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Weighted norm estimates for the maximal operator
of the Laguerre functions heat diffusion semigroup

by

R. MAciAs (Santa Fe), C. SEGoviA (Buenos Aires)
and J. L. TORREA (Madrid)

Abstract. We obtain weighted LP boundedness, with weights of the type y°, § > —1,
for the maximal operator of the heat semigroup associated to the Laguerre functions,
{L5}, when the parameter « is greater than —1. It is proved that when —1 < a < 0, the
maximal operator is of strong type (p,p) if p > 1 and 2(14+6)/(24+a) < p < 2(1+6)/(—a),
and if a > 0 it is of strong type for 1 < p < oo and 2(1+6)/(2+ ) < p.

The behavior at the end points of the intervals where there is strong type is studied
in detail and sharp results about the existence or not of strong, weak or restricted types
are given.

1. Introduction. The Laguerre polynomials L (y) are given by
_ d , _, &
e Yy Li(y) = 7l d—yk(e Yy +a)7
where y is positive. We assume that a > —1. The Laguerre polynomials

{Li(y)}72, form an orthogonal system with respect to the measure e ~¥y“dy.
More precisely,

| LR () L5 (y)e vy~ dy =
0
The Laguerre functions Lf(y) are defined by

1/2
00 = (pipeaty) e ALG)

I'k+a+1)

I(k+1) Ok
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Standard references for Laguerre functions and polynomials are [1], [9]
and [10].

We define the heat diffusion kernel W (¢,y, z) for a > —1,¢t > 0, y > 0,
and z > 0 as

We(t,y,2) = Y e ORI Loy £o(2),
n=0

and the heat diffusion integral W< f(t,y) as

Wef(t,y) =\ Wty 2) f(2) dz.
0
The heat diffusion integral W f (¢, y) satisfies the semigroup property

oo
Waf(tl + 12, y) - S Wa(tlv Y, Z)Waf(t% Z) dz.
0
The maximal operator W®* associated to the heat diffusion integral
Wef(t,y) is given by
W f(y) = sup [Wf(t, ).
t>0

We define the fractional maximal function My f(y) for 0 <6 < 1 as

1

Myf(y) = SUD oy | | 1fly—2)ld
z|<h

If 6 = 0, Myf(y) is the Hardy—Littlewood centered maximal function. It is

well known that if 3 is a weight with —1 < § < p — 1, then My is of strong

type (p,p) for p > 1 and of weak type (1,1) if p = 1 for the measure 3°dy.

We will also need the right-sided maximal function

1 y+h
M f(y) =sup 7 | 1£(2)]d2
)

We denote by A, the class of all weights w(y) such that My is of strong
type (p,p) for p > 1, and of weak type for p = 1, for the measure w(y)dy,
and by A;{ the class of all weights w(y) such that M™ is of strong type
(p,p) for p > 1, and of weak type for p = 1, for the measure w(y)dy. It
is well known that A1 C A, and A C Al for every p > 1. For M+ we
need to know that it is of weak type (1,1) for the measure 3°dy for any
6 > —1. This is true because for § > 0 the weight is a non-decreasing
function, and for —1 < § < 0, because M f(y) < 2Mp f(y). As references
see [4]-[6].

The purpose of this paper is to study the action of the maximal op-
erator W* just defined on the spaces LP((0,00),y°dy) for 6 > —1. For
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in 8], and for —1 < o < 0 and 0 = 0 by Macias, Segovia and Torrea
in [3]. Even if not explicitly stated, estimates obtained in [8, Section 3]
give LP weighted results, 1 < p < oo, with the power weights y°, where
—1 < 0 < p— 1. However, Theorem 1 in the present paper shows that
for & > 0 the d-range can be enlarged to —1 < 0 < (1 + «/2)p — 1. For
the case when o > 0 and 0 > 0 we can majorize W* f(y) by a constant
times W9 f(y) and thus we obtain the strong type (p,p) of W®* whenever
p > 1+ > 0. However, we can do better; in fact, in Theorem 1 we show
that We* is of strong type (p, p) for the possibly greater interval p > 1 and
p>2(1+9)/(a+2).

a > 0 and 6 = 0 the results we give here were obtained by Stempak

2. Statement of the results. Let N, denote the interval
<2(1 +9) 2(1+9)

>ﬂ(1,oo) if -1 <a<0,

2 [
Mo = 21+C:S )
<g,oo} N (1, oo it a>0.
2+«

We will assume that N, is not empty. This implies that 1 + § + «/2 > 0;
if not otherwise stated, we assume this throughout. With this notation, we
have

THEOREM 1. Let —1 < a < oo and —1 < 0 < co. If p € Ng, then the
maximal operator W®* is of strong type (p,p) with respect to the measure
y°dy, that is,

| werryyry’ dy < Cosp | 1F @)Y dy
0 0

with a constant C, 5, depending on o, p and 6 only.

The following theorem gives the behavior of W®* at the end points
of N,o. We set aq, = max(1,2(14+6)/(2+«)) and by, = 2(1+0)/(—«a) if
—1<a<0,and b, = o0 if a > 0.

THEOREM 2. Let 6 > —1. At the end points of N,, we have:

(a) If =1 < a < 0, then the operator W** is of weak type and not of
strong type (bq, ba) with respect to the measure yody.

(b) If a >0, then W* is of strong type (00, 00) with respect to y°dy.

(¢) If a« > —1 and aq = 2(1+9)/(2+ «), then W™ is of restricted
weak type and not of weak type (aq,aq) with respect to yody.

(d) If a> —1 and a, = 1, then W™* is of weak type and not of strong
type (1,1) with respect to y°dy.
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REMARK 1. If -1 < @ < 0 and 2(1+9)/(—«) = 1, then the interval
N, is empty. However, since 2(149)/(24+ «) < 2(1+46)/(—a) = 1, by the
proof of part (d) of Theorem 2, the operator W®* is of weak type and not
of strong type (1,1) with respect to the measure yody.

REMARK 2. The results obtained in Theorem 2 do not depend on Theo-
rem 1, and can be used to give a proof of Theorem 1 by interpolation (see [7]
and [2]).

3. Lemmas. Throughout this paper we shall assume that f is a non-
negative function. The constants will not have the same value at each oc-
currence.

DEFINITION 1. Let f be a locally integrable function on (0,00). We
define the maximal function M2 f for 0 < y < oo by

1
(3.1) MEf(y) = sup  — | f(2)dz,
JyC(y/4,3y) |Jy| Jy

where J, runs over all intervals containing y. Obviously, MTf(y) <

CMof(y).

LEMMA 1. The mazimal function M® is of weak type (p,p), 1 < p < o0,
with respect to the measure y°dy for any real 8.

Proof. The case p = oo is obvious. Let us represent (0, 00) as the union
of the intervals {(8%,8* 1)} Ify e {y: A < MEf(y)}n (8%, 8" 1] then

=—00

there exists an interval J, such that y € J, C (y/4, 3y) and

S f(z)dz.

Jy

This interval .J, is contained in (8%~1,8%+2). Then, by Holder’s inequality,

N < MEf(y)P < (zi | f(2) dz)p <o 2 | f(z)Pd.

3 5l

Given a compact subset K of {y: A < MEf(y)} N (8%, 8"*1], we can find a
finite sequence {Jy,} that covers K and is such that no point of K belongs
to more than three intervals of the sequence. Then

Vo' dy <2 § o dy <ess® 1 < 28" %Z | f(z)Pdz

K iy, iy,

ME <2
fly) < 7]

1 1
< 3cs2r8kd 7 S f(2)Pdz < csp s S f(2)P20 dz.
(8k71’8k+2) (8k71’8k+2)
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Thus,
1
g Pdy<e,t | fEPd
{y: A<MEf(y) }n(8F,8F+1] (8k~1,8kF2)
Hence,
1 [o.¢]
| Y’ dy < csp ¥ | f(z)P20 dz,
{y: A<MEf(y)} 0

and Lemma 1 is proved. =

LEMMA 2 ([3, Lemma 1]). Given 0 < 8 < 1, there exists a constant Cg
such that for every y > 0,

(3.2) vy PPMu(f(2)2 %) (y) < Coly? P Mo(f(2)2 /%) (y)
+y PP Mo(f(2)27/*)(y) + Mo f(y)}-

We shall introduce some notation. Let us consider the generating func-
tion for the Laguerre polynomials

39 3 r ey AL

1 _ _ _ (ryz)1/2
— = r(zy)/(1-r) a/2 M=) T

1-r° (ryz) Ia<2 1—r )’
where 0 <r < 1 and I,(y) = e*m”/2Ja(iy) is the modified Bessel function
(see [1, p. 189, (20)]. Let

_ = F(n+1) —y/2, a/2Ta —z/2 a/2T n+(a+1)/2.
Qa(y, 2,7) _Zf(n+a+1) e VYL (y)e 2P Lo (2)r :

n=0
then, by (3.3), Qu(y, 2z,7) is equal to

0 1/2 1/2

3 L2 (y) Lo ()2 17"_/ e (eH9)/2=r(z+y)/(1=r) (2 (lez) / )
. —

n=0

This shows that Qu(y, z,e™t) = We(t,y, 2). Let

4 1-5)\?
e = ;
1+s

then 0 < s < 1if and only if 0 < ¢t < oco. If we define

R _ 1—s)\2
Oc(yvzas)_Qa<yaZ)<1+S> >a

then we get the expression
(34)  Ra(y.z,s)

11—s2 1 1/2_,1/2y2 _1 1/2 1—s2
— =22 sty =2 2)2 =5 (s+1/s)(yz) -2 1/2
5 " 2s e 1 e 2 1, o (yz) .
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Observe also that

(e}

(35)  Wef(t,y) = | Raly,2,9)f(2)dz

0
for s = (1 — e /%) /(1 + e7¥/?) = tanh(t/4).
Moreover,
(3.6) 1—s2=4e 2 )(1+e7t?)? < 4e7!/2.

We shall need the following estimates for I, (y): for @ > —1, there exist
two constants ¢, and C,, such that (see [1, p. 5, (12)] and [1, p. 86, (5)])

(HIF0<y<1, then cuy* < I, (y) < Coy®.

(3.7)

1
(2)Ify>1, then ca—eygfa(y)gC’aWe .

yl/2

1—s%\2
Ds:{y:< S)yZl}
2s
By (3.7) and (3.4) we have
(38) XDy (yz)Ra(y,z,s)
1-52y(,,01/2
1 1—3s2 e_i(5+1/s)(z1/2—y1/2)2—%(5—1—1/8)(27;)1/2 (5 )(2v)

<Cs—— XD, (y2)
2 2s (1552)1/2(zy)1/4

Let

11—g2 1 ,1/2_,1/2\2 1
<= e 1T N (y2) :
2 2s (12—_85)1/2(Zy)1/4

Here we have used the fact that

1 +1 +1—52
——=|s+- = —s.
2 S 2s

Analogously, by (3.7), xpe(y2)Ra(y, 2, s) is bounded by a constant times

11—58%2 1,12 1/202 1—s2 @
+ — LV 2y2 /2
(3.9) 5 5. ¢ " XDS(?JZ)( 55 (W?)
We define

Hon(s,y) = | x0.(y2) Raly, 2, 5)f(2) dz,
0

o)

Hap(s,y) = X xDs(y2)Ra(y, 2, 5) f(2) dz.
0

Given y, s > 0, for every integer k we define
Bi(y) ={z: ok g1/2 ’21/2 . y1/2| < 2k+151/2}.



Laguerre functions heat diffusion semigroup 155

Let kg be an integer to be fixed later. Then

ko
1—
(310) Ha,l(say)gcoa Z —6_2%/4 S XDs(yZ)

52 f(z)dz
2\ 1/2
— B (55 )t
= 1-s2 _ z)dz
0o Y. e | o) h )

_s27\1/2
k=ko+1 B (y) (12—32) / (zy)1/4

= Hy11(8,y) + Ha12(5,y).

For the same ko and By (y), Ha2(S,y) is bounded by a constant times

ko

1 — 82 _22k/4 1 — 82 1/2 @
(3.11) Z 55 € S XDg(yZ)(2—S (yz) > f(z)dz
k=—o00 By ()

< 1—s2 1— g2 @
+ Z 55 ¢ 2%k /4 S XDg(yZ)<2—S(yZ)1/2> f(z)dz

= Hy21(s,y) + Ha22(5,9).
Given y, s > 0, let ky be the unique integer satisfying
2k0+251/2 < yl/Q < 2k0+351/2‘
If k < ko and z € By(y) then, since |21/2 — y1/2| < 2k+151/2 we get
(312) y/4 < (yl/Q _ 2k+181/2)2 <z< (y1/2 + 2k+151/2)2 < 3y

In particular,

(3.13) y/4 <z < 3y.
If k > ko and z € By(y), since |21/2 — y1/2| < 26+151/2 we get
(3.14) 0<2<136-2%s and 0 <y <100-2%s,

LEMMA 3. Let o > —1. We have the following estimates for the heat
diffusion integral W< f(t,y):

(a) If =1 <a <0, we set f=—a. Then
(3.15)  Wof(t,y)
< Cale™ Mo f(y) + e P2y =02 Mg (2712 £ (2)) (y)}.
(b) If a> 0, then
(3.16)  Wf(t,y)

Yy
< Caet/4{MRf(y) M S+ ) ) dz}.
0
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Proof. We will estimate Hy 11(s,y), Ha12(5,v), Ha21(5,y), Ha22(5,y)
for « > —1. We observe that
o
Z e~ 290k « g if o> 0.
k=—o00
Estimate of Ha11(s,y) for a« > —1. By (3.10), (3.13) and (3.12),
Ha11(s,y) is less than or equal to a constant times the sum over k < kg of
the terms

(yl/242k+151/2)2

o2\ /2
<1 8) 6_22k/4y_1/2 S f(z)dz.

2s
(yl/2—2k+151/2)2

Clearly the above expression is bounded by a constant times

1 (y1/2+2k+151/2)2
12 2% jagk 2
(B17) (=) e e | f(z)dz.

(y1/2—2k+151/2)2

Then, considering (3.12), (3.17) and (3.1), and the fact (y'/2 4 2k+151/2)2 —
(y1/2 — 2k H1g1/2)2 — 4y 1/20k+1G1/2 o pot

(3.18) Hoa1(5,y) < Co(1 — sV 2MEf(y).

Estimate of Haa2(s,y) for oo > —1. By (3.10), Hq 12(s,y) is bounded
by a constant times the sum over k > kg of the terms

1—52 oo f(z)dz
(3.19) e S XD, (y2) . :
s —s2\1/2
25 Bi(y) (123 ) ()4

The condition xp,(yz) = 1 is equivalent to z > %(13832)27 and by (3.14),
y < 100 - 2%,
Let v > 0. Then (3.19) is bounded by a constant times

1—s* sy 100S22k8 f(z)dz
(3.20) e XD, (y2)
25 122 (552) "yt
Y l—s
1—s? 2k { 2Vf(z)dz
N < 2 >6_2 " S XDs (yZ) 1-s23\1/2
’ L2y )2 (527) eyt
100-2%ks

1—s? _92k g f(z)dz
+
( P >e § XD, (y2) (L22) 72 i/
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<C(1- )1+27 —22k/422 1+27)k -y S
Yo
1 100-22k 5

2y —22k /462K

Thus, for any v > 0, Hq 12(s, y) is bounded by a constant times

(1= %)y~ ySsz( 2)dz+ (1= s )M™f(y).

0
This implies that for v = 0, we get
(3.21) Ho2(s,y) < Ca(1 = s*) Mo f(y),
and for a > 0, taking v = «/2, we get
1Y
322 Honlsw) £ Call— @)y L 1020() d
0

+ (1= s")M* f(y).

Estimate of Ha21(8,y) for =1 < a < 0. Let = —a. By (3.11)—(3.13),
H, 21(s,y) is bounded by a constant times the sum over k < kg of the terms

Lo o | iy (1 — (y2)1/2>af(2) dz

2s 2s
B (y)

(y1/242k+151/2)2

1— 52\ —22k /4 /2 a2
< C< > e y S XDe(y2)z* " f(2) dz

2s
(yl/2—2k+151/2)2

(yy/4)1/2 > 1, then for z > y/4 we have 155 s? = (yz)Y/? > 1, thus
X De (yz) = 0 and the integral above is zero. Therefore we can assume that

%(yy/‘l)l/2 < 1, which implies that

Therefore Hy 21(s,y) is bounded by a constant times the sum over k < ko
of the terms
1+ (y1/2+2k+181/2)2
14 aef22’“/4ya/2 (4?/1/22k+181/2)1+a S f(z)za/2 dz
2g (4y1/22k+181/2)1+a

(y1/2_2k+181/2)2
< Cal(1— 7)1 022 A2 0 0y =812 05 (£ (2)2701%) (3y).
Thus, summing up over k < kg, we get
(3:24)  Hozi(s,y) < Ca(l =) P2y 0P My (f(2)27%)(y)
for -1 < a<0.
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Estimate of Hq21(s,y) forao> 0. By (3.11)-(3.13), Hqa 21(s,y) is bound-
ed by a constant times the sum over k < kg of the terms

1— 82 _22k/4 1— 82 1/2 o
(3.25) € | xoe(yz) | —— (v2) f(2)dz
2s 925
By (y)
1 _ 2\ o (y/2+2k+151/2)2
— S _ 92k
ca(5) e wmsee
(y1/2—2k+1g1/2)2
_ 1 g2\ 1t 94 o 4y1/22k+181/2 (y1/2 42k +151/2)2 )
=% ‘ 4yl /22hH151/2 xps(y2) f(2) dz.

(y1/2_2k+181/2)2

By using (3.23) and the fact that o > 0, we see that (3.25) is bounded by a
constant times

/ o—22* 4ok (y1/2+2§“sl/2)2
(11— f(z)dz
4y1/22k+131/2 /et
< O(1 - )2 g AR ().
Thus,
(3.26) Hep1(s,y) < Ca(1 = s*)2MB f(y).

Estimate of Ha22(s,y) for =1 < o < 0. Let § = —a. By (3.11) and
(3.14), Hy22(s,y) is bounded by a constant times the sum over k& > ko of
the terms

1—s> _ 1—s? A
e ng<zy>(T<zy>”2) f(2)dz
By (y)

1-43100-2%ks

R 100 - 22k
- /4 */8/2 o0 = = *ﬁ/2
S( 2s > c Y (100.22k5> (S) xpe(2y)z 7= f(2) dz.

The above expression is smaller than or equal to a constant times
1 100-22F s
_ g2\ 1-B—2%%/492k(1-B), /2 —B/2
(1—-s%)""e 2 Y (100 2%5)17 S z f(z)dz
_g _o2k _8) — _
<q _52)1 B =22k /492k(1 B)y ’B/QM@(Z ﬁ/Qf(z))(y)‘
Hence, for —1 < oo < 0, Hy 22(5,y) is bounded by a constant times

(3.27) (1= )"y~ Mp (=72 £ (2)) (y)-
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Estimate of Ha22(s,y) for oo > 0. By (3.11) and (3.14), Hq 22(s,y) is
bounded by a constant times the sum over k£ > kg of the terms

— 2 — 52 @
29 L5 | e (S5 097 sle)ae

s 2s
By (y)
1— 2\ l+o Yy
< < 288 > 6—22k/4yo¢/28XDg(yz)Zoz/Qf(z) dz
0
1_ g2\ e o 100-22% s .
+< P > ey X pely2) 22 f(2) dz
y
1— g2\ 1T _92k /4 o H o
S( 5% > e 2Ny /ZSf(z)z 2 dz
0
12\t 100-2%ks
—i—( 75 > e~ 2 4yel2(100 - 2%k 5)2/2 S f(z)dz.
y

Since y < 100 - 225, we find that (3.28) is bounded by a constant times

Yy
(1 — s2)l+oe—2 /4921 4k, ~a/2 1 [ 20/2f(2) dz

0
100-22ks

o —92k o 1
+ (1 i 52)1+ e 2 /422(1+ )km S f(Z) dz.

Thus, we have shown that, for a > 0, Hy 22(s,y) is bounded by a constant
times

_ 82 14+ —a/2 lyzoc/Q 2V dz + )
(3.29) (1- ) (y ARG f(y)>

Now, taking into account (3.5) and (3.6), part (a) of Lemma 3 follows
from (3.18), (3.20), (3.24), (3.27), and part (b) follows from (3.18), (3.22),
(3.26), and (3.29). Thus, Lemma 3 is proved. =

4. Proof of the main results
Proof of Theorem 1. As usual, set § = —a. By Lemma 3, we have
W f(y) < Ca{Mof(y) +y "> Ma(z"2f(2)) ()}
Thus, applying Lemma 2, we get
W f(y) < Caly® P Mo(f(2)2 %) (y) +y~ 72 Mo(f (2)2°7) (y) + Mo f () }-

The hypothesis “if —1 < a < 0, then p € (aq,b,)” is equivalent to —1 <
0—pB/2 <d+pB/2 <p—1,and p > 1. Under these conditions, the weights
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yO+PB/2 0= PB/2 and y® belong to the class A, of Muckenhoupt, thus

[e.9] [e.9]

VW2 M (f(2)2 02 )Py’ dy < Cap | F0)PY° dy,
0 0

V= P2M(f(2)22) () dy < Cup | F(u)"Y° dy,
0

o

0
| Mof(w)Py® dy < Cap | f(0)Py° dy,
0 0

proving that W®* is of strong type (p,p) for p € N, with respect to the
measure y0dy if —1 < o < 0.
Now, let & > 0. By (3.16) of Lemma 3, we have

Yy
W F(t) < Cof MRS 4 M) + 72 L {1 .
0

For M%f(y), by Lemma 1, for any p > 1 and any § > —1, we have

| MEf(y)Py’ dy < Cps | F(0)Py° dy.
0 0

For M* f(y), since y° € Af C A; for any § > —1, as mentioned in the
introduction, we have

| MY Fy)Py dy < Cos | Fy)Py’ dy.
0 0

Finally,

—Q 1y (6% —Q (6%
y~ () dz < 2 Mo (£(2) 2 ) ).
0
Thus, if -1 < d—pa/2 <p—1and p > 1 we have
T —Q 1y (6% b T —Q (6%
s(yMQVPmmafwshyﬂMsz%@wwy

0 0 0
oo

< Cp,a,6 S f(y)py6 dy.
0

The conditions —1 < § — pa/2 < p—1, p > 1 are equivalent to p >
2(149)/(e+2),p>1,and p < 2(1+6)/a. In order to finish the proof we
need to show that the condition p < 2(1+ ¢)/a can be removed.

Observe that W%* f(y) is bounded by a constant times M f(y), so W0*
is of strong type (p,p) for —1 < § < p—1 and p > 1 with respect to the
measure y°dy.
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Assume that 0 < o < 2 and p > 2(1 +)/a. Then p > 2(1 4+ 9)/a >
2(1 +6)/(0+2) = 14 6. Since by (3.7) we have W* f(y) < C,W* f(y),
it follows that W** is of strong type (p,p) for p > 2(1 4 0)/a. We have
showed the result for « in the range 0 < o < 0 4+ 2. Now the result follows
by induction on [j,j +2). =

Proof of Theorem 2. (a) If -1 < a < 0 and 2(1 + ¢§)/(—a) > 1, the
upper end point of N, is 2(1 + 6)/(—a). For s fixed, 0 < s < 1, consider
points y and z satisfying

2 2
1= y<1 and 1=
2s 2s
By (3.4), using (3.7), we have

Ra(y, z,8) > Cq oy 22272,
Thus, setting a = 2s/(1 — s%), we get

z <1.

Wa(X(O,a))(Sa y) > Ca,sya/Q S 22 dz = Ca,sya/2
0
for every 0 < y < a. Since

S <ya/2)2(1+5)/(—a)y6 dy = Sy—l dy = o0,
0 0

it follows that the operator W®* is not of strong type (2(1 + ¢)/(—«),
2(1 + §)/(—«)) with respect to the measure y°dy. However, it is of weak
type. In fact, let 3 = —c«; it will be enough to show that the three terms on
the right hand side of (3.2) satisfy the weak type condition. Since —1 < a < 0
implies —1 < 0 < 2(1+0)/(—a) — 1, the third term of (3.2) is of strong type
(2(1+46)/(—a),2(1 4+ 6)/(—a)) with respect to the measure y’dy.
The first term is bounded by y(=®/2My(f(2)2%/?)(y) and since
—1<((—a)/2)2(1+9)/(—a)+0 <2(14+0)/(—a) — 1,
the weight y((-2)/2)2(140)/(-)+4 g jp A2(146)/(~a)- This shows that
[ (020 (£ (2)22/2) () 28 dy < Co 5| ()20 ay,
0
which implies the strong type (2(1 + 9)/(—a),2(1 4+ 9)/(—a)) of the first
term of (3.2) with respect to the measure y°dy.
Consider now the second term of (3.2). If we denote 2(1+46)/(—a) by p,
then p’ =2(1+6)/(2(1+d) + «). By Holder’s inequality, we obtain
1 y+h
a/2
Gh)iTa §J f(2)z%*dz

1

S W ||f||LP((y’y+h)’Z6 dz)HZa/Z_éHLp’((

y,y+h),z0 dz)*
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In order to estimate ||z°‘/2_5||Lp/(( ),20 dz) We observe that

y:yt+h
S+ (a/2=08)p >—-1 and (64 (a/2-8)p +1)/p =1+a.
Then ]]za/2*5]]Lp/((y yih) 8 dz) < cs,5(y+h)1 T, Thus, since y < 2h, we have

1 y+h o y+ h 14+«
(2h)1+a S f(Z)z /2 dz < C&,a (T) ||f||lﬂ’((y,y+h),z5 dz)
Yy

< Cé,a”fHLP((O,oo),zé dz)-
Multiplying by y—?/2 and taking the supremum over h > y /2, we obtain
1 y+h
a/2 —,B/Qd <C a/2 ]
hSZUyI;Zy ahe 5 f(2)z 2 < Co.8Y" || fl Lo ((0,00),20 d2)
From this inequality the weak type (p,p) for p = 2(14+6)/(—a) with respect
to the measure y%dy is readily obtained.

(b) If a > 0, the upper end point of N, is co, and by (3.7) and (3.16), we
have W* f(y) < C,WO* f(y) < Co Mo f (). Therefore since L>((0, o0), y’dy)
= L*®((0,00),dy) for § > —1, the operator W®* is of strong type (00, o0)
with respect to the measure y°dy.

(c) If the lower end point of N, is greater than 1, then it coincides
with 2(1 + 6)/(2 + «). This implies that 20 — o > 0. If for a given
a >0 the integral (g f(2)z2?dz = §o f(2)2%/?792% dz is finite for every
f e L20+9/C=P)((0,a), 20 dz), then since

2(1+6)\ _ 2(1+96)
2+a ) 25—a’
by uniform boundedness, it follows that /29 ¢ L2(149)/(20=)((0, a), 20dz).
This is a contradiction since z(@/2-0)2(1+0)/(20—)+6 — ,—1 Therefore, there
exists f € LX1+9/(2F)((0,a),2%dz) such that {j f(2)z*/?dz = oo. For
this f, if a = 2s/(1 — s2), then

VR(s,y,2)f(2) dz > Casy®/?| 2/ f(2) dz = o,
0 0

showing that W™ f(y) = oo for every y < a. This tells us that the operator
We* cannot be of weak type at the lower end point 2(1 +6)/(2 — 3) > 1
with respect to the measure y°dy.

Now we shall prove the restricted type. Let —1 < o« < 0 and 8 = —a.
By (3.15) and Lemma 2, we have

(4.1) W f(y)

< cﬁ{Mof<y>+yﬁ/2 HECEG dz+y—ﬁ/2Mo<f<z>zﬁ/2><y>}.
0
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It is easy to see that
-1<d<2(1+9)/(2-p0) -1,
—1<d6—=(8/2)204+6)/2—-p0)<2(1+0)/(2—-0) — 1.

These inequalities imply that the weights y? and y®—(#/22(14+8)/(2=5) helong
to As(146)/(2—p). Therefore, the operators defined by

Mof(y) and y P2Mo(f(2)2°/%)(y)

are of strong type (2(1+6)/(2 — 3),2(1 +6)/(2 — 3)) with respect to the
measure °dy. We have not considered the second term of (4.1) yet. If « > 0,
by (3.16), we have

Yy
(42) W ) < Caf M) + 7020 §eo2 () ds 4 M1 )}
0

1
Y
By Lemma 1, the first term on the right hand side of (4.2) is of weak type
for any p > 1 and any § > —1. As mentioned in the introduction, the weight
y° belongs to the class A C A} of Sawyer for § > —1, so the operator M
is of weak type (p,p) for any p > 1 with respect to the measure y°dy for any
0> —1.

Now we are going to consider the second terms on the right hand side of
both (4.1) and (4.2). They are of the form y~*/2(1/y) 5o 2%/ f(2) dz allowing
a > —1. Let F be a measurable set contained in (0, 00) and F’ the set defined
by xg(u!/(9) = yp(u). By the change of variables z = u!/(1+9) we have

[e.o] o

1 1
1) - - 1/(1+96) - -
(4.3) § xm(2)2 dz = T §) X (u Jdu = |F|,
and
1446
Yy 1 Yy
SXE(Z)Za/z dz — ﬁ S XE(ul/(1+5))u(a/275)/(1+6)du
0 + 0
y1+5
_ 1_j1L5 [ xr(uule/2-0/0+0)g,

Since 2(1+46)/(2+ «) > 1 implies o/2 — ¢ < 0, it follows that

yl+o .
S XF(u)u(a/2—5)/(1+5) du < S XF(u)u(a/Z—é)/(1+5) du
0 0

|F|

< S 2 (@/2=8)/(14+0) g,
0
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Taking into account that o > —1 implies (a/2 — 4)/(1 4+ ) > —1, we can
compute the last integral above, obtaining

|£|

[ /29050y = 2049) | pi(as2y/2040)
a+2
0
Then, by (4.3), we get
|| o
a+2)/2(1+6
S 28/ (148) g 2(1+0) <(1+5) S XE(Z)Zész )/2(1+6)
0 2 - ﬂ 0
T (0+2)/2(1+5)
— ca’5< S XE(z)z‘s dz) .
0

In consequence,

1Y 1,% (a+2)/2(1+6)
y /2 ; S XE(2)2%% dz < ca5y™/? ;( S xe(u)u’ du) :
0 0

From this, the restricted weak type (2(1+0)/(2+ «),2(1+6)/(2+ «)) for
the operator W®* f with respect to the measure 3°dy is readily obtained.

(d) Let us show that if the lower end point of N, is 1, then the operator
We* cannot be of strong type (1,1) with respect to the measure y*dy. In
fact, by (3.7), we have

XD, (y2)Ra(y; 2, 5)

L=\ iquaamp s s .
Z Ca 2s € 4s e 4 € XDS(yZ)(

Take 0 < ¢ < 1. Assume that 1 < z < 1+¢, 142e <y < 2,and s = (y—1)2/4.
T"hen s < 1/4, 1552 > 1, and (%)1/2(342)1/4 > 1. Thus xp,(yz) = 1 and
since

i 1/2_z1/22:(y1/2—21/2)2 (y —2) ?
o= = < (5)

11—z \* _ /1 &)\
<ls+t7—) <|l5t—=) <1,
2 2y-—-1) 2 4e
we get Ry (y,2,5) > Co/(y — 1), and therefore

Co T
y—1 (S) X(l,l+€)(z) dz = Cq y—1

3

Wa’*(X(l,lﬂ))(y) 2

for 14 2e <y < 2. Thus, if W** were of strong type (1, 1) with respect to
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y°dy, and recalling that 6 > —1, we would have

44) VW (X @11e) WY dy < Aa | (1,140 W)y dy
0 0
146 _
— Aa—(l +e) 1o Ags €

146 -
for a finite constant A, s depending on o and § only. On the other hand, we
get

2

(4.5) S Wa’*(X(1,1+a))(y)y5 dy

142
E A A
> Cy S " Y’ dy > Cos S — dy = Cq 5€log(1/2e).
14+2¢ 1+2¢

In consequence, from (4.4) and (4.5), it follows that Cy s elog(1/2¢) < Aq e,
or also, that C, slog(1/2¢) < A,s. This is a contradiction since the left
hand side of this inequality tends to co as € tends to 0, proving that W*
is not of strong type (1,1) with respect to y°dy.

However, as we are going to show, W®* is of weak type (1, 1) with respect
to yOdy. Since 2(1 4 8)/(2 + a) < 1, it follows that 26 — o < 0. Notice that
since N, is not empty we always have 2(1 + ) + o > 0, which is equivalent
tol+a+0—a/2>0. Assume —1 < a < 0, and let § = —a. By (3.2) and
(3.15) (Lemma 2), W* f(y) is bounded by a constant times

y P2 e —-B/2 ) /2 1 i -B/2
4. M, + —_— dz | + - dz.
(4.6) of(y) ysgggl((%)lﬂ 5 f(2)z z |ty y(S)f(z)z 2

Since 20 + =26 —a < 0 it follows that —1 < § < —(3/2 < 0. Thus, M is
of weak type (1,1) with respect to y°dy. For the second term of (4.6), since
y < 2h and 20 + 8 < 0, we have

y P2 e 2 y P2 T 5, —(54+8/2
(47) W S f(Z)Z_'B/ dz S W S f(t)Z Z_( +6/ )dZ
Yy 0
Ly (3h)(6F8/2) 30
< B2 (7 5
<y @R éf(z)z dz
1 3h
_ —B/2 )
= Cqa,5Y / L1-B+(+5/2) § f(2)2° d=
1 oo
< ¢85 175 S f(2)2° dz,
Y 0

which clearly implies the weak type (1, 1) of the second term.
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We still have to estimate the third term of (4.6). For a > 0, from (3.16)
we see that W™ f(y) is bounded by

1Y

48) G M)+ M) 4y )
0

By Lemma 1, the first term of (4.8) is of weak type for any 1 < p < oo
for the measure y°dy for any §. As mentioned before, y° € A for any
5 > —1, therefore M™* is of weak type (1,1) with respect to the same
measure y°dy. For the third terms of (4.6) and (4.8), for a > —1 we
have

— 1 ( —a y e
y O‘/Q—Szo‘/Qf(z)dz:y /21 S 1270 1(2)2° dz.
L
Since /2 — 6 > 0, this expression is bounded by
a/2—-5Y 1
y_“/QyTSf( 2)2°dz < s S f(2)2° dz.
0 0

This inequality and (4.8) imply the (1,1) weak type of the operator W**
with respect to the measure y°dy. w
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