e�, de�nedas the domain of the Hilbert transform on L1(R, X) with the graph norm,is always (i.e., without any 
onditions on the Bana
h spa
e X) 
ontained inthe atomi
 Hardy spa
e, and agrees with it exa
tly when X is a UMD spa
e.(See the papers of O. Blas
o [1℄, J. Bourgain [3℄ and D. L. Burkholder [5℄ inthis 
onne
tion.) None of these results, however, will play a r�le in the proofof our main 
hara
terization theorem, but we always work with the atomi
de�nition.The square fun
tion des
ription of H1(Rn, X) that we have in mind in-volves the wavelet expansion of a fun
tion, and extends Y. Meyer's [18℄
hara
terization of H1(Rn). Re
all (
f. [18℄ for more details) that a waveletbasis of L2(Rn) is a 
omplete orthonormal system (ψλ)λ∈Λ, where Λ is theset of dyadi
 n-ve
tors of the form λ = k2−j + η2−j−1 (j ∈ Z, k ∈ Zn,
η ∈ {0, 1}n \ {0}), and ψλ(x) = 2jn/2ψη(2jx − k), where ψη ∈ L2(Rn),
η ∈ {0, 1}n\{0}, are the 2n−1 mother wavelets. The basis is 
alled r-regularif |∂αψη(x)| ≤ Cm(1+ |x|)−m and Txαψη(x) dx = 0 for all |α| ≤ r, all m ∈ Nand all η ∈ {0, 1}n \ {0}. Meyer's theorem is the following:1.2. Theorem ([18℄). Let (ψλ)λ∈Λ be a 1-regular wavelet basis of L2(Rn).The following 
onditions are equivalent for the distribution f(x) =∑

λ∈Λ αλψλ(x):
f ∈ H1(Rn),(1.3)
sup
F⊂Λ

sup
ε∈{±1}Λ

∥∥∥
∑

λ∈F

ελαλψλ(·)
∥∥∥
L1(Rn)

<∞,(1.4)
( ∑

λ∈Λ

|αλ|
2|ψλ(·)|

2
)1/2

∈ L1(Rn),(1.5)
( ∑

λ∈Λ

|αλ|
2|Q(λ)|−11Q(λ)(·)

)1/2
∈ L1(Rn),(1.6)

( ∑

λ∈Λ

|α(λ)|2|Q(λ)|−11R(λ)(·)
)1/2

∈ L1(Rn),(1.7)
where

• the �rst supremum in (1.4) is taken over all �nite subsets F of Λ,
• Q(λ) := 2−j([0, 1[n + k) for λ = k2−j + η2−j−1,
• R(λ) := 2−j(Aη + k), where Aη is any non-degenerate 
ube.



Ve
tor-valued wavelets 127For histori
al re�e
tion, we note that Meyer's theorem was pre
eded by asimilar 
hara
terization using spline bases of order r ≥ 2 obtained by S.-Y. A.Chang and Z. Ciesielski [7℄. Moreover, the dire
tion from the square fun
tionestimates to the atomi
 de
omposition in Meyer's proof is a variant of ideasthat already appeared in similar situations in a number of earlier works,apparently for the �rst time in A. P. Calderón's treatment of �paraboli
� Hpspa
es [6℄, and then in the papers of Chang and R. Fe�erman [8, 9℄.Theorem 1.2 
an also be viewed as a wavelet analogue of B. Davis' in-equality for martingales [11℄, as both assert that the L1 norm of a 
ertainsquare fun
tion gives an equivalent norm on H1. In fa
t, if we 
ould, for
n = 1, take our wavelet basis to be the Haar system on L2(R), then thefun
tion appearing in (1.5), as well as that in (1.6), would be the martingalesquare fun
tion of f with respe
t to the dyadi
 �ltration of the real line.However, the Haar system, although a wavelet basis, is not 1-regular, anda
tually the square fun
tion 
ondition just des
ribed does not 
hara
terizethe membership of f in H1(R) but in the smaller dyadi
 Hardy spa
e, whi
hindeed 
oin
ides with the martingale Hardy spa
e related to the dyadi
 �l-tration (
f. [18℄). Thus, while the results are analogous, they do not 
overea
h other.It is the martingale Hardy spa
e that seems to have been more inten-sively studied in the ve
tor-valued 
ontext, whi
h is rather natural sin
e thefundamental UMD 
ondition�whi
h one typi
ally needs to impose on theBana
h spa
e X in order to have some deeper-lying analyti
 results�is itselfstated in terms of martingales. Re
all that a Bana
h spa
e X is UMD if forsome (and then all, 
f. [5℄) 1 < p <∞ there is a �nite 
onstant C so that(1.8) ∥∥∥

n∑

k=1

ǫkdk

∥∥∥
Lp(Ω,X)

≤ C
∥∥∥

n∑

k=1

dk

∥∥∥
Lp(Ω,X)for all n ∈ Z+, whenever (ǫk)

n
k=1 ∈ {−1,+1}n and (dk)

n
k=1 ∈ Lp(Ω,X)n isa martingale di�eren
e sequen
e on an arbitrary probability spa
e (Ω,A, µ)(i.e., there are sub-σ-algebras A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ A su
h that forall k = 1, . . . , n, the fun
tion dk is Ak-measurable and TA dk dµ = 0 for all

A ∈ Ak−1). P. F. X. Müller and G. S
he
htman [20℄ have extended Davis'inequality, with the square fun
tion rewritten in terms of a Radema
heraverage, to the UMD-spa
e-valued H1.Other ve
tor-valued results 
losely related to the present investigationare due to T. Figiel [13℄. He established the un
onditionality of waveletde
ompositions in Lp(Rn, X) when X is a UMD spa
e and 1 < p < ∞.While the result itself does not involve martingales, its proof is based onmartingale te
hniques, and in parti
ular on the un
onditionality of the Haarsystem on Lp(Rn, X). This is an easy 
onsequen
e of the UMD inequality,as the Haar fun
tions (with X-valued 
oe�
ients) on [0, 1], in their natural



128 T. Hytönenordering, 
onstitute a martingale di�eren
e sequen
e for whi
h (1.8) applies;the resulting estimate is readily transferred to the Haar system on Rn. Letus also re
all a theorem of B. Maurey [17℄, whi
h asserts that the validityof (1.8) for this parti
ular 
hoi
e already implies the full UMD 
ondition.A similar approa
h based on the de�ning inequality (1.8) of UMD spa
esdoes not seem available in the 
ase of our interest, be
ause of the alreadymentioned reason that the Haar system does not span the full H1(Rn, X)spa
e but only its dyadi
 analogue. On the 
ontrary, we will be 
on
ernedwith the Calderón�Zygmund-theoreti
 properties of UMD spa
es, whi
h wererevealed by the works of D. L. Burkholder [4℄, J. Bourgain [3℄ and T. Figiel[14℄ in the 80's: They established the Lp(Rn, X)-boundedness, respe
tively,of the Hilbert transform, of all singular 
onvolution operators with a stan-dard kernel, and �nally of generalized Calderón�Zygmund operators as inthe T (1) theorem of G. David and J.-L. Journé [10℄. Conversely, Bourgainalso showed that the Hilbert transform boundedness again implies the UMD
ondition (1.8).We now 
ome to the statement of our main theorem. As in Müllerand S
he
htman's formulation of the UMD-valued Davis's inequality, andin many other results of analysis of ve
tor-valued fun
tions, we repla
e thesquare fun
tions in (1.5) through (1.7) by Radema
her averages. We denoteby ελ independent random variables on some probability spa
e Ω with dis-tribution P (ελ = +1) = P (ελ = −1) = 1/2. Eε denotes the 
orrespondingexpe
tation. Then we have:1.9. Theorem. Let X be a UMD spa
e, let (ψλ)λ∈Λ be a 1-regularwavelet basis of L2(Rn), and α ∈ XΛ. The following 
onditions are equivalentfor the X-valued distribution f(x) =
∑

λ∈Λ αλψλ(x):
f ∈ H1(Rn, X),(1.10)
sup
F⊂Λ

sup
ε∈{±1}Λ

∥∥∥
∑

λ∈F

ελαλψλ(·)
∥∥∥
L1(Rn,X)

<∞,(1.11) \
Rn

Eε

∣∣∣
∑

λ∈Λ

ελαλψλ(x)
∣∣∣
X
dx <∞,(1.12) \

Rn

Eε

∣∣∣
∑

λ∈Λ

ελαλ|Q(λ)|−1/21Q(λ)(x)
∣∣∣
X
dx <∞,(1.13) \

Rn

Eε

∣∣∣
∑

λ∈Λ

ελαλ|Q(λ)|−1/21R(λ)(x)
∣∣∣
X
dx <∞,(1.14)

where F , λ, Q(λ) and R(λ) = 2−j(Aη + k) have the same meaning as inTheorem 1.2. Moreover , the expressions (1.11) through (1.14) de�ne equiv-alent norms on H1(Rn, X). Consequently , the wavelet series of f 
onvergesun
onditionally to f in the H1(Rn, X) norm.



Ve
tor-valued wavelets 129Note that the 
ondition (1.14) a priori depends on the 
hoi
e of the 
ubes
Aη de�ning the R(λ)'s. However, the proof will show that the validity of this
ondition for any one 
hoi
e of the Aη's already implies it for all possible
hoi
es. Also re
all that (1.10) has an impli
it dependen
e on the exponent
p ∈ ]1,∞[ appearing in the de�nition of H1(Rn, X), but no su
h dependen
eis present in the other four 
onditions. Thus, as a by-produ
t, we also obtaina new proof of the p-independen
e of the atomi
 de�nition of H1(Rn, X)when X is a UMD spa
e.To simplify the proof of Theorem 1.9 to be given in the following se
tions,note that it su�
es to establish the equivalen
e of the di�erent norms in the
ase of (αλ)λ∈Λ �nitely non-zero. The general 
ase then follows by standardmethods, using the density in H1(Rn, X) of su
h fun
tions.The paper is organized as follows: In Se
. 2 we show that (1.10) impliesthe other 
onditions; the main arguments here are based on Figiel's T1 the-orem [14℄. The reverse dire
tion, whi
h 
onsists of 
onstru
ting an atomi
de
omposition for a fun
tion f satisfying a randomized �square-fun
tion� es-timate, is given in Se
. 3 and involves some new lo
al estimates. We 
on
ludewith a dis
ussion of the ve
tor-valued BMO spa
e and its duality with H1in Se
. 4.1.15. Remark. The validity of Theorem 1.9 on H1(R, X) a
tually 
har-a
terizes the UMD property of X. Indeed, let X be any 
omplex Bana
hspa
e and let the 
on
lusions of Theorem 1.9 be satis�ed. Let (ψλ)λ∈Λ bethe Littlewood�Paley wavelet basis of Meyer [18℄. Sin
e ψ̂λ ∈ D(R) is sup-ported away from the origin (where the multiplier of the Hilbert transformhas a dis
ontinuity), and sin
e the Hilbert transform is an isometry on L2(R),it follows that (Hψλ)λ∈Λ, too, is an in�nitely regular wavelet basis of L2(R).But then, a

ording to our assumption, the H1(R, X) norms of both
f(x) =

∑
αλψλ(x) and Hf(x) =

∑
αλHψλ(x) are 
omparable (with 
on-stants independent of f) to the quantity (1.13). In parti
ular, ‖Hf‖H1(R,X) ≤

C‖f‖H1(R,X), and so H is bounded on H1(R, X). This is equivalent to its
Lp(R, X)-boundedness (a result due to Blas
o [1℄), and thus to the UMDproperty of X. Sin
e Blas
o's proof is given in the slightly di�erent periodi
setting, let us brie�y indi
ate the argument for the present 
ase: For an oper-ator with a standard kernel, the H1(R, X)-boundedness implies boundednessfrom L∞

0 (R, X) [
ompa
tly supported L∞ fun
tions with vanishing integral,equipped with the norm of L∞(R, X)℄ to BMO(R, X). See [16, p. 49℄ for anargument valid in the ve
tor-valued setting. Then we just use interpolation;again 
f. [16℄.A
knowledgments. I wish to thank Dr. Hans-Olav Tylli, who broughtthe results of T. Figiel to my attention; Prof. Tadeusz Figiel himself, whokindly supplied me with further pie
es of his work; and Prof. Os
ar Blas
o,



130 T. Hytönenwho asked me a question whi
h led me to investigate the validity of Re-mark 1.15. The anonymous referee is a
knowledged for bringing to my at-tention several referen
es whi
h helped elaborate the histori
al perspe
tivesgiven in the Introdu
tion. I express my thanks to the Magnus EhrnroothFoundation for �nan
ial support.2. Impli
ations using Calderón�Zygmund operators. In provingTheorem 1.9, we will need to apply several transformations of the waveletseries. All these transformations will have the generi
 form of an integraloperator
Tf(x) =

\
Rn

k(x, y)f(y) dy,where the kernel k is a
tually bounded and integrable. What is important isto obtain appropriate uniform bounds for operator norms of di�erent oper-ators T of this kind.T. Figiel [14℄ has generalized the famous T1 theorem of G. David andJ.-L. Journé to the setting of X-valued Lp spa
es. (See also [15℄, where anintermediate estimate omitted in [14℄ is proved in detail.) A rather generalformulation of this result is given in [14℄; for our purposes, the followingversion is su�
ient:2.1. Proposition ([14℄). Let k(x, y) ∈ L1(Rn×Rn) satisfy the standardestimates
|k(x, y)| ≤ κ|x− y|−n, |∇xk(x, y)| + |∇yk(x, y)| ≤ κ|x− y|−n−1.Assume, moreover , that T is bounded on L2(Rn) with operator norm atmost κ. Then T is also bounded on Lp(Rn, X), where X is any UMD spa
e,with norm ≤ Cp(X)κ, for all p ∈ ]1,∞[, and it is bounded from H1(Rn, X)to L1(Rn, X) with norm ≤ C1(X)κ. If , in addition,

[T ′1](y) :=
\

Rn

k(x, y) dx ≡ 0,then T is bounded on H1(Rn, X) with norm ≤ C0(X)κ.This proposition is essentially a statement of the fa
t that for an operatorde�ned in terms of a kernel whi
h satis�es the standard estimates, the 
on-ditions of the T1 theorem are ne
essary and su�
ient: Sin
e T is boundedon L2(Rn), it satis�es these 
onditions, but then the ve
tor-valued versionapplies to give the boundedness on Lp(Rn, X). For our purposes, we woulda
tually only need a spe
ial T1 theorem, i.e., the 
ase T1 = 0 = T ′1.It is a well known fa
t, in whi
h the ve
tor-valued situation brings no 
om-pli
ations, that an integral operator satisfying the standard estimates andbounded on Lp(Rn, X) is also bounded from H1(Rn, X) to L1(Rn, X). As forthe H1(Rn, X)-boundedness under the additional assumption, see Y. Meyer
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tor-valued wavelets 131and R. Coifman [19, Th. 3 of Ch. 7℄. (This is also an extension argument,whi
h goes through in the ve
tor-valued setting without modi�
ations.)2.2. Corollary. Let (aλ)λ∈Λ, (bλ)λ∈Λ be orthogonal sets in L2(Rn)satisfying
|aλ(x)| ≤ Cm

2nj/2

(1 + |2jx− k|)m
, |∇aλ(x)| ≤ Cm

2nj/2+j

(1 + |2jx− k|)mfor all λ = k2−j + η2−j−1 and all m ∈ N, with similar estimates for the
(bλ)λ∈Λ. Consider the integral operators with kernels given by

k(x, y) =
∑

λ∈F

νλaλ(x)bλ(y),where F ⊂ Λ is any �nite set and νλ ∈ C, |νλ| ≤ 1. These are uniformlybounded on Lp(Rn, X), and from H1(Rn, X) to L1(Rn, X), with the operatornorms depending only on p ∈ ]1,∞[, the UMD 
onstant of the spa
e X, andthe quantities Cm, m ∈ N. If the aλ's have vanishing integral , then we alsohave boundedness on H1(Rn, X) with a similar estimate for the norm.Proof. From the assumed pointwise estimates, it easily follows that ‖aλ‖2

≤ C, whi
h depends only on the Cm's, and similarly ‖bλ‖2 ≤ C. Then abound depending only on the Cm's is easily derived for the operator normof f 7→
∑

λ∈F νλaλ〈bλ, f〉 on L2(Rn), using the orthogonality of the two sets
(aλ) and (bλ).It is also a routine exer
ise to verify the standard estimates for the ker-nel k, with the 
onstant only depending on the Cm's. Then the assertionfollows from Prop. 2.1.Now the �rst steps in our main theorem follow at on
e:Proof of (1.10)⇒(1.11)⇒(1.12). The �rst impli
ation is immediate fromthe fa
t that, for any F ⊂ Λ and ε ∈ {±1}Λ,

∑

λ∈F

ελψλ(x)ψλ(y)are kernels of the kind 
onsidered in Cor. 2.2. Clearly the integral operatorwith the kernel given above maps f to ∑
λ∈F ελαλψλ(·).The se
ond impli
ation is obvious, sin
e the L1 norm on the probabilityspa
e Ω is dominated by the L∞ norm.For the proof of further impli
ations, we will need regular wavelet baseswith the mother wavelet non-vanishing at a preassigned point. This is asomewhat untypi
al need, sin
e usually it is the 
an
ellation and vanishingproperties of the wavelets whi
h are desired.2.3. Lemma. For every x ∈ R, there exists an in�nitely regular wavelet

ψ on R su
h that ψ(x) 6= 0.



132 T. HytönenProof. The proof is based on a modi�
ation of Meyer's 
onstru
tion ofthe Littlewood�Paley multiresolution analysis ([18, �2.2℄), and the relatedwavelet ([18, �3.2℄). In that 
onstru
tion, one starts with an even, non-negative fun
tion θ ∈ D(R) su
h that θ(ξ) = 1 for |ξ| ≤ 2π/3, θ(ξ) = 0for |ξ| ≥ 4π/3, and θ2(ξ) + θ2(2π − ξ) = 1 for ξ ∈ [0, 2π]. Our modi�-
ation 
onsists in 
hoosing an η ∈ C∞(R), whi
h is required to be 0 on
[−2π/3, 2π/3] but otherwise arbitrary, and taking ϑ(ξ) := θ(ξ)eiη(ξ). We set
φ := ϑ̌, the inverse Fourier transform.It follows, for m(ξ) :=

∑
cke

ikξ, that
∥∥∥

∑
ckφ(x− k)

∥∥∥
2

2
=

1

2π
‖m(ξ)ϑ(ξ)‖2

2 =
1

2π

∞∑

j=−∞

2π\
0

|m(ξ)ϑ(ξ + 2πj)|2 dξ

=
1

2π

2π\
0

|m(ξ)|2 dξ =
∑

|ck|
2,

sin
e ∑
|ϑ(ξ + 2πj)|2 ≡ 1, as is easily veri�ed, and so φ(· − k), k ∈ Z, arethe orthonormal basis of a 
losed subspa
e V0 of L2(R), whi
h gives rise toa multiresolution analysis of L2(R).We then pass to the 
onstru
tion of the 
orresponding wavelet ψ. Fol-lowing [18, �3.2℄, we 
ompute the auxiliary 
oe�
ients

αk =

∞\
−∞

1

2
φ

(
x

2

)
φ(x+ k) dx =

1

2π

∞\
−∞

ϑ(2ξ)ϑ(ξ)eikξ dξ =
1

2
φ

(
k

2

)
,

sin
e ϑ(ξ) = 1 on the support of ϑ(2ξ).Then
m0(ξ) :=

∞∑

k=−∞

αke
ikξ =

∞∑

k=−∞

ϑ(−2(ξ + 2kπ))

by Poisson's summation formula, and ψ̂(ξ) := e−iξ/2ϑ1(ξ), where
ϑ1(ξ) := m0(ξ/2 + π)ϑ(ξ/2) =





ϑ(ξ/2), ξ ∈ ±[4π/3, 8π/3],

ϑ(−ξ ± 2π), ξ ∈ ±[2π/3, 4π/3],

0, else,where the last equality follows readily upon taking into a

ount the sets onwhi
h ϑ equals 1 or 0. Note that ϑ1|±[2π/3,4π/3] is obtained from ϑ1|±[4π/3,8π/3]by re�e
ting and s
aling about the point ±4π/3; in fa
t
ϑ1(4π/3 − ξ) = ϑ(2π/3 + ξ),

ϑ1(4π/3 + 2ξ) = ϑ(2π/3 + ξ) for ξ ∈ [0, 2π/3],



Ve
tor-valued wavelets 133and similarly on the negative axis. Thus
(2.4) ψ(x+ 1/2) =

1

2π

∞\
−∞

eiξ(x+1/2)e−iξ/2ϑ1(ξ) dξ

=

2π/3\
0

(ϑ(2π/3 + ξ)ei(4π/3−ξ)x + 2ϑ(2π/3 + ξ)ei(4π/3+2ξ)x) dξ

+ an integral over the negative half-line.Now the phase of ϑ on ±[4π/3, 8π/3] is under 
ontrol; moreover, it 
anbe adjusted independently on the positive and negative line segments. Bysymmetry, it then su�
es to show that we 
an make the integral T2π/30 (. . .) dξabove non-vanishing by an appropriate 
hoi
e of this phase. We 
hoose thisphase in su
h a way that
Re

2π/3\
0

ϑ(2π/3 + ξ)ei(4π/3+2ξ)x dξ ≥
3

4

2π\
0

|ϑ(2π/3 + ξ)| dξ;then the integral in (2.4) is estimated by
∣∣∣
2π/3\

0

(I(ξ) + II(ξ)) dξ
∣∣∣ ≥

∣∣∣
2π/3\

0

II(ξ) dξ
∣∣∣ −

2π/3\
0

|I(ξ)| dξ

≥

(
3

2
− 1

) 2π/3\
0

|ϑ(2π/3 + ξ)| dξ > 0.Thus, for an arbitrary x ∈ R, we have 
onstru
ted a wavelet ψ su
h that
ψ(x + 1/2) 6= 0; in fa
t, one with |ψ(x + 1/2)| ≥ c, where c > 0 does notdepend on x.The n-dimensional version follows readily by a tensor produ
t 
onstru
-tion. Re
all that the 2n − 1 mother wavelets in the n-dimensional settingare naturally indexed by η ∈ {0, 1}n \ {0}. We denote by ι := (1, . . . , 1) the
n-ve
tor all of whose entries are 1.2.5. Corollary. For any x ∈ Rn, there exists an in�nitely regularwavelet basis of L2(Rn) su
h that ψι(x) 6= 0.Proof. Let ψi,0 := φi, ψi,1 := ψi be (in�nitely regular) father, resp.mother, wavelets on R for i = 1, . . . , n. For η ∈ {0, 1}n, y ∈ Rn, de�ne

ψη(y) :=

n∏

i=1

ψi,ηi
(yi).Then ψη, η ∈ {0, 1}n\{0}, is the set of (in�nitely regular) mother wavelets fora multiresolution analysis of L2(Rn). By 
hoosing the 1-dimensional wavelets
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ψi,1 in su
h a way that ψi,1(xi) 6= 0 for a given x = (x1, . . . , xn), we 
learlyensure the 
ondition ψι(x) 6= 0.Proof of (1.10) ⇒ ∀Aη : (1.14)⇒(1.13). Let Aη, η ∈ {0, 1}n \ {0}, benon-degenerate 
ubes, and de�ne

A :=
⋃

η∈{0,1}n\{0}

Aη;this is a 
ompa
t set.For every x ∈ A, we 
hoose an in�nitely regular wavelet basis (ψx,λ)λ∈Λsu
h that ψιx(x) 6= 0. By 
ontinuity of ψιx, we have ψιx(Ux) 6∋ 0 for some neigh-bourhood Ux of x, and then by 
ompa
tness we 
an 
hoose �nitely many,say m, in�nitely regular wavelet bases (ψi,λ)λ∈Λ su
h that ∑m
i=1 |ψ

ι
i(x)| ≥

c > 0 for all x ∈ A. Now the kernels∑

λ∈F : η=η0

ελ2
jn/2ψιi(2

jx− k)ψλ(y)satisfy the assumptions of Cor. 2.2; hen
e they de�ne uniformly boundedintegral operators from H1(Rn, X) to L1(Rn, X), and thus
m∑

i=1

Eε
\

Rn

∣∣∣
∑

λ∈F

ελαλ2
jn/2ψιi(2

jx− k)
∣∣∣
X
dx ≤ C‖f‖H1(Rn,X).The 
ontra
tion prin
iple permits repla
ing ψιi(2jx−k) by its absolute valueabove, and using the fa
t that ∑m

i=1 |ψ
ι
i(2

jx−k)| ≥ c1Aη(2jx−k) = c1R(λ)(x)and the 
ontra
tion prin
iple again, we �nally dedu
e
Eε
\

Rn

∣∣∣
∑

λ∈F

ελαλ|Q(λ)|−1/21R(λ)(x)
∣∣∣
X
dx ≤ C‖f‖H1(Rn,X).The fa
t that (1.14) for all Aη implies (1.13) is evident, sin
e (1.13) isjust the spe
ial 
ase of (1.14) with Aη = [0, 1[n.Proof of (1.12) ⇒ ∃Aη : (1.14). It su�
es to observe that ne
essarily

|ψη(x)| ≥ c > 0 for all x in some 
ube Aη; then the expression in (1.14) 
anbe dominated by that in (1.12) a

ording to the 
ontra
tion prin
iple.Now we have shown that(1.10) ⇒ (1.11) ⇒ (1.12) ⇒ ∃Aη : (1.14), and(1.10) ⇒ ∀Aη : (1.14) ⇒ (1.13) ⇒ ∃Aη : (1.14)(where the last impli
ation was not mentioned expli
itly before, but it istrivial).3. Constru
tion of the atomi
 de
omposition. To 
omplete theproof of Theorem 1.9, we need to show that the 
ondition (1.14), for any
ubes Aη whatsoever, implies the existen
e of an atomi
 de
omposition for f ;
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omputed in terms of this de
omposition shouldbe 
ontrolled in terms of the expression in (1.14). Note that, without lossof generality, we may take the Aη to be dyadi
 
ubes of side-length ≤ 1,sin
e the expression in (1.14) de
reases when the sets Aη (and hen
e R(λ))de
rease. When this is done, it follows that the R(λ) are dyadi
 
ubes as well.To a
hieve the atomi
 de
omposition, we are going to modify the 
on-stru
tion used by Meyer [18℄. Certain parts of the proof are in almost one-to-one 
orresponden
e with the s
alar-valued 
ase; however, there are alsosigni�
ant departures from Meyer's reasoning.Let us �x an η0 ∈ {0, 1}n\{0}, and 
onsider f =
∑

λ : η=η0
αλψλ(x), wherethe summation runs over all λ of the form k2−j + η2−j−1, where η = η0. It
learly su�
es to de
ompose ea
h of the 2n − 1 series of this kind. Then we
an use a di�erent indexing system whi
h is more 
onvenient in the present
ontext: Let R be the 
olle
tion of all the 
ubes R(λ) = 2−j(Aη + k) su
hthat η = η0. Then, instead of Λ, we 
an use R as our index set, and we write

εR instead of ελ. Moreover, write αR := αλ for R = R(λ) and η = η0. Sin
e
|Q(λ)| and |R(λ)| only di�er by a multipli
ative 
onstant independent of λ(as long as η = η0 is �xed), we 
an further repla
e the fa
tor |Q(λ)|−1/2 inour equations by |R|−1/2.Following [18℄, we set

σ(x) := Eε

∣∣∣
∑

R∈R

εRαR|R|
−1/21R(x)

∣∣∣
X

;

then σ ∈ L1(Rn) by the standing assumption (1.14).We further adopt the following notations:
Ek := {x : σ(x) > 2k}, Ck := {R ∈ R : |R ∩ Ek| ≥ β|R|},

∆k := Ck \ Ck+1,where we �x some β ∈ ]0, 1[. Note that, if αR 6= 0, then σ(x) ≥ |αR|X for all
x ∈ R. Thus R ⊂ Ek and hen
e R ∈ Ck for all small enough k.The maximal members of Ck will be denoted by R(k, l), where l runs overan appropriate index set, and

∆(k, l) := {R ∈ ∆k : R ⊂ R(k, l)}.Note that(3.1) ∑

l

|R(k, l)| ≤
∑

l

β−1|R(k, l) ∩Ek| ≤ β−1|Ek|and(3.2) ∞∑

k=−∞

2k|Ek| ≤ 2‖σ‖L1(Rn).
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ome to a key estimate in the proof of (1.14)⇒(1.10). Thestatement of this estimate is little more than a ve
tor-valued analogue ofthe 
orresponding step in [18℄; however, the proof is substantially longer andvery di�erent in spirit. The proof in [18℄ (where p = 2) exploits the Hilbertspa
e stru
ture of the s
alar-valued L2 spa
e, whi
h at �rst seems to givelittle hope of extending the result beyond the Hilbert spa
e framework. Inview of this, it is perhaps surprising that the argument given below a
tuallyrequires no geometri
 restri
tions on the underlying Bana
h spa
e X. Theproof is very lo
al in spirit; it essentially involves going through every 
ube
R ∈ R one by one, in sharp 
ontrast to the �global� argument in [18℄ interms of the orthogonal expansions.3.3. Lemma. With the notation adopted above, we have the estimate\
Rn

Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx

≤
1

1 − β

\
R(k,l)\Ek+1

Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx ≤ cp

2(k+1)p

1 − β
|R(k, l)|.

Proof. The se
ond inequality is 
lear from Kahane's inequality
Eε|

∑
εixi|

p
X ≤ cp(Eε|

∑
εixi|X)p and the fa
t that σ(x) ≤ 2k+1 for x 6∈

Ek+1. Therefore we will 
on
entrate on the �rst inequality.Observe that if R1 ∩ R2 6= ∅, then ne
essarily R1 ⊂ R2 or R2 ⊂ R1,sin
e R1, R2 are dyadi
 
ubes. If R̃ ∈ ∆(k, l) is minimal, in the sense that
R ( R̃⇒ R 6∈ ∆(k, l), then for x ∈ R̃ we have(3.4) Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
X

= Eε

∣∣∣
∑

R∈∆(k,l), R⊃R̃

εRαR|R|
−1/2

∣∣∣
X
,

i.e., this expression is 
onstant for x ∈ R̃.More generally, if R̃ ∈ ∆(k, l), and(3.5) R̃0 := R̃ \
⋃

R∈∆(k,l)

R(R̃

R,

then (3.4) holds for all x ∈ R̃0.It su�
es to establish the assertion of the lemma in the 
ase when only�nitely many α(Q) are non-zero, sin
e the general 
ase then follows from themonotone 
onvergen
e theorem. Then the summations involved are �nite,and we 
an avoid all 
onvergen
e problems in the following. Repla
ing ∆(k, l)by {R ∈ ∆(k, l) : αR 6= 0} if ne
essary, we 
an assume that ∆(k, l) is �nite.Let R be one of the maximal members of ∆(k, l). It 
learly su�
es toprove, for all su
h R, that
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(3.6)

\
R

Eε

∣∣∣
∑

R̃∈∆(k,l), R̃⊂R

εR̃αR̃|R̃|
−1/21R̃(x)

∣∣∣
p

X
dx

≤
1

1 − β

\
R\Ek+1

Eε

∣∣∣
∑

R̃∈∆(k,l), R̃⊂R

ε
R̃
α
R̃
|R̃|−1/21

R̃
(x)

∣∣∣
p

X
dx.

To prove this inequality, we need to introdu
e some notation. We say that
R̃ is a ∆-sub
ube of R if R̃ ( R and R̃ ∈ ∆(k, l). We say that R̃ is a �rstorder ∆-sub
ube of R if, in addition, the following property holds: there is no
R̂ ∈ ∆(k, l) with R̃ ( R̂ ( R. We label the �rst order∆-sub
ubes of R by Ri,where i runs over an appropriate �nite index set. The �rst order ∆-sub
ubesof Ri, whi
h are labelled Rij , are 
alled the se
ond order ∆-sub
ubes of R,and so on. The mth order ∆-sub
ubes of R will be denoted by Rα, where
α = α1 . . . αm is a string of m indi
es. We further de�ne Rα0 := Rα \

⋃
Rαi,whi
h is obviously equivalent to the earlier de�nition (3.5). For 
onvenien
e,we also set E := Ek+1.Sin
e the proof of the inequality (3.6) in the general situation involves alarge amount of indi
es, it is helpful to 
onsider �rst a spe
ial 
ase in whi
honly �rst and se
ond order ∆-sub
ubes of R are involved. If S ⊂ R, wedenote by I(S) the integral over S of the same integrand as in (3.6), and

µ(S) := I(S)/|S| if |S| > 0, and µ(S) := 0 otherwise.Now in our spe
ial situation, the 
ube R is de
omposed into disjoint partsas follows:(3.7) R = R0 ∪
⋃

i∈I

Ri ∪
⋃

j∈J

(
Rj0 ∪

⋃

k∈Kj

Rjk

)
,

where Ri, i ∈ I, are those �rst order ∆-sub
ubes of R whi
h have no further
∆-sub
ubes, whereas Rj =

⋃
k∈{0}∪Kj

Rjk, j ∈ J , are those �rst order ∆-sub
ubes of R whi
h do have some further ∆-sub
ubes, namely the Rjk,
k ∈ Kj .Now
I(R \E) = I(R0 \E) +

∑

i∈I

I(Ri \E) +
∑

j∈J

(
I(Rj0 \E) +

∑

k∈Kj

I(Rjk \E)
)

= |R0 \E|µ(R0) +
∑

i∈I

|Ri \E|µ(Ri)

+
∑

j∈J

(
|Rj0 \E|µ(Rj0) +

∑

k∈Kj

|Rjk \ E|µ(Rjk)
)
,

sin
e the integrand is 
onstant on ea
h of the sets R0, Ri, Rj0, Rjk, as wasobserved above.We want to show that the above displayed quantity is at least (1 − β)I(R)
=: tI(R), where t := 1−β. To see this, observe that |R∩E| = |R∩Ek+1| <
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β|R|, hen
e |R \ E| > (1 − β)|R| for all R ∈ ∆k ⊂ Cc

k+1 by the de�nition of
Ck+1. Now
tI(R) = t|R0|µ(R0)+

∑

i∈I

t|Ri|µ(Ri)+
∑

j∈J

(
t|Rj0|µ(Rj0)+

∑

k∈Kj

t|Rjk|µ(Rjk)
)
,

and hen
e
I(R \E) − tI(R) = (|R0 \ E| − t|R0|)µ(R0) +

∑

i∈I

(|Ri \ E| − t|Ri|)µ(Ri)

+
∑

j∈J

[
(|Rj0 \ E| − t|Rj0|)µ(Rj0) +

∑

k∈Kj

(|Rjk \E| − t|Rjk|)µ(Rjk)
]
,

and if we set τ(S) := |S \ E| − t|S| (when
e τ(R) > 0 for all R ∈ ∆k), this
an be further written as
=

[
τ(R0) +

∑

i∈I

τ(Ri) +
∑

j∈J

∑

k∈{0}∪Kj

τ(Rjk)
]
µ(R0)

+
∑

i∈I

τ(Ri)(µ(Ri) − µ(R0)) +
∑

j∈J

({ ∑

k∈{0}∪Kj

τ(Rjk)
}
(µ(Rj0) − µ(R0))

+
∑

k∈Kj

τ(Rjk)(µ(Rjk) − µ(Rj0))
)
.

Noting that the quantity in bra
kets [· · · ] is simply τ(R), whereas that inbra
es {· · · } is τ(Rj), we �nd that all the terms appearing above are non-negative, and hen
e I(R \E) ≥ tI(R), whi
h we wanted to prove.The spe
ial 
ase treated above already 
ontains the essen
e of the mat-ter, and it is essentially the notation whi
h is more di�
ult in the general
ase where ∆-sub
ubes of higher orders are allowed. Now R is disjointlyde
omposed as(3.8) R = R0 ∪
⋃

α

( ⋃

i

Rαi ∪
⋃

j

Rαj0

)
,where α runs over an appropriate set of strings of indi
es, and i and j overappropriate sets (possibly di�erent for di�erent α) of single indi
es. Notethat the possibility of α being the empty string is allowed. The de
omposi-tion (3.8) should be 
ompared with the spe
ial 
ase in (3.7).We have

I(R \E) − tI(R) = (|R0 \ E| − t|R0|)µ(R0)

+
∑

α

[∑

i

(|Rαi \ E| − t|Rαi|)µ(Rαi) +
∑

j

(|Rαj0 \E| − t|Rαj0|)µ(Rαj0)
]

= τ(R0)µ(R0) +
∑

α

( ∑

i

τ(Rαi)µ(Rαi) +
∑

j

τ(Rαj0)µ(Rαj0)
)
.
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laim that this is equal to
{
τ(R0) +

∑

α

( ∑

i

τ(Rαi) +
∑

j

τ(Rαj0)
)}
µ(R0)

+
∑

α

∑

i

τ(Rαi)(µ(Rαi) − µ(Rα0))

+
∑

α

∑

j

[
τ(Rαj0)+

∑

β

( ∑

k

τ(Rαjβk)+
∑

l

τ(Rαjβl0)
)]

(µ(Rαj0)−µ(Rα0)).

In the expression above, the quantity in bra
es {· · · } is τ(R) ≥ 0 and that inbra
kets [· · · ] is τ(Rαj) ≥ 0, so that all the terms appearing above are non-negative. Hen
e it su�
es to verify the 
laimed equality, i.e., the vanishingof the expression
(3.9)

∑

α,i

τ(Rαi)µ(R0) +
∑

α,j

τ(Rαj0)µ(R0)

−
∑

α,i

τ(Rαi)µ(Rα0) −
∑

α,j

τ(Rαj0)µ(Rα0)

+
∑

α,j,β

( ∑

k

τ(Rαjβk) +
∑

l

τ(Rαjβl0)
)
µ(Rαj0)

−
∑

α,j,β

( ∑

k

τ(Rαjβk) +
∑

l

τ(Rαjβl0)
)
µ(Rα0).When α runs over all strings, and j over all single indi
es, αj 
learly runsover all strings ex
ept for the empty string. Hen
e the se
ond-to-last termin (3.9) is equal to

∑

α,β

[∑

k

τ(Rαβk) +
∑

l

τ(Rαβl0)
]
µ(Rα0)

−
∑

β,k

τ(Rβk)µ(R0) −
∑

β,l

τ(Rβl0)µ(R0).

Similarly, repla
ing the pair (j, β) by β alone in the last term of (3.9), we�nd that this last term is equal to
−

∑

α,β

[∑

k

τ(Rαβk) +
∑

l

τ(Rαβl0)
]
µ(Rα0) +

∑

α,k

τ(Rαk)µ(Rα0)

+
∑

α,l

τ(Rαl0)µ(Rα0).

Now it is 
lear that the di�erent terms in (3.9) 
an
el ea
h other, so our
laim, and hen
e the assertion of the lemma, is veri�ed.



140 T. HytönenNow we de�ne
Ak,l(x, ε) :=

∑

R∈∆(k,l)

εRαR|R|
−1/21R(x);

note that
∞∑

k=−∞

∑

l

Ak,l(x, ε) =
∑

R∈R

εRαR|R|
−1/21R(x).A modi�
ation of this series will give us the required atomi
 de
ompositionof f . Observe that suppAk,l(·, ε) ⊂ R(k, l) by the de�nition of ∆(k, l).Moreover, by Lemma 3.3, we have

(3.10)
∑

k,l

‖Ak,l‖Lp(Ω×Rn,X)|R(k, l)|1/p
′

≤
∑

k,l

c1/pp (1 − β)−1/p2k+1|R(k, l)|1/p|R(k, l)|1/p
′

≤ 2c1/pp (1 − β)−1/p
∑

k

2k
∑

l

|R(k, l)|(3.1)
≤ 2c1/pp (1 − β)−1/pβ−1

∑

k

2k|Ek|(3.2)
≤ 4c1/pp (1 − β)−1/pβ−1‖σ‖L1(Rn).The quantity on the left of this estimate should be 
ompared with the de�-nition of the H1 norm in (1.1).Now we are ready to �nish the proof of Theorem 1.9.Con
lusion of the proof of (1.14)⇒(1.10). Now we 
onstru
t the atomi
de
omposition of f , or more pre
isely, of ea
h of the subseries

fη0(x) :=
∑

λ∈Λ : η=η0

αλψλ(x) =
∑

R∈R

αRψλ(R)(x)where λ(R) := 2−jk + 2−j−1η0 for R = 2−j(Aη0 + k).Consider a basis (Ψλ)λ∈Λ of 
ompa
tly supported, 1-regular wavelets. Theexisten
e of su
h wavelet bases is well known ([18℄). Now that Aη0 is a non-degenerate 
ube, we have suppΨ2−j0k0+2−j0−1η0 = supp 2j0n/2Ψη0(2j0 ·−k0) ⊂
Aη0 for some suitable j0 ≥ 0 and k0 ∈ Zn.De�ne Ψηj,k := Ψλ for λ = 2−jk + 2−j−1η, and set φ := Ψη0j0,k0 , and
φj,k := 2nj/2φ(2j · −k) = 2n(j+j0)/2Ψη0(2j0(2j · −k) − k0) = Ψη0

j+j0,2j0k+k0
.Sin
e j0 ≥ 0, we see that (φj,k)j∈Z, k∈Zn is a subset of (ψλ)λ∈Λ, thus or-thonormal (but not 
omplete, of 
ourse) in L2(Rn).
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|φ(x)| ≤ C|Aη0 |−1/21Aη0 (x),where C = ‖φ‖∞|Aη0 |1/2, and then by s
aling

|φR(x)| := |φj,k(x)| ≤ C|R|−1/21R(x)for R = 2−j(Aη0 + k). Then the 
ontra
tion prin
iple gives\
Rn

Eε

∣∣∣
∑

R∈∆(k,l)

εRαRφR(x)
∣∣∣
p

X
dx ≤ C

\
Rn

Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx.

Now we apply Cor. 2.2 with
∑

λ∈Λ : η=η0

εR(λ)ψλ(x)φR(λ)(y)to get\
Rn

∣∣∣
∑

λ∈Λ : η=η0,
R(λ)∈∆(k,l)

αλψλ(x)
∣∣∣
p

X
dx ≤

\
Rn

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx.

Taking the expe
tation Eε of the right-hand side and 
ombining this withthe previous inequality, we have shown, for
ak,l(x) :=

∑

λ∈Λ : η=η0,
R(λ)∈∆(k,l)

αλψλ(x),

the estimate(3.11) ‖ak,l‖Lp(Rn,X) ≤ C‖Ak,l‖Lp(Ω×Rn,X).Sin
e ea
h of the wavelets ψλ has a vanishing integral, so does ak,l. Con-sider two 
ases:The 
ase of 
ompa
tly supported wavelets. Sin
e Aη is a non-degenerate
ube and ψη has 
ompa
t support, we have suppψη ⊂ (Aη)∗ where Q∗denotes the 
ube 
on
entri
 with Q and having g times the side lengthof Q, where g is a su�
iently large 
onstant. Then ψηj,k = ψ2−jk+2−j−1η =

2jn/2ψη(2j · −k) satis�es suppψηj,k = 2−j(suppψη + k) ⊂ 2−j((Aη)∗ + k) =

(2−j(Aη + k))∗, i.e., suppψλ ⊂ R(λ)∗.Thus, if R(λ) ∈ ∆(k, l), hen
e R(λ) ⊂ R(k, l), we have suppψλ ⊂
R(k, l)∗. This means that supp ak,l ⊂ R(k, l)∗, and then

‖fη0‖H1(Rn,X) ≤
∑

k,l

‖ak,l‖Lp(Rn,X)|R(k, l)∗|1/p
′

(3.11)
≤ C

∑

k,l

‖Ak,l‖Lp(Ω×Rn,X)|R(k, l)|1/p
′
(3.10)
≤ C‖σ‖L1(Rn).



142 T. HytönenThus we obtain a norm estimate for fη0 , and then for f =
∑

η∈{0,1}n\{0} fη,of the desired form.The general 
ase. By the spe
ial 
ase 
onsidered above, we obtain
∥∥∥

∑

λ∈Λ

αλΨλ

∥∥∥
H1(Rn,X)

≤ C‖σ‖L1(Rn),where (Ψλ)λ∈Λ is a 
ompa
tly supported 1-regular wavelet basis as above.Then it su�
es to apply the H1(Rn, X)-boundedness assertion of Cor. 2.2 to
∑

ψλ(x)Ψλ(y)to dedu
e the desired norm estimate for f =
∑
αλψλ, where (ψλ)λ∈Λ is any

1-regular wavelet basis. This 
ompletes the proof of (1.14)⇒(1.10), and ofTheorem 1.9.4. On BMO(Rn, X) and duality. One 
an also generalize the wavelet
hara
terization of the spa
e BMO(Rn) from [18℄ to the UMD-valued situ-ation. This generalization is not as ex
iting as that of the 
hara
terizationof H1(Rn); in essen
e, we just need to repla
e 
lassi
al L2 estimates usedin [18℄ by the appli
ation of Cor. 2.2, but otherwise the proof follows thelines of [18℄.4.1. Proposition. Let X be a UMD spa
e and (ψλ)λ∈Λ a 1-regularwavelet basis. If b ∈ BMO(Rn, X), p ∈ ]1,∞[ and αλ := 〈b, ψλ〉, then(4.2) \
Rn

Eε

∣∣∣
∑

λ∈F

ελαλψλ(x)
∣∣∣
p

X
dx ≤ κp|Q| ∀F ⊂ {λ ∈ Λ : Q(λ) ⊂ Q},where κ ≤ Cp‖b‖BMO(Rn,X).Conversely , if (4.2) holds for some set of 
oe�
ients (αλ)λ∈Λ ⊂ X andall �nite sets F as above, then the series
∑

λ∈Λ

αλψλ(x)
onverges un
onditionally in Lploc(R
n, X)/X to a fun
tion in BMO(Rn, X)with norm at most Cpκ.By 
onvergen
e in Lploc(R

n, X)/X we mean the following: For every 
om-pa
t K ⊂ Rn, there exist �renormalization 
onstants� cλ ∈ X su
h that∑
λ∈Λ(αλψλ(·) + cλ) 
onverges in Lp(K,X).Proof. We give the proof in the 
ase of 
ompa
tly supported wavelets,sin
e the additional 
onsiderations required by the general 
ase do not involvethe ve
tor-valuedness of the fun
tions in any way. The required modi�
ationsare left as an exer
ise for the reader in Meyer's book [18℄, and we follow himhere. Thus, under the additional assumption, we have suppψλ ⊂ Q(λ)∗.
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essity of (4.2). Writing
b := (b− bQ∗)1Q∗ + (b− bQ∗)1(Q∗)c + bQ∗ =: b1 + b2 + b3,where bQ∗ := |Q∗|−1

T
Q∗ b(x) dx, we �nd that 〈b2, ψλ〉 = 0 if Q(λ) ⊂ Q (sin
ethen suppψλ ⊂ Q∗), and 〈b3, ψλ〉 = 0 for all λ ∈ Λ, sin
e Tψλ(x) dx = 0.Thus, when Q(λ) ⊂ Q, we have
αλ = 〈b, ψλ〉 = 〈(b− bQ∗)1Q∗ , ψλ〉,and so \

Rn

Eε

∣∣∣
∑

Q(λ)⊂Q

ελαλψλ(x)
∣∣∣
p

X
dx ≤ C‖(b− bQ∗)1Q∗‖pLp(Rn,X)

≤ C|Q∗|‖b‖pBMO(Rn,X).This 
ompletes the �rst half of the proof.Su�
ien
y of (4.2). LetB be a ball of radius r. We investigate separatelythe two series ∑

|Q(λ)|≤|B|

αλψλ(x) and ∑

|Q(λ)|>|B|

αλψλ(x).

Con
erning the �rst series, if x ∈ B and x ∈ suppψλ ⊂ Q(λ)∗ for some x,then B ∩ Q(λ)∗ 6= ∅, and from the size assumption |Q(λ)| ≤ |B| it followsthat Q(λ) ⊂ B
⋆, where the ⋆ designates expansion about the same 
entreby a su�
iently large fa
tor whi
h only depends on the expansion fa
torimpli
it in the notation Q(λ)∗. Thus

(4.3)
\

Rn

Eε

∣∣∣
∑

λ∈F : |Q(λ)|≤|B|,

B∩suppψλ 6=∅

ελαλψλ(x)
∣∣∣
p

X
dx

≤
\

Rn

Eε

∣∣∣
∑

λ∈F :Q(λ)⊂B
⋆

· · ·
∣∣∣
p

X
dx ≤ cκp|B|.

From this estimate, whi
h is uniform for �nite sets F ⊂ Λ, and the fa
tthat c0 6⊂ X for X UMD, it follows that the series ∑
ελαλψλ(·) (summationover λ ∈ Λ with |Q(λ)| ≤ |B| and B ∩ suppψλ 6= ∅) 
onverges almostsurely (with respe
t to the ελ's) in Lp(Rn, X). But due to the Lp(Rn, X)-boundedness of the integral transformations with kernels ∑

ελψλ(x)ψλ(y),it a
tually 
onverges surely, i.e., ∑αλψλ(x) (summation restri
ted as above)
onverges un
onditionally. For x ∈ B, this series agrees with
∑

λ∈Λ, |Q(λ)|≤|B|

αλψλ(x),

whi
h hen
e 
onverges un
onditionally in Lp(B,X).



144 T. HytönenWe then 
onsider summation over |Q(λ)| > |B|. For ea
h �xed size
2−jn = |Q(λ)|, there are at most a bounded number, say m, of dyadi
 
ubes
Q(λ) su
h that Q(λ)∗ ∩ B 6= ∅. Moreover, denoting by x0 the 
entre of B,we have, for x ∈ B,

|ψλ(x) − ψλ(x0)| ≤ |(x− x0) · ∇ψλ(ξ)| ≤ C2nj/2+jr,where r is the radius of B and λ = 2−jk+2−j−1η. From (4.2) it follows that
|αλ|X ≤ Cκ2−nj/2. Combining these observations yields
(4.4)

∑

|Q(λ)|>|B|, Q(λ)∗∩B 6=∅

|αλ|X |ψλ(x) − ψλ(x0)|

≤
∑

2−jn>|B|

mκ2−nj/2C2nj/2+jr ≤ cκ
∑

2j<r−1

2jr ≤ cκ,and this shows that ∑
|Q(λ)|>|B| αλ(ψλ(x) − ψλ(x0)) 
onverges absolutely in

X, uniformly on B; thus ∑
|Q(λ)|>|B| αλψλ(x) 
onverges un
onditionally on

Lp(B,X)/X.The asserted 
onvergen
e of ∑
αλψλ(x) has now been established. More-over, the estimates (4.3) and (4.4) 
ombined give\

B

∣∣∣
∑

|Q(λ)|≤|B|

αλψλ(x) +
∑

|Q(λ)|>|B|

αλ(ψλ(x) − ψλ(x0))
∣∣∣
p

X
dx ≤ Cκp|B|,

whi
h shows the membership of the limit element in BMO(Rn, X), and theasserted norm estimate.Finally, we wish to exploit the wavelet framework to give a new pointof view on the H1-BMO duality in the UMD-valued situation. It should benoted that C. Fe�erman's duality theorem [12℄ holds in the ve
tor-valuedsituation under mu
h milder geometri
 assumptions (see O. Blas
o [1℄), butrequires a di�erent approa
h.4.5. Proposition. Let X (and then also X ′) be a UMD spa
e and
(ψλ)λ∈Λ (and then also (ψλ)λ∈Λ) a 1-regular wavelet basis of L2(Rn). Let

b(x) =
∑

λ∈Λ

α′
λψλ(x) ∈ BMO(Rn, X ′), α′

λ = 〈b, ψλ〉 ∈ X ′,where the 
onvergen
e is un
onditional in Lploc(R
n, X ′)/X ′. Then(4.6) A(f) = A

( ∑

λ∈Λ

αλψλ

)
:=

∑

λ∈Λ

α′
λ(αλ)
onverges un
onditionally for every f =

∑
λ∈Λ αλψλ ∈ H1(Rn, X), and de-�nes an element of H1(Rn, X)′ with ‖A‖H1(Rn,X)′ ≤ C‖b‖BMO(Rn,X′).Conversely , every A∈H1(Rn, X)′ is of the form (4.6), where ∑

λ∈Λ α
′
λψλ
onverges in Lploc(R

n,X ′)/X ′ to b∈BMO(Rn,X) whi
h satis�es ‖b‖BMO(Rn,X′)

≤ C‖A‖H1(Rn,X)′ .
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tor-valued wavelets 145Proof. Let F ⊂ Λ be �nite. Then(4.7) ∑

λ∈F

α′
λ(αλ) =

\
Rn

〈∑

λ∈F

α′
λψλ(x),

∑

µ∈F

αµψµ(x)
〉
dx.

A

ording to Prop. 4.1, the BMO(Rn, X) norms of bF :=
∑

λ∈F α
′
λψλ arebounded by C‖b‖BMO(Rn,X) for all F ⊂ Λ. On the other hand, from The-orem 1.9 it follows that the H1(Rn, X) norms of fF :=

∑
µ∈F αµψµ areuniformly bounded, and also that ‖fF ‖H1(Rn,X) 
an be made smaller thanany positive ǫ as soon as F ⊂ F c

ǫ , where Fǫ is a su�
iently large set.Now fF has an atomi
 de
omposition ∑
ai, where supp ai ⊂ Bi, Tai = 0,and ∑

‖ai‖Lp′ (Rn,X)|Bi|1/p ≤ 2‖f‖H1(Rn,X). Sin
e the atomi
 series 
on-verges in L1(Rn, X), and bF ∈ L∞(Rn, X ′), we have
|〈bF , fF 〉| ≤

∞∑

i=1

|〈bF , ai〉| ≤
∞∑

i=1

‖bF ‖BMO(Rn,X′)|Bi|
1/p‖ai‖Lp′ (Rn,X)

≤ 2C‖b‖BMO(Rn,X′)‖fF ‖H1(Rn,X),where a standard estimate for the pairing of a BMO fun
tion and an H1atom was used in the se
ond step.From this estimate and the un
onditional 
onvergen
e of fF to f in
H1(Rn, X) as F ↑Λ, it follows that ∑

λ∈Λ α
′
λ(αλ) 
onverges un
onditionallyto a 
omplex number of absolute value at most ‖b‖BMO(Rn,X′)‖f‖H1(Rn,X).This proves the �rst assertion.The 
onverse impli
ation. Let now A ∈ H1(Rn, X)′ be arbitrary. De�ne

α′
λ ∈ X ′ by α′

λ(x) := A(xψλ) for x ∈ X. Sin
e ∑
λ∈Λ αλψλ 
onverges un
on-ditionally to f in H1(Rn, X), it follows that ∑

λ∈ΛA(αλψλ) =
∑

λ∈Λ α
′
λ(αλ)
onverges un
onditionally to A(f). Set bF :=

∑
λ∈F α

′
λψλ for �nite F ⊂ Λ.We estimate the BMO(Rn, X) norm of bF . Let B be a ball, and f ∈

Lp
′

(B,X). Then
〈bF − (bF )B, f〉 = 〈bF , f − fB1B〉 − 〈(bF )B1B, f〉 + 〈bF , fB1B〉,and the last two terms are both equal to |B|〈(bF )B, fB〉. Furthermore, notethat 〈bF , g〉 = 〈bF , gF 〉 = A(gF ) for any g ∈ H1(Rn, X). Thus

|〈bF − (bF )B, f〉| = |A((f − fB1B)F )| ≤ ‖A‖H1(Rn,X)′‖(f − fB1B)F ‖H1(Rn,X)

≤ ‖A‖H1(Rn,X)′‖f − fB1B‖Lp′ (Rn,X)|B|1/p.Taking the supremum over all f ∈ Lp
′

(B,X) of norm at most 1, and observ-ing that the unit ball of Lp′(B,X) is norming for Lp(B,X ′), we dedu
e
‖(bF − (bF )B)1B‖Lp(Rn,X′) ≤ 2‖A‖H1(Rn,X)′ |B|1/p,and thus ‖bF ‖BMO(Rn,X) ≤ 2‖A‖H1(Rn,X)′ . From Prop. 4.1 it follows thatthis uniform estimate for bF implies that bF → b as F ↑ Λ, un
onditionally



146 T. Hytönenin the spa
e Lploc(R
n, X ′)/X ′, and ‖b‖BMO(Rn,X′) ≤ C‖A‖H1(Rn,X). Then, bythe �rst part of the proof, b de�nes via duality an element Ã ∈ H1(Rn, X)′.It is 
lear that Ã(f) = 〈bF , f〉 = A(f) if f =

∑
λ∈F αλψλ and F ⊂ Λ is�nite; sin
e su
h f are dense in H1(Rn, X), we see that A = Ã, i.e., A is ofthe asserted form.The previous proposition shows that H1(Rn, X)′ =BMO(Rn, X ′) for XUMD, whi
h, as already mentioned, a
tually holds under more general 
on-ditions. While restri
ted to the UMD setting, the present approa
h has thevirtue of providing the expli
it formula (4.6) for the evaluation of the dual-ity pairing 〈b, f〉. Note that the wavelet 
oe�
ients α′

λ of b and αλ of f areuniquely determined by the fun
tions b and f , and moreover expli
itly givenby the formulae α′
λ = 〈b, ψλ〉, αλ = 〈f, ψλ〉. On the other hand, the atomi
de
omposition of f , in terms of whi
h the H1-BMO duality is often de�nedby 〈b, f〉 =

∑∞
i=1〈b, ai〉 is far from being unique.From the previous proof we also readily see the following, re
alling thatUMD spa
es are re�exive:4.8. Corollary. Let X be a UMD spa
e, and (ψλ)λ∈Λ a 1-regularwavelet basis. Then, for every b ∈ BMO(Rn, X), the wavelet expansions∑

λ∈F 〈b, ψλ〉ψλ 
onverge un
onditionally to b in the weak∗ topology
σ(BMO(Rn, X), H1(Rn, X ′)) as F ↑ Λ.
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