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Common zero sets of equivalent
singular inner functions

by

Keiji Izuchi (Niigata)

Abstract. Let µ and λ be bounded positive singular measures on the unit circle such
that µ ⊥ λ. It is proved that there exist positive measures µ0 and λ0 such that µ0 ∼ µ,
λ0 ∼ λ, and {|ψµ0 | < 1} ∩ {|ψλ0 | < 1} = ∅, where ψµ is the associated singular inner
function of µ. Let Z(µ) =

⋂
{ν; ν∼µ} Z(ψν) be the common zeros of equivalent singular

inner functions of ψµ. Then Z(µ) 6= ∅ and Z(µ) ∩ Z(λ) = ∅. It follows that µ � λ if
and only if Z(µ) ⊂ Z(λ). Hence Z(µ) is the set in the maximal ideal space of H∞ which
relates naturally to the set of measures equivalent to µ. Some basic properties of Z(µ) are
given.

1. Introduction. Let H∞ be the Banach algebra of bounded analytic
functions on the open unit disk D. We denote byM = M(H∞) the maximal
ideal space of H∞, the space of non-zero multiplicative linear functionals
of H∞ with the weak∗ topology. We think of D as an open subset of M.
Identifying a function in H∞ with its Gelfand transform, we regard H∞

as a closed subalgebra of C(M), the space of continuous functions on M.
Identifying a function inH∞ with its boundary function, we also viewH∞ as
an (essential) supremum norm closed subalgebra of L∞, the usual Lebesgue
space on the unit circle ∂D. We may consider the maximal ideal space
M(L∞) of L∞ to be a subset ofM, and it is known thatM(L∞) is the Shilov
boundary of H∞ (see [10]). For a point x ∈ M, there exists a probability
measure µx on M(L∞) such that f(x) =

�
M(L∞) f dµx for every f ∈ H∞.

We denote by suppµx the closed support set of µx. A function f in H∞

is called inner if |f | = 1 on M(L∞). For a function f in H∞, we use the
following notations:

{|f | < 1} = {x ∈M \D; |f(x)| < 1}, Z(f) = {x ∈ M \D; f(x) = 0}.
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Note that these are subsets ofM\D. For ζ∈∂D, letMζ ={x∈M; z(x)=ζ},
where z is the identity function on D. For a subset E of M, we denote by
E its weak∗ closure in M.

For a sequence {zn}n in D with
∑∞
n=1(1− |zn|) <∞, there is the asso-

ciated Blaschke product

b(z) =
∞∏

n=1

−zn
|zn|

z − zn
1− znz

, z ∈ D.

Blaschke products are typical inner functions. Moreover if for every bounded
sequence {an}n of complex numbers there exists f ∈ H∞ such that f(zn) =
an for every n, then both {zn}n and the associated Blaschke product b are
called interpolating. In this case, we have Z(b) = {zn}n \ {zn}n (see [10,
p. 205]). We denote by S(b) the set of cluster points of {zn}n in the closed
unit disk.

For x, y ∈ M, let

%(x, y) = sup{|f(y)|; f ∈ H∞, f(x) = 0, ‖f‖∞ = 1},
P (x) = {w ∈ M; %(x,w) < 1}.

The set P (x) is called the Gleason part containing x. When P (x) = {x},
both x and P (x) are called trivial. We denote by G the set of non-trivial
points in M. In [11], Hoffman proved that G \ D is the set of points x in
M\D such that b(x) = 0 for some interpolating Blaschke product b, and
G is open in M. See [11] for the study of the structure of M and G.

Let M+
s be the set of bounded positive (non-zero) measures on ∂D sin-

gular with respect to the Lebesgue measure on ∂D. For µ ∈M+
s , we denote

by suppµ the closed support set of µ and by ‖µ‖ the total variation norm
of µ. We also denote by M+

s,d and M+
s,c the sets of discrete and continuous

measures in M+
s , respectively. For ζ ∈ ∂D, let δζ be the unit point mass

at ζ. For µ, λ ∈ M+
s , we write µ � λ if µ is absolutely continuous with

respect to λ, and µ ⊥ λ if µ and λ are mutually singular; moreover, µ∧ λ is
the lower bound of µ and λ. For µ, ν ∈ M+

s , we write µ ∼ ν if µ and ν are
equivalent, that is, µ� ν and ν � µ. For each µ ∈M+

s , let

ψµ(z) = exp
(
− �
∂D

eiθ + z

eiθ − z dµ(eiθ)
)
, z ∈ D.

Then ψµ is called a singular inner function; it may be extended continuously
on ∂D\suppµ and |ψµ| = 1 onMζ for ζ 6∈ suppµ (see [5, 10]). When µ ∼ ν,
we say that ψµ and ψν are equivalent singular inner functions. We have

|ψµ(z)| = exp
(
− �
∂D

Pz(eiθ) dµ(eiθ)
)
, z ∈ D,
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where Pz is the Poisson kernel. We put

Z(µ) =
⋂

{ν∈M+
s ; ν∼µ}

Z(ψν), W(µ) =
⋂

{ν∈M+
s ; ν∼µ}

{|ψν | < 1}.

Then Z(µ) ⊂ W(µ). In [13], the author proved that if µ, λ ∈ M+
s,d and

µ ⊥ λ, then W(µ) ∩W(λ) = ∅.
The purpose of this paper is to study Z(µ) and W(µ) for µ ∈ M+

s .
The motivation for this study comes from [12] and [14]. In [12], the author
studied certain properties of Blaschke products, and in [14] similar properties
for singular inner functions. In Section 2, we prove that if µ, λ ∈ M+

s with
µ ⊥ λ, then there are µ0, λ0 ∈M+

s such that µ0 ∼ µ, λ0 ∼ λ, and {|ψµ0 | < 1}
∩ {|ψλ0 | < 1} = ∅. Then we get W(µ) ∩ W(λ) = ∅ and Z(µ) ∩ Z(λ) = ∅.
Hence Z(µ) is the set in M\D related to the class of measures equivalent
to µ. From the point of view of the study of measures on ∂D, the set Z(µ)
is interesting and important. In Section 3, we prove that

W(µ) = Z(µ) ∪
⋃

{ζ∈∂D;µ({ζ})6=0}
{|ψδζ | < 1}.

Hence if µ ∈M+
s,c, then W(µ) = Z(µ). Moreover, we prove that for ζ ∈ ∂D,

if µ({ζ}) = 0 then

Z(µ) ⊂
⋃

{ξ∈∂D; ξ 6=ζ}
Mξ.

In Section 4, we prove that for ζ ∈ ∂D there exists a Blaschke product b
such that S(b) = {ζ} and Z(µ) ∩ {|b| < 1} = ∅ for every µ ∈ M+

s . Also
we show that for every Blaschke product b with S(b) = ∂D there exists
µ ∈M+

s,c such that Z(b) ∩ Z(µ) 6= ∅.
By [4, p. 162], Z(ψµ) contains a trivial point for every µ ∈ M+

s . Hence
Z(µ) contains trivial points too. Let intZ(µ) denote the interior of Z(µ) in
M\D. If µ ∈ M+

s,c, we have Z(b) 6⊂ Z(µ) for every interpolating Blaschke
product b. This implies that intZ(µ) = ∅. Note that intZ(ψµ) 6= ∅. Since
the set G of non-trivial points is open, one can ask whether Z(µ)∩G = ∅ or
not. To answer this, in Section 5 we study interpolating Blaschke products.
For a non-empty closed subset K of ∂D which has Lebesgue measure zero,
we construct an interpolating Blaschke product bK with certain properties.
In Section 6, we prove that Z(bK) ∩ Z(µ) 6= ∅ for every µ ∈ M+

s with
suppµ ⊂ K. Hence Z(µ) contains non-trivial points for every µ ∈M+

s .
Let µ ∈ M+

s . We denote by M(L∞(µ)) the maximal ideal space of the
Banach algebra L∞(µ). In Section 6, we establish the existence of a natural
map Φµ from M(L∞(µ)) to the family of closed subsets of Z(µ) such that

Z(µ) =
⋃

x∈M(L∞(µ))

Φµ(x)
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and Φµ(x) ∩ Φµ(y) = ∅ if x 6= y. Hence we may think of {Φµ(x); x ∈
M(L∞(µ))} as an atomic decomposition of the measure µ inM\D in some
sense. Also we prove that every Φµ(x) contains non-trivial points.

2. Mutually singular measures. For a subset E of D∪∂D, we denote
by clE the closure of E in the complex plane. In this section, we prove that
W(µ) ∩ W(λ) = ∅ if µ, λ ∈ M+

s and µ ⊥ λ. First, we prove the following
theorem.

Theorem 2.1. Let µ, λ ∈M+
s and µ ⊥ λ. Then there exist µ0, λ0 ∈M+

s
such that µ0 ∼ µ, λ0 ∼ λ, and {|ψµ0 | < 1} ∩ {|ψλ0 | < 1} = ∅.

Proof. Since µ ⊥ λ, there exists a measurable subset A ⊂ ∂D such that
µ(A) = ‖µ‖ and λ(∂D \A) = ‖λ‖. By the regularity of the measures, there
exist sequences {µn}n and {λn}n of measures in M+

s such that suppµn ⊂ A,
suppλn ⊂ ∂D \A, and

(2.1) µ =
∞∑

n=1

µn, λ =
∞∑

n=1

λn.

Then

(2.2) suppµn ∩ suppλk = ∅ for all n, k.

Let {δn}n be a sequence of numbers such that

(2.3) 0 < δn < 1,
∞∏

n=1

δn > 0.

For each 0 < s < 1, let

(2.4) Uµn(s) = {z ∈ D; |ψµn(z)| < s}, Uλn(s) = {z ∈ D; |ψλn(z)| < s}.

Then Uµn(s1) ⊂ Uµn(s2) if s1 < s2, and
⋂

0<s<1

clUµn(s) = suppµn,
⋂

0<s<1

clUλn(s) = suppλn.

Hence by (2.2), we have

sup
z∈Uµk (s)

|ψλn(z)| → 1, sup
z∈Uλk (s)

|ψµn(z)| → 1 as s→ 0 for all n, k.

Then by induction, we may take {sn}n and {tn}n such that

(2.5) Uµn(sn) ∩ Uλk(tk) = ∅ for all n, k,



Singular inner functions 235

(2.6)

∣∣∣
n∏

j=1

ψλj

∣∣∣ ≥ δn on
∞⋃

k=n

Uµk(sk),

∣∣∣
n∏

j=1

ψµj

∣∣∣ ≥ δn on
∞⋃

k=n

Uλk(tk).

Next, let {an}n and {bn}n be sequences of numbers satisfying

0 < an < 1, 0 < bn < 1,(2.7)

sann ≥ δn, tbnn ≥ δn for every n.(2.8)

Let

(2.9) µ0 =
∞∑

n=1

anµn, λ0 =
∞∑

n=1

bnλn.

Then by (2.1) and (2,7), µ0, λ0 ∈M+
s , µ0 ∼ µ, and λ0 ∼ λ.

For z ∈ D \⋃∞j=1 Uµj (sj), we have

|ψµ0(z)| =
k∏

j=1

|ψµj (z)|aj
∞∏

j=k+1

|ψµj (z)|aj by (2.9)

≥
k∏

j=1

|ψµj (z)|
∞∏

j=k+1

s
aj
j by (2.4)

≥
k∏

j=1

|ψµj (z)|
∞∏

j=k+1

δj by (2.8).

Hence

(2.10) |ψµ0 | ≥
k∏

j=1

|ψµj |
∞∏

j=k+1

δj on D \
∞⋃

j=1

Uµj (sj) for every k.

Similarly,

(2.11) |ψλ0 | ≥
k∏

j=1

|ψλj |
∞∏

j=k+1

δj on D \
∞⋃

j=1

Uλj (tj) for every k.

Now suppose that {|ψµ0 | < 1} ∩ {|ψλ0 | < 1} 6= ∅. Then by the corona
theorem [3], there exist 0 < δ < 1 and a sequence {zn}n in D such that
|zn| → 1 and

(2.12) |ψµ0(zn)| < δ, |ψλ0(zn)| < δ for every n.



236 K. Izuchi

By (2.3), there exists a positive integer k0 such that

(2.13)
∞∏

j=k0+1

δj > δ1/2.

Considering a subsequence of {zn}n, we may further assume that either

zn ∈
(
D \

∞⋃

j=1

Uµj (sj)
)
∩
(
D \

∞⋃

j=1

Uλj (tj)
)

for every n,(2.14)

zn ∈
∞⋃

j=1

Uµj (sj) for every n,(2.15)

or

(2.16) zn ∈
∞⋃

j=1

Uλj (tj) for every n.

For each case we shall obtain a contradiction.
First, suppose that (2.14) holds. By (2.10), (2.12), and (2.13),

δ >

k0∏

j=1

|ψµj (zn)|
∞∏

j=k0+1

δj > δ1/2
k0∏

j=1

|ψµj (zn)| for every n.

Then
k0∏

j=1

|ψµj (zn)| ≤ δ1/2 < 1 for every n.

Similarly,
k0∏

j=1

|ψλj (zn)| ≤ δ1/2 < 1 for every n.

Hence

cl {zn}n \ {zn}n ⊂
( k0⋃

j=1

suppµj
)
∩
( k0⋃

j=1

suppλj
)
.

But this contradicts (2.2). Therefore (2.14) does not occur.
Next, suppose that (2.15) holds. Then by (2.5),

(2.17) {zn}n ⊂ D \
∞⋃

j=1

Uλj (tj).

Taking a subsequence of {zn}n, we may further assume that either

(2.18) {zn}n ⊂
m⋃

j=1

Uµj (sj) for some m ≥ k0,
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or

(2.19) {zn}n ∩
m⋃

j=1

Uµj (sj) is a finite set for every m.

Suppose that (2.18) holds. Then by (2.4), we have
m∏

j=1

|ψµj (zn)| < max
1≤j≤m

sj < 1 for every n.

Hence

(2.20) cl {zn}n \ {zn}n ⊂
m⋃

j=1

suppµj .

By (2.11), (2.12), (2.13), and (2.17),

δ > |ψλ0(zn)| ≥
k0∏

j=1

|ψλj (zn)|
∞∏

j=k0+1

δj > δ1/2
k0∏

j=1

|ψλj (zn)|.

Thus we have
k0∏

j=1

|ψλj (zn)| < δ1/2 < 1 for every n.

Therefore

(2.21) cl {zn}n \ {zn}n ⊂
k0⋃

j=1

suppλj .

Hence (2.20) and (2.21) contradict (2.2).
Next, suppose that (2.19) holds. Then for each k, we have

lim inf
n→∞

|ψλ0(zn)| ≥ lim inf
n→∞

k∏

j=1

|ψλj (zn)|
∞∏

j=k+1

δj by (2.11) and (2.17)

≥
∞∏

j=k

δj by (2.6), (2.15), and (2.19).

Thus by (2.3), we have |ψλ0(zn)| → 1 as n → ∞. This contradicts (2.12).
Therefore (2.15) does not occur.

Similarly, we may prove that (2.16) does not occur. Thus we get our
assertion.

As an application of Theorem 2.1, we have the following.

Theorem 2.2. Let µ, λ ∈ M+
s be such that µ ⊥ λ. Then W(µ) ∩W(λ)

= ∅, and consequently , Z(µ) ∩ Z(λ) = ∅.
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This theorem says that the singularity of measures on ∂D may be rep-
resented in the maximal ideal spaceM of H∞ as disjoint closed subsets. So
to study the behavior of singular inner functions, it is important to study
the sets Z(µ).

3. Z(µ) and W(µ). Recall that for µ ∈M+
s ,

Z(µ) =
⋂

{ν∈M+
s ; ν∼µ}

Z(ψν), W(µ) =
⋂

{ν∈M+
s ; ν∼µ}

{|ψν | < 1}.

Thus Z(µ) ⊂ W(µ) and W(µ) is a subset of M \ (D ∪M(L∞)). In this
section, we study the properties of Z(µ) and W(µ). We note that if µ, λ ∈
M+

s and µ ∼ λ, then Z(µ) = Z(λ) and W(µ) =W(λ).
First, we prove the following.

Theorem 3.1. Let µ ∈M+
s and ζ ∈ suppµ. Then Z(µ) ∩Mζ 6= ∅, and

consequently , Z(µ) 6= ∅.
To prove this, we use the following lemma.

Lemma 3.2. Let µ ∈ M+
s and E be a closed subset of M such that

Z(µ)∩E = ∅. Then there exists ν ∈M+
s such that ν ∼ µ and Z(ψν)∩E = ∅.

Proof. By our assumption, there exist ν1, . . . , νn ∈M+
s such that νj ∼ µ

and

(3.1)
n∑

j=1

|ψνj | > 0 on E.

Let ν be the lower bound of {νj}nj=1, that is, ν =
∧n
j=1 νj . Then ν 6= 0 and

ν ∼ µ. Since ν ≤ νj , we have |ψνj | ≤ |ψν | on M. Hence by (3.1), 0 < |ψν |
on E.

Proof of Proposition 3.1. Let ν ∈ M+
s and ν ∼ µ. Since ζ ∈ supp ν,

it follows that Z(ψν) ∩ Mζ 6= ∅ (see [5, p. 76]). By Lemma 3.2, we have
Z(µ) ∩Mζ 6= ∅.

The following lemma lists elementary properties of Z(µ) and W(µ).

Lemma 3.3. Let µ1, µ2 ∈M+
s .

(i) If µ1 ⊥ µ2, then Z(µ1 + µ2) = Z(µ1) ∪ Z(µ1) and W(µ1 + µ2) =
W(µ1) ∪W(µ1).

(ii) If µ1 � µ2, then Z(µ1) ⊂ Z(µ2) and W(µ1) ⊂ W(µ2).
(iii) Z(µ1 + µ2) = Z(µ1) ∪ Z(µ2) and W(µ1 + µ2) =W(µ1) ∪W(µ2).
(iv) If µ1∧µ2 6= 0, then Z(µ1∧µ2) = Z(µ1)∩Z(µ2) and W(µ1∧µ2) =

W(µ1) ∩W(µ2).
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Proof. We only prove the properties of Z(µ); those of W(µ) are estab-
lished similarly.

(i) Suppose that µ1 ⊥ µ2. Let ν ∈ M+
s . Then ν ∼ µ1 + µ2 if and only

if ν = ν1 + ν2 for some ν1, ν2 ∈ M+
s with ν1 ∼ µ1 and ν2 ∼ µ2. Since

ψν1+ν2 = ψν1ψν2 , we have Z(ψν1+ν2) = Z(ψν1)∪Z(ψν2). Then by Theorem
2.2, Z(µ1 + µ2) = Z(µ1) ∪ Z(µ2).

(ii) Suppose that µ1 � µ2. Then µ2 = ν1 + ν2, where ν1 ∼ µ1 and
ν1 ⊥ ν2. Hence by (i), Z(µ1) = Z(ν1) ⊂ Z(ν1) ∪ Z(ν2) = Z(µ2).

(iii) By (ii), we have Z(µ1) ∪ Z(µ2) ⊂ Z(µ1 + µ2). To prove the reverse
inclusion, write µ1 +µ2 = ν1 +ν2, where ν1, ν2 ∈M+

s are such that ν1 ∼ µ1,
ν1 ⊥ ν2, and ν2 � µ2. Then by (i) and (ii),

Z(µ1 + µ2) = Z(ν1) ∪ Z(ν2) = Z(µ1) ∪ Z(ν2) ⊂ Z(µ1) ∪ Z(µ2).

(iv) By (ii), Z(µ1 ∧ µ2) ⊂ Z(µ1) ∩ Z(µ2). Write µ1 = ν1 + ν2, where
ν1 ∼ µ1 ∧ µ2 and ν2 ⊥ µ2. Then by (i),

Z(µ1) = Z(ν1) ∪ Z(ν2) = Z(µ1 ∧ µ2) ∪ Z(ν2).

By Theorem 2.2, Z(ν2) ∩ Z(µ2) = ∅. By (ii), Z(µ1 ∧ µ2) ⊂ Z(µ2). Hence

Z(µ1) ∩ Z(µ2) = Z(µ1 ∧ µ2) ∩ Z(µ2)= Z(µ1 ∧ µ2).

Proposition 3.4. Let µ1, µ2 ∈ M+
s . Then µ1 � µ2 if and only if

Z(µ1) ⊂ Z(µ2).

Proof. The “only if” part follows from Lemma 3.3(ii). Suppose that
µ1 6� µ2. Write µ1 = ν1 + ν2, where ν1 ⊥ µ2 and ν2 � µ2. Then ν1 6= 0. By
Proposition 3.1, we have Z(ν1) 6= ∅. Since ν1 � µ1, Lemma 3.3(ii) yields
Z(ν1) ⊂ Z(µ1). Since ν1 ⊥ µ2, by Theorem 2.2 we have Z(ν1)∩Z(µ2) = ∅.
Thus we get Z(µ1) 6⊂ Z(µ2).

The following shows a relation between W(µ) and Z(µ).

Theorem 3.5. Let µ ∈M+
s . Then

W(µ) = Z(µ) ∪
⋃

{ζ∈∂D;µ({ζ})6=0}
{|ψδζ | < 1}.

Proof. The ⊃ inclusion follows from the definition of W(µ). To prove
the reverse inclusion, let

(3.2) x ∈ W(µ) \
⋃

{ζ∈∂D;µ({ζ})6=0}
{|ψδζ | < 1}.

It is sufficient to prove that x ∈ Z(µ). Suppose not. Then there exists
ν ∈M+

s such that ν ∼ µ and ψν(x) 6= 0. We may assume that x ∈ M1.
First, suppose that µ({1}) = 0. Let I0 = ∂D and In = {eiθ; −1/n ≤ θ ≤

1/n} for every positive integer n. Set νn = ν|(In−1\In). Then ν =
∑∞
n=1 νn.
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Let

ν0 =
∞∑

n=1

νn/n.

Then ν0 ∼ ν ∼ µ and

(3.3) kν0 ≤ ν +
k∑

n=1

kνn for all k.

Since supp νn ⊂ cl(In−1 \ In), it follows that 1 6∈ supp νn. Hence |ψνn | = 1
on M1 for every n. Since x ∈ M1, by (3.3),

|ψν(x)| = |ψν(x)|
k∏

n=1

|ψνn(x)|k ≤ |ψν0(x)|k for all k.

Since ψν(x) 6= 0, we have |ψν0(x)| = 1, so that x 6∈ W(µ). This contradicts
(3.2). Thus if µ({1}) = 0, then x ∈ Z(µ).

Next, suppose that µ({1}) = c > 0. Write µ = cδ1 + µ1, where µ1 ⊥ δ1.
Then by Lemma 3.3(i),W(µ) = {|ψδ1 | < 1}∪W(µ1), so that we may rewrite
condition (3.2) as

x ∈ W(µ1) \
⋃

{ζ∈∂D;µ1({ζ})6=0}
{|ψδζ | < 1}.

By the previous paragraph, x ∈ Z(µ1). By Lemma 3.3(ii), Z(µ1) ⊂ Z(µ).
Hence x ∈ Z(µ).

Corollary 3.6. Let µ ∈ M+
s and ζ ∈ ∂D. If µ({ζ}) = 0, then Z(µ) ∩

Mζ =W(µ) ∩Mζ .

Proposition 3.7. Let µ ∈ M+
s and E be a closed subset of ∂D. Let A

be an Fσ-subset of M such that A ∩ ⋃ξ∈∂D\EMξ = ∅. If µ(E) = 0, then
there exists ν ∈M+

s such that ν ∼ µ and |ψν | = 1 on A.

Proof. By our assumption, A =
⋃∞
j=1 Aj , where Aj is a closed set. Then

there is a sequence {Uj}j of open subsets of M such that

(3.4) Aj ⊂ Uj , U j ∩
⋃

ξ∈∂D\E
Mξ = ∅ for every j.

Let I0 = ∂D and {In}n be a sequence of open subsets of ∂D such that
In ⊂ In−1 and

⋂∞
n=1 In = E. Set µn = µ|(In−1\In). Since µ(E) = 0, we have

µ =
∑∞
n=1 µn. Since E∩suppµn = ∅, it follows that |ψµn | = 1 on

⋃
ζ∈EMζ .

Then by (3.4), U j \D ⊂
⋃
ζ∈EMζ . Hence for every n and j,

(3.5) |ψµn(z)| → 1 as |z| → 1 and z ∈ Uj ∩D.
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Let {εn}n be a sequence of positive numbers such that

(3.6)
∞∏

n=1

εn > 0, 0 < εn < 1 for every n.

Then by (3.5), there exists a sequence {an}n of positive numbers such that
0 < an < 1 and

(3.7) |ψµn(z)|an ≥ εn on Uj ∩D for 1 ≤ j ≤ n.

Let
ν =

∞∑

n=1

anµn.

Then ν ∈M+
s , ν ∼ µ, and for any positive integers j and m, we have

lim inf
|z|→1, z∈Uj∩D

|ψν(z)| = lim inf
|z|→1, z∈Uj∩D

∞∏

n=1

|ψµn(z)|an

= lim inf
|z|→1, z∈Uj∩D

∞∏

n=m

|ψµn(z)|an by (3.5)

≥
∞∏

n=m

εn by (3.7).

Hence by (3.6),
lim inf

|z|→1, z∈Uj∩D
|ψν(z)| = 1 for every j.

By the corona theorem and (3.4), Aj ⊂ Uj ∩D. Therefore |ψν | = 1 on Aj
for every j. Thus |ψν | = 1 on A.

Corollary 3.8. Let µ ∈M+
s and E be a closed subset of ∂D. If µ(E)

= 0, then
Z(µ) ⊂ W(µ) ⊂

⋃

ξ∈∂D\E
Mξ.

This follows from Proposition 3.7.

Corollary 3.9. Let µ ∈ M+
s . Then W(µ) = Z(µ) if and only if

µ ∈M+
s,c.

Proof. Suppose that µ({ζ}) > 0 for some ζ ∈ ∂D. Write µ = aδζ + µ1,
where µ1({ζ}) = 0. Then by Lemma 3.3,

W(µ) = {|ψδζ | < 1} ∪W(µ1), Z(µ) = Z(ψδζ ) ∪ Z(µ1).

Since {|ψδζ | < 1} ∩⋃{ξ∈∂D; ξ 6=ζ}Mξ = ∅, by Corollary 3.8 we have

W(µ) ∩ {|ψδζ | < 1} = {|ψδζ | < 1}, Z(µ) ∩ {|ψδζ | < 1} = Z(ψδζ ).

Therefore W(µ) 6= Z(µ)
The converse follows from Theorem 3.5.
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Corollary 3.10. Let µ ∈ M+
s,c be such that x ∈ Z(µ). Let y ∈ M \D

and suppµx ⊂ suppµy. Then y ∈ Z(µ).

Proof. Let ν ∈ M+
s and ν ∼ µ. Since ψν(x) = 0, we have |ψν(y)| < 1.

Hence y ∈ W(µ). By Corollary 3.9, y ∈ Z(µ).

4. Blaschke products and singular inner functions. Let b be a
Blaschke product with zeros {zn}n. Recall that S(b) is the set of cluster
points of {zn}n in ∂D. Then S(b) is the set of points in ∂D to which b may
not be extended continuously. Moreover, we have

(4.1) {|b| < 1} ∩
⋃

ξ∈∂D\S(b)

Mξ = ∅.

There exists a sequence {pn}n of positive integers such that pn → ∞ as
n→∞ and

b1(z) =
∞∏

n=1

(−zn
|zn|

z − zn
1− znz

)pn
, z ∈ D,

is a Blaschke product. Then S(b1) = S(b) and

{|b| < 1} ⊂ Z(b1) ⊂ {|b1| < 1}.
Hence by (4.1),

(4.2) {|b| < 1} ∩
⋃

ξ∈∂D\S(b)

Mξ = ∅.

Moreover, if

lim
k→∞

∏

n :n6=k

∣∣∣∣
zn − zk
1− zkzn

∣∣∣∣ = 1,

then both b and {zn}n are called sparse (or thin).
Suppose that b is sparse. Then

(4.3) {|b| < 1} =
⋃

x∈Z(b)

P (x)

(see [7, 9]). For every sequence {zn}n in D with |zn| → 1 as n → ∞, there
exists a sparse subsequence of {zn}n (see [6]).

Lemma 4.1. Let b be a sparse Blaschke product. Let ϕ be an inner func-
tion such that |ϕ| = 1 on Z(b). Then |ϕ| = 1 on {|b| < 1}.

Proof. Let y ∈ {|b| < 1}. Then by (4.3), y ∈ P (x) for some x ∈ Z(b).
By [4, p. 143], suppµy = suppµx. Since |ϕ(x)| = 1, we have ϕ = ϕ(x) on
suppµy. Hence ϕ(y) =

�
M(L∞) ϕdµy = ϕ(x). Thus |ϕ(y)| = 1.

First, we prove the following.
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Proposition 4.2. Let µ ∈M+
s . Then there is a sparse Blaschke product

b such that S(b) = suppµ and Z(µ) ∩ {|b| < 1} = ∅.
Proof. Since |ψµ| = 1 on M(L∞), by the corona theorem there exists a

sequence {zn}n inD such that |ψµ(zn)| → 1 as n→∞ and cl {zn}n\{zn}n =
suppµ. Considering a subsequence, we may assume that {zn}n is sparse. Let
b be the associated Blaschke product. Then S(b) = suppµ and |ψµ| = 1 on
Z(b). By Lemma 4.1, Z(ψµ) ∩ {|b| < 1} = ∅. Thus Z(µ) ∩ {|b| < 1} = ∅.

Corollary 4.3. Let b be a Blaschke product. If µ ∈ M+
s and µ(S(b))

= 0, then Z(µ) ∩ {|b| < 1} = ∅.
Proof. By (4.2), {|b| < 1} ∩ ⋃ξ∈∂D\S(b)Mξ = ∅; now apply Corollary

3.8.

Corollary 4.4. Let µ ∈ M+
s,c. Then Z(b) 6⊂ Z(µ) for every Blaschke

product b.

Proof. Let {zn}n be the zeros of b in D. Then there is a subsequence
{znj}j such that znj → ζ for some ζ ∈ ∂D. Let b1 be the Blaschke product
with zeros {znj}j . Then S(b1) = {ζ}. Hence by Corollary 4.3, Z(µ)∩Z(b1)
= ∅. Since Z(b1) ⊂ Z(b), we obtain our assertion.

Corollary 4.5. Let µ ∈M+
s,c. Then intZ(µ) = ∅.

Proof. Suppose that intZ(µ) 6= ∅. Then there is an interpolating
Blaschke product b such that Z(b) ⊂ intZ(µ). But by Corollary 4.4, Z(b) 6⊂
Z(µ). This is a contradiction.

We have W(µ)∩M(L∞) = ∅ for every µ ∈M+
s . Then by Corollary 3.8,

for each ζ ∈ ∂D we have

Mζ ∩
⋃

{µ∈M+
s ;µ({ζ})=0}

W(µ) ⊂Mζ ∩
⋃

{ξ∈∂D; ξ 6=ζ}
Mξ.

Moreover we have the following.

Proposition 4.6. Let ζ ∈ ∂D. Then

Mζ ∩
⋃

{µ∈M+
s ;µ({ζ})=0}

W(µ)  Mζ ∩
⋃

{ξ∈∂D; ξ 6=ζ}
Mξ.

To prove this, we need a lemma.

Lemma 4.7. Let ζ ∈ ∂D. Then there exists a sparse Blaschke product b
satisfying the following conditions.

(i) S(b) = {ζ}.
(ii) Let µ ∈M+

s . Then there exists ν ∈M+
s such that ν ∼ µ and |ψν | = 1

on {|b| < 1}.
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Proof. There exists a sequence {zn}n in D such that |ψδζ (zn)| → 1 and
zn → ζ as n → ∞. Considering a subsequence, we may assume that {zn}n
is sparse. Let b be the Blaschke product with zeros {zn}n. Then S(b) = {ζ},
and by (4.2),

{|b| < 1} ∩
⋃

{ξ∈∂D; ξ 6=ζ}
Mξ = ∅.

Let µ ∈ M+
s . Write µ = aδζ + µ1, where µ1({ζ}) = 0. Then by Propo-

sition 3.7, there exists ν1 ∈ M+
s such that ν1 ∼ µ1 and |ψν1 | = 1 on

{|b| < 1}. Since Z(b) = {zn}n \ {zn}n, it follows that |ψδζ | = 1 on Z(b).
By Lemma 4.1, |ψδζ | = 1 on {|b| < 1}. Put ν = aδζ + ν1. Then ν ∼ µ and
|ψν | = |ψδζ |a|ψν1 | = 1 on {|b| < 1}.

Proof of Proposition 4.6. We may assume that ζ = 1. Let {Jn}n be a
sequence of open subarcs of ∂D such that Jn  Jn−1 and

⋂∞
n=1 Jn = {1}.

Then there is a sequence {ξn}n such that ξn is an interior point of Jn \Jn−1

and ξn → 1 as n→∞. We may assume that ξn 6= ξk for n 6= k. Let µ ∈M+
s

and µ({1}) = 0. Put µn = µ|(Jn−1\Jn). Then µ =
∑∞
n=1 µn. For each n,

by Lemma 4.7 there exist a sparse Blaschke product qn and νn ∈ M+
s such

that S(qn) = {ξn}, νn ∼ µn, ‖νn‖ = ‖µn‖, and |ψνn | = 1 on Z(qn). Let
ν =

∑∞
n=1 νn. Then ν ∈ M+

s and ν ∼ µ. Since ξn 6∈ supp(ν − νn), we have
|ψν−νn | = 1 on Mξn . Since S(qn) = {ξn}, it follows that Z(qn) ⊂ Mξn .
Hence

(4.4) |ψν | = |ψν−νn | |ψνn | = 1 on Z(qn).

Let {wn,k}k be the zeros of qn. Then wn,k → ξn as k → ∞. Since
ξn 6= ξk for n 6= k, there is a sequence {Nn}n of positive integers such that
{wn,k; k ≥ Nn, n = 1, 2, . . .} is a sparse sequence (see [8, Lemma 1.5]).
Since ξn → 1, taking Nn sufficiently large, we may assume that cl{wn,k;
k ≥ Nn} \ {wn,k; k ≥ Nn} = {1} ∪ {ξn}n. Let b be the associated sparse
Blaschke product. Then

⋃∞
n=1 Z(qn) ⊂ Z(b) and Z(b) \⋃∞n=1 Z(qn) ⊂ M1.

Hence by (4.4), {|ψν | < 1} ∩ Z(b) ⊂M1.
For each positive integer j, let bj be a subproduct of b with zeros

{wn,k; |ψν(wn,k)| < 1− 1/j, k ≥ Nn, n = 1, 2, . . .}.
Then Z(bj) ⊂ {|ψν | < 1} ∩ Z(b) ⊂M1. Hence

Z(bj) ∩
⋃

{ξ∈∂D; ξ 6=1}
Mξ = ∅.

We also have
∞⋃

j=1

Z(bj) = {|ψν | < 1} ∩ Z(b).
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Therefore by Proposition 3.7 (considering E = {1}), there exists λ ∈ M+
s

such that λ ∼ µ and

(4.5) |ψλ| = 1 on {|ψν | < 1} ∩ Z(b).

Let σ = ν ∧ λ. Then σ ∼ µ and |ψσ| ≥ max{|ψν |, |ψλ|}. Hence by (4.5),
|ψσ| = 1 on Z(b). By Lemma 4.1, {|ψσ| < 1} ∩ {|b| < 1} = ∅. Thus W(µ) ∩
{|b| < 1} = ∅, so that

{|b| < 1} ∩
⋃

{µ∈M+
s ;µ({1})=0}

W(µ) = ∅.

Since {|b| < 1} ∩Mξn 6= ∅, it is not difficult to see that

{|b| < 1} ∩M1 ∩
⋃

{ξ∈∂D; ξ 6=1}
Mξ 6= ∅.

Thus we get our assertion.

By Lemma 4.7, we have the following.

Proposition 4.8. Let ζ ∈ ∂D. Then there exists a Blaschke product b
such that S(b) = {ζ} and Z(µ) ∩ {|b| < 1} = ∅ for every µ ∈M+

s .

One may ask whether there is a Blaschke product b such that S(b) = ∂D
and Z(µ) ∩ {|b| < 1} = ∅ for every µ ∈ M+

s . The following says that the
answer is “no”.

Theorem 4.9. Let b be a Blaschke product such that S(b) = ∂D. Then

(i) Z(δζ) ∩ Z(b) 6= ∅ for some ζ ∈ ∂D.
(ii) Z(µ) ∩ Z(b) 6= ∅ for some µ ∈M+

s,c.

Proof. Let

(4.6) Γ (eiθ) =
{
z ∈ D;

|eiθ − z|
1− |z| < 2

}
.

Then

(4.7) lim
|z|→1, z∈Γ (eiθ)

ψδ
eiθ

(z) = 0

(see [5, p. 76]). Let b be a Blaschke product such that S(b) = ∂D. Let {zn}n
be the zeros of b. Write

zn = rne
iθn .

By induction, we shall choose a subsequence {znj}j of {zn}n. Put n1 = 1.
Since S(b) = ∂D, {eiθn}n is dense in ∂D. Then by (4.6), there exists a
positive integer n2 such that

zn1 ∈ Γ (eiθn2 ), θn1 < θn2 , θn2 − θn1 < 1/2.
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Then zn2 ∈ Γ (eiθn2 ), so that there exists n3 such that

zn1 , zn2 ∈ Γ (eiθn3 ), θn2 < θn3 , θn3 − θn2 < 1/22.

Continuing, we get {znj}j satisfying

(4.8) znk ∈Γ (eiθnj ) for 1 ≤ k ≤ j, θnj <θnj+1 θnj+1 − θnj < 1/2j+1.

Thus θnj → θ0 as j →∞ for some θ0. By (4.8), znk ∈ clΓ (eiθ0) for every k.
Then by (4.7), ψδ

eiθ0
(znk) → 0 as k → ∞, so that Z(ψδ

eiθ0
) ∩ Z(b) 6= ∅.

Therefore we get Z(δeiθ0 ) ∩ Z(b) 6= ∅.
To prove (ii), we need to work more. In the proof of (i), we choose one

point in each step. In the proof of (ii), we choose two points. Let

Λk = {(α1, . . . , αk); αj = 0 or 1}, Λ∞ = {(α1, α2, . . .); αj = 0 or 1}.
For α = (α1, . . . , αk) ∈ Λk, put |α| = k and αj = (α1, . . . , αj) for j ≤ k.
By induction, we shall choose a sequence {nα; α ∈ Λk}, k = 1, 2, . . . , of
finite sets of positive integers. Take positive integers n0 and n1 such that
θn0 < θn1 . We have

zn0 ∈ Γ (eiθn0 ), zn1 ∈ Γ (eiθn1 ).

Then take n(l,m) for l,m = 0, 1 such that

znl ∈ Γ (eiθn(l,m) ) for l,m = 0, 1,

0 < |θn(l,m) − θnl | < |θn1 − θn0 |/4 for l,m = 0, 1,

θn(l,m) 6= θn(t,s) if (l,m) 6= (t, s).

Assume that {nα; α ∈ Λj}, 1 ≤ j ≤ k, are chosen so that znαj ∈ Γ (eiθnα )

for 1 ≤ j ≤ |α| and θnα 6= θnβ for α, β ∈ ⋃kj=1 Λj , α 6= β. Let α ∈ Λk. Take
n(α,0) and n(α,1) such that

(4.9) znαj ∈ Γ (eiθn(α,l) ) for 1 ≤ j ≤ k and l = 0, 1,

(4.10) 0 < |θn(α,l) − θnα |

<
1
4

min
{
|θnλ − θnγ |; λ, γ ∈

k⋃

j=1

Λj , λ 6= γ
}

for l = 0, 1.

This finishes our induction.
Let α = (α1, α2, . . .) ∈ Λ∞. Put αk = (α1, . . . , αk) ∈ Λk. Then by (4.10),

|θn
αk
− θnαj | <

(
1
4

)k−1( j−k∑

l=1

(
1
4

)l)
|θn1 − θn0 | for j > k.

Hence {θn
αk
}k converges to some point, say θα. By (4.9),

(4.11) znαj ∈ Γ (eiθα) for every j.
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Let β ∈ Λ∞ and α 6= β. Then we may assume that

α = (α1, . . . , αk, 0, αk+2, . . .), β = (α1, . . . , αk, 1, βk+2, . . .).

By (4.10), we have

|θnαj −θn(α1,...,αk,0) |<
j−k−1∑

l=1

(
1
4

)l
|θn(α1,...,αk,0)−θn(α1,...,αk,1) | for j≥ k+2.

Hence

|θα − θn(α1,...,αk,0) | <
1
3
|θn(α1,...,αk,0) − θn(α1,...,αk,1) |.

Similarly,

|θβ − θn(α1,...,αk,1) | <
1
3
|θn(α1,...,αk,0) − θn(α1,...,αk,1) |.

Thus we get θα 6= θβ . By our construction, {θα; α ∈ Λ∞} is the set of cluster
points of

⋃∞
k=1{θnα ; α ∈ Λk}. Hence {θα; α ∈ Λ∞} is a perfect set. Then

there exists µ ∈M+
s,c such that suppµ ⊂ {θα; α ∈ Λ∞}. By [5, p. 76],

lim
|z|→1, z∈Γ (θα)

ψµ(z) = 0

for some α ∈ Λ∞. Therefore by (4.11), we have Z(ψµ)∩Z(b) 6= ∅. By Lemma
3.2, we obtain Z(µ) ∩ Z(b) 6= ∅.

Here we have the following problem.

Problem 4.10. Does there exist an interpolating Blaschke product b0

such that S(b0) = ∂D and Z(µ) ∩ Z(b0) 6= ∅ for every µ ∈M+
s ?

5. Construction of interpolating Blaschke products. For a mea-
surable subset E of ∂D, we denote by |E| the Lebesgue measure of E. In
this section, for a given closed subset K of ∂D with |K| = 0, we construct a
special interpolating Blaschke product bK associated with K. In Section 6,
we shall prove that Z(bK) ∩ Z(µ) 6= ∅ for every µ ∈M+

s with suppµ ⊂ K.

Theorem 5.1. Let K be a closed subset of ∂D with |K| = 0. Then there
exists a sequence {Jn,j}Nnj=1, n = 1, 2, . . . , of open arcs such that for every n
and k,

K ⊂
Nn⋃

j=1

Jn,j ⊂
Nn−1⋃

j=1

Jn−1,j ,(i)

∑

j

{|Jn,j |; Jn,j ⊂ Jn−1,k} ≤ |Jn−1,k|/2.(ii)
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Let eiθn,j be the center of the arc Jn,j and

zn,j =
(

1− |Jn,j |
2π

)
eiθn,j .

Then {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .} is an interpolating sequence and the
set of cluster points of {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .} in the closed unit
disk D coincides with K.

Let bK be the Blaschke product with zeros {zn,j ; 1 ≤ j ≤ Nn, n =
1, 2, . . .}. We call bK the interpolating Blaschke product associated with K.

Proof of Theorem 5.1. Let K be a non-empty closed subset of ∂D and
|K| = 0. Then K is totally disconnected. For an open arc V of ∂D such that
V ∩K is a non-empty closed set, there are finitely many disjoint open arcs
{Vj}kj=1 of ∂D such that Vj ∩K are non-empty closed sets and

V ∩K ⊂
k⋃

j=1

Vj ⊂ V,
k∑

j=1

|Vj | ≤ |V |/2.

Now using the above fact inductively, we shall choose a family {Jn,j}Nnj=1
of open arcs for each n. Let J0 = ∂D. Put V = J0 in the above; then there
are finitely many disjoint open arcs {J1,j}N1

j=1 of ∂D such that J1,j ∩K are
non-empty closed sets and

J0 ∩K ⊂
N1⋃

j=1

J1,j ⊂ J0,

N1∑

j=1

|J1,j | ≤ |J0|/2.

We proceed to the next step. For each J1,j , 1 ≤ j ≤ N1, there are finitely
many disjoint open arcs {J1,j,l}mjl=1 of ∂D such that J1,j,l∩K are non-empty
closed sets and

J1,j ∩K ⊂
mj⋃

l=1

J1,j,l ⊂ J1,j ,

mj∑

l=1

|J1,j,l| ≤ |J1,j |/2.

Let N2 =
∑N1
j=1 mj and

{J2,j}N2
j=1 = {J1,j,l; 1 ≤ j ≤ N1, 1 ≤ l ≤ mj}.

We have

K ⊂
N2⋃

j=1

J2,j .

Continuing this process, at the nth step we have a finite family {Jn,j}Nnj=1
of disjoint open arcs of ∂D such that for 1 ≤ k ≤ Nn−1,

Jn−1,k ∩K ⊂
⋃

j

{Jn,j ;Jn,j ⊂ Jn−1,k} ⊂ Jn−1,k,(5.1)
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Jn,j ∩K is non-empty closed for every j with 1 ≤ j ≤ Nn,

K ⊂
Nn⋃

j=1

Jn,j ⊂
Nn−1⋃

j=1

Jn−1,j ,(5.2)

∑

j

{|Jn,j |; Jn,j ⊂ Jn−1,k} ≤ |Jn−1,k|/2.(5.3)

Thus we get the first half of our assertion.
By the above, we have

(5.4)
∞⋂

n=1

Nn⋃

j=1

Jn,j = K.

Let 1 ≤ j ≤ Nn. For l > n, we have
∑

t

{|Jl,t|; Jl,t ⊂ Jn,j} =
∑

k

∑

t

{|Jl,t|; Jl,t ⊂ Jl−1,k ⊂ Jn,j} by (5.1)

=
1
2

∑

k

{|Jl−1,k|; Jl−1,k ⊂ Jn,j} by (5.3).

Hence
∑

t

{|Jl,t|; Jl,t ⊂ Jn,j} ≤
(

1
2

)l−n
|Jn,j |,

so that

(5.5)
∞∑

l=n

∑

t

{|Jl,t|; Jl,t ⊂ Jn,j} ≤ 2|Jn,j|.

For n ≥ 1 and 1 ≤ j ≤ Nn, let eiθn,j be the center of the arc Jn,j ,

zn,j =
(

1− |Jn,j |
2π

)
eiθn,j ,

and

(5.6) R(zn,j) = {reiθ; eiθ ∈ Jn,j , 1− |Jn,j |/2π ≤ r < 1}.
Then zn,j ∈ R(zn,j) and 1 − |zn,j | = |Jn,j |/2π. By (5.4), K is the set of
cluster points of {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .} in D.

We prove that {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .} is an interpolating
sequence. It is not difficult to see that {zn,j}n,j is %-separated, that is,

inf{%(zn,j , zk,l); (n, j) 6= (k, l)} > 0;

I leave the proof to the reader. To prove that {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .}
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is interpolating, it is sufficient to show that

σ =
∞∑

n=1

Nn∑

j=1

(1− |zn,j |)δzn,j =
∞∑

n=1

Nn∑

j=1

|Jn,j |δzn,j/2π

is a Carleson measure (see [2] and also [5, pp. 286–287]). Let

(5.7) Ω = {reiθ; 1− ε ≤ r < 1, θ0 ≤ θ ≤ θ0 + 2πε}, where 0 < ε < 1,

be an arbitrary Carleson square. We need to show that there is an absolute
constant C, independent of ε, such that

(5.8)
∑

n,j

{|Jn,j |; zn,j ∈ Ω} ≤ Cε.

By our construction, there exists a sequence {znk,jk}∞k=1 (maybe a finite set)
satisfying

znk,jk ∈ Ω for every k,(5.9)

R(znk,jk) ∩R(zni,jl) = ∅ for every k 6= l,(5.10)

if zn,j ∈ Ω, there exists k such that R(zn,j) ⊂ R(znk,jk).(5.11)

Then

∑

n,j

{|Jn,j |; zn,j ∈ Ω} =
∞∑

k=1

(∑

n,j

{|Jn,j |; R(zn,j) ⊂ R(znk,jk)}
)

by (5.11)

=
∞∑

k=1

(∑

n,j

{|Jn,j |; Jn,j ⊂ Jnk,jk}
)

by (5.6)

≤ 2
∞∑

k=1

|Jnk,jk | by (5.5).

By (5.6) and (5.10), Jnk,jk ∩ Jnm,jm = ∅ if k 6= m. By (5.9),

Jnk,jk ∩ {eiθ; θ0 ≤ θ ≤ θ0 + 2πε} 6= ∅
and

|{eiθ; θ0 ≤ θ ≤ θ0 + 2πε}| ≥ |Jnk,jk |.
Hence by (5.7),

∞∑

k=1

|Jnk,jk | ≤ 6πε.

Thus we get (5.8), so that {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .} is interpolating.
This completes the proof.
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6. Properties of Z(µ). First we prove the following theorem.

Theorem 6.1. Let K be a non-empty closed subset of ∂D with |K| = 0,
and µ ∈ M+

s be such that suppµ ⊂ K. Then Z(bK) ∩ Z(µ) 6= ∅, where bK
is the interpolating Blaschke product associated with K.

Let K be a non-empty closed subset of ∂D with |K| = 0. Generally, there
are uncountably many measures {µα}α∈Λ in M+

s such that suppµα ⊂ K
and µα ⊥ µβ if α 6= β. By Theorems 3.1 and 6.1, {Z(bK) ∩ Z(µα)}α is
a family of non-empty mutually disjoint subsets in Z(bK). So bK is a very
convenient interpolating Blaschke product to study the properties of ψµ with
suppµ ⊂ K.

Proof of Theorem 6.1. Let ν ∈M+
s and ν ∼ µ. We show that

(6.1) Z(bK) ∩ Z(ψν) 6= ∅.
Let {Jn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .} and {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .}
be families given in Theorem 5.1. First, we prove that

(6.2) lim sup
n→∞

max
1≤j≤Nn

ν(Jn,j)
|Jn,j |

=∞.

Suppose not. Then there exists a positive constant C such that

(6.3) max
1≤j≤Nn

ν(Jn,j)
|Jn,j |

≤ C for every n.

Then for each n, we have

ν(K) ≤
Nn∑

j=1

ν(Jn,j) by Theorem 5.1(i)

≤ C
Nn∑

j=1

|Jn,j | by (6.3)

≤ C

2

Nn−1∑

j=1

|Jn−1,j | by Theorem 5.1(ii)

≤ 2πC
2n

.

Hence ν(K) = 0, contrary to our assumption, so that (6.2) holds.
By (6.2), there exist {nk}k and {jk}k such that 1 ≤ jk ≤ Nnk and

(6.4)
ν(Jnk,jk)
|Jnk,jk |

→ ∞ as k →∞.

By Theorem 5.1,

(6.5) |Jnk,jk | = 2π(1− |znk,jk |).
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Let eit ∈ Jnk,jk . Then

|eit − znk,jk | ≤
∣∣|znk,jk | − eiπ(1−|znk,jk |)

∣∣

≤ (1− |znk,jk |) + |1− eiπ(1−|znk,jk |)|
≤ (1 + π)(1− |znk,jk |).

Then

|Pznk,jk (eit)| = 1− |znk,jk |2
|eit − znk,jk |2

≥ 1
(1 + π)2(1− |znk,jk |)

.

Hence by (6.5),

|Pznk,jk | ≥
2π

(1 + π)2|Jnk,jk |
on Jnk,jk .

Consequently, we have

− log |ψν(znk,jk)| =
2π

�
0

Pznk,jk (eiθ) dν(θ) ≥ �
Jnk,jk

Pznk,jk (eiθ) dν(θ)

≥ 2πν(Jnk,jk)
(1 + π)2|Jnk,jk |

.

Therefore by (6.4), ψν(znk,jk) → 0 as k → ∞. Since bK is the Blaschke
product with zeros {zn,j ; 1 ≤ j ≤ Nn, n = 1, 2, . . .}, we obtain Z(bK) ∩
Z(ψν) 6= ∅. Then Lemma 3.2 yields the assertion.

Corollary 6.2. Let µ ∈M+
s . Then Z(µ) contains non-trivial points.

Proof. Since µ is a singular measure, there exists a closed subset K of
∂D such that |K| = 0 and µ(K) > 0. By Lemma 3.3(ii), Z(µ|K) ⊂ Z(µ),
and by Theorem 6.1, ∅ 6= Z(bK) ∩ Z(µ|K) ⊂ Z(bK) ∩ Z(µ). Since bK is
interpolating, we have Z(bK) ⊂ G.

Let µ ∈ M+
s . We denote by M(L∞(µ)) the maximal ideal space of the

Banach algebra L∞(µ). Then M(L∞(µ)) is a totally disconnected space. For
f ∈ L∞(µ), let f̂ be the Gelfand transform of f . For a measurable subset S
of suppµ, there exists an open and closed subset Ŝ of M(L∞(µ)) such that
χ̂S = χŜ . Then the family {χŜ}S coincides with the set of idempotents in
C(M(L∞(µ))), the space of continuous functions on M(L∞(µ)). We have
Ŝc = (Ŝ)c. For each x ∈M(L∞(µ)), let

(6.6) Φµ(x) =
⋂

{S; x∈Ŝ}

Z(µ|S).

The set Φµ(x) is a closed subset in M associated with the point x ∈
M(L∞(µ)). It is interesting to study Φµ(x) from the point of view of mea-
sures on ∂D.

We have the following.
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Theorem 6.3. Let µ ∈M+
s .

(i) ∅ 6= Φµ(x) ⊂ Z(µ) for x ∈M(L∞(µ)).
(ii) Φµ(x) ∩ Φµ(y) = ∅ if x, y ∈M(L∞(µ)) and x 6= y.
(iii) Z(µ) =

⋃
x∈M(L∞(µ)) Φµ(x).

Proof. First, assume that µ = δζ for some ζ ∈ ∂D. Then M(L∞(µ)) is
a one-point set, say {x}, and it is easy to see that Φµ(x) = Z(ψδζ ) = Z(δζ).
Hence we obtain the assertion.

Next suppose that µ is not a point mass. Then M(L∞(µ)) contains more
than one point. Let S be a measurable subset of suppµ. Then µ = µ|S+µ|Sc

and µ|S ⊥ µ|Sc . Hence by Theorem 2.2, Z(µ|S)∩Z(µ|Sc) = ∅ and Z(µ|S) ⊂
Z(µ). By Lemma 3.3, Z(µ) = Z(µ|S) ∪ Z(µ|Sc). Thus if µ|S 6= 0, then
Z(µ|S) is a non-empty open and closed subset of Z(µ).

Let x ∈M(L∞(µ)). Suppose that Φµ(x) = ∅. Then there exist S1, . . . , Sn
such that x ∈ Ŝj for every j and

⋂n
j=1 Z(µ|Sj ) = ∅. Set S =

⋂n
j=1 Sj . Then

x ∈ Ŝ, so that µ|S 6= 0. Hence by Proposition 3.1, Z(µ|S) 6= ∅. By Lemma
3.3, Z(µ|S) ⊂ ⋂nj=1 Z(µ|Sj ). This is a contradiction. Thus we get (i).

Let x, y ∈ M(L∞(µ)) and x 6= y. Then there exists S such that x ∈ Ŝ
and y 6∈ Ŝ. We have y ∈ Ŝc, and hence by Theorem 2.2,

Φµ(x) ∩ Φµ(y) ⊂ Z(µ|S) ∩ Z(µ|Sc) = ∅.
Thus (ii) holds.

Suppose (iii) does not hold. Then there is ζ ∈ Z(µ) such that ζ 6∈
Φµ(x) for every x ∈ M(L∞(µ)). Hence for each x ∈ M(L∞), there exists a
measurable subset Sx of suppµ such that x ∈ Ŝx and ζ 6∈ Z(µ|Sx). Since Ŝx
is an open subset of M(L∞(µ)), there exist Sx1 , . . . , Sxn such that

M(L∞(µ)) =
n⋃

j=1

Ŝxj .

Put S =
⋃n
j=1 Sxj . Then Ŝ =

⋃n
j=1 Ŝxj = M(L∞(µ)), so that µ|S = µ. By

Lemma 3.3,

Z(µ) =
n⋃

j=1

Z(µ|Sxj ).

Hence ζ ∈ Z(µ|Sxj ) for some j. This is a contradiction.

We have the following problem.

Problem 6.4. Let µ ∈ M+
s . Is Φµ(x) a connected set for every x ∈

M(L∞(µ))?

We give some results on the sets Φµ(x).
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Proposition 6.5. Let µ ∈M+
s and x ∈M(L∞(µ)).

(i) If ζ ∈ Φµ(x), then P (ζ) ⊂ Φµ(x).
(ii) Φµ(x) contains trivial points.
(iii) If µ ∈ M+

s,c, ζ ∈ Φµ(x), suppµζ ⊂ suppµξ, and ξ ∈ M \ D, then
ξ ∈ Φµ(x).

Proof. Let ζ ∈ Φµ(x). Then ψν(ζ) = 0 for every ν ∈ M+
s with ν ∼ µ.

Since ψν is a singular inner function, we have P (ζ) ⊂ Z(ψν). Hence P (ζ) ⊂
Z(µ). Thus we get (i).

(ii) follows from (i) and Budde’s theorem [1], and (iii) from Corollary
3.10 and (6.6).

One may ask whether each Φµ(x) contains non-trivial points. Here is the
answer.

Theorem 6.6. Let µ ∈ M+
s and x ∈ M(L∞(µ)). Then Φµ(x) contains

non-trivial points.

Proof. Let µ ∈ M+
s . By the regularity of µ, there is a sequence {Kn}n

(maybe finite) of non-empty closed subsets satisfying

|Kn| = 0 for every n,(6.7)

Kn ∩Km = ∅ if n 6= m,(6.8)

µ =
∞∑

n=1

µ|Kn .(6.9)

For each n, there exists an interpolating Blaschke product bKn associated
with Kn. Let {wn,j}j be the zeros of bKn in D. Then by Theorem 5.1,
Kn is the set of cluster points of {wn,j}j in D. Then by (6.8), we have
{|bKn | < 1}∩{|bKm | < 1} = ∅ if n 6= m. By the proof of [8, Lemma 1.5], there
is a sequence {kj}j of positive integers such that {wn,j ; j ≥ kn, n = 1, 2, . . .}
is an interpolating sequence.

Let

b′Kn(z) =
∞∏

j=kn

−wn,j
|wn,j |

z − wn,j
1− wn,jz

, bµ(z) =
∞∏

n=1

b′Kn(z), z ∈ D.

Then bµ is an interpolating Blaschke product and

(6.10) Z(b′Kn) = Z(bKn),
∞⋃

n=1

Z(bKn) ⊂ Z(bµ).

Let S be a measurable subset of suppµ such that x ∈ Ŝ. Since µ|S 6= 0,
by (6.9) there exists a positive integer n such that µ|Kn∩S 6= 0. By (6.7) and
Theorem 6.1, Z(bKn)∩Z(µ|Kn∩S) 6= ∅. Then by (6.10), Z(bµ)∩Z(µ|Kn∩S)
6= ∅. Hence by Lemma 3.3, we have Z(bµ) ∩ Z(µ|S) 6= ∅. In the same way
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as in the proof of Theorem 6.3(i), we have Z(bµ) ∩ Φµ(x) 6= ∅. Since bµ is
interpolating, Φµ(x) contains non-trivial points.

Problem 6.7. Let µ ∈ M+
s and x ∈ M(L∞(µ)). Does Φµ(x) contain

sparse points?

The author would like to thank the referee for his/her comments on the
first version of the manuscript.
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