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Common zero sets of equivalent
singular inner functions

by

KEew1 IzucHr (Niigata)

Abstract. Let u and A be bounded positive singular measures on the unit circle such
that u L A. It is proved that there exist positive measures pug and Ag such that up ~ p,
Ao ~ A, and {|[vue] < 1} N {|¢y,| < 1} = 0, where 1, is the associated singular inner
function of p. Let Z(u) = Ny, ~p) Z(¥v) be the common zeros of equivalent singular
inner functions of ¢,. Then Z(u) # 0 and Z(u) N Z(A) = 0. It follows that p < A if
and only if Z(u) C Z(\). Hence Z(u) is the set in the maximal ideal space of H> which
relates naturally to the set of measures equivalent to . Some basic properties of Z(u) are
given.

1. Introduction. Let H* be the Banach algebra of bounded analytic
functions on the open unit disk D. We denote by M = M (H ) the maximal
ideal space of H*, the space of non-zero multiplicative linear functionals
of H*> with the weak* topology. We think of D as an open subset of M.
Identifying a function in H*® with its Gelfand transform, we regard H™
as a closed subalgebra of C' (M), the space of continuous functions on M.
Identifying a function in H*® with its boundary function, we also view H° as
an (essential) supremum norm closed subalgebra of L, the usual Lebesgue
space on the unit circle 0D. We may consider the maximal ideal space
M (L) of L*° to be a subset of M, and it is known that M (L) is the Shilov
boundary of H*> (see [10]). For a point x € M, there exists a probability
measure (i, on M (L) such that f(z) = SM(LOO) fdu, for every f € H™®.
We denote by supp p, the closed support set of .. A function f in H*>
is called inner if |f| = 1 on M(L>). For a function f in H*, we use the
following notations:

{Ifl <1} ={z e MA\D; [f(2)] <1}, Z(f) = {z € M\ D; f(z) = 0}

2000 Mathematics Subject Classification: Primary 46J15.

Key words and phrases: common zero set, singular inner function.

Supported by Grant-in-Aid for Scientific Research (No. 10440039), Ministry of Edu-
cation, Science and Culture.

[231]



232 K. Izuchi

Note that these are subsets of M\D. For ( € 9D, let M ={xeM; z(x)=(},
where z is the identity function on D. For a subset E of M, we denote by
E its weak* closure in M.

For a sequence {z,,}, in D with > °>° | (1 — |z,]) < oo, there is the asso-
ciated Blaschke product

o0 —
—Zn Z— 2n
b(z) = D.
(2) 71_[1 |2n| 1—Zn2’ z€

Blaschke products are typical inner functions. Moreover if for every bounded
sequence {ay, },, of complex numbers there exists f € H* such that f(z,) =
ay, for every n, then both {z,}, and the associated Blaschke product b are
called interpolating. In this case, we have Z(b) = {zn}n \ {zn}n (see [10,
p. 205]). We denote by S(b) the set of cluster points of {z,}, in the closed
unit disk.

For z,y € M, let

o(z,y) = sup{[f(y)l; f € H™, f(z) =0, [[fllc =1},
P(x) ={w e M; o(z,w) < 1}.

The set P(z) is called the Gleason part containing x. When P(x) = {z},
both x and P(x) are called trivial. We denote by G the set of non-trivial
points in M. In [11], Hoffman proved that G \ D is the set of points z in
M\ D such that b(z) = 0 for some interpolating Blaschke product b, and
G is open in M. See [11] for the study of the structure of M and G.

Let M, be the set of bounded positive (non-zero) measures on 9D sin-
gular with respect to the Lebesgue measure on D. For € M, we denote
by supp p the closed support set of p and by ||| the total variation norm
of pn. We also denote by M:r 4 and M. the sets of discrete and continuous

measures in M, respectively. For ¢ € 9D, let §; be the unit point mass

at ¢. For u, A € M, we write p < X if p is absolutely continuous with
respect to A, and g L A if g and A are mutually singular; moreover, p A A is
the lower bound of y and A. For p,v € M, we write p ~ v if p and v are

equivalent, that is, 4 < v and v < p. For each pu € M, let

e + 2
| o’

Yu(z) = eXP<— du(ew)), zeD.

oD

Then v, is called a singular inner function; it may be extended continuously
on 0D \supp p and |9,| = 1 on M for ¢ & supp p (see [5, 10]). When p ~ v,
we say that 1, and 1, are equivalent singular inner functions. We have

() = exp(— § Poe?)du(e)), =€ D,
oD
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where P, is the Poisson kernel. We put

Zw= () ZW), W= () Alwl<1)

{reMtsvp} {veMF;vop}

Then Z(p) € W(p). In [13], the author proved that if p, A € M;Ld and
L\, then W(u) N W(X) = 0.

The purpose of this paper is to study Z(u) and W(u) for p € M.
The motivation for this study comes from [12] and [14]. In [12], the author
studied certain properties of Blaschke products, and in [14] similar properties
for singular inner functions. In Section 2, we prove that if p, A\ € M with
p L X, then there are y19, \g € M such that pg ~ p, Ao ~ A, and {|),,,| < 1}
N{]x,] < 1} = 0. Then we get W(u) N W(A) = 0 and Z(u) N Z(A\) = 0.
Hence Z(u) is the set in M \ D related to the class of measures equivalent
to p. From the point of view of the study of measures on 9D, the set Z(u)
is interesting and important. In Section 3, we prove that

W(p) = Z(p) U U {Ivs, | < 1}.
{¢€aD; u({¢})#0}

Hence if u € M., then W(u) = Z(u). Moreover, we prove that for ¢ € 9D,

,C)

if u({¢}) = 0 then

Z(,u) - U ./Vlg.
{€€0D; ¢#¢}

In Section 4, we prove that for { € 0D there exists a Blaschke product b
such that S(b) = {¢} and Z(u) N {|b| < 1} = O for every u € M. Also
we show that for every Blaschke product b with S(b) = 0D there exists
p € M, such that Z(b) N Z(u) # 0.

By [4, p. 162], Z(¢,)) contains a trivial point for every u € M. Hence
Z(p) contains trivial points too. Let int Z(u) denote the interior of Z(u) in
M\ D. If p € M, we have Z(b) ¢ Z(u) for every interpolating Blaschke
product b. This implies that int Z(u) = 0. Note that int Z(¢,,) # (. Since
the set G of non-trivial points is open, one can ask whether Z(u)NG = 0 or
not. To answer this, in Section 5 we study interpolating Blaschke products.
For a non-empty closed subset K of 0D which has Lebesgue measure zero,
we construct an interpolating Blaschke product b with certain properties.
In Section 6, we prove that Z(bgx) N Z(u) # O for every u € M with
supp i C K. Hence Z(u) contains non-trivial points for every p € M.

Let p € M. We denote by M(L*(u)) the maximal ideal space of the
Banach algebra L>°(u1). In Section 6, we establish the existence of a natural
map P, from M(L>*(p)) to the family of closed subsets of Z(u) such that

Zw= U 2@

zEM (L (1))
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and @,(x) N P,(y) = 0 if x # y. Hence we may think of {®,(z); x €
M(L*°(u))} as an atomic decomposition of the measure p in M\ D in some
sense. Also we prove that every ®,(x) contains non-trivial points.

2. Mutually singular measures. For a subset F of DUOD, we denote
by cl E the closure of E in the complex plane. In this section, we prove that
W(u) N W(A) = 0 if u, A € M and p L A First, we prove the following
theorem.

THEOREM 2.1. Let u, A\ € M} and p L \. Then there exist pg, \o € M
such that po ~ f1, Ao ~ A, and {|[¢u,] < 1} N{|¢y,| <1} =0.

Proof. Since p L A, there exists a measurable subset A C dD such that
u(A) = |||l and A(OD \ A) = ||A||. By the regularity of the measures, there
exist sequences { i, }n, and {\,, },, of measures in M such that supp p,, C A4,
supp A, C 9D \ A, and

n=1 n=1

Then
(2.2) supp pn, Nsupp A =0 for all n, k.

Let {0, }n be a sequence of numbers such that
(2.3) 0<d, <1, []don>0.
n=1

For each 0 < s < 1, let

(2.4) Uy, (s) ={z € D; [, (2)] < s}, Un.(s) ={z € D; |, ()] < s}

Then U, (s1) C U, (s2) if s1 < s2, and

ﬂ clU,, () = supp fin, ﬂ clUy, (s) = supp Ay,.

0<s<1 0<s<1

Hence by (2.2), we have

sup |y, (2)| — 1, sup |¢,,(2)] =1 ass— 0 forall n,k.
2€Uy, (s) 2€Ux, (s)

Then by induction, we may take {s,}, and {t,}, such that
(2.5) U, (sn) NU, (tx) =0 for all n, k,
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n
‘ H Uy, | >
j=1

0, on U Up, (sk),

(2.6) _
5n on U U)\k(tk).

n
IEAE
=1

Next, let {ay}, and {b,}, be sequences of numbers satisfying

(2.7) 0<a,<1, 0<b,<1,

(2.8) sin >4, thn >¢, for every n.

Let

(2.9) B0 = Gnptn,  Ao= Y bnhn.
n=1 n=1

Then by (2.1) and (2 7) Hos Ao € M, o ~ p, and Ao ~ .
For z € D\ U Uy, (s5), we have

k 00
o () = [ [y )% T Wy (2)]% Dy (2.9)
Jj=1 j=k+1
k 00
> [Tlw, 1 IT 57 by (2.4)
Jj=1 j=k+1

v
=
<
X
&
—
QQ’l

by (2.8).

<
Il
—_
<
Il
B
+
=

Hence

(2.10) |9, > H |9, H i on D\ | Uy, (s)) for every k.

j=k+1 j=1

Similarly,

(2.11) [hx,| > H [P | H d; on D\ U Uy, (t;) for every k.

j=k+1

Now suppose that {[1,,| < 1} N {|1x,| < 1} # 0. Then by the corona
theorem [3], there exist 0 < 6 < 1 and a sequence {z,}, in D such that
|z| — 1 and

(2.12) [Vuo (2n)| <0, [¥a,(2n)| < for every n.
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By (2.3), there exists a positive integer ko such that

(2.13) 1 6>
j=ko+1

Considering a subsequence of {z,},, we may further assume that either

(2.14) =z, € (D\ G qu(sj)> N (D\ [j Uy, (tj)) for every n,

(2.15) Zn € U Uy, (sj) for every n,
j=1

or
oo

(2.16) Zn € U Uy, (tj)  for every n.

For each case we shall obtain a contradiction.
First, suppose that (2.14) holds. By (2.10) (2.12), and (2.13),

ko
5> H |9y, (2n)] H 5; > 64?2 H [¥y; (2n)|  for every n.

Jj=1 j=ko+1
Then
0
H [P, (2n)] < 82 <1 for every n.
j=1
Similarly,
H 19y, (2n)| < 62 <1 for every n.
Hence
kO k‘o
c{zn}n \{zn}n C ( U suppuj) N ( U supp )\j>.
Jj=1 j=1

But this contradicts (2.2). Therefore (2.14) does not occur.
Next, suppose that (2.15) holds. Then by (2.5),

(2.17) {zn}n € D\ | J Uy, (t))
j=1
Taking a subsequence of {z,},, we may further assume that either

(2.18) {zn}n C U Uy, (sj)  for some m > ko,
j=1
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or

(2.19) {zn}tn N U Uy, (sj) 1is a finite set for every m.
Suppose that (2.18) holds. Then by (2.4), we have
1:[ [V, (2n)| < 12%Xm s; <1 for every n.

Hence

(2.20) c{zn}n \ {zn}n C U SUpp L.
By (2.11), (2.12), (2.13), and (2.17),

ko
6> [hag (2n) = [ ] 19, (20)] H 5 >51/2H|m ).

j=1 ] k0+1

Thus we have

0
H [¥a, (2n)| < 612 <1 for every n.
j=1
Therefore
ko
(2.21) c{zn}n \ {zn}n C U SUpp A;.
j=1
Hence (2.20) and (2.21) contradict (2.2).
Next, suppose that (2.19) holds. Then for each k, we have

lim inf |1y, (z)] > hmlan [¥x; (2n)] H 0; by (2.11) and (2.17)

n—oo
j=k+1

> Haj by (2.6), (2.15), and (2.19).

Thus by (2.3), we have |1)x,(zn)] — 1 as n — oo. This contradicts (2.12).
Therefore (2.15) does not occur.

Similarly, we may prove that (2.16) does not occur. Thus we get our
assertion. m

As an application of Theorem 2.1, we have the following.

THEOREM 2.2. Let u, A € M be such that p L X. Then W(u) N W(X)
=0, and consequently, Z(u) N Z(\) = 0.
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This theorem says that the singularity of measures on D may be rep-
resented in the maximal ideal space M of H° as disjoint closed subsets. So
to study the behavior of singular inner functions, it is important to study
the sets Z(u).

3. Z(u) and W(p). Recall that for p € M,
Zw= (1 Z@), Ww= (] {wl<1}
{veMt;vmp} {veMF;vp}

Thus Z(p) € W(u) and W(u) is a subset of M \ (D U M(L*)). In this
section, we study the properties of Z(u) and W(u). We note that if pu, A €
M and p ~ A, then Z(u) = Z(\) and W(u) = W(N).

First, we prove the following.

THEOREM 3.1. Let p € M and ¢ € supp . Then Z(u) N M¢ # 0, and
consequently, Z(u) # 0.

To prove this, we use the following lemma.

LEMMA 3.2. Let p € M and E be a closed subset of M such that
Z(u)NE = 0. Then there exists v € M such that v ~ u and Z (¢, )NE = (.

Proof. By our assumption, there exist v1, ..., v, € M such that v; ~ p
and
n
(3.1) > by, >0 on E.
j=1

Let v be the lower bound of {v;}_;, that is, v = Aj_, vj. Then v # 0 and
v ~ p. Since v < vj, we have |1,,| < |¢,| on M. Hence by (3.1), 0 < |4,]
on F/. m

Proof of Proposition 3.1. Let v € M}t and v ~ pu. Since ¢ € suppv,
it follows that Z(t,) N M¢ # 0 (see [5, p. 76]). By Lemma 3.2, we have
Z)NMc#0. m

The following lemma lists elementary properties of Z(p) and W(u).
LEMMA 3.3. Let i, o € M.

(1) If 1 L po, then Z(p1 + p2) = Z(p1) U Z(p1) and W(p + p2) =
W (1) UW(pa).
(ii) If p1 < po, then Z(pu1) C Z(p2) and W(p1) C W(u2).
(iii) Z(p1 + p2) = Z(p1) U Z(p2) and W(pr + p2) = W(p1) UW(p2).
(iv) If piApo # 0, then Z(p1 Ap2) = Z(p1) N Z(p2) and W(p1 Apz) =
W (1) N W (p2).
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Proof. We only prove the properties of Z(u); those of W(u) are estab-
lished similarly.

(i) Suppose that 1 L po. Let v € M. Then v ~ py + peo if and only
if v = v + v for some vy,vs € M with 13 ~ pp and vy ~ pus. Since
¢V1+V2 = 7/11/1 1/}1/2’ we have Z(¢V1+V2) = Z(%q) U Z(wl/z) Then by Theorem
2.2, Z(p1 + p2) = Z(p1) U Z(p2).

(ii) Suppose that p; < po. Then ps = vi + v, where v; ~ py and
v1 L ve. Hence by (i), Z(u1) = Z(v1) C Z(11) U Z(va) = Z(u2).

(iii) By (ii), we have Z(p1) U Z(p2) C Z(p1 + p2). To prove the reverse
inclusion, write 1 + pg = v1 + Vo, where v1,v5 € M:“ are such that v ~ uq,
v1 L ve, and vs < po. Then by (i) and (ii),

Z(p1 + p2) = Z2(v1) U Z(v2) = Z(p1) U Z(v2) C Z(p1) U Z(p2).

(iv) By (ii), Z(p1 A p2) C Z(u1) N Z(u2). Write p; = v1 + va, where
vy ~ 1 A pe and v L po. Then by (i),
Z(p) = Z2(n) U Z(v2) = Z(u1 A p2) U Z(v2).
By Theorem 2.2, Z(v2) N Z(u2) = 0. By (ii), Z(u1 A p2) C Z(us2). Hence
Z(p1) N Z(p2) = Z(p1 A p2) N Z(p2)= Z(p1 A piz). =
PROPOSITION 3.4. Let pi,pe € M. Then pi < po if and only if

Z(m) € Z(p2)-

Proof. The “only if” part follows from Lemma 3.3(ii). Suppose that
p1 K po. Write gy = vq + vo, where vy L po and vo < po. Then v # 0. By
Proposition 3.1, we have Z(v1) # (). Since v1 < p1, Lemma 3.3(ii) yields
Z(v1) C Z(p1). Since vy L pg, by Theorem 2.2 we have Z(v1) N Z(pu2) = 0.
Thus we get Z(u1) ¢ Z(p2). »

The following shows a relation between W(u) and Z(u).
THEOREM 3.5. Let u € M;. Then
W(u) = Z(u) U U {Ivs. | < 1}.
{¢€0D; u({¢})#0}

Proof. The D inclusion follows from the definition of W(u). To prove
the reverse inclusion, let

(3.2) e W)\ U {lvs | <1}
{¢edD; u({¢h)#0}
It is sufficient to prove that x € Z(u). Suppose not. Then there exists
v € M such that v ~ p and 1, (z) # 0. We may assume that z € M.
First, suppose that p({1}) = 0. Let I = 9D and I,, = {e¥; —1/n <0 <
1/n} for every positive integer n. Set v,, = v|(1, _,\1,)- Then v = > v,.
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Let
o0
Vg = Z Up /M.
n=1

Then vy ~ v ~ p and

k
(3.3) kvg <v+ Z kv,  for all k.

n=1

Since supp v, C cl(I,—1 \ I,,), it follows that 1 & suppv,,. Hence |¢,, | =1
on M; for every n. Since z € My, by (3.3),

Yo ()] = [Yy(z \H\wyn )F < Jiby, (2)F for all k.

Since ¥, (z) # 0, we have |9, (x)| = 1, so that = & W(u). This contradicts
(3.2). Thus if p({1}) =0, then x € Z(u).

Next, suppose that p({1}) = ¢ > 0. Write u = ¢d1 + p1, where puq L d;.
Then by Lemma 3.3(1), W(p) = {|¢s,| < 1}UW(p1), so that we may rewrite
condition (3.2) as

cew)\ U (esl<1).
{¢€dD; p1 ({¢}H)#0}

By the previous paragraph, x € Z(u1). By Lemma 3.3(ii), Z(u1) C Z(p).
Hence z € Z(p). m

COROLLARY 3.6. Let € M;" and ¢ € dD. If u({¢}) = 0, then Z(u) N
M =W(p) N M.
PROPOSITION 3.7. Let y € M and E be a closed subset of OD. Let A

be an Fy-subset of M such that AN Ugcppp Me = 0. If p(E) =0, then
there exists v € M such that v ~ p and |1,| =1 on A.

Proof. By our assumption, A = Uj’;l Aj, where A; is a closed set. Then
there is a sequence {U;}; of open subsets of M such that

(3.4) A;cU;, U;N U Mg =0 for every j.

£COD\E
Let Iy = 90D and {I,}, be a sequence of open subsets of dD such that
I, C Iy and (2, I, = E. Set pun, = (1, ,\1,)- Since p(E) = 0, we have
ft =, Hn- Since ENsupp pp, = 0, it follows that [¢, | =1 on Usc p M.
Then by (3.4), U; \ D C U¢er Mc. Hence for every n and j,

(3.5) |Yu, (2)] =1 as|zl—1land z€ U;ND.
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Let {e,}» be a sequence of positive numbers such that
o0
(3.6) H en >0, 0<e, <1 foreveryn.
n=1

Then by (3.5), there exists a sequence {a, }, of positive numbers such that
0<a, <1and

(37) Wjun(fz)‘an > €n on Uj NDforl< ] <n.

Let oo
vV = Z A oy -
n=1

Then v € M, v ~ p, and for any positive integers j and m, we have

An

liminf [ (2)] = liminf ] [vu,(2)
n=1

|z|—1, zeU;ND |z|]—1, zeU;ND

= liminf J] [¢u,(2)[* Dby (3.5)

|z|—1,zeU;ND

> ﬁ en by (3.7).

Hence by (3.6),

lim inf L(2z)]=1 for every j.
\z|—>1,z€UjﬂDW} (2)] Yy J

By the corona theorem and (3.4), A; C U; N D. Therefore |¢,| = 1 on A;
for every j. Thus |[¢),| =1 on A. =

COROLLARY 3.8. Let u € M and E be a closed subset of OD. If u(E)
=0, then -
Zwcwmwe | M.

¢€OD\E

This follows from Proposition 3.7.

COROLLARY 3.9. Let p € M. Then W(u) = Z(u) if and only if
pe M.

Proof. Suppose that p({¢}) > 0 for some ¢ € 0D. Write u = ad¢ + p1,
where p1({¢}) = 0. Then by Lemma 3.3,

W) =A{l¢s | <1FUW(ma),  Z(p) = Z(s,) U Z(pa)-
Since {|vs.| <1} NUccap, excy Me =0, by Corollary 3.8 we have

W) O {ls | <1} = {5 | <1}, Z2(w) N {l¢s| <1} = Z(¥s, )

Therefore W(u) # Z(u)
The converse follows from Theorem 3.5. =
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COROLLARY 3.10. Let p € M, be such that x € Z(u). Let y € M\ D
and supp fi; C supp py. Then y € Z(pu).

Proof. Let v € M and v ~ pu. Since 9, (z) = 0, we have |1, (y)] < 1.
Hence y € W(u). By Corollary 3.9, y € Z(u). =

4. Blaschke products and singular inner functions. Let b be a
Blaschke product with zeros {z,},. Recall that S(b) is the set of cluster
points of {z,}, in D. Then S(b) is the set of points in dD to which b may
not be extended continuously. Moreover, we have

(4.1) {pl<3n | Me=0.
£€AD\S(b)
There exists a sequence {p,}, of positive integers such that p, — oo as

n — oo and
o0 i p'VL
—Zn Z— Zn
b1(2):H(|Zn’ 1_Enz> . seD,

n=1

is a Blaschke product. Then S(b1) = S(b) and
{Ib] <1} € Z(b1) C {|b1]| < 1}.
Hence by (4.1),

(4.2) {bl<1}n |J Me=0
£€OD\S(b)
Moreover, if
lim f”%z’“ —1,
k_won:nyék — ZkZn

then both b and {z,},, are called sparse (or thin).
Suppose that b is sparse. Then

(4.3) {pl<1y= |J P
x€Z(b)

(see [7, 9]). For every sequence {z,}, in D with |z,| — 1 as n — oo, there
exists a sparse subsequence of {z,}, (see [6]).

LEMMA 4.1. Let b be a sparse Blaschke product. Let  be an inner func-
tion such that |p| =1 on Z(b). Then || =1 on {]b] < 1}.

Proof. Let y € {|b| < 1}. Then by (4.3), y € P(z) for some x € Z(b).
By [4, p. 143], supp py = supp g Since |p(x)| = 1, we have ¢ = ¢(z) on
supp fuy. Hence o(y) = §,/ (1) P dpy = ¢(z). Thus [p(y)| =1. =

First, we prove the following.
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PROPOSITION 4.2. Let u € M. Then there is a sparse Blaschke product
b such that S(b) = supp u and Z(p) N{Jb] < 1} = 0.

Proof. Since |¢,| =1 on M (L), by the corona theorem there exists a
sequence {2, },, in D such that |, (z,)| — lasn — oo and cl {zp }n\{2n}n =
supp p. Considering a subsequence, we may assume that {z, }, is sparse. Let
b be the associated Blaschke product. Then S(b) = supp p and |¢,| =1 on

Z(b). By Lemma 4.1, Z(¢,) N {|b| <1} = 0. Thus Z(p) N{]p| <1} =0. =

COROLLARY 4.3. Let b be a Blaschke product. If p € MG and u(S(b))
=0, then Z(u) N{|b] <1} = 0.

Proof. By (4.2), {|b] <1} N Ugcap\s@p) Me = 0; now apply Corollary
3.8. =

COROLLARY 4.4. Let € MF.. Then Z(b) ¢ Z(u) for every Blaschke
product b.

Proof. Let {z,}, be the zeros of b in D. Then there is a subsequence
{#n, }; such that z,, — ¢ for some ¢ € dD. Let by be the Blaschke product
with zeros {zy,,};. Then S(b1) = {(}. Hence by Corollary 4.3, Z(u) N Z(b1)
= (). Since Z(by) C Z(b), we obtain our assertion. m

COROLLARY 4.5. Let pn € M. Then int Z(u) = 0.

Proof. Suppose that int Z(u) # 0. Then there is an interpolating
Blaschke product b such that Z(b) C int Z(u). But by Corollary 4.4, Z(b) ¢
Z (). This is a contradiction. m

We have W(u) N M (L>) = () for every p € M. Then by Corollary 3.8,
for each ¢ € D we have
Me N U W(p) C Mce N U Me.
{peM; n({¢H)=0} {€€OD; e£CY}

Moreover we have the following.

PROPOSITION 4.6. Let ( € OD. Then

Mn U W) e Mcn | Me.
{peM; u({¢H)=0} {€€OD; e£CY}

To prove this, we need a lemma.

LEMMA 4.7. Let ( € 0D. Then there exists a sparse Blaschke product b
satisfying the following conditions.

(i) S(b) = {¢}-
(ii) Let u € M. Then there exists v € M such that v ~ p and |1,| = 1
on {|b|] < 1}.
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Proof. There exists a sequence {2, }, in D such that [t)s (2,)| — 1 and
zn — ¢ as n — oo. Considering a subsequence, we may assume that {z,},
is sparse. Let b be the Blaschke product with zeros {z, },. Then S(b) = {C},
and by (4.2),

{bl<1}n |J Mc=0.

{€€oD; #¢}
Let p € MG . Write pp = ad¢ + p1, where p1({¢}) = 0. Then by Propo-
sition 3.7, there exists vy € M such that v; ~ p and [¢,,] = 1 on

{lo] < 1}. Since Z(b) = {zn}n \ {2n}n, it follows that [¢5.| = 1 on Z(b).
By Lemma 4.1, 15| = 1 on {|b| < 1}. Put v = ad; + v1. Then v ~ p and
[l = |5 |4, | = T on {[b] <1}. =

Proof of Proposition 4.6. We may assume that ¢ = 1. Let {J,}, be a
sequence of open subarcs of 9D such that J, & J,_1 and ﬂflo:l Jn = {1}.
Then there is a sequence {{, }, such that &, is an interior point of J,, \ J,,—1
and &, — 1 as n — oco. We may assume that &, # & for n # k. Let u € M
and p({1}) = 0. Put pn = py(s,_,\s,)- Then p = > p,. For each n,
by Lemma 4.7 there exist a sparse Blaschke product ¢, and v, € M such
that S(gn) = {&u} va ~ pin, [lvall = |lpnll, and [y, [ = 1 on Z(gn). Let
v=>3 "V, Then v € M and v ~ p. Since &, & supp(v — vy,), we have

|Yy—v, | = 1 on Mg, . Since S(g,) = {&,.}, it follows that Z(g,) C Mg, .
Hence

(4-4) ‘wu‘ - ‘wu—un wl’n

Let {wy r}r be the zeros of g,. Then w,, — &, as k — oo. Since
&n # &k for n # k, there is a sequence { N, }, of positive integers such that
{wp g k > N,,n = 1,2,...} is a sparse sequence (see [8, Lemma 1.5]).
Since &, — 1, taking N,, sufficiently large, we may assume that cl{wy ;
k> Ny}t \{wni; k> Np}b = {1} U {&}n- Let b be the associated sparse
Blaschke product. Then (J;~ | Z(g,) C Z(b) and Z(b) \ U, ~; Z(gn) C M.
Hence by (4.4), {|v,| < 1} N Z(b) C M;.

For each positive integer j, let b; be a subproduct of b with zeros

{wn,k; ‘wy(wn,k)‘ <1-— 1/j, k > Nn, n = 1,2, .. }
Then Z(b;) C {|n| <1} N Z(b) C M. Hence

ZoHn | Me=0
{¢€0D; ¢#£1}

=1 on Z(gn).

We also have

U 205) = (] < 130 20).
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Therefore by Proposition 3.7 (considering E = {1}), there exists A\ € M
such that A ~ y and
(4.5) ial =1 on {lin] < 1} N Z(b).

Let 0 = v A X Then o ~ p and |[¢,| > max{|¢,|, |x]|}. Hence by (4.5),
|| =1 on Z(b). By Lemma 4.1, {|¢,| < 1} N {|b] < 1} = 0. Thus W(u) N
{|b| < 1} =0, so that

l<un U ww=0o
{neMF; p({1})=0}

Since {|b] < 1} N Mg, # 0, it is not difficult to see that

{Bl<ynmin ) Mc#0.
{€€oD; ¢#1}
Thus we get our assertion. m

By Lemma 4.7, we have the following.

PROPOSITION 4.8. Let ( € D. Then there exists a Blaschke product b
such that S(b) = {C} and Z(pn) N {|b] < 1} =0 for every p € M.

One may ask whether there is a Blaschke product b such that S(b) = 0D
and Z(u) N {|b] <1} = 0 for every u € M. The following says that the
answer is “no”.

THEOREM 4.9. Let b be a Blaschke product such that S(b) = 0D. Then

(i) Z(0c)NZ(b) # 0 for some ¢ € OD.
(ii) Z(u) N Z(b) # 0 for some p € M.

Proof. Let
0 _
(4.6) rey ={zep A o
1—|z]
Then
4.7 li . =0
(1) |z\_>1,1;§r(ew)%e” )

(see [5, p. 76]). Let b be a Blaschke product such that S(b) = 0D. Let {z,}»
be the zeros of b. Write

Zn = Tnetn,
By induction, we shall choose a subsequence {z,,}; of {z,},. Put ny = 1.
Since S(b) = 9D, {e¥~}, is dense in dD. Then by (4.6), there exists a

positive integer ny such that

Zn, € T(%2),  Op, < Onyy  Opy, — On, <1/2.
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Then z,, € I'(e?"2), so that there exists n3 such that
Znys Zng € T(€93), Opy < Opyy Opy — On, < 1/22.
Continuing, we get {2y, }; satisfying

(4.8) zp €(e") for1<k<j, 6, <0 On;pr — On, <1/2771,

Thus 6,,, — 6y as j — oo for some 6y. By (4.8), zp, € clI'(e') for every k.
Then by (4.7), ¥s o, (2n,) — 0 as k — oo, so that Z(¢s ) N Z(b) # 0.
Therefore we get Z(6,i0,) N Z(b) # 0.

To prove (ii), we need to work more. In the proof of (i), we choose one
point in each step. In the proof of (ii), we choose two points. Let

A ={(oa,...,0p); a5 =0o0r 1}, Ay ={(ou,0,...); aj =0or 1}.

njt+1 N1

For a = (ay,...,ax) € Ag, put |a| = k and o/ = (aq,...,q;) for j < k.
By induction, we shall choose a sequence {n,; o € A}, k = 1,2,..., of
finite sets of positive integers. Take positive integers ng and n; such that
Ony < 6y,. We have

Zny € D(e%0), 2, € ['(em).
Then take n, ) for [,m = 0,1 such that
Zn, € F(ew"(l’m)) for [,m = 0,1,
0 <|0ng .y = Ony| <|On; —Onol/4  for l,m=0,1,
Ongomy 7 Ongesy 1 (Lm) # (2, 5).
Assume that {n.; o € A;}, 1 < j < k, are chosen so that z, , € [(etfna)

for 1 < j <|a| and 0,, # 0, for a,3 € Ule Aj, a0 # 5. Let o € Ay,. Take
N(a,0) and N(a,1) such that

(4.9) 2, €0 en) for1<j<kandl=0,1,
(4.10) 0< ]9n<a7” — 6,
1. r
< me{wm — O s Ay € U Aj, N # ’y} for [ =0,1.
j=1
This finishes our induction.

Let a = (a1, as,...) € As. Put o* = (a1, ...,a;) € Ay. Then by (4.10),

j—k

1 k—1 1 l
|0nak - gnaj| < (Z) <Z (Z) >|9n1 - 9n0| forj > k.
=1

Hence {Qnak }r converges to some point, say 6,. By (4.9),

(4.11) Zn ; € I'(e?>)  for every j.
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Let 6 € Ay and a # 3. Then we may assume that

a=(ay,...,00,0k2,...), [O=(a1,...,ak1,0kr2,...).

By (4.10), we have

Jj—k—1 l
1 .
!9% _Hn(al ,,,,, ak,O)‘ < Z (Z) lemal,m,ak,o) _an(al ,,,,, ak,l)‘ for j > k+2.

Hence
1
‘ea - Hn(al ..... O‘k70>| < § ‘gn(al ..... ay,0) - 0n<a1 ..... ap,1) 17
Similarly,
1
|06 - en(al ..... ak,l)| < g ’971(041 ..... ag,0) - Hn(al ..... ak,l)|‘

Thus we get 0, # 03. By our construction, {6,; a € Ay} is the set of cluster
points of (Jy—;{0n.; a € A}. Hence {0q; o € A} is a perfect set. Then
there exists u € M, such that supp u C {0a; a € A} By [5, p. 76],
li (z) =0
|z\—>1,12'II€1F(0a)wl (Z)
for some @ € A . Therefore by (4.11), we have Z(v,,)NZ(b) # (). By Lemma
3.2, we obtain Z(u) N Z(b) #0. m

Here we have the following problem.

PROBLEM 4.10. Does there exist an interpolating Blaschke product bg
such that S(by) = 9D and Z(u) N Z(by) # O for every u € M;?

5. Construction of interpolating Blaschke products. For a mea-
surable subset E of 9D, we denote by |E| the Lebesgue measure of E. In
this section, for a given closed subset K of 0D with |K| = 0, we construct a
special interpolating Blaschke product bx associated with K. In Section 6,
we shall prove that Z(bx) N Z(u) # 0 for every p € Mg with suppp C K.

THEOREM 5.1. Let K be a closed subset of 0D with |K| = 0. Then there

ezists a sequence {J, ; };.V:"l, n=1,2,..., of open arcs such that for every n
and k,

N, Np—1
(i) K C U Jn,j C U Jnij,

Jj=1 Jj=1

(i) > Al Jng © Tnoak} < [Jn1kl/2.
J
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Let €5 be the center of the arc J, ; and

y '
Zn,j = <1 - —| 2n7’rj|>e“9"vf.

Then {zn j; 1 < j < Np,n=1,2,...} is an interpolating sequence and the
set of cluster points of {znj; 1 < j < Np,n = 1,2,...} in the closed unit
disk D coincides with K.

Let bx be the Blaschke product with zeros {z,;;1 < j < N,,n =
1,2,...}. We call bk the interpolating Blaschke product associated with K.

Proof of Theorem 5.1. Let K be a non-empty closed subset of 9D and
|K| = 0. Then K is totally disconnected. For an open arc V' of 9D such that
V N K is a non-empty closed set, there are finitely many disjoint open arcs
{V;}s_, of 8D such that V; N K are non-empty closed sets and

k k
VNKc|Jvicv, Y vVl
Jj=1 Jj=1
Now using the above fact inductively, we shall choose a family {J,, ; };V:’ll
of open arcs for each n. Let Jo = dD. Put V = Jy in the above; then there
are finitely many disjoint open arcs {J; ; };V:ll of @D such that J; ; N K are
non-empty closed sets and

N1 Nl
JonEKc ;o D1l < 1 Dol/2.
j=1 j=1

We proceed to the next step. For each J; ;,1 < j < Ny, there are finitely
many disjoint open arcs {Ji ;;},-; of dD such that .J; ;; N K are non-empty

closed sets and
m;

m;
Ty NK CJTgu g Y gl < 1J10/2.
=1 =1

Let Ny = Z;V:ll m; and
{J2;372 = T 1 <G < Niy 1< <y

We have
N2

K C U JQJ'.

=1

Continuing this process, at the nth step we have a finite family {J,, ; };VZ"I
of disjoint open arcs of 0D such that for 1 < k < N, _1,

(51) Jn717k NK C U{Jn,], J’n,j C JnflJf} C Jn,]_7k,
J



Singular inner functions 249

Jn,; N K is non-empty closed for every j with 1 < j < N,

n—1

N, N,
(52) K C U Jn,j C U Jn—l,j?
Jj=1 J

=1
(5.3) D gl Tng C Tne1k} < |Tno1kl/2
i

Thus we get the first half of our assertion.
By the above, we have

oo Np

(5.4) N U7 =K

n=1j=1

Let 1 < j < N,. For [ > n, we have

S {1l S € Tngt = DD {1 Jals Jix C© i1k € Juj}h by (5.1)
t k t

1
=35 Z{|sz1,k\; Ji—1k C Jnyj} by (5.3).
k
Hence
1 l—n
S0l D € Ing} < (5) Vsl

t
so that
(5.5) SN Ay T © Tng} < 204l

l=n t

Forn>1and 1 <5 < N,, let €n.i be the center of the arc JIn,js
| Tn g\ ios
and

(5.6) R(zn ;) = {re’; € € Jy 4, 1 — | Jnyl/270 <7 < 1}
Then z,; € R(zn,;) and 1 — |2, ;| = |Jn,;|/27. By (5.4), K is the set of

cluster points of {z,,; 1 <j < N,,n=1,2,...} in D.
We prove that {z,,;1 < j < N,,n = 1,2,...} is an interpolating

sequence. It is not difficult to see that {2, ;}, ; is g-separated, that is,

inf{o(zn g, zr1); (n,) # (k, 1)} > 0;
I leave the proof to the reader. To prove that {z,, j; 1 <j < N,, n=1,2,...}
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is interpolating, it is sufficient to show that

oo Np oo Np
o= S5 0= gD, = SO ulb /27

n=1j=1 n=1j=1
is a Carleson measure (see [2] and also [5, pp. 286-287]). Let
(5.7) Q={re?;1—c<r<1,00<0<6y+2re}, where0<e<1,

be an arbitrary Carleson square. We need to show that there is an absolute
constant C, independent of €, such that

(58) D Al nli 20 € 2} < Ce.
n)j
By our construction, there exists a sequence {zy, j, }%>; (maybe a finite set)
satisfying
(5.9) Zng.ju € £2 for every k,
(5.10) R(zn, jx) N R(2p, 5,) =0  for every k # [,
(5.11)  if 2z, ; € £2, there exists k such that R(z, ;) C R(zn, j,.)-
Then

oo

> (S lusli Blzug) € Rlzug)}) by (5.11)

> {1 njl; 2ny € 2}

n,j k=1 n,j
k=1 mn,j

<2 | Jugl by (5.5).
k=1

By (5.6) and (5.10), Jp, j. N Jn,, 5. = 0 if k # m. By (5.9),
Jmmjk N {eie; O <0 <6y+ 27(’8} ;é 0

and
|{€i9; 0o < 60 <0y —|—27T€}| > |Jnk7jk"

Hence by (5.7),

oo
Z |Jnk7]'k| < bre.
k=1

Thus we get (5.8), so that {z, ;; 1 <j < N,,n=1,2,...} is interpolating.
This completes the proof. m
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6. Properties of Z(u). First we prove the following theorem.

THEOREM 6.1. Let K be a non-empty closed subset of 0D with |K| =0,
and p € M be such that suppu C K. Then Z(bg) N Z(n) # 0, where by
is the interpolating Blaschke product associated with K.

Let K be a non-empty closed subset of D with |K| = 0. Generally, there
are uncountably many measures {ftq }aca in M such that supp po, C K
and po L pp if @ # B. By Theorems 3.1 and 6.1, {Z(bx) N Z(fa)}a 1S
a family of non-empty mutually disjoint subsets in Z(bg). So by is a very
convenient interpolating Blaschke product to study the properties of ¢, with
suppu C K.

Proof of Theorem 6.1. Let v € M and v ~ pu. We show that
(6.1) Z(bx) N Z () # 0.
Let {J,,;; 1 <j<Np,n=12...}and {2,,;; 1 <j<N,,n=12...}
be families given in Theorem 5.1. First, we prove that
. v(Jnj) _
02 TP BE, Tl

Suppose not. Then there exists a positive constant C such that

V(Jn,j)
(6.3) | Dnax o] < C for every n.
Then for each n, we have
Ny
v(K) < v(Jn,;) by Theorem 5.1(i)
j=1
Ny
<CY |l by (6.3)
j=1
o'
< Bl |Jn—1,;| by Theorem 5.1(ii)
j=1
2nC
< .
< o

Hence v(K) = 0, contrary to our assumption, so that (6.2) holds.
By (6.2), there exist {nj}r and {ji}x such that 1 < ji < N,,, and

V(Jnk,jk)

(6.4) —=- — 00 as k— oo.
|Jnk7jk’

By Theorem 5.1,
(6'5) |Jnk7jk| = 271-(1 - |an7jk|)‘
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Let € € J,,, j.. Then
" an,jk| < ’|znk7jk| - em(lilznk'jkl){
< (1 - ‘mejk ’) + ‘1 - em(l_‘znk’jkw

< U+ = [zng.i )

e

Then )
1-— ‘mejk’ 1

’eit — Z?’Lk?jk|2 o (]‘ + 7T)2(1 - |Zn’€7]k|) '

Py (€] =

Hence by (6.5),
2m

P, |> Jnp i
| "lcmc’ - (1 +’/T)2’Jnk7jk’ on kyJk
Consequently, we have
27
—log |9 (zn )| = | Pep o (€9)dv(0) = | P, () du(0)
0 Tngin
QFV(Jnka)

B (1 + W)Q‘Jnlmjk‘ '
Therefore by (6.4), ¥, (2n,.j.) — 0 as k — oo. Since bg is the Blaschke
product with zeros {z, ;1 < j < N,,n = 1,2,...}, we obtain Z(bx) N
Z (1) # 0. Then Lemma 3.2 yields the assertion. m
COROLLARY 6.2. Let u € M. Then Z(u) contains non-trivial points.

Proof. Since p is a singular measure, there exists a closed subset K of
0D such that |K| = 0 and p(K) > 0. By Lemma 3.3(ii), Z(ux) C Z(n),
and by Theorem 6.1, ) # Z(bx) N Z(px) C Z(bx) N Z(p). Since by is
interpolating, we have Z(bx) C G.

Let p € M. We denote by M(L*(u)) the maximal ideal space of the
Banach algebra L (u). Then M (L>°(u)) is a totally disconnected space. For
f e L>®(u), let fbe the Gelfand transform of f. For a measurable subset S
of supp yu, there exists an open and closed subset S of M (L*°(p)) such that
Xs = Xg- Then the family {xg}s coincides with the set of idempotents in
C(M(L>*(p))), the space of continuous functions on M (L>(u)). We have
5S¢ = (5)°. For each z € M(L>® (1)), let

(6.6) Bu(x)= [ Z(ws).
{S;z€S}
The set @,(z) is a closed subset in M associated with the point = €
M (L (p)). It is interesting to study @, (z) from the point of view of mea-
sures on 0D.
We have the following.
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THEOREM 6.3. Let pn € M.

(i) 04 @,(2) C Z(u) for o € M(L™()).

(i) @p(2) N Bu(y) =0 if 2,y € ML= (1)) and = # .
(iti) Z(p) = UxeM(LOO(M)) Pu(x).

Proof. First, assume that p = d¢ for some ¢ € 0D. Then M (L>(u)) is
a one-point set, say {z}, and it is easy to see that @, (z) = Z(¢5,) = Z(d¢).
Hence we obtain the assertion.

Next suppose that u is not a point mass. Then M (L>°(u)) contains more
than one point. Let .S be a measurable subset of supp p. Then p1 = g +p1se
and g L pjge. Hence by Theorem 2.2, Z(u5) N Z(ge) = 0 and Z(ps) C
Z(p). By Lemma 3.3, Z(n) = Z(us) U Z(se). Thus if ps # 0, then
Z(ps) is a non-empty open and closed subset of Z(u).

Let z € M(L*(u)). Suppose that @, (z) = (). Then there exist Si,...,.S,
such that z € §j for every j and (;_; Z(pys,) = 0. Set S = (;_, Sj. Then
S g, so that s # 0. Hence by Proposition 3.1, Z(us) # (). By Lemma
3.3, Z(ps) C Nj=1 Z(kys;)- This is a contradiction. Thus we get (i).

Let z,y € M(L>(p )) and x # y. Then there exists S such that z € §
and y & S. We have y € SC and hence by Theorem 2.2,

Pu(x) N Puly) C Z(ps) N Z(yse) = 0.

Thus (ii) holds.
Suppose (iii) does not hold. Then there is ( € Z(u) such that { ¢
@, (z) for every x € M(L>(u)). Hence for each x € M (L), there exists a

measurable subset S, of supp p such that = € §x and ¢ ¢ Z(jus, ). Since §w
is an open subset of M (L*°(u)), there exist S;,, ..., Sz, such that

n

ML) = | 5,

j=1
Put S = (Jj_; Si;- Then S = Uj=1 §xj = M(L*(u)), so that pg = p. By

Lemma 3. 3

Z(w) = 2(ws..).

J
=1

Hence ¢ € Z(u Szj) for some j. This is a contradiction. m
We have the following problem.

PROBLEM 6.4. Let p € M. Is &,(x) a connected set for every xz €
ML ()7

We give some results on the sets ¢, (x).
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PROPOSITION 6.5. Let u € M and x € M(L*>(u)).

(i) If ( € Pu(x), then P(¢) C @, (z).
(i) @, (z) contains trivial points.
(iil) If p € M}, ¢ € @, (), supp ¢ C supp pig, and § € M\ D, then
Eed,(z).

Proof. Let ¢ € @,(x). Then ,(¢) = 0 for every v € M with v ~ p.
Since v, is a singular inner function, we have P({) C Z(1,). Hence P(¢) C
Z(p). Thus we get (i).

(ii) follows from (i) and Budde’s theorem [1], and (iii) from Corollary
3.10 and (6.6). =

One may ask whether each ¢, (x) contains non-trivial points. Here is the
answer.

THEOREM 6.6. Let p € M and x € M(L>(pn)). Then @,(x) contains
non-trivial points.

Proof. Let u € M;. By the regularity of u, there is a sequence {Kp},
(maybe finite) of non-empty closed subsets satisfying

(6.7) |K,| =0 for every n,
(6.8) K,NK,=0 ifn#m,

(6.9) IS Z MK, -
n=1

For each n, there exists an interpolating Blaschke product bk, associated
with K,,. Let {w, ;}; be the zeros of bg, in D. Then by Theorem 5.1,
K, is the set of cluster points of {w, ;}; in D. Then by (6.8), we have
{Ibk, | < 1}{|bk,,| < 1} = B if n # m. By the proof of [8, Lemma 1.5], there
is a sequence {k;}; of positive integers such that {w,, j; j > kn,,n=1,2,...}
is an interpolating sequence.

Let

o

Ve (2) = J[ ot 2200 p(2) = [[ o (2), =€ D.
n=1

W] 1 =W ;2

J=kn
Then b, is an interpolating Blaschke product and

(6.10) Z(V,) = Z(bk,), | Z(bk,) C Z(by).

Let S be a measurable subset of supp 4 such that x € S. Since ws # 0,
by (6.9) there exists a positive integer n such that g, ~g # 0. By (6.7) and
Theorem 6.1, Z(bx,,) N Z(t|k,ns) # 0. Then by (6.10), Z(b,) N Z(px,.ns)
# (). Hence by Lemma 3.3, we have Z(b,) N Z(jg) # 0. In the same way
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as in the proof of Theorem 6.3(i), we have Z(b,) N P, (z) # 0. Since b, is
interpolating, ¢, (x) contains non-trivial points. =

PROBLEM 6.7. Let p € M and € M(L*(p)). Does @, (x) contain
sparse points?

The author would like to thank the referee for his/her comments on the
first version of the manuscript.
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