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Completely multi-positive linear maps

between locally C
∗-algebras and

representations on Hilbert modules

by

Maria Joiţa (Bucureşti)

Abstract. A KSGNS (Kasparov, Stinespring, Gel’fand, Naimark, Segal) type con-
struction for strict (respectively, covariant non-degenerate) completely multi-positive lin-
ear maps between locally C

∗-algebras is described.

1. Introduction. It is well known that a positive linear functional on a
C∗-algebra A induces a ∗-representation of A on a Hilbert space by the GNS
(Gel’fand, Naimark, Segal) construction. Stinespring [12] extended this con-
struction to completely positive linear maps from A to L(H), the C∗-algebra
of all bounded linear operators on a Hilbert space H. On the other hand,
Paschke [9] (respectively, Kasparov [7]) showed that a completely positive
linear map from A to another C∗-algebra B (respectively, from A to the
C∗-algebra of all adjointable operators on the Hilbert C∗-module HB) in-
duces a ∗-representation of A on a Hilbert B-module. Kaplan [6] introduced
the notion of n-positive linear functional on a C∗-algebra A, an n×n matrix
of linear functionals on A which induces a positive linear map from Mn(A)
to Mn(C), and showed that an n-positive linear functional on a C∗-algebra
induces a ∗-representation of this C∗-algebra on a Hilbert space in terms of
the GNS construction. On the other hand, Heo [1] generalized Kaplan’s con-
struction to a completely multi-positive linear map from a unital C∗-algebra
A to another unital C∗-algebra B, an n×n matrix of linear maps from A to
B which induces a completely positive linear map from Mn(A) to Mn(B),
showing that a completely multi-positive linear map from A to B induces a
∗-representation of A on a Hilbert B-module.

Locally C∗-algebras are generalizations of C∗-algebras. Instead of be-
ing given by a single norm, the topology on a locally C∗-algebra is defined
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by a directed family of C∗-seminorms. Such important concepts as Hilbert
C∗-modules, adjointable operators, (completely) positive linear maps, (com-
pletely) multi-positive linear maps, C∗-dynamical systems can be defined
with obvious modifications in the framework of locally C∗-algebras. The
proofs are not always straightforward. In [2], the author extended the
KSGNS (Kasparov, Stinespring, Gel’fand, Naimark, Segal) construction to
a strict continuous, completely positive linear map from a locally C∗-algebra
A to LB(E), the locally C∗-algebra of all adjointable operators on a Hilbert
module E over a locally C∗-algebra B. A covariant version of this construc-
tion is proved in [5].

In this paper we extend the KSGNS construction to strict continuous,
completely multi-positive linear maps from a locally C∗-algebra A to LB(E)
and prove a covariant version of this construction. That is, we consider multi-
positive linear maps between locally C∗-algebras, not necessarily unital, and
show that a strict completely multi-positive linear map [̺] = [̺ij ]

n
i,j=1 from

a locally C∗-algebra A to LB(E) induces a non-degenerate continuous ∗-
representation Φ[̺] of A on a Hilbert B-module E[̺], called the KSGNS rep-
resentation of A associated with [̺] (Theorem 3.4). Moreover, this represen-
tation is unique up to unitary equivalence. In particular, when A and B are
unital C∗-algebras and E = B we obtain Theorem 2.1 of [1]. Then we con-
sider the covariant version of this construction: given a locally C∗-dynamical
system (G, A, α), a covariant non-degenerate completely multi-positive lin-
ear map from A to LB(E) induces a non-degenerate, covariant represen-
tation of (G, A, α) on a Hilbert B-module which is unique up to unitary
equivalence (Theorem 4.3). This construction extends Heo’s construction
associated with a covariant completely multi-positive linear map with re-
spect to a unital C∗-dynamical system. Finally, as an application of this
construction we show that given a locally C∗-dynamical system (G, A, α)
such that α is a continuous inverse limit action, a covariant non-degenerate,
completely multi-positive linear map from A to LB(E) extends to a non-
degenerate, completely multi-positive linear map from A ×α G to LB(E)
(Proposition 4.5).

2. Preliminaries. A locally C∗-algebra is a complete complex Hausdorff
topological ∗-algebra whose topology is determined by a directed family
of C∗-seminorms. If A is a locally C∗-algebra and S(A) is the set of all
continuous C∗-seminorms on A, then for each p ∈ S(A), the quotient algebra
A/ker p, denoted by Ap, is a C∗-algebra with the norm induced by p. The
canonical map from A onto Ap is denoted by πp. For p, q ∈ S(A) with p ≥ q,
there is a canonical map πpq from Ap onto Aq such that πpq(πp(a)) = πq(a)
for all a ∈ A. Then {Ap; πpq}p,q∈S(A), p≥q is an inverse system of C∗-algebras
and A can be identified with lim←−p Ap.
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An approximate unit of A is an increasing net {eλ}λ∈Λ of positive el-
ements of A such that p(eλ) ≤ 1 for all p ∈ S(A) and for all λ ∈ Λ,
p(aeλ − a)→ 0 and p(eλa− a)→ 0 for all p ∈ S(A) and a ∈ A. Any locally
C∗-algebra has an approximate unit [10, Proposition 3.11].

A morphism of locally C∗-algebras is a continuous ∗-morphism Φ from
a locally C∗-algebra A to another locally C∗-algebra B. An isomorphism of

locally C∗-algebras is a bijective linear map Φ from A to B such that Φ and
Φ−1 are morphisms of locally C∗-algebras.

Let Mn(A) denote the ∗-algebra of all n×n matrices over A with the alge-
braic operations and the topology obtained by regarding it as a direct sum of

n2 copies of A. Then {Mn(Ap); π
(n)
pq }p,q∈S(A), p≥q, where π

(n)
pq ([πp(aij)]

n
i,j=1) =

[πq(aij)]
n
i,j=1, is an inverse system of C∗-algebras and Mn(A) can be identi-

fied with lim←−p Mn(Ap).

A linear map ̺ : A → B between two locally C∗-algebras is com-

pletely positive if the linear maps ̺(n) : Mn(A)→ Mn(B), ̺(n)([aij ]
n
i,j=1) =

[̺(aij)]
n
i,j=1, n = 1, 2, . . . , are all positive.

Definition 2.1. A pre-Hilbert A-module is a complex vector space E
which is also a right A-module, compatible with the complex algebra struc-
ture, equipped with an A-valued inner product 〈·, ·〉 : E × E → A which is
C- and A-linear in its second variable and satisfies the following relations:

(i) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E;
(ii) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E;
(iii) 〈ξ, ξ〉 = 0 if and only if ξ = 0.

We say that E is a Hilbert A-module if E is complete with respect to
the topology determined by the family {‖ · ‖p}p∈S(A) of seminorms, where

‖ξ‖p =
√

p(〈ξ, ξ〉) for ξ ∈ E [10, Definition 4.1].

Let E be a Hilbert A-module. For p ∈ S(A), Ep = {ξ ∈ E; p(〈ξ, ξ〉) = 0}
is a closed submodule of E and Ep = E/Ep is a Hilbert Ap-module with
(ξ + Ep)πp(a) = ξa + Ep and 〈ξ + Ep, η + Ep〉 = πp(〈ξ, η〉). The canoni-
cal map from E onto Ep is denoted by σp. For p, q ∈ S(A) with p ≥ q
there is a canonical morphism of vector spaces σpq from Ep onto Eq such
that σpq(σp(ξ)) = σq(ξ) for ξ ∈ E. Then {Ep; Ap; σpq}p,q∈S(A), p≥q is an
inverse system of Hilbert C∗-modules in the following sense: σpq(ξpap) =
σpq(ξp)πpq(ap) for ξp ∈ Ep and ap ∈ Ap; 〈σpq(ξp), σpq(ηp)〉 = πpq(〈ξp, ηp〉) for
ξp, ηp ∈ Ep; σpp(ξp) = ξp for ξp ∈ Ep and σqr ◦ σpq = σpr if p ≥ q ≥ r, and
lim←−p Ep is a Hilbert A-module which can be identified with E [10, Proposi-
tion 4.4].

Let E and F be Hilbert A-modules. We say that an A-module mor-
phism T : E → F is adjointable if there is an A-module morphism T ∗ :
F → E such that 〈Tξ, η〉 = 〈ξ, T ∗η〉 for every ξ ∈ E and η ∈ F. Any
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adjointable A-module morphism is continuous. The set LA(E, F ) of all ad-
jointable A-module morphisms from E into F becomes a locally convex
space with topology defined by the family {p̃}p∈S(A) of seminorms, where
p̃(T ) = ‖(πp)∗(T )‖LAp(Ep,Fp) for T ∈ LA(E, F ) and (πp)∗(T )(ξ + Ep) =

Tξ + Fp for ξ ∈ E. Moreover, {LAp(Ep, Fp); (πpq)∗}p,q∈S(A), p≥q is an in-
verse system of Banach spaces, where (πpq)∗ : LAp(Ep, Fp) → LAq(Eq, Fq),
(πpq)∗(Tp)(σq(ξ)) = χpq(Tp(σp(ξ))), and χpq, p, q ∈ S(A), p ≥ q, are the con-
necting maps of the inverse system {Fp}p∈S(A); the limit lim←−p LAp(Ep, Fp)
can be identified with LA(E, F ) [10, Proposition 4.7]. Thus topologized,
LA(E, E) becomes a locally C∗-algebra, and we write LA(E) for LA(E, E).

The strict topology on LA(E) is defined by the family {‖·‖p,ξ}(p,ξ)∈S(A)×E

of seminorms, where ‖T‖p,ξ = ‖Tξ‖p + ‖T ∗ξ‖p for T ∈ LA(E).

Two Hilbert A-modules E and F are unitarily equivalent if there is a
unitary element in LA(E, F ).

Let G be a locally compact group and let A be a locally C∗-algebra.
An action of G on A is a morphism α from G to Aut(A), the set of all
isomorphisms of the locally C∗-algebra. The action α is continuous if the
function (t, a) 7→ αt(a) from G×A to A is jointly continuous. An action α is
called an inverse limit action if we can write A as an inverse limit lim←−δ∈∆ Aδ

of C∗-algebras in such a way that there are actions α(δ) of G on Aδ such

that αt = lim←−δ∈∆ α
(δ)
t for all t in G [11, Definition 5.1]. An action α of G on

A is a continuous inverse limit action if there is a cofinal subset SG(A, α)
of G-invariant continuous C∗-seminorms on A (a continuous C∗-seminorm
p on A is G-invariant if p(αt(a)) = p(a) for all a in A and for all t in G).
So if α is a continuous inverse limit action of G on A we can suppose that
S(A) = SG(A, α).

A unitary representation of G on a Hilbert module E over a locally
C∗-algebra B is a map u from G to LB(E) such that

(i) ug is a unitary element in LB(E) for all g ∈ G;
(ii) ugt = ugut for all g, t ∈ G;
(iii) the map g 7→ ugξ from G to E is continuous for all ξ ∈ E.

If u is a unitary representation of G on E, then for each q ∈ S(B),

g 7→ (πq)∗◦u is a unitary representation of G on Eq. Moreover, ug = lim←−q u
(q)
g ,

where

u(q)
g = (πq)∗(ug) for all g ∈ G.

A locally C∗-dynamical system is a triple (G, A, α), where G is a locally
compact group, A is a locally C∗-algebra and α is a continuous action of G
on A.

A non-degenerate, covariant representation of (G, A, α) on a Hilbert B-
module E is a triple (Φ, v, E), where Φ is a non-degenerate, continuous
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∗-representation of A on E, v is a unitary representation of G on E and

Φ(αg(a)) = vgΦ(a)v∗g

for all g ∈ G and a ∈ A.
Let α be a continuous inverse limit action of G on A. The set Cc(G, A)

of all continuous functions from G to A with compact support becomes a
∗-algebra with convolution of two functions

(f × h)(s) =
\
G

f(t)αt(h(t−1s)) dt

as product and involution defined by

f ♯(t) = ∆(t)−1αt(f(t−1)∗)

where ∆ is the modular function on G. The Hausdorff completion of Cc(G,A)
with respect to the topology defined by the family {Np}p∈S(A) of submulti-
plicative ∗-seminorms, where

Np(f) =
\
G

p(f(s)) ds,

is denoted by L1(G, A, α), and the enveloping locally C∗-algebra A ×α G
of L1(G, A, α) is called the crossed product of A by α [4, Definition 3.14].
Moreover, the C∗-algebras (A×α G)p are isomorphic with A ×α(p) G for all
p ∈ S(A) and so A ×α G can be identified with lim←−p A ×α(p) G [4, Remark
3.15].

3. Representations associated with a completely multi-positive

linear map. Let A and B be two locally C∗-algebras. An n × n matrix
[̺ij ]

n
i,j=1 of continuous linear maps from A to B can be regarded as a linear

map from Mn(A) to Mn(B) defined by

[̺ij ]
n
i,j=1([aij]

n
i,j=1) = [̺ij(aij)]

n
i,j=1.

Moreover, [̺ij]
n
i,j=1 is continuous.

We say that [̺ij ]
n
i,j=1 is a multi-positive (respectively, completely multi-

positive) linear map from A to B if it is a positive (respectively, completely
positive) linear map from Mn(A) to Mn(B).

Definition 3.1. Let E be a Hilbert B-module. A continuous completely
multi-positive linear map [̺ij ]

n
i,j=1 from A to LB(E) is strict (respectively,

non-degenerate) if the nets {̺ii(eλ)}λ∈Λ, i = 1, . . . , n, are strictly Cauchy
(respectively, strictly convergent to the identity map on E) in LB(E), for
some approximate unit {eλ}λ∈Λ of A.

Recall that a continuous ∗-representation of A on E is a continuous
∗-morphism Φ from A to LB(E). A continuous ∗-representation Φ of A on
E is non-degenerate if Φ(A)E is dense in E.



186 M. Joiţa

Proposition 3.2. Let A and B be two locally C∗-algebras, let E and F
be Hilbert B-modules, let Vi, i = 1, . . . , n, be n elements in LB(E, F ), and

let Φ be a non-degenerate, continuous ∗-representation of A on F . Then

[̺ij ]
n
i,j=1, where

̺ij(a) = V ∗
i Φ(a)Vj for all a ∈ A and i, j ∈ {1, . . . , n},

is a strict completely multi-positive linear map from A to LB(E).

Proof. It is a simple verification.

Construction 3.3. Let A and B be locally C∗-algebras, let E be a
Hilbert B -module and let [̺]= [̺ij ]

n
i,j=1 be a completely multi-positive linear

map from A to LB(E).

Let q ∈ S(B). Then [̺q] = [(πq)∗ ◦̺ij ]
n
i,j=1 is a completely multi-positive

linear map from A to LBq(Eq). We denote by (A⊗alg Eq)
n the direct sum of

n copies of the algebraic tensor product A⊗algEq of A and Eq. Using the fact
that [̺q] is a completely multi-positive linear map from A to LBq(Eq), and
the same arguments as in the proof of Theorem 2.1 in [1], it is not difficult
to check that (A⊗alg Eq)

n becomes a right Bq-module with the action of Bq

on (A⊗alg Eq)
n defined by

( m∑

s=1

n⊕
i=1

(ai,s ⊗ ξi,s)
)
b =

m∑

s=1

n⊕
i=1

(ai,s ⊗ ξi,sb)

and the map 〈·, ·〉0 from (A⊗alg Eq)
n× (A⊗alg Eq)

n to Bq defined by

〈 m∑

s=1

n⊕
i=1

(ai,s⊗ξi,s),
l∑

t=1

n⊕
j=1

(bj,t⊗ηj,t)
〉

0
=

m,l∑

s,t=1

n∑

i,j=1

〈ξi,s, (πq)∗(̺ij(a
∗
i,sbj,t))ηj,t〉

is C- and Bq-linear in its second variable and satisfies conditions (i) and (ii)
of Definition 2.1.

Let Nq = {x ∈ (A ⊗alg Eq)
n; 〈x, x〉0 = 0}. By the Cauchy–Schwarz

inequality, Nq is a Bq-submodule of (A ⊗alg Eq)
n. Then (A ⊗alg Eq)

n/Nq

becomes a pre-Hilbert Bq-module with the action of Bq on (A⊗alg Eq)
n/Nq

defined by

(x +Nq)b = xb +Nq

and the inner product defined by

〈x +Nq, y +Nq〉 = 〈x, y〉0.

The completion of (A⊗alg Eq)
n/Nq is denoted by E[̺q ]. Let q, r ∈ S(B) be

such that q ≥ r. Since

〈
n⊕

i=1
(ai⊗ σr(ξi)),

n⊕
i=1

(ai⊗ σr(ξi))〉0 = πqr(〈
n⊕

i=1
(ai⊗ σq(ξi)),

n⊕
i=1

(ai⊗ σq(ξi))〉0)
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for all ai ∈ A and ξi ∈ E, i = 1, . . . , n, we can define a linear map σ̃qr from
(A⊗alg Eq)

n/Nq to (A⊗alg Er)
n/Nr by

σ̃qr(
n⊕

i=1
(ai ⊗ σq(ξi)) +Nq) =

n⊕
i=1

(ai ⊗ σr(ξi)) +Nr.

Moreover, σ̃qr extends by continuity and linearity to a surjective linear map
σ̃qr from E[̺q ] to E[̺r ]. One can check that {E[̺q ]; Bq; σ̃qr}q≥r, q,r∈S(B) is
an inverse system of Hilbert C∗-modules. We denote by E[̺] the Hilbert
B-module lim←−q E[̺q ]. Also it is not difficult to check that (E[̺])q can be iden-
tified with E[̺q ] for all q ∈ S(B). Then by Proposition 4.7 of [10], the locally
C∗-algebras LB(E[̺]) and lim←−q LBq(E[̺q ]) are isomorphic, as are the locally
convex spaces LB(F, E[̺]) and lim←−q LBq(Fq, E[̺q ]), where F is an arbitrary
Hilbert B-module.

The following theorem extends the KSGNS construction for strict con-
tinuous completely positive linear maps between locally C∗-algebras [2, The-
orem 4.6] to the case of strict completely multi-positive linear maps between
locally C∗-algebras.

Theorem 3.4. Let A and B be locally C∗-algebras, let E be a Hilbert

B-module and let [̺] = [̺ij]
n
i,j=1 be a strict completely multi-positive linear

map from A to LB(E).

(1) There is a continuous ∗-representation Φ[̺] of A on E[̺] and n ele-

ments V[̺],i, i = 1, . . . , n, in LB(E, E[̺]) such that

(a) ̺ij(a) = V ∗
[̺],iΦ[̺](a)V[̺],j for all a in A and i, j ∈ {1, . . . , n};

(b) {Φ[̺](a)V[̺],iξ; a ∈ A, ξ ∈ E, i = 1, . . . , n} spans a dense sub-

module of E[̺].

(2) If F is a Hilbert B-module, Φ is a continuous ∗-representation of A
on F, and Wi, i = 1, . . . , n, are n elements in LB(E, F ) such that

(a) ̺ij(a) = W ∗
i Φ(a)Wj for all a in A and i, j ∈ {1, . . . , n};

(b) {Φ(a)Wiξ; a ∈ A, ξ ∈ E, i = 1, . . . , n} spans a dense submodule

of F ,

then there is a unitary operator U in LB(E[̺], F ) such that

(i) Φ(a)U = UΦ[̺](a) for all a in A;
(ii) Wi = UV[̺],i for all i ∈ {1, . . . , n}.

Definition 3.5. The representation (Φ[̺]; V[̺],i, i = 1, . . . , n; E[̺]) con-
structed in Theorem 3.4 is called the KSGNS construction associated with
[̺] = [̺ij ]

n
i,j=1.

Remark 3.6. The KSGNS construction associated with a strict com-
pletely multi-positive map [̺ij]

n
i,j=1 is unique up to unitary equivalence.
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Remark 3.7. In particular, we obtain the GNS construction for con-
tinuous completely multi-positive linear functionals on locally C∗-algebras
[3, Theorem 4.1] as well as Stinespring’s construction for completely multi-
positive maps between unital C∗-algebras [1, Corollary 2.4].

Proof of Theorem 3.4. We partition the proof into three steps.

Step 1. Suppose that A and B are C∗-algebras. Let {eλ}λ∈Λ be an
approximate unit of A such that the nets {̺ii(eλ)}λ∈Λ, i = 1, . . . , n, are
strictly Cauchy in LB(E).

(1) Let a ∈ A. It is not difficult to check that the linear map Φ[̺](a) from
(A⊗alg E)n to (A⊗alg E)n defined by

Φ[̺](a)(
n⊕

i=1
(ai ⊗ ξi)) =

n⊕
i=1

(aai ⊗ ξi)

extends to a bounded linear operator Φ[̺] from E[̺] to E[̺]. Moreover,
Φ[̺](a) is adjointable and (Φ[̺](a))∗ = Φ[̺](a

∗). Thus we have obtained a
map Φ[̺] from A to LB(E[̺]). It is easy to verify that Φ[̺] is a continuous
∗-representation of A on E[̺].

Let i ∈ {1, . . . , n}. Since

∥∥∥
m∑

s=1

n∑

k=1

̺ik(ak,s)ξk,s

∥∥∥
2

=
∥∥∥
〈 m∑

s=1

n∑

k=1

̺ik(ak,s)ξk,s,
m∑

s=1

n∑

k=1

̺ik(ak,s)ξk,s

〉∥∥∥

≤
∥∥∥

n∑

i=1

〈 m∑

s=1

n∑

k=1

̺ik(ak,s)ξk,s,
m∑

s=1

n∑

k=1

̺ik(ak,s)ξk,s

〉∥∥∥

=
∥∥∥

m∑

s,t=1

n∑

k,j=1

〈
ξk,s,

n∑

i=1

̺ki(a
∗
k,s)̺ij(aj,t)ξj,t

〉∥∥∥

≤ ‖[̺ij]
n
i,j=1‖

∥∥∥
m∑

s,t=1

n∑

k,j=1

〈ξk,s, ̺kj(a
∗
k,saj,t)ξj,t〉

∥∥∥

(Lemma 5.4 in [8])

= ‖[̺ij]
n
i,j=1‖

∥∥∥
m∑

s=1

n⊕
k=1

(ak,s ⊗ ξk,s) +N
∥∥∥

2

for all
∑m

s=1

⊕n
k=1(ak,s⊗ ξk,s) ∈ (A⊗alg E)n, the linear map

⊕n
k=1(ak ⊗ ξk)

+N 7→
∑n

k=1 ̺ik(ak)ξk from (A⊗alg E)n/N to E extends by continuity and

linearity to a bounded linear operator Ṽi from E[̺] to E.

Let λ ∈ Λ and ξ ∈ E. We denote by ξλ
i the element in (A⊗alg E)n whose

ith component is eλ ⊗ ξ and all the other components are 0. Since

‖(ξλ
i +N )− (ξµ

i +N )‖2 = ‖〈ξ, ̺ii((eλ − eµ)2)ξ〉‖ ≤ 2‖〈ξ, ̺ii(eλ − eµ)ξ〉‖

for all λ, µ ∈ Λ with λ ≥ µ, and since the net {̺ii(eλ)ξ}λ∈Λ is convergent
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in E, the net {ξλ
i +N}λ∈Λ is convergent in E[̺]. Define a map V[̺],i from E

to E[̺] by

V[̺],iξ = lim
λ∈Λ

(ξλ
i +N ).

To show that V[̺],i is an element in LB(E, E[̺]) it is sufficient to show
that

〈V[̺],iξ,
n⊕

k=1

(ak ⊗ ξk) +N〉 = 〈ξ, Ṽi(
n⊕

k=1

(ak ⊗ ξk) +N )〉

for all ξ ∈ E and
⊕n

k=1(ak ⊗ ξk) ∈ (A⊗alg E)n.
Let ξ ∈ E and

⊕n
k=1(ak ⊗ ξk) ∈ (A⊗alg E)n. Then we have

〈V[̺],iξ,
n⊕

k=1

(ak ⊗ ξk) +N〉 = lim
λ∈Λ
〈ξλ

i ,
n⊕

k=1

(ak ⊗ ξk) +N〉

= lim
λ∈Λ

〈
ξ,

n∑

k=1

̺ik(eλak)ξk

〉

=
〈
ξ,

n∑

k=1

̺ik(ak)ξk

〉

= 〈ξ, Ṽi(
n⊕

k=1

(ak ⊗ ξk) +N )〉.

Hence V[̺],i ∈ LB(E, E[̺]).
Let a ∈ A and ξ ∈ E. We denote by ξi,a the element in (A ⊗alg E)n

whose ith component is a⊗ ξ and all the other components are 0. It is not
difficult to check that Φ[̺](a)V[̺],iξ = ξi,a + N . Therefore the submodule
of E[̺] generated by {Φ[̺](a)V[̺],iξ; a ∈ A, ξ ∈ E, i = 1, . . . , n} is exactly
(A⊗alg E)n/N and thus condition (b) is satisfied.

Let a ∈ A and i, j ∈ {1, . . . , n}. Then we have

V ∗
[̺],iΦ[̺](a)V[̺],jξ = V ∗

[̺],i(ξj,a +N ) = ̺ij(a)ξ

for all ξ ∈ E and so condition (a) is also satisfied.
(2) Using the fact that

̺ij(a) = V ∗
[̺],iΦ[̺](a)V[̺],j = W ∗

i Φ(a)Wj

for all a ∈ A and i, j ∈ {1, . . . , n}, it is not difficult to check that
∥∥∥

m∑

s=1

n∑

i=1

αiΦ[̺](as)V[̺],iξs

∥∥∥ =
∥∥∥

m∑

s=1

n∑

i=1

αiΦ(as)Wiξs

∥∥∥

for all α1, . . . , αn ∈ C, a1, . . . , am ∈ A and ξ1, . . . , ξm ∈ E. Therefore the
linear map Φ[̺](a)V[̺],iξ 7→ Φ(a)Wiξ from the submodule of E[̺] generated by
{Φ[̺](a)V[̺],iξ; a ∈ A, ξ ∈ E, i = 1, . . . , n} to the submodule of F generated
by {Φ(a)Wiξ; a ∈ A, ξ ∈ E, i = 1, . . . , n} extends to a surjective isometric
B-linear map U from E[̺] onto F. Then, by Theorem 3.5 of [8], U is unitary.
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Let a ∈ A. From

Φ(a)U(Φ[̺](b)V[̺],iξ) = Φ(a)Φ(b)Wiξ = U(Φ[̺](ab)V[̺],iξ)

= UΦ[̺](a)(Φ[̺](b)V[̺],iξ)

for all b ∈ A, ξ ∈ E and i ∈ {1, . . . , n}, we conclude that Φ(a)U = UΦ[̺](a).

Since Φ and Φ[̺] are non-degenerate, by Proposition 4.2 of [2], we have

UV[̺],iξ = lim
λ∈Λ

UΦ[̺](eλ)V[̺],iξ = lim
λ∈Λ

Φ(eλ)Wiξ = Wiξ

for all ξ ∈ E and i ∈ {1, . . . , n}. Therefore Wi = UV[̺],i for all i ∈ {1, . . . , n}.

Step 2. Suppose that A is a locally C∗-algebra and B is a C∗-algebra.
Then there is p ∈ S(A), a strict completely multi-positive map [̺p] =
[̺p

ij ]
n
i,j=1 from Ap to LB(E) such that [̺ij]

n
i,j=1 = [̺p

ij ◦ πp]
n
i,j=1, and a ∗-

representation Φp of Ap on F such that Φ = Φp ◦ πp.

It is not difficult to check that the linear map Ũ from (A ⊗alg E)n to
(Ap ⊗alg E)n defined by

Ũ(
n⊕

i=1
(ai ⊗ ξi)) =

n⊕
i=1

(πp(ai)⊗ ξi)

extends to a bounded linear map Ũ from E[̺] to E[̺p]. Moreover, Ũ is unitary.
Therefore, the Hilbert B-modules E[̺] to E[̺p] are unitarily equivalent.

By Step 1, there is a ∗-representation Φ[̺p] of Ap on E[̺p], and n elements
V[̺p],i, i = 1, . . . , n, in LB(E, E[̺p]) such that

̺p
ij(a) = V ∗

[̺p],iΦ[̺p](a)V[̺p],j

for all a ∈ Ap and i, j ∈ {1, . . . , n}, and {Φ[̺p](a)V[̺p],iξ; a ∈ Ap, ξ ∈ E, i =
1, . . . , n} spans a dense submodule of E[̺p]. Also there is a unitary operator
Up in LB(E[̺p], F ) such that Φp(a)Up = UpΦ[̺p](a) for all a in Ap, and
Wi = UpV[̺p],i for all i = 1, . . . , n.

Let Φ[̺] = Φ[̺p] ◦πp, V[̺],i = Ũ∗V[̺p],i, i = 1, . . . , n, and U = UpŨ . A sim-
ple calculation shows (Φ[̺]; V[̺],i, i = 1, . . . , n; E[̺]) is the KSGNS construc-
tion associated with [̺ij]

n
i,j=1, and U is a unitary operator in LB(E[̺], F )

such that Φ(a)U = UΦ[̺](a) for all a in A and Wi = UV[̺],i for all i =
1, . . . , n.

Step 3 (The general case). For each q ∈ S(B), [̺q] = [(πq)∗ ◦ ̺ij ]
n
i,j=1 is

a strict completely multi-positive linear map from A to LBq(Eq), and Φq =
(πq)∗◦Φ is a continuous ∗-representation of A on Eq such that (πq)∗(̺ij(a)) =
(πq)∗(W

∗
i )Φq(a)(πq)∗(Wj) for all a ∈ A and {Φq(a)(πq)∗(Wi)ξ; a ∈ A, ξ ∈ E,

i = 1, . . . , n} spans a dense submodule of Fq.

Let (Φ[̺q ]; V[̺q ],i, i = 1, . . . , n; E[̺q ]) be the KSGNS construction associ-
ated with [̺q]. By Step 2, there is a unitary operator Uq in LBq(E[̺q ], Fq)
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such that Φq(a)Uq = UqΦ[̺q ](a) for all a in A and (πq)∗(Wi) = UqV[̺q ],i for
all i = 1, . . . , n.

It is not difficult to check that

(πqr)∗ ◦ Φ[̺q ] = Φ[̺r ]

for all q, r ∈ S(A) with q ≥ r. This implies that there is a continuous
∗-morphism Φ[̺] from A to LB(E[̺]) such that (πq)∗ ◦ Φ[̺] = Φ[̺q ] for all
q ∈ S(B). Also it is not difficult to check that (V[̺q ],i)q, i = 1, . . . , n, are
coherent sequences in LBq(Eq, E[̺q ]) and (Uq)q is a coherent sequence in
LBq(E[̺q ], Fq).

Let V[̺],i = (V[̺q ],i)q, i = 1, . . . , n, and U = (Uq)q. A simple calculation
shows that (Φ[̺]; V[̺],i, i = 1, . . . , n; E[̺]) is the KSGNS construction asso-
ciated with [̺], Φ(a)U = UΦ[̺](a) for all a in A, and Wi = UV[̺],i for all
i ∈ {1, . . . , n}.

4. Covariant representations associated with a covariant

completely multi-positive linear map

Definition 4.1. Let (G, A, α) be a locally C∗-dynamical system and
let u be a unitary representation of G on a Hilbert B-module E. We say
that a completely multi-positive linear map [̺ij ]

n
i,j=1 from A to LB(E) is

u-covariant with respect to the locally C∗-dynamical system (G, A, α) if

̺ij(αg(a)) = ug̺ij(a)u∗
g for all a ∈ A, g ∈ G and i, j ∈ {1, . . . , n}.

Proposition 4.2. Let (G, A, α) be a locally C∗-dynamical system, let

u be a unitary representation of G on a Hilbert module E over a locally

C∗-algebra B, let (Φ, v, F ) be a covariant non-degenerate representation of

(G, A, α) on a Hilbert B-module F, and let Vi, i = 1, . . . , n, be n partial

isometries in LB(E, F ) (that is, V ∗
i Vi = idE for all i = 1, . . . , n) such that

Viug = vgVi for all g ∈ G and i = 1, . . . , n. Then there is a u-covariant

non-degenerate completely multi-positive linear map [̺] = [̺ij ]
n
i,j=1 from A

to LB(E) such that

̺ij(a) = V ∗
i Φ(a)Vj for all a ∈ A and i, j = 1, . . . , n.

Proof. It is a simple verification.

The following theorem is a covariant version of Theorem 3.4.

Theorem 4.3. Let (G, A, α) be a locally C∗-dynamical system, let u be

a unitary representation of G on a Hilbert module E over a locally C∗-

algebra B, and let [̺] = [̺ij]
n
]i,j=1 be a u-covariant , non-degenerate, com-

pletely multi-positive linear map from A to LB(E).

(1) There is a covariant representation (Φ[̺], v
[̺], E[̺]) of (G, A, α) and

n elements V[̺],i, i = 1, . . . , n, in LB(E, E[̺]) such that
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(a) ̺ij(a) = V ∗
[̺],iΦ[̺](a)V[̺],j for all a ∈ A and i, j ∈ {1, . . . , n};

(b) {Φ[̺](a)V[̺],iξ; a ∈ A, ξ ∈ E, i = 1, . . . , n} spans a dense sub-

module of E[̺];

(c) v
[̺]
g V[̺],i = V[̺],iug for all g ∈ G and i ∈ {1, . . . , n}.

(2) If F is a Hilbert B-module, (Φ, v, F ) is a covariant representation

of (G, A, α) and Wi, i = 1, . . . , n, are n elements in LB(E, F ) such

that

(a) ̺ij(a) = W ∗
i Φ(a)Wj for all a ∈ A and i, j ∈ {1, . . . , n};

(b) {Φ(a)Wiξ; a ∈ A, ξ ∈ F, i = 1, . . . , n} spans a dense submodule

of F ;
(c) vgWi = Wiug for all g ∈ G and for all i ∈ {1, . . . , n},

then there is a unitary operator U in LB(E[̺], F ) such that

(i) Φ(a)U = UΦ[̺](a) for all a ∈ A;

(ii) vgU = Uv
[̺]
g for all g ∈ G;

(iii) Wi = UV[̺],i for all i ∈ {1, . . . , n}.

Proof. We partition the proof into two steps.

Step 1. Suppose that B is a C∗-algebra.
(1) Let {eλ}λ∈Λ be an approximate unit of A such that the nets

{̺ii(eλ)}λ∈Λ, i = 1, . . . , n, are strictly convergent to the identity operator on
E, and let (Φ[̺]; V[̺],i, i = 1, . . . , n; E[̺]) be the KSGNS construction associ-
ated with [̺ij ]

n
i,j=1. Then V[̺],i is a partial isometry for each i ∈ {1, . . . , n}.

For each g ∈ G, we define a linear map v
[̺]
g from (A⊗alg E)n to (A⊗alg E)n

by

v[̺]
g (

n⊕
i=1

(ai ⊗ ξi)) =
n⊕

i=1
(αg(ai)⊗ ugξi).

Using the fact that [̺ij]
n
i,j=1 is u-covariant, it is not difficult to check that

v
[̺]
g extends to a bounded linear map v

[̺]
g from E[̺] to E[̺], and since

〈v[̺]
g (

n⊕
i=1

(ai ⊗ ξi) +N ),
n⊕

i=1
(bi ⊗ ηi) +N〉

= 〈
n⊕

i=1
(ai ⊗ ξi) +N , v

[̺]
g−1(

n⊕
i=1

(bi ⊗ ηi) +N )〉

for all
⊕n

i=1(ai ⊗ ξi),
⊕n

i=1(bi ⊗ ηi) ∈ (A ⊗alg E)n, v
[̺]
g ∈ LB(E[̺]) and

moreover, (v
[̺]
g )∗ = v

[̺]
g−1 . Also it is not difficult to check that the map g 7→

v
[̺]
g is a unitary representation of G on E[̺].

To show that (Φ[̺], v
[̺], E[̺]) is a covariant representation of (G, A, α) it

remains to prove that Φ[̺](αg(a)) = v
[̺]
g Φ[̺](a)v

[̺]
g−1 for all g ∈ G and a ∈ A.
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Let g ∈ G and a ∈ A. We have

(v[̺]
g Φ[̺](a)v

[̺]
g−1)(

n⊕
i=1

(ai ⊗ ξi) +N )

= (v[̺]
g Φ[̺](a))(

n⊕
i=1

(αg−1(ai)⊗ ug−1ξi) +N )

= v[̺]
g (

n⊕
i=1

(aαg−1(ai)⊗ ug−1ξi) +N )

=
n⊕

i=1
(αg(a)ai ⊗ ξi) +N

= (Φ[̺](αg(a)))(
n⊕

i=1
(ai ⊗ ξi) +N )

for all
⊕n

i=1(ai ⊗ ξi) ∈ (A⊗alg E)n. Hence Φ[̺](αg(a)) = v
[̺]
g Φ[̺](a)v

[̺]
g−1 .

By Theorem 3.4(1) conditions (a) and (b) are satisfied. To show that (c)
is satisfied, let ξ ∈ E, g ∈ G and i ∈ {1, . . . , n}. Then we have

‖v[̺]
g V[̺],iξ − V[̺],iugξ‖

2 = lim
λ∈Λ
‖v[̺]

g ξλ
i − V[̺],iugξ‖

2

= lim
λ∈Λ
‖〈ξ, ̺ii(e

2
λ)ξ〉+ 〈ξ, ξ〉 − 〈̺ii(αg(eλ))ugξ, ugξ〉 − 〈ugξ, ̺ii(αg(eλ))ugξ〉‖

≤ lim
λ∈Λ
‖〈ξ, ̺ii(eλ)ξ〉+ 〈ξ, ξ〉 − 〈̺ii(eλ)ξ, ξ〉 − 〈ξ, ̺ii(eλ)ξ〉‖

= lim
λ∈Λ
‖〈ξ − ̺ii(eλ)ξ, ξ〉‖ = 0.

Hence condition (c) is also satisfied.

(2) By Theorem 3.4(2), there is a unitary operator U in LB(E[̺], F )
defined by U(

∑m
s=1

∑n
i=1 αiΦ[̺](as)V[̺],iξs) =

∑m
s=1

∑n
i=1 αiΦ(as)Wiξs such

that Φ(a)U = UΦ[̺](a) for all a ∈ A, and Wi = UV[̺],i for all i ∈ {1, . . . , n}.

Let g ∈ G, i ∈ {1, . . . , n}, a ∈ A, ξ ∈ E. We have

(vgU)(Φ[̺](a)V[̺],iξ) = vg(Φ(a)Wiξ) = Φ(a)vgWiξ

= Φ(a)Wiugξ = U(Φ[̺](a)V[̺],iugξ)

= U(Φ[̺](a)v[̺]
g V[̺],iξ) = (Uv[̺]

g )(Φ[̺](a)V[̺],iξ).

This implies that vgU = Uv
[̺]
g and thus assertion (2) is proved.

Step 2 (The general case). Let q ∈ S(B). Then [̺q] = [(πq)∗ ◦̺ij ]
n
i,j=1 is

a uq-covariant, non-degenerate, completely multi-positive linear map from A
to LBq(Eq), ((πq)∗ ◦ Φ, vq, Fq) is a covariant representation of (G, A, α) and
(πq)∗(Wi), i = 1, . . . , n, are n elements in LBq(Eq, Fq) such that conditions
(a)–(c) of (2) are satisfied.
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By Step 1, there is a covariant representation (Φ[̺q ], v
[̺q], E[̺q ]) of

(G, A, α) and n elements V[̺q ],i, i = 1, . . . , n, in LBq(Eq, E[̺q ]) which satisfy
conditions (a)–(c) of (1) and there is a unitary operator Uq in LBq(E[̺q ],Fq)
which satisfies conditions (i)–(iii) of (2). Moreover,

v
[̺q ]
g (

n⊕
i=1

(ai ⊗ σq(ξi)) +Nq) =
n⊕

i=1
(αg(ai)⊗ uq

gσq(ξi)) +Nq

for all
⊕n

i=1(ai ⊗ σq(ξi)) ∈ (A⊗alg Eq)
n and g ∈ G.

Let (Φ[̺]; V[̺],i, i = 1, . . . , n; E[̺]) be the KSGNS construction associated
with [̺ij]

n
i,j=1. According to the proof of Theorem 3.4, (πq)∗ ◦ Φ[̺] = Φ[̺q ],

(πq)∗(V[̺],i) = V[̺q ],i, i = 1, . . . , n, and (E[̺])q = E[̺q ] for all q ∈ S(B).

It is not difficult to check that for each g ∈ G, (v
[̺q ]
g )q is a coherent

sequence in LBq(E[̺q ]), and the map g 7→ v
[̺]
g , where v

[̺]
g = (v

[̺q ]
g )q, is a

unitary representation of G on E[̺]. Also one can check that (Φ[̺], v
[̺], E[̺])

is a covariant representation of (G, A, α) which satisfies conditions (a)–(c)
of (1).

Since Uq(Φ[̺q ](a)V[̺q ],iσq(ξ)) = (πq)∗(Φ(a))Wiσq(ξ) for all a ∈ A, ξ ∈ E,
i ∈ {1, . . . , n} and q ∈ S(B), it is not hard to verify that (Uq)q is a co-
herent sequence in LBq(E[̺q ], Fq). Then U = (Uq)q is a unitary element
in LB(E[̺], F ) which satisfies conditions (i)–(iii) of (2), and the theorem is
proved.

Remark 4.4. In the particular case when (G, A, α) is a unital C∗-
dynamical system, B is a unital C∗-algebra and E = B, the statements
of Theorem 4.3 are given in Theorem 3.1 of [1].

In [1], Heo showed that given a unital C∗-dynamical system (G, A, α), a
covariant completely multi-positive linear map [̺ij]

n
i,j=1 from A to B extends

to a completely multi-positive linear map on the crossed product A ×α G.
We generalize this result to the case of locally C∗-dynamical systems, not
necessarily unital, in the following proposition.

Proposition 4.5. Let (G, A, α) be a locally C∗-dynamical system such

that α is a continuous inverse limit action, let B be a locally C∗-algebra, let

E be a Hilbert B-module and let u be a unitary representation of G on E.
If [̺] = [̺ij ]

n
i,j=1 is a u-covariant , non-degenerate, completely multi-positive

linear map from A to LB(E), then there is a unique completely multi-positive

linear map [ϕij ]
n
i,j=1 from A×α G to LB(E) such that

ϕij(f) =
\
G

̺ij(f(g))ug dg

for all f ∈ Cc(G, A) and i, j ∈ {1, . . . , n}. Moreover , [ϕij]
n
i,j=1 is non-

degenerate.
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Proof. By Theorem 4.3, there is a covariant representation (Φ[̺],v
[̺],E[̺])

of (G, A, α) and n elements V[̺],i, i = 1, . . . , n, in LB(E, E[̺]) such that

̺ij(a) = V ∗
[̺],iΦ[̺](a)V[̺],j and v

[̺]
g V[̺],i = V[̺],iug for all a ∈ A, g ∈ G and

i, j ∈ {1, . . . , n}.
Let Φ[̺]× v[̺] be the representation of A×α G associated with (Φ[̺], v

[̺],
E[̺]) [5, Proposition 3.4]. For each i, j ∈ {1, . . . , n}, define ϕij : A ×α G →
LB(E) by

ϕij(x) = V ∗
[̺],i(Φ[̺] × v[̺])(x)V[̺],j .

Clearly [ϕij ]
n
i,j=1 is a completely multi-positive linear map from A×α G to

LB(E). Let {eλ}λ∈Λ be an approximate unit for A and let ξ ∈ E. Then,

since Φ[̺] × v[̺] and [̺] are non-degenerate,

lim
λ

ϕii(eλ)ξ = lim
λ

V ∗
[̺],i(Φ[̺] × v[̺])(eλ)V[̺],iξ = V ∗

[̺],iV[̺],iξ = ξ

for all i = 1, . . . , n. Therefore [ϕij ]
n
i,j=1 is non-degenerate. Moreover, if f ∈

Cc(G, A), then

ϕij(f) = V ∗
[̺],i(Φ[̺] × v[̺])(f)V[̺],j =

\
G

V ∗
[̺],iΦ[̺](f(g))v[̺]

g V[̺],j dg

=
\
G

V ∗
[̺],iΦ[̺](f(g))V[̺],jug dg =

\
G

̺ij(f(g))ug dg,

and since Cc(G, A) is dense in A×α G, [ϕij ]
n
i,j=1 is unique.

Using the fact that any continuous action of a compact group on a locally
C∗-algebra is an inverse limit action [11, Lemma 5.2], from Proposition 4.5
we obtain the following corollary.

Corollary 4.6. Let (G, A, α) be a locally C∗-dynamical system, B a lo-

cally C∗-algebra, E a Hilbert B-module, u a unitary representation of G
on E, and [̺] = [̺ij ]

n
i,j=1 a u-covariant , non-degenerate, completely multi-

positive linear map from A to LB(E). If G is a compact group, then there

is a unique completely multi-positive linear map [ϕij ]
n
i,j=1 from A ×α G to

LB(E) such that

ϕij(f) =
\
G

̺ij(f(g))ug dg

for all f ∈ Cc(G, A) and i, j ∈ {1, . . . , n}. Moreover , [ϕij]
n
i,j=1 is non-

degenerate.
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