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Radon–Nikodým compact spaces of low weight
and Banach spaces

by

Antonio Avilés (Murcia)

Abstract. We prove that a continuous image of a Radon–Nikodým compact of weight
less than b is Radon–Nikodým compact. As a Banach space counterpart, subspaces of
Asplund generated Banach spaces of density character less than b are Asplund generated.
In this case, in addition, there exists a subspace of an Asplund generated space which is
not Asplund generated and which has density character exactly b.

The concept of Radon–Nikodým compact, due to Reynov [13], has its
origin in Banach space theory, and it is defined as a topological space which
is homeomorphic to a weak∗ compact subset of the dual of an Asplund space,
that is, a dual Banach space with the Radon–Nikodým property (topolog-
ical spaces will be here assumed to be Hausdorff). In [10], the following
characterization of this class is given:

Theorem 1. A compact space K is Radon–Nikodým compact if and only
if there is a lower semicontinuous metric d on K which fragments K.

Recall that a map f : X × X → R on a topological space X is said
to fragment X if for each (closed) subset L of X and each ε > 0 there is
a nonempty relatively open subset U of L of f -diameter less than ε, i.e.
sup{f(x, y) : x, y ∈ U} < ε. Also, a map g : Y → R from a topological space
to the real line is lower semicontinuous if {y : g(y) ≤ r} is closed in Y for
every real number r.

It is an open problem whether a continuous image of a Radon–Nikodým
compact is Radon–Nikodým. Arvanitakis [2] has taken the following ap-
proach to this problem: if K is a Radon–Nikodým compact and π : K → L
is a continuous surjection, then we have a lower semicontinuous fragmenting
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metric d on K, and if we want to prove that L is Radon–Nikodým compact,
we should find such a metric on L. A natural candidate is

d1(x, y) = d(π−1(x), π−1(y)) = inf{d(t, s) : π(t) = x, π(s) = y}.

The map d1 is lower semicontinuous and fragments L and it is a quasi-
metric, that is, it is symmetric and vanishes only if x = y. But it is not
a metric because, in general, it fails the triangle inequality. Consequently,
Arvanitakis [2] introduced the following concept:

Definition 2. A compact space L is said to be quasi-Radon–Nikodým
if there exists a lower semicontinuous quasi-metric which fragments L.

The class of quasi-Radon–Nikodým compacta is closed under continuous
images but it is unknown whether it is the same class as that of Radon–
Nikodým compacta or even the class of their continuous images. At least
two other superclasses of continuous images of Radon–Nikodým compacta
appear in the literature. Reznichenko [1, p. 104] defined a compact space L
to be strongly fragmentable if there is a metric d which fragments L such
that each pair of different points of L have disjoint neighbourhoods at a
positive d-distance. It has been noted by Namioka [11] that the classes of
quasi-Radon–Nikodým and strongly fragmentable compacta are equal. An-
other superclass of continuous images of Radon–Nikodým compacta, called
countably lower fragmentable compacta, was introduced by Fabian, Heisler
and Matoušková [6]. In Section 3, we recall their definition and we prove
that this class is equal to the other two.

The main result in Section 1 is the following:

Theorem 3. If K is a quasi-Radon–Nikodým compact space of weight
less than b, then K is Radon–Nikodým compact.

The weight of a topological space is the least cardinality of a base for
its topology. We also recall the definition of the cardinal b. In the set NN
we consider the order relation given by σ ≤ τ if σn ≤ τn for all n ∈ N.
The cardinal b is the least cardinality of a subset of NN which is not σ-
bounded for this order (a set is σ-bounded if it is a countable union of
bounded subsets). It is consistent that b > ω1. In fact, Martin’s axiom and
the negation of the continuum hypothesis imply that c = b > ω1 (cf. [7,
11D and 14B]). It is also possible that c > b > ω1 (cf. [4, Section 5]). On
the other hand, the cardinal d is the least cardinality of a cofinal subset of
(NN,≤), that is, a set A such that for each σ ∈ NN there is some τ ∈ A
such that σ ≤ τ . In a sense, the following proposition puts a rough bound
on the size of the class of quasi-Radon–Nikodým compacta with respect to
Radon–Nikodým compacta.
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Proposition 4. Every quasi-Radon–Nikodým compact space embeds
into a product of Radon–Nikodým compact spaces with at most d factors.

In Section 2 we discuss the Banach space counterpart to Theorem 3.
A Banach space V is Asplund generated, or GSG, if there is some Asplund
space V ′ and a bounded linear operator T : V ′ → V such that T (V ′) is
dense in V . Our main result for this class is the following:

Theorem 5. Let V be a Banach space of density character less than b
and such that the dual unit ball (BV ∗ , w∗) is quasi-Radon–Nikodým compact.
Then V is Asplund generated.

The density character of a Banach space is the least cardinal of a norm-
dense subset, and it equals the weight of its dual unit ball in the weak∗

topology.
Examples constructed by Rosenthal [14] and Argyros [5, Section 1.6]

show that there exist Banach spaces which are subspaces of Asplund gener-
ated spaces but which are not Asplund generated. However, since the dual
unit ball of a subspace of an Asplund generated space is a continuous im-
age of a Radon–Nikodým compact [5, Theorem 1.5.6], we have the following
corollary to Theorem 5:

Corollary 6. If a Banach space V is a subspace of an Asplund gener-
ated space and the density character of V is less than b, then V is Asplund
generated.

Also, a Banach space is weakly compactly generated (WCG) if it is the
closed linear span of a weakly compact subset. The same examples men-
tioned above show that this property is not inherited by subspaces. A Banach
space V is weakly compactly generated if and only if it is Asplund generated
and its dual unit ball (BV ∗ , w∗) is Corson compact [12], [15]. Having Corson
dual unit ball is a hereditary property since a continuous image of a Corson
compact is Corson compact [8], hence:

Corollary 7. If a Banach space V is a subspace of a weakly compactly
generated space and the density character of V is less than b, then V is
weakly compactly generated.

Corollary 7 can also be obtained from the following theorem, essentially
due to Mercourakis [9]:

Theorem 8. If a Banach space V is weakly K-analytic and the density
character of V is less than b, then V is weakly compactly generated.

The class of weakly K-analytic spaces is larger than the class of subspaces
of weakly compactly generated spaces. We recall its definition in Section 2.
The result of Mercourakis [9, Theorem 3.13] is that, under Martin’s axiom,
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weakly K-analytic Banach spaces of density character less than c are weakly
compactly generated, but his arguments prove in fact the more general The-
orem 8. We give a more elementary proof of this theorem, obtaining it as a
consequence of a purely topological result: Any K-analytic topological space
of density character less than b contains a dense σ-compact subset. We also
remark that it is not possible to generalize Theorem 8 to the class of weakly
countably determined Banach spaces.

The cardinal b is best possible for Theorems 5 and 8 and their corol-
laries, as shown by slight modifications of the above mentioned example of
Argyros [5, Section 1.6] and of the example of Talagrand [16] of a weakly
K-analytic Banach space which is not weakly compactly generated, so that
we get examples of density character exactly b.

For information about the cardinals b and d we refer to [4]. Concerning
Banach spaces, our main reference is [5].

I want to express my gratitude to José Orihuela for valuable discussions
and suggestions, and to Witold Marciszewski, from whom I learnt about the
cardinals b and d. I also thank Isaac Namioka and the referee for suggestions
which have improved the final version of this article.

1. Quasi-Radon–Nikodým compacta of low weight. In this sec-
tion, we characterize quasi-Radon–Nikodým compacta in terms of embed-
dings into cubes [0, 1]Γ , and from this we derive proofs of Theorem 3 and
Proposition 4. Techniques of Arvanitakis [2] play an important role in this
section, as well as the following theorem of Namioka [10]:

Theorem 9. Let K be a compact space. The following are equivalent :

(1) K is Radon–Nikodým compact.
(2) There is an embedding K ⊂ [0, 1]Γ such that K is fragmented by the

uniform metric d(x, y) = supγ∈Γ |xγ − yγ |.

Let P ⊂ NN be the set of all strictly increasing sequences of positive
integers. Note that this is a cofinal subset of NN. For each σ ∈ P we consider
the lower semicontinuous nondecreasing function hσ : [0,∞]→ R given by

hσ(t) =





0 for t = 0,

1/σn whenever 1/(n+ 1) < t ≤ 1/n,

1/σ1 whenever t > 1.

Also, if f : X × X → R is a map and A,B ⊂ X, we will use the notation
f(A,B) = inf{f(x, y) : x ∈ A, y ∈ B}.

Theorem 10. Let K be a compact subset of the cube [0, 1]Γ . The follow-
ing are equivalent :
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(1) K is quasi-Radon–Nikodým compact.
(2) There is a map σ : Γ → P such that K is fragmented by

f(x, y) = sup
γ∈Γ

hσ(γ)(|xγ − yγ |),

which is a lower semicontinuous quasi-metric.

Proof. Observe that f in (2) is expressed as a supremum of lower semi-
continuous functions, and therefore it is lower semicontinuous. Also, f(x, y)
= 0 if and only if hσ(γ)(|xγ−yγ |) = 0 for all γ ∈ Γ if and only if |xγ−yγ | = 0
for all γ ∈ Γ . Hence, f is indeed a lower semicontinuous quasi-metric and it
is clear that (2) implies (1). Assume now that K is quasi-Radon–Nikodým
compact and let g : K ×K → [0, 1] be a lower semicontinuous quasi-metric
which fragments K. For γ ∈ Γ , we denote by pγ : K → [0, 1] the projection
on the coordinate γ, pγ(x) = xγ , and we define a quasi-metric gγ on [0, 1]
by the rule

gγ(t, s) =
{
g(p−1

γ (t), p−1
γ (s)) if p−1

γ (t) and p−1
γ (s) are nonempty,

1 otherwise.
Note that gγ is lower semicontinuous because for r < 1,

{(t, s) : gγ(t, s) ≤ r} =
⋂

r′>r

(pγ × pγ){(x, y) ∈ K2 : g(x, y) ≤ r′}

Observe also that if x, y ∈ K, then gγ(xγ, yγ) = gγ(pγ(x), pγ(y)) ≤ g(x, y).
Hence, K is fragmented by

g′(x, y) = sup
γ∈Γ

gγ(xγ , yγ) ≤ g(x, y).

The proof finishes by making use of the following lemma, where we put
g0 := gγ:

Lemma 11. Let g0 : [0, 1] × [0, 1] → [0, 1] be a lower semicontinuous
quasi-metric on [0, 1]. Then there exists τ ∈ P such that hτ (|t−s|) ≤ g0(t, s)
for all t, s ∈ [0, 1].

Proof. We define τ recursively. Suppose that we have defined τ1, . . . , τn
in such a way that if |t− s| > 1/(n+ 1), then hτ (|t− s|) ≤ g0(t, s). Let

Km = {(t, s) ∈ [0, 1]× [0, 1] : |t− s| ≥ 1/(n+ 2) and g0(t, s) ≤ 1/m}.
Then {Km}∞m=1 is a decreasing sequence of compact subsets of [0, 1]2 with
empty intersection. Hence, there is m1 such that Km is empty for m ≥ m1.
We define τn+1 = max{m1, τn + 1}.

Now, we state a lemma which is just a piece of the proof of [2, Proposi-
tion 3.2]. We include its proof for the sake of completeness.

Lemma 12. Let K,L be compact spaces, let f : K ×K → R be a sym-
metric map which fragments K and p : K → L a continuous surjection.
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Then L is fragmented by g(x, y) = f(p−1(x), p−1(y)), and in particular , L
is fragmented by any g′ with g′ ≤ g.

Proof. Let M be a closed subset of L and ε > 0. By Zorn’s lemma a set
N ⊂ K can be found such that p : N → M is onto and irreducible (that
is, for every N ′ ⊂ N closed, p : N ′ → M is not onto). We find a relatively
open subset U ⊂ N of f -diameter less than ε. By irreducibility, p(U) has
nonempty relative interior in M . This interior is a nonempty relative open
subset of M of g-diameter less than ε.

In what follows, we use the following notation: If A ⊂ Γ are sets, dA
stands for the pseudometric in [0, 1]Γ given by dA(x, y) = supγ∈A |xγ − yγ |.

Lemma 13. Let K be a compact subset of the cube [0, 1]Γ and let σ :
Γ → P be a map such that the quasi-metric

f(x, y) = sup
γ∈Γ

hσ(γ)(|xγ − yγ |)

fragments K and σ(Γ ) is a σ-bounded subset of NN. Then K is Radon–
Nikodým compact. In addition, there exist sets Γn ⊂ Γ such that Γ =⋃
n∈N Γn and each dΓn fragments K.

Proof. There is a decomposition Γ =
⋃
n∈N Γn such that each σ(Γn) has

a bound τn in (NN,≤). We choose τn ∈ P. First, we prove that each dΓn
fragments K. For every n ∈ N, K is fragmented by the map

fn(x, y) = sup
γ∈Γn

hσ(γ)(|xγ − yγ |) ≤ f(x, y)

and

fn(x, y) = sup
γ∈Γn

hσ(γ)(|xγ − yγ |)

≥ sup
γ∈Γn

hτn(|xγ − yγ |)

= hτn( sup
γ∈Γn

|xγ − yγ |) = hτn(dΓn(x, y)).

Hence, a set of fn-diameter less than 1/τn in K is a set of dΓn-diameter less
than 1/n and therefore, since fn fragments K, also dΓn fragments K.

Consider now the natural projection pn : [0, 1]Γ → [0, 1]Γn and Kn =
pn(K). By Lemma 12, since K is fragmented by fn, Kn is fragmented by

gn(x, y) = sup
γ∈Γn

hσ(γ)(|xγ − yγ |),

and hence Kn is Radon–Nikodým compact. Moreover, since Γ =
⋃
n∈N Γn,

K embeds into the product
∏
n∈NKn and the class of Radon–Nikodým com-

pacta is closed under taking countable products and closed subspaces [10],
it follows that K is Radon–Nikodým compact.
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Proof of Theorem 3. If the weight of K is less than b, then K can be
embedded into a cube [0, 1]Γ with |Γ | < b. Any subset of NN of cardinality
less than b is σ-bounded, so Theorem 3 follows directly from Theorem 10
and Lemma 13.

Proof of Proposition 4. Let K be quasi-Radon–Nikodým compact, sup-
pose K is embedded into some cube [0, 1]Γ and let σ : Γ → P be as in
Theorem 10. Let A ⊂ P be a cofinal subset of P of cardinality d. For α ∈ A,
let

Γα = {γ ∈ Γ : σ(γ) ≤ α},
let pα : [0, 1]Γ → [0, 1]Γα be the natural projection, and let Kα = pα(K).
Again, since Γ =

⋃
α∈A Γα, K embeds into the product

∏
α∈AKα. By

Lemma 12, Kα is fragmented by

gα(x, y) = sup
γ∈Γα

hσ(γ)(|xγ − yγ |).

The set {σ(γ) : γ ∈ Γα} is bounded, and hence σ-bounded. Hence, by
Lemma 13, Kα is Radon–Nikodým compact.

We note that from Lemma 13, we obtain something stronger than The-
orem 3:

Theorem 14. For every quasi-Radon–Nikodým compact subset of a cube
[0, 1]Γ with |Γ | < b there is a countable decomposition Γ =

⋃
n∈N Γn such

that dΓn fragments K for all n ∈ N.

A similar result holds also for generalized Cantor cubes (cf. [6, Theo-
rem 3], [2, Theorem 3.6]): If K is a quasi-Radon–Nikodým compact subset
of {0, 1}Γ , then there is a decomposition Γ =

⋃
n∈N Γn such that dΓn frag-

ments K for all n ∈ N. We now give an example which shows that this
phenomenon does not happen for general cubes, even if the compact K has
weight less than b or is zero-dimensional:

Proposition 15. There exist a set Γ of cardinality b and a compact
subset K of [0, 1]Γ homeomorphic to the metrizable Cantor cube {0, 1}N
such that for any decomposition Γ =

⋃
n∈N Γn there exists n ∈ N such that

dΓn does not fragment K.

Proof. First, we take a subset Γ of NN of cardinality b which is not
σ-bounded. We let A = {γn : γ ∈ Γ, n ∈ N} be the set of all terms of
elements of Γ . We define

K ′ = {x ∈ {0, 1}Γ×N : xγ,n = xγ′,n′ whenever γn = γ′n′}.
Observe that K ′ is homeomorphic to {0, 1}N: namely, for each a ∈ A

choose some γa, na ∈ Γ × N such that γana = a; in this case we have a
homeomorphism K ′ → {0, 1}A given by x 7→ (xγa,na)a∈A.



78 A. Avilés

Now, we consider the embedding φ : {0, 1}Γ×N → [0, 1]Γ given by

φ(x) =
(∑

n∈N

(
2
3

)n
xγ,n

)

γ∈Γ
.

We claim that the space K = φ(K ′) ⊂ [0, 1]Γ satisfies the statement.
Let Γ =

⋃
n∈N Γn be any countable decomposition of Γ . Since Γ is not

σ-bounded, there is some n ∈ N such that Γn is not bounded. For this
fixed n, since Γn is not bounded, there is some m ∈ N such that the set
S = {γm : γ ∈ Γn} ⊂ A is infinite. We consider

K0 = {x ∈ K ′ : xγ,k = 0 whenever γk 6∈ S} ⊂ K.
By the same arguments as for K ′, K0 is homeomorphic to the Cantor cube
{0, 1}N by a map K0 → {0, 1}S given by x 7→ (xγa,na)a∈S . Now, we take
two different elements x, y ∈ K0. Then there must exist some γ ∈ Γn such
that xγ,m 6= yγ,m, and this implies that |φ(x)γ−φ(y)γ | ≥ 3−m and therefore
dΓn(φ(x), φ(y)) ≥ 3−m. This means that any nonempty subset of φ(K0) of
dΓn-diameter less than 3−m must be a singleton. If dΓn fragmented K, this
would imply that φ(K0) has an isolated point, which contradicts the fact
that it is homeomorphic to {0, 1}N.

2. Banach spaces of low density character. In this section we find
that the cardinal b is the least possible density character of Banach spaces
which are counterexamples to several questions. First, we introduce some
notation: If A is a subset of a Banach space V , we denote by dA the pseu-
dometric dA(x∗, y∗) = supx∈A |x∗(x) − y∗(x)| on BV ∗ . Also, we recall the
following definition [5, Definition 1.4.1]:

Definition 16. A nonempty bounded subset M of a Banach space V
is called an Asplund set if for each countable set A ⊂ M the pseudometric
space (BV ∗ , dA) is separable.

By [3, Theorem 2.1], M is an Asplund subset of V if and only if dM frag-
ments (BV ∗ , w∗). Also, by [5, Theorem 1.4.4], a Banach space V is Asplund
generated if and only if it is the closed linear span of an Asplund subset.

Proof of Theorem 5. Let Γ be a dense subset of the unit ball BV of V
of cardinality less than b. Then we have a natural embedding (BV ∗ , w∗) ⊂
[−1, 1]Γ . Since (BV ∗ , w∗) is quasi-Radon–Nikodým compact, we apply The-
orem 14 and we have Γ =

⋃
Γn and each dΓn fragments (BV ∗ , w∗). This

means that for each n, Γn is an Asplund set, and by [5, Lemma 1.4.3],
M =

⋃
n∈N

1
nΓn is an Asplund set as well. Finally, since the closed linear

span of M is V , by [5, Theorem 1.4.4], V is Asplund generated.

We now recall the concepts that we need for the proof of Theorem 8. We
follow the terminology and notation of [5, Sections 3.1, 4.1]. Let X and Y
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be topological spaces. A map φ : X → 2Y from X to the subsets of Y is
said to be an usco if the following conditions hold:

(1) φ(x) is a compact subset of Y for all x ∈ X.
(2) {x : φ(x) ⊂ U} is open in X, for every open subset U of Y .

In this situation, for A ⊂ X we write φ(A) =
⋃
x∈A φ(x).

A completely regular topological space X is said to be K-analytic if there
exists an usco φ : NN → 2X such that φ(NN) = X. A Banach space is weakly
K-analytic if it is a K-analytic space in its weak topology.

We note that if a Banach space V contains a weakly σ-compact subset
M which is dense in the weak topology, then V is WCG. This is because
if M =

⋃∞
n=1Kn where Kn is a weakly compact set bounded by cn > 0,

then {0} ∪⋃(1/ncn)Kn is a weakly compact subset of V whose linear span
is (weakly) dense in V . Hence, Theorem 8 is deduced from the following:

Proposition 17. If X is a K-analytic topological space which contains
a dense subset of cardinality less than b, then X contains a dense σ-compact
subset.

Proof. We have an usco φ : NN → 2X with φ(NN) = X and also a set
Σ ⊂ NN such that |Σ| < b and φ(Σ) is dense in X. Any subset of NN of
cardinality less than b is contained in a σ-compact subset of NN [4, Theorem
9.1]. Uscos send compact sets to compact sets, so if Σ ′ ⊃ Σ is σ-compact,
then φ(Σ′) is a dense σ-compact subset of X.

We recall that a completely regular topological space X is K-countably
determined if there exists a subset Σ of NN and an usco φ : Σ → 2X such
that φ(Σ) = X, and that a Banach space is weakly countably determined
if it is K-countably determined in its weak topology. Talagrand [17] has
constructed a Banach space which is weakly countably determined but which
is not weaklyK-analytic. A slight modification of this example gives a similar
one with density character ω1. This shows that no analogue of Theorem 8
is possible for weakly countably determined Banach spaces. The change in
the example consists in replacing the set T considered in [17, p. 78] by any
subset T ′ ⊂ T of cardinality ω1 such that {o(X) : X ∈ T ′} is uncountable,
and A by A′ = {A ⊂ T ′ : A ∈ A1} (the notations are explained in [17]).

Now, we turn to the fact that the cardinal b is best possible in Theo-
rems 5 and 8 and their corollaries. We fix a subset S of NN of cardinality b
which is not σ-bounded.

Following the exposition of the example of Argyros in [5, Section 1.6]
we just replace the space Y = span{πσ : σ ∈ NN} in [5, Theorem 1.6.3] by
Y ′ = span{πσ : σ ∈ S} and we obtain a Banach space of density character
b which is a subspace of a WCG space C(K) but which is not Asplund
generated. The same arguments in [5, Section 1.6] hold just with NN replaced
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by S where necessary. Only the proof of [5, Lemma 1.6.1] is not good for
this case. It must be substituted by the following:

Lemma 18. Let Γn, n ∈ N, be any subsets of S such that
⋃
n∈N Γn = S.

Then there exist n,m ∈ N and an infinite set A ∈ Am such that A ⊂ Γn.

Here, as in [5, Section 1.6], Am is the family of all subsets A ⊂ NN such
that if σ, τ ∈ A and σ 6= τ , then σi = τi if i ≤ m and σm+1 6= τm+1. Also,
A =

⋃∞
m=1Am.

Proof of Lemma 18. We consider Γi,j = {σ ∈ Γi : σ1 = j}, i, j ∈ N.
Note that S =

⋃
i,j Γi,j . Since S is not σ-bounded, there exist n, l with Γn,l

unbounded. This implies that for some m, the set {σm : σ ∈ Γn,l} is infinite.
We take the least integer m with this property (m > 1). Let B ⊂ Γn,l be
an infinite set such that σm 6= σ′m for σ, σ′ ∈ B, σ 6= σ′. Since all σk with
σ ∈ B, k < m, lie in a finite set, an infinite set A ⊂ B can be chosen such
that A ∈ Am−1.

On the other hand, if we follow the proof in [5, Section 4.3] that the
Banach space C(K) of Talagrand is weakly K-analytic but not WCG, and
we change K in [5, p. 76] to K ′ = {χA : A ∈ A, A ⊂ S} ⊂ {0, 1}S then
C(K ′) still satisfies this condition and has density character b. Observe that
C(K ′) is weakly K-analytic because K ′ is a retract of the original K. The
fact that C(K ′) is not WCG (nor even a subspace of a WCG space) follows
from [5, Theorem 4.3.2] and Lemma 18 above by the same arguments as
in [5, p. 78].

3. Countably lower fragmentable compacta. In this section we
prove that the concept of quasi-Radon Nikodým compact [2] is equivalent
to that of countably lower fragmentable compact [6]. The main result for
this class in [6] is that if K is countably lower fragmentable, then so is
(BC(K)∗ , w

∗). We note that, with these two facts at hand, together with
the fact that if C(K) is Asplund generated, then K is Radon–Nikodým [5,
Theorem 1.5.4], Theorem 3 is deduced from Theorem 5.

We need some notation: if K is a compact space and A ⊂ C(K) is a
bounded set of continuous functions over K, we define the pseudometric
dA on K as dA(x, y) = supf∈A |f(x) − f(y)|. If X is a topological space,
d : X ×X → R is a map, and ∆ is a positive real number, then d is said to
∆-fragment X if for each subset L of X there is a relative open subset U of
L of d-diameter less than or equal to ∆.

Definition 19. A compact space K is said to be countably lower frag-
mentable if there are bounded subsets {An,p : n, p ∈ N} of C(K) such that
C(K) =

⋃
n∈NAn,p for every p ∈ N, and K is 1/p-fragmented by the pseu-

dometric dAn,p .
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This is the definition as it appears in [6]. However, the variable p is
superfluous in it. If the sets An,1 exist, it is sufficient to define An,p =
{(1/p)f : f ∈ An,1}.

On the other hand, we recall a concept introduced by Namioka [10]: For
a topological space K, a set L ⊂ K×K is said to be an almost neighborhood
of the diagonal if it contains the diagonal ∆K = {(x, x) : x ∈ K} and for
every nonempty subset X of K there is a nonempty relative open subset U
of X such that U×U ⊂ L. The use of this was suggested to us by I. Namioka
and simplifies our original proof.

Theorem 20. For a compact subset K of [0, 1]Γ the following are equiv-
alent :

(1) K is quasi-Radon–Nikodým compact.
(2) K is countably lower fragmentable.
(3) There are subsets Γn,p, n, p ∈ N, of Γ such that K is 1/p-fragmented

by dΓn,p for every n, p ∈ N.

Proof. SupposeK is quasi-Radon–Nikodým compact and let φ be a lower
semicontinuous quasi-metric which fragments K. Then we just define

An,p = {f ∈ C(K) : |f(x)− f(y)| < 1/p whenever φ(x, y) ≤ 1/n}
∩ {f : ‖f‖∞ ≤ n}.

Clearly, K is 1/p-fragmented by dAn,p because any subset of K of φ-diameter
less than 1/n has dAn,p-diameter less than 1/p, and we know that φ frag-
ments K. On the other hand, for a fixed p ∈ N, in order to prove that
C(K) =

⋃
n∈NAn,p, observe that, if f ∈ C(K), then

Cn = {(x, y) ∈ K ×K : |f(x)− f(y)| ≥ 1/p and φ(x, y) ≤ 1/n}
is a decreasing sequence of compact subsets of K ×K with empty intersec-
tion, so there is some n > ‖f‖∞ such that Cn is empty, and then f ∈ An,p.

That (2) implies (3) is evident, just take Γn,p = An,p ∩ Γ , where An,p,
n, p ∈ N, are the sets in the definition of countable lower fragmentability.

Suppose (3). For every n, p ∈ N, since K is 1/p-fragmented by dAn,p, the
set Cn,p = {(x, y) ∈ K ×K : dΓn,p(x, y) ≤ 1/p} is an almost neighborhood
of the diagonal which, in addition, is closed. On the other hand, for each
n, p ∈ N, (x, y) ∈ Cn,p if and only if |xγ − yγ | ≤ 1/p for all γ ∈ Γn,p so that
⋂

n,p∈N
Cn,p =

⋂

p∈N

{
(x, y) : |xγ − yγ | ≤ 1/p for all γ ∈

⋃

n∈N
Γn,p = Γ

}
= ∆K .

Now, K is quasi-Radon–Nikodým by virtue of [11, Theorem 1], which states
that K is quasi-Radon–Nikodým compact if and only if there is a countable
family of closed almost neighborhoods of the diagonal whose intersection is
the diagonal ∆K .
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