Common zero sets of equivalent singular inner functions

by

Keiji Izuchi (Niigata)

Abstract. Let μ and λ be bounded positive singular measures on the unit circle such that $\mu \perp \lambda$. It is proved that there exist positive measures μ_0 and λ_0 such that $\mu_0 \sim \mu$, $\lambda_0 \sim \lambda$, and $\{|\psi_{\mu_0}| < 1\} \cap \{|\psi_{\lambda_0}| < 1\} = \emptyset$, where ψ_{μ} is the associated singular inner function of μ . Let $\mathcal{Z}(\mu) = \bigcap_{\{\nu; \nu \sim \mu\}} Z(\psi_{\nu})$ be the common zeros of equivalent singular inner functions of ψ_{μ} . Then $\mathcal{Z}(\mu) \neq \emptyset$ and $\mathcal{Z}(\mu) \cap \mathcal{Z}(\lambda) = \emptyset$. It follows that $\mu \ll \lambda$ if and only if $\mathcal{Z}(\mu) \subset \mathcal{Z}(\lambda)$. Hence $\mathcal{Z}(\mu)$ is the set in the maximal ideal space of H^{∞} which relates naturally to the set of measures equivalent to μ . Some basic properties of $\mathcal{Z}(\mu)$ are given.

1. Introduction. Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disk D. We denote by $\mathcal{M} = M(H^{\infty})$ the maximal ideal space of H^{∞} , the space of non-zero multiplicative linear functionals of H^{∞} with the weak^{*} topology. We think of D as an open subset of \mathcal{M} . Identifying a function in H^{∞} with its Gelfand transform, we regard H^{∞} as a closed subalgebra of $C(\mathcal{M})$, the space of continuous functions on \mathcal{M} . Identifying a function in H^{∞} with its boundary function, we also view H^{∞} as an (essential) supremum norm closed subalgebra of L^{∞} , the usual Lebesgue space on the unit circle ∂D . We may consider the maximal ideal space $M(L^{\infty})$ of L^{∞} to be a subset of \mathcal{M} , and it is known that $M(L^{\infty})$ is the Shilov boundary of H^{∞} (see [10]). For a point $x \in \mathcal{M}$, there exists a probability measure μ_x on $M(L^{\infty})$ such that $f(x) = \int_{M(L^{\infty})} f d\mu_x$ for every $f \in H^{\infty}$. We denote by $\supp \mu_x$ the closed support set of μ_x . A function f in H^{∞} is called *inner* if |f| = 1 on $M(L^{\infty})$. For a function f in H^{∞} , we use the following notations:

$$\{|f| < 1\} = \{x \in \mathcal{M} \setminus D; |f(x)| < 1\}, \quad Z(f) = \{x \in \mathcal{M} \setminus D; f(x) = 0\}.$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 46J15.

Key words and phrases: common zero set, singular inner function.

Supported by Grant-in-Aid for Scientific Research (No. 10440039), Ministry of Education, Science and Culture.

K. Izuchi

Note that these are subsets of $\mathcal{M}\setminus D$. For $\zeta \in \partial D$, let $\mathcal{M}_{\zeta} = \{x \in \mathcal{M}; z(x) = \zeta\}$, where z is the identity function on D. For a subset E of \mathcal{M} , we denote by \overline{E} its weak^{*} closure in \mathcal{M} .

For a sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, there is the associated Blaschke product

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in D.$$

Blaschke products are typical inner functions. Moreover if for every bounded sequence $\{a_n\}_n$ of complex numbers there exists $f \in H^\infty$ such that $f(z_n) = a_n$ for every n, then both $\{z_n\}_n$ and the associated Blaschke product b are called *interpolating*. In this case, we have $Z(b) = \overline{\{z_n\}_n} \setminus \{z_n\}_n$ (see [10, p. 205]). We denote by S(b) the set of cluster points of $\{z_n\}_n$ in the closed unit disk.

For $x, y \in \mathcal{M}$, let

$$\varrho(x, y) = \sup\{|f(y)|; f \in H^{\infty}, f(x) = 0, \|f\|_{\infty} = 1\},
P(x) = \{w \in \mathcal{M}; \rho(x, w) < 1\}.$$

The set P(x) is called the *Gleason part* containing x. When $P(x) = \{x\}$, both x and P(x) are called *trivial*. We denote by G the set of non-trivial points in \mathcal{M} . In [11], Hoffman proved that $G \setminus D$ is the set of points x in $\mathcal{M} \setminus D$ such that b(x) = 0 for some interpolating Blaschke product b, and G is open in \mathcal{M} . See [11] for the study of the structure of \mathcal{M} and G.

Let $M_{\rm s}^+$ be the set of bounded positive (non-zero) measures on ∂D singular with respect to the Lebesgue measure on ∂D . For $\mu \in M_{\rm s}^+$, we denote by $\sup \mu$ the closed support set of μ and by $\|\mu\|$ the total variation norm of μ . We also denote by $M_{\rm s,d}^+$ and $M_{\rm s,c}^+$ the sets of discrete and continuous measures in $M_{\rm s}^+$, respectively. For $\zeta \in \partial D$, let δ_{ζ} be the unit point mass at ζ . For $\mu, \lambda \in M_{\rm s}^+$, we write $\mu \ll \lambda$ if μ is absolutely continuous with respect to λ , and $\mu \perp \lambda$ if μ and λ are mutually singular; moreover, $\mu \wedge \lambda$ is the lower bound of μ and λ . For $\mu, \nu \in M_{\rm s}^+$, we write $\mu \sim \nu$ if μ and ν are equivalent, that is, $\mu \ll \nu$ and $\nu \ll \mu$. For each $\mu \in M_{\rm s}^+$, let

$$\psi_{\mu}(z) = \exp\left(-\int_{\partial D} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(e^{i\theta})\right), \quad z \in D.$$

Then ψ_{μ} is called a *singular inner function*; it may be extended continuously on $\partial D \setminus \text{supp } \mu$ and $|\psi_{\mu}| = 1$ on \mathcal{M}_{ζ} for $\zeta \notin \text{supp } \mu$ (see [5, 10]). When $\mu \sim \nu$, we say that ψ_{μ} and ψ_{ν} are *equivalent singular inner functions*. We have

$$|\psi_{\mu}(z)| = \exp\left(-\int_{\partial D} P_{z}(e^{i\theta}) d\mu(e^{i\theta})\right), \quad z \in D,$$

where P_z is the Poisson kernel. We put

$$\mathcal{Z}(\mu) = \bigcap_{\{\nu \in M_{\mathrm{s}}^+; \nu \sim \mu\}} Z(\psi_{\nu}), \quad \mathcal{W}(\mu) = \bigcap_{\{\nu \in M_{\mathrm{s}}^+; \nu \sim \mu\}} \{|\psi_{\nu}| < 1\}.$$

Then $\mathcal{Z}(\mu) \subset \mathcal{W}(\mu)$. In [13], the author proved that if $\mu, \lambda \in M_{s,d}^+$ and $\mu \perp \lambda$, then $\mathcal{W}(\mu) \cap \mathcal{W}(\lambda) = \emptyset$.

The purpose of this paper is to study $\mathcal{Z}(\mu)$ and $\mathcal{W}(\mu)$ for $\mu \in M_{\rm s}^+$. The motivation for this study comes from [12] and [14]. In [12], the author studied certain properties of Blaschke products, and in [14] similar properties for singular inner functions. In Section 2, we prove that if $\mu, \lambda \in M_{\rm s}^+$ with $\mu \perp \lambda$, then there are $\mu_0, \lambda_0 \in M_{\rm s}^+$ such that $\mu_0 \sim \mu, \lambda_0 \sim \lambda$, and $\{|\psi_{\mu_0}| < 1\}$ $\cap \{|\psi_{\lambda_0}| < 1\} = \emptyset$. Then we get $\mathcal{W}(\mu) \cap \mathcal{W}(\lambda) = \emptyset$ and $\mathcal{Z}(\mu) \cap \mathcal{Z}(\lambda) = \emptyset$. Hence $\mathcal{Z}(\mu)$ is the set in $\mathcal{M} \setminus D$ related to the class of measures equivalent to μ . From the point of view of the study of measures on ∂D , the set $\mathcal{Z}(\mu)$ is interesting and important. In Section 3, we prove that

$$\mathcal{W}(\mu) = \mathcal{Z}(\mu) \cup \bigcup_{\{\zeta \in \partial D; \, \mu(\{\zeta\}) \neq 0\}} \{ |\psi_{\delta_{\zeta}}| < 1 \}.$$

Hence if $\mu \in M_{s,c}^+$, then $\mathcal{W}(\mu) = \mathcal{Z}(\mu)$. Moreover, we prove that for $\zeta \in \partial D$, if $\mu(\{\zeta\}) = 0$ then

$$\mathcal{Z}(\mu) \subset \bigcup_{\{\xi \in \partial D; \, \xi \neq \zeta\}} \mathcal{M}_{\xi}.$$

In Section 4, we prove that for $\zeta \in \partial D$ there exists a Blaschke product b such that $S(b) = \{\zeta\}$ and $\mathcal{Z}(\mu) \cap \overline{\{|b| < 1\}} = \emptyset$ for every $\mu \in M_s^+$. Also we show that for every Blaschke product b with $S(b) = \partial D$ there exists $\mu \in M_{s,c}^+$ such that $Z(b) \cap \mathcal{Z}(\mu) \neq \emptyset$.

By [4, p. 162], $Z(\psi_{\mu})$ contains a trivial point for every $\mu \in M_{\rm s}^+$. Hence $\mathcal{Z}(\mu)$ contains trivial points too. Let $\operatorname{int} \mathcal{Z}(\mu)$ denote the interior of $\mathcal{Z}(\mu)$ in $\mathcal{M} \setminus D$. If $\mu \in M_{{\rm s},c}^+$, we have $Z(b) \not\subset \mathcal{Z}(\mu)$ for every interpolating Blaschke product b. This implies that $\operatorname{int} \mathcal{Z}(\mu) = \emptyset$. Note that $\operatorname{int} Z(\psi_{\mu}) \neq \emptyset$. Since the set G of non-trivial points is open, one can ask whether $\mathcal{Z}(\mu) \cap G = \emptyset$ or not. To answer this, in Section 5 we study interpolating Blaschke products. For a non-empty closed subset K of ∂D which has Lebesgue measure zero, we construct an interpolating Blaschke product b_K with certain properties. In Section 6, we prove that $Z(b_K) \cap \mathcal{Z}(\mu) \neq \emptyset$ for every $\mu \in M_{\rm s}^+$ with $\operatorname{supp} \mu \subset K$. Hence $\mathcal{Z}(\mu)$ contains non-trivial points for every $\mu \in M_{\rm s}^+$.

Let $\mu \in M_s^+$. We denote by $M(L^{\infty}(\mu))$ the maximal ideal space of the Banach algebra $L^{\infty}(\mu)$. In Section 6, we establish the existence of a natural map Φ_{μ} from $M(L^{\infty}(\mu))$ to the family of closed subsets of $\mathcal{Z}(\mu)$ such that

$$\mathcal{Z}(\mu) = \bigcup_{x \in M(L^{\infty}(\mu))} \Phi_{\mu}(x)$$

and $\Phi_{\mu}(x) \cap \Phi_{\mu}(y) = \emptyset$ if $x \neq y$. Hence we may think of $\{\Phi_{\mu}(x); x \in M(L^{\infty}(\mu))\}$ as an atomic decomposition of the measure μ in $\mathcal{M} \setminus D$ in some sense. Also we prove that every $\Phi_{\mu}(x)$ contains non-trivial points.

2. Mutually singular measures. For a subset E of $D \cup \partial D$, we denote by cl E the closure of E in the complex plane. In this section, we prove that $\mathcal{W}(\mu) \cap \mathcal{W}(\lambda) = \emptyset$ if $\mu, \lambda \in M_s^+$ and $\mu \perp \lambda$. First, we prove the following theorem.

THEOREM 2.1. Let $\mu, \lambda \in M_s^+$ and $\mu \perp \lambda$. Then there exist $\mu_0, \lambda_0 \in M_s^+$ such that $\mu_0 \sim \mu, \lambda_0 \sim \lambda$, and $\{|\psi_{\mu_0}| < 1\} \cap \{|\psi_{\lambda_0}| < 1\} = \emptyset$.

Proof. Since $\mu \perp \lambda$, there exists a measurable subset $A \subset \partial D$ such that $\mu(A) = \|\mu\|$ and $\lambda(\partial D \setminus A) = \|\lambda\|$. By the regularity of the measures, there exist sequences $\{\mu_n\}_n$ and $\{\lambda_n\}_n$ of measures in M_s^+ such that $\sup \mu_n \subset A$, $\sup p \lambda_n \subset \partial D \setminus A$, and

(2.1)
$$\mu = \sum_{n=1}^{\infty} \mu_n, \quad \lambda = \sum_{n=1}^{\infty} \lambda_n$$

Then

(2.2)
$$\operatorname{supp} \mu_n \cap \operatorname{supp} \lambda_k = \emptyset \quad \text{for all } n, k.$$

Let $\{\delta_n\}_n$ be a sequence of numbers such that

(2.3)
$$0 < \delta_n < 1, \qquad \prod_{n=1}^{\infty} \delta_n > 0.$$

For each 0 < s < 1, let

(2.4)
$$U_{\mu_n}(s) = \{ z \in D; |\psi_{\mu_n}(z)| < s \}, \quad U_{\lambda_n}(s) = \{ z \in D; |\psi_{\lambda_n}(z)| < s \}.$$

Then $U_{\mu_n}(s_1) \subset U_{\mu_n}(s_2)$ if $s_1 < s_2$, and

$$\bigcap_{0 < s < 1} \operatorname{cl} U_{\mu_n}(s) = \operatorname{supp} \mu_n, \quad \bigcap_{0 < s < 1} \operatorname{cl} U_{\lambda_n}(s) = \operatorname{supp} \lambda_n.$$

Hence by (2.2), we have

$$\sup_{z \in U_{\mu_k}(s)} |\psi_{\lambda_n}(z)| \to 1, \quad \sup_{z \in U_{\lambda_k}(s)} |\psi_{\mu_n}(z)| \to 1 \quad \text{as } s \to 0 \text{ for all } n, k.$$

Then by induction, we may take $\{s_n\}_n$ and $\{t_n\}_n$ such that

(2.5)
$$U_{\mu_n}(s_n) \cap U_{\lambda_k}(t_k) = \emptyset \quad \text{for all } n, k,$$

(2.6)
$$\left| \prod_{j=1}^{n} \psi_{\lambda_{j}} \right| \geq \delta_{n} \quad \text{on } \bigcup_{k=n}^{\infty} U_{\mu_{k}}(s_{k}), \\ \left| \prod_{j=1}^{n} \psi_{\mu_{j}} \right| \geq \delta_{n} \quad \text{on } \bigcup_{k=n}^{\infty} U_{\lambda_{k}}(t_{k}).$$

Next, let $\{a_n\}_n$ and $\{b_n\}_n$ be sequences of numbers satisfying

$$(2.7) 0 < a_n < 1, 0 < b_n < 1,$$

(2.8)
$$s_n^{a_n} \ge \delta_n, \quad t_n^{b_n} \ge \delta_n \quad \text{for every } n.$$

Let

(2.9)
$$\mu_0 = \sum_{n=1}^{\infty} a_n \mu_n, \quad \lambda_0 = \sum_{n=1}^{\infty} b_n \lambda_n.$$

Then by (2.1) and (2,7), $\mu_0, \lambda_0 \in M_s^+$, $\mu_0 \sim \mu$, and $\lambda_0 \sim \lambda$. For $z \in D \setminus \bigcup_{j=1}^{\infty} U_{\mu_j}(s_j)$, we have

$$\begin{aligned} |\psi_{\mu_0}(z)| &= \prod_{j=1}^k |\psi_{\mu_j}(z)|^{a_j} \prod_{j=k+1}^\infty |\psi_{\mu_j}(z)|^{a_j} & \text{by (2.9)} \\ &\geq \prod_{j=1}^k |\psi_{\mu_j}(z)| \prod_{j=k+1}^\infty s_j^{a_j} & \text{by (2.4)} \\ &\geq \prod_{j=1}^k |\psi_{\mu_j}(z)| \prod_{j=k+1}^\infty \delta_j & \text{by (2.8).} \end{aligned}$$

Hence

(2.10)
$$|\psi_{\mu_0}| \ge \prod_{j=1}^k |\psi_{\mu_j}| \prod_{j=k+1}^\infty \delta_j \quad \text{on } D \setminus \bigcup_{j=1}^\infty U_{\mu_j}(s_j) \text{ for every } k.$$

Similarly,

(2.11)
$$|\psi_{\lambda_0}| \ge \prod_{j=1}^k |\psi_{\lambda_j}| \prod_{j=k+1}^\infty \delta_j$$
 on $D \setminus \bigcup_{j=1}^\infty U_{\lambda_j}(t_j)$ for every k .

Now suppose that $\{|\psi_{\mu_0}| < 1\} \cap \{|\psi_{\lambda_0}| < 1\} \neq \emptyset$. Then by the corona theorem [3], there exist $0 < \delta < 1$ and a sequence $\{z_n\}_n$ in D such that $|z_n| \to 1$ and

(2.12)
$$|\psi_{\mu_0}(z_n)| < \delta, \quad |\psi_{\lambda_0}(z_n)| < \delta \quad \text{for every } n.$$

By (2.3), there exists a positive integer k_0 such that

(2.13)
$$\prod_{j=k_0+1}^{\infty} \delta_j > \delta^{1/2}.$$

Considering a subsequence of $\{z_n\}_n$, we may further assume that either

(2.14)
$$z_n \in \left(D \setminus \bigcup_{j=1}^{\infty} U_{\mu_j}(s_j)\right) \cap \left(D \setminus \bigcup_{j=1}^{\infty} U_{\lambda_j}(t_j)\right)$$
 for every n ,
(2.15) $z_n \in \bigcup_{j=1}^{\infty} U_{\mu_j}(s_j)$ for every n ,

(2.16)
$$z_n \in \bigcup_{j=1}^{\infty} U_{\lambda_j}(t_j)$$
 for every n

For each case we shall obtain a contradiction.

First, suppose that (2.14) holds. By (2.10), (2.12), and (2.13),

$$\delta > \prod_{j=1}^{k_0} |\psi_{\mu_j}(z_n)| \prod_{j=k_0+1}^{\infty} \delta_j > \delta^{1/2} \prod_{j=1}^{k_0} |\psi_{\mu_j}(z_n)| \quad \text{for every } n.$$

Then

$$\prod_{j=1}^{k_0} |\psi_{\mu_j}(z_n)| \le \delta^{1/2} < 1 \quad \text{for every } n$$

Similarly,

$$\prod_{j=1}^{k_0} |\psi_{\lambda_j}(z_n)| \le \delta^{1/2} < 1 \quad \text{for every } n.$$

Hence

$$\operatorname{cl} \{z_n\}_n \setminus \{z_n\}_n \subset \Big(\bigcup_{j=1}^{k_0} \operatorname{supp} \mu_j\Big) \cap \Big(\bigcup_{j=1}^{k_0} \operatorname{supp} \lambda_j\Big).$$

But this contradicts (2.2). Therefore (2.14) does not occur.

Next, suppose that (2.15) holds. Then by (2.5),

(2.17)
$$\{z_n\}_n \subset D \setminus \bigcup_{j=1}^{\infty} U_{\lambda_j}(t_j).$$

Taking a subsequence of $\{z_n\}_n$, we may further assume that either

(2.18)
$$\{z_n\}_n \subset \bigcup_{j=1}^m U_{\mu_j}(s_j) \quad \text{for some } m \ge k_0,$$

or

(2.19)
$$\{z_n\}_n \cap \bigcup_{j=1}^m U_{\mu_j}(s_j)$$
 is a finite set for every m .

Suppose that (2.18) holds. Then by (2.4), we have

$$\prod_{j=1}^{m} |\psi_{\mu_j}(z_n)| < \max_{1 \le j \le m} s_j < 1 \quad \text{for every } n.$$

Hence

(2.20)
$$\operatorname{cl} \{z_n\}_n \setminus \{z_n\}_n \subset \bigcup_{j=1}^m \operatorname{supp} \mu_j$$

By (2.11), (2.12), (2.13), and (2.17),

$$\delta > |\psi_{\lambda_0}(z_n)| \ge \prod_{j=1}^{k_0} |\psi_{\lambda_j}(z_n)| \prod_{j=k_0+1}^{\infty} \delta_j > \delta^{1/2} \prod_{j=1}^{k_0} |\psi_{\lambda_j}(z_n)|.$$

Thus we have

$$\prod_{j=1}^{\kappa_0} |\psi_{\lambda_j}(z_n)| < \delta^{1/2} < 1 \quad \text{for every } n$$

Therefore

(2.21)
$$\operatorname{cl} \{z_n\}_n \setminus \{z_n\}_n \subset \bigcup_{j=1}^{k_0} \operatorname{supp} \lambda_j.$$

Hence (2.20) and (2.21) contradict (2.2).

Next, suppose that (2.19) holds. Then for each k, we have

$$\liminf_{n \to \infty} |\psi_{\lambda_0}(z_n)| \ge \liminf_{n \to \infty} \prod_{j=1}^k |\psi_{\lambda_j}(z_n)| \prod_{j=k+1}^\infty \delta_j \quad \text{by (2.11) and (2.17)}$$
$$\ge \prod_{j=k}^\infty \delta_j \quad \text{by (2.6), (2.15), and (2.19).}$$

Thus by (2.3), we have $|\psi_{\lambda_0}(z_n)| \to 1$ as $n \to \infty$. This contradicts (2.12). Therefore (2.15) does not occur.

Similarly, we may prove that (2.16) does not occur. Thus we get our assertion. \blacksquare

As an application of Theorem 2.1, we have the following.

THEOREM 2.2. Let $\mu, \lambda \in M_s^+$ be such that $\mu \perp \lambda$. Then $\mathcal{W}(\mu) \cap \mathcal{W}(\lambda) = \emptyset$, and consequently, $\mathcal{Z}(\mu) \cap \mathcal{Z}(\lambda) = \emptyset$.

This theorem says that the singularity of measures on ∂D may be represented in the maximal ideal space \mathcal{M} of H^{∞} as disjoint closed subsets. So to study the behavior of singular inner functions, it is important to study the sets $\mathcal{Z}(\mu)$.

3.
$$\mathcal{Z}(\mu)$$
 and $\mathcal{W}(\mu)$. Recall that for $\mu \in M_{s}^{+}$,
$$\mathcal{Z}(\mu) = \bigcap_{\{\nu \in M_{s}^{+}; \nu \sim \mu\}} Z(\psi_{\nu}), \quad \mathcal{W}(\mu) = \bigcap_{\{\nu \in M_{s}^{+}; \nu \sim \mu\}} \{|\psi_{\nu}| < 1\}.$$

Thus $\mathcal{Z}(\mu) \subset \mathcal{W}(\mu)$ and $\mathcal{W}(\mu)$ is a subset of $\mathcal{M} \setminus (D \cup M(L^{\infty}))$. In this section, we study the properties of $\mathcal{Z}(\mu)$ and $\mathcal{W}(\mu)$. We note that if $\mu, \lambda \in M_{\mathrm{s}}^+$ and $\mu \sim \lambda$, then $\mathcal{Z}(\mu) = \mathcal{Z}(\lambda)$ and $\mathcal{W}(\mu) = \mathcal{W}(\lambda)$.

First, we prove the following.

THEOREM 3.1. Let $\mu \in M_s^+$ and $\zeta \in \operatorname{supp} \mu$. Then $\mathcal{Z}(\mu) \cap \mathcal{M}_{\zeta} \neq \emptyset$, and consequently, $\mathcal{Z}(\mu) \neq \emptyset$.

To prove this, we use the following lemma.

LEMMA 3.2. Let $\mu \in M_s^+$ and E be a closed subset of \mathcal{M} such that $\mathcal{Z}(\mu) \cap E = \emptyset$. Then there exists $\nu \in M_s^+$ such that $\nu \sim \mu$ and $Z(\psi_{\nu}) \cap E = \emptyset$.

Proof. By our assumption, there exist $\nu_1, \ldots, \nu_n \in M_s^+$ such that $\nu_j \sim \mu$ and

(3.1)
$$\sum_{j=1}^{n} |\psi_{\nu_j}| > 0 \quad \text{on } E.$$

Let ν be the lower bound of $\{\nu_j\}_{j=1}^n$, that is, $\nu = \bigwedge_{j=1}^n \nu_j$. Then $\nu \neq 0$ and $\nu \sim \mu$. Since $\nu \leq \nu_j$, we have $|\psi_{\nu_j}| \leq |\psi_{\nu}|$ on \mathcal{M} . Hence by (3.1), $0 < |\psi_{\nu}|$ on E.

Proof of Proposition 3.1. Let $\nu \in M_{\rm s}^+$ and $\nu \sim \mu$. Since $\zeta \in {\rm supp } \nu$, it follows that $Z(\psi_{\nu}) \cap \mathcal{M}_{\zeta} \neq \emptyset$ (see [5, p. 76]). By Lemma 3.2, we have $\mathcal{Z}(\mu) \cap \mathcal{M}_{\zeta} \neq \emptyset$.

The following lemma lists elementary properties of $\mathcal{Z}(\mu)$ and $\mathcal{W}(\mu)$.

LEMMA 3.3. Let $\mu_1, \mu_2 \in M_s^+$.

- (i) If $\mu_1 \perp \mu_2$, then $\mathcal{Z}(\mu_1 + \mu_2) = \mathcal{Z}(\mu_1) \cup \mathcal{Z}(\mu_1)$ and $\mathcal{W}(\mu_1 + \mu_2) = \mathcal{W}(\mu_1) \cup \mathcal{W}(\mu_1)$.
- (ii) If $\mu_1 \ll \mu_2$, then $\mathcal{Z}(\mu_1) \subset \mathcal{Z}(\mu_2)$ and $\mathcal{W}(\mu_1) \subset \mathcal{W}(\mu_2)$.
- (iii) $\mathcal{Z}(\mu_1 + \mu_2) = \mathcal{Z}(\mu_1) \cup \mathcal{Z}(\mu_2)$ and $\mathcal{W}(\mu_1 + \mu_2) = \mathcal{W}(\mu_1) \cup \mathcal{W}(\mu_2)$.
- (iv) If $\mu_1 \wedge \mu_2 \neq 0$, then $\mathcal{Z}(\mu_1 \wedge \mu_2) = \mathcal{Z}(\mu_1) \cap \mathcal{Z}(\mu_2)$ and $\mathcal{W}(\mu_1 \wedge \mu_2) = \mathcal{W}(\mu_1) \cap \mathcal{W}(\mu_2)$.

Proof. We only prove the properties of $\mathcal{Z}(\mu)$; those of $\mathcal{W}(\mu)$ are established similarly.

(i) Suppose that $\mu_1 \perp \mu_2$. Let $\nu \in M_s^+$. Then $\nu \sim \mu_1 + \mu_2$ if and only if $\nu = \nu_1 + \nu_2$ for some $\nu_1, \nu_2 \in M_s^+$ with $\nu_1 \sim \mu_1$ and $\nu_2 \sim \mu_2$. Since $\psi_{\nu_1+\nu_2} = \psi_{\nu_1}\psi_{\nu_2}$, we have $Z(\psi_{\nu_1+\nu_2}) = Z(\psi_{\nu_1}) \cup Z(\psi_{\nu_2})$. Then by Theorem 2.2, $\mathcal{Z}(\mu_1 + \mu_2) = \mathcal{Z}(\mu_1) \cup \mathcal{Z}(\mu_2)$.

(ii) Suppose that $\mu_1 \ll \mu_2$. Then $\mu_2 = \nu_1 + \nu_2$, where $\nu_1 \sim \mu_1$ and $\nu_1 \perp \nu_2$. Hence by (i), $\mathcal{Z}(\mu_1) = \mathcal{Z}(\nu_1) \subset \mathcal{Z}(\nu_1) \cup \mathcal{Z}(\nu_2) = \mathcal{Z}(\mu_2)$.

(iii) By (ii), we have $\mathcal{Z}(\mu_1) \cup \mathcal{Z}(\mu_2) \subset \mathcal{Z}(\mu_1 + \mu_2)$. To prove the reverse inclusion, write $\mu_1 + \mu_2 = \nu_1 + \nu_2$, where $\nu_1, \nu_2 \in M_s^+$ are such that $\nu_1 \sim \mu_1$, $\nu_1 \perp \nu_2$, and $\nu_2 \ll \mu_2$. Then by (i) and (ii),

$$\mathcal{Z}(\mu_1 + \mu_2) = \mathcal{Z}(\nu_1) \cup \mathcal{Z}(\nu_2) = \mathcal{Z}(\mu_1) \cup \mathcal{Z}(\nu_2) \subset \mathcal{Z}(\mu_1) \cup \mathcal{Z}(\mu_2).$$

(iv) By (ii), $\mathcal{Z}(\mu_1 \wedge \mu_2) \subset \mathcal{Z}(\mu_1) \cap \mathcal{Z}(\mu_2)$. Write $\mu_1 = \nu_1 + \nu_2$, where $\nu_1 \sim \mu_1 \wedge \mu_2$ and $\nu_2 \perp \mu_2$. Then by (i),

$$\mathcal{Z}(\mu_1) = \mathcal{Z}(\nu_1) \cup \mathcal{Z}(\nu_2) = \mathcal{Z}(\mu_1 \wedge \mu_2) \cup \mathcal{Z}(\nu_2).$$

By Theorem 2.2, $\mathcal{Z}(\nu_2) \cap \mathcal{Z}(\mu_2) = \emptyset$. By (ii), $\mathcal{Z}(\mu_1 \wedge \mu_2) \subset \mathcal{Z}(\mu_2)$. Hence

 $\mathcal{Z}(\mu_1) \cap \mathcal{Z}(\mu_2) = \mathcal{Z}(\mu_1 \wedge \mu_2) \cap \mathcal{Z}(\mu_2) = \mathcal{Z}(\mu_1 \wedge \mu_2). \blacksquare$

PROPOSITION 3.4. Let $\mu_1, \mu_2 \in M_s^+$. Then $\mu_1 \ll \mu_2$ if and only if $\mathcal{Z}(\mu_1) \subset \mathcal{Z}(\mu_2)$.

Proof. The "only if" part follows from Lemma 3.3(ii). Suppose that $\mu_1 \not\ll \mu_2$. Write $\mu_1 = \nu_1 + \nu_2$, where $\nu_1 \perp \mu_2$ and $\nu_2 \ll \mu_2$. Then $\nu_1 \neq 0$. By Proposition 3.1, we have $\mathcal{Z}(\nu_1) \neq \emptyset$. Since $\nu_1 \ll \mu_1$, Lemma 3.3(ii) yields $\mathcal{Z}(\nu_1) \subset \mathcal{Z}(\mu_1)$. Since $\nu_1 \perp \mu_2$, by Theorem 2.2 we have $\mathcal{Z}(\nu_1) \cap \mathcal{Z}(\mu_2) = \emptyset$. Thus we get $\mathcal{Z}(\mu_1) \notin \mathcal{Z}(\mu_2)$.

The following shows a relation between $\mathcal{W}(\mu)$ and $\mathcal{Z}(\mu)$.

THEOREM 3.5. Let $\mu \in M_s^+$. Then

$$\mathcal{W}(\mu) = \mathcal{Z}(\mu) \cup \bigcup_{\{\zeta \in \partial D; \, \mu(\{\zeta\}) \neq 0\}} \{ |\psi_{\delta_{\zeta}}| < 1 \}.$$

Proof. The \supset inclusion follows from the definition of $\mathcal{W}(\mu)$. To prove the reverse inclusion, let

(3.2)
$$x \in \mathcal{W}(\mu) \setminus \bigcup_{\{\zeta \in \partial D; \, \mu(\{\zeta\}) \neq 0\}} \{ |\psi_{\delta_{\zeta}}| < 1 \}.$$

It is sufficient to prove that $x \in \mathcal{Z}(\mu)$. Suppose not. Then there exists $\nu \in M_s^+$ such that $\nu \sim \mu$ and $\psi_{\nu}(x) \neq 0$. We may assume that $x \in \mathcal{M}_1$.

First, suppose that $\mu(\{1\}) = 0$. Let $I_0 = \partial D$ and $I_n = \{e^{i\theta}; -1/n \le \theta \le 1/n\}$ for every positive integer n. Set $\nu_n = \nu_{|(I_{n-1}\setminus I_n)}$. Then $\nu = \sum_{n=1}^{\infty} \nu_n$.

Let

$$\nu_0 = \sum_{n=1}^{\infty} \nu_n / n$$

Then $\nu_0 \sim \nu \sim \mu$ and

(3.3)
$$k\nu_0 \le \nu + \sum_{n=1}^k k\nu_n \quad \text{for all } k.$$

Since supp $\nu_n \subset \operatorname{cl}(I_{n-1} \setminus I_n)$, it follows that $1 \notin \operatorname{supp} \nu_n$. Hence $|\psi_{\nu_n}| = 1$ on \mathcal{M}_1 for every *n*. Since $x \in \mathcal{M}_1$, by (3.3),

$$|\psi_{\nu}(x)| = |\psi_{\nu}(x)| \prod_{n=1}^{k} |\psi_{\nu_{n}}(x)|^{k} \le |\psi_{\nu_{0}}(x)|^{k}$$
 for all k .

Since $\psi_{\nu}(x) \neq 0$, we have $|\psi_{\nu_0}(x)| = 1$, so that $x \notin \mathcal{W}(\mu)$. This contradicts (3.2). Thus if $\mu(\{1\}) = 0$, then $x \in \mathcal{Z}(\mu)$.

Next, suppose that $\mu(\{1\}) = c > 0$. Write $\mu = c\delta_1 + \mu_1$, where $\mu_1 \perp \delta_1$. Then by Lemma 3.3(i), $\mathcal{W}(\mu) = \{|\psi_{\delta_1}| < 1\} \cup \mathcal{W}(\mu_1)$, so that we may rewrite condition (3.2) as

$$x \in \mathcal{W}(\mu_1) \setminus \bigcup_{\{\zeta \in \partial D; \, \mu_1(\{\zeta\}) \neq 0\}} \{ |\psi_{\delta_{\zeta}}| < 1 \}.$$

By the previous paragraph, $x \in \mathcal{Z}(\mu_1)$. By Lemma 3.3(ii), $\mathcal{Z}(\mu_1) \subset \mathcal{Z}(\mu)$. Hence $x \in \mathcal{Z}(\mu)$.

COROLLARY 3.6. Let $\mu \in M_s^+$ and $\zeta \in \partial D$. If $\mu(\{\zeta\}) = 0$, then $\mathcal{Z}(\mu) \cap \mathcal{M}_{\zeta} = \mathcal{W}(\mu) \cap \mathcal{M}_{\zeta}$.

PROPOSITION 3.7. Let $\mu \in M_s^+$ and E be a closed subset of ∂D . Let A be an F_{σ} -subset of \mathcal{M} such that $A \cap \bigcup_{\xi \in \partial D \setminus E} \mathcal{M}_{\xi} = \emptyset$. If $\mu(E) = 0$, then there exists $\nu \in M_s^+$ such that $\nu \sim \mu$ and $|\psi_{\nu}| = 1$ on A.

Proof. By our assumption, $A = \bigcup_{j=1}^{\infty} A_j$, where A_j is a closed set. Then there is a sequence $\{U_j\}_j$ of open subsets of \mathcal{M} such that

(3.4)
$$A_j \subset U_j, \quad \overline{U}_j \cap \bigcup_{\xi \in \partial D \setminus E} \mathcal{M}_{\xi} = \emptyset \quad \text{for every } j.$$

Let $I_0 = \partial D$ and $\{I_n\}_n$ be a sequence of open subsets of ∂D such that $I_n \subset I_{n-1}$ and $\bigcap_{n=1}^{\infty} I_n = E$. Set $\mu_n = \mu_{|(I_{n-1} \setminus I_n)}$. Since $\mu(E) = 0$, we have $\mu = \sum_{n=1}^{\infty} \mu_n$. Since $E \cap \operatorname{supp} \mu_n = \emptyset$, it follows that $|\psi_{\mu_n}| = 1$ on $\bigcup_{\zeta \in E} \mathcal{M}_{\zeta}$. Then by (3.4), $\overline{U}_j \setminus D \subset \bigcup_{\zeta \in E} \mathcal{M}_{\zeta}$. Hence for every n and j,

(3.5)
$$|\psi_{\mu_n}(z)| \to 1 \text{ as } |z| \to 1 \text{ and } z \in U_j \cap D.$$

240

Let $\{\varepsilon_n\}_n$ be a sequence of positive numbers such that

(3.6)
$$\prod_{n=1}^{\infty} \varepsilon_n > 0, \quad 0 < \varepsilon_n < 1 \quad \text{for every } n$$

Then by (3.5), there exists a sequence $\{a_n\}_n$ of positive numbers such that $0 < a_n < 1$ and

(3.7)
$$|\psi_{\mu_n}(z)|^{a_n} \ge \varepsilon_n \quad \text{on } U_j \cap D \text{ for } 1 \le j \le n.$$

$$\nu = \sum_{n=1}^{\infty} a_n \mu_n$$

Then $\nu \in M_s^+$, $\nu \sim \mu$, and for any positive integers j and m, we have

$$\liminf_{\substack{|z|\to 1, z\in U_j\cap D}} |\psi_{\nu}(z)| = \liminf_{\substack{|z|\to 1, z\in U_j\cap D}} \prod_{n=1}^{\infty} |\psi_{\mu_n}(z)|^{a_n}$$
$$= \liminf_{\substack{|z|\to 1, z\in U_j\cap D}} \prod_{n=m}^{\infty} |\psi_{\mu_n}(z)|^{a_n} \quad \text{by (3.5)}$$
$$\geq \prod_{n=m}^{\infty} \varepsilon_n \quad \text{by (3.7).}$$

Hence by (3.6),

$$\liminf_{|z| \to 1, z \in U_j \cap D} |\psi_{\nu}(z)| = 1 \quad \text{for every } j.$$

By the corona theorem and (3.4), $A_j \subset \overline{U_j \cap D}$. Therefore $|\psi_{\nu}| = 1$ on A_j for every j. Thus $|\psi_{\nu}| = 1$ on A.

COROLLARY 3.8. Let $\mu \in M_s^+$ and E be a closed subset of ∂D . If $\mu(E) = 0$, then

$$\mathcal{Z}(\mu) \subset \mathcal{W}(\mu) \subset \overline{\bigcup_{\xi \in \partial D \setminus E} \mathcal{M}_{\xi}}.$$

This follows from Proposition 3.7.

.

COROLLARY 3.9. Let $\mu \in M_s^+$. Then $\mathcal{W}(\mu) = \mathcal{Z}(\mu)$ if and only if $\mu \in M_{s,c}^+$.

Proof. Suppose that $\mu(\{\zeta\}) > 0$ for some $\zeta \in \partial D$. Write $\mu = a\delta_{\zeta} + \mu_1$, where $\mu_1(\{\zeta\}) = 0$. Then by Lemma 3.3,

$$\mathcal{W}(\mu) = \{ |\psi_{\delta_{\zeta}}| < 1 \} \cup \mathcal{W}(\mu_1), \quad \mathcal{Z}(\mu) = Z(\psi_{\delta_{\zeta}}) \cup \mathcal{Z}(\mu_1).$$

Since $\{|\psi_{\delta_{\zeta}}| < 1\} \cap \overline{\bigcup_{\{\xi \in \partial D; \xi \neq \zeta\}} \mathcal{M}_{\xi}} = \emptyset$, by Corollary 3.8 we have

$$\mathcal{W}(\mu) \cap \{ |\psi_{\delta_{\zeta}}| < 1 \} = \{ |\psi_{\delta_{\zeta}}| < 1 \}, \quad \mathcal{Z}(\mu) \cap \{ |\psi_{\delta_{\zeta}}| < 1 \} = Z(\psi_{\delta_{\zeta}}).$$

Therefore $\mathcal{W}(\mu) \neq \mathcal{Z}(\mu)$

The converse follows from Theorem 3.5. \blacksquare

K. Izuchi

COROLLARY 3.10. Let $\mu \in M^+_{s,c}$ be such that $x \in \mathcal{Z}(\mu)$. Let $y \in \mathcal{M} \setminus D$ and $\operatorname{supp} \mu_x \subset \operatorname{supp} \mu_y$. Then $y \in \mathcal{Z}(\mu)$.

Proof. Let $\nu \in M_s^+$ and $\nu \sim \mu$. Since $\psi_{\nu}(x) = 0$, we have $|\psi_{\nu}(y)| < 1$. Hence $y \in \mathcal{W}(\mu)$. By Corollary 3.9, $y \in \mathcal{Z}(\mu)$.

4. Blaschke products and singular inner functions. Let b be a Blaschke product with zeros $\{z_n\}_n$. Recall that S(b) is the set of cluster points of $\{z_n\}_n$ in ∂D . Then S(b) is the set of points in ∂D to which b may not be extended continuously. Moreover, we have

(4.1)
$$\{|b| < 1\} \cap \overline{\bigcup_{\xi \in \partial D \setminus S(b)} \mathcal{M}_{\xi}} = \emptyset.$$

There exists a sequence $\{p_n\}_n$ of positive integers such that $p_n \to \infty$ as $n \to \infty$ and

$$b_1(z) = \prod_{n=1}^{\infty} \left(\frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z} \right)^{p_n}, \quad z \in D,$$

is a Blaschke product. Then $S(b_1) = S(b)$ and

$$\overline{\{|b|<1\}} \subset Z(b_1) \subset \{|b_1|<1\}.$$

Hence by (4.1),

(4.2)
$$\overline{\{|b|<1\}} \cap \overline{\bigcup_{\xi\in\partial D\setminus S(b)}\mathcal{M}_{\xi}} = \emptyset.$$

Moreover, if

$$\lim_{k \to \infty} \prod_{n: n \neq k} \left| \frac{z_n - z_k}{1 - \overline{z}_k z_n} \right| = 1,$$

then both b and $\{z_n\}_n$ are called *sparse* (or *thin*).

Suppose that b is sparse. Then

(4.3)
$$\{|b| < 1\} = \bigcup_{x \in Z(b)} P(x)$$

(see [7, 9]). For every sequence $\{z_n\}_n$ in D with $|z_n| \to 1$ as $n \to \infty$, there exists a sparse subsequence of $\{z_n\}_n$ (see [6]).

LEMMA 4.1. Let b be a sparse Blaschke product. Let φ be an inner function such that $|\varphi| = 1$ on Z(b). Then $|\varphi| = 1$ on $\overline{\{|b| < 1\}}$.

Proof. Let $y \in \{|b| < 1\}$. Then by (4.3), $y \in P(x)$ for some $x \in Z(b)$. By [4, p. 143], $\operatorname{supp} \mu_y = \operatorname{supp} \mu_x$. Since $|\varphi(x)| = 1$, we have $\varphi = \varphi(x)$ on $\operatorname{supp} \mu_y$. Hence $\varphi(y) = \int_{M(L^{\infty})} \varphi \, d\mu_y = \varphi(x)$. Thus $|\varphi(y)| = 1$.

First, we prove the following.

PROPOSITION 4.2. Let $\mu \in M_s^+$. Then there is a sparse Blaschke product b such that $S(b) = \operatorname{supp} \mu$ and $\mathcal{Z}(\mu) \cap \overline{\{|b| < 1\}} = \emptyset$.

Proof. Since $|\psi_{\mu}| = 1$ on $M(L^{\infty})$, by the corona theorem there exists a sequence $\{z_n\}_n$ in D such that $|\psi_{\mu}(z_n)| \to 1$ as $n \to \infty$ and $\operatorname{cl} \{z_n\}_n \setminus \{z_n\}_n = \sup \mu$. Considering a subsequence, we may assume that $\{z_n\}_n$ is sparse. Let b be the associated Blaschke product. Then $S(b) = \sup \mu$ and $|\psi_{\mu}| = 1$ on Z(b). By Lemma 4.1, $Z(\psi_{\mu}) \cap \overline{\{|b| < 1\}} = \emptyset$. Thus $\mathcal{Z}(\mu) \cap \overline{\{|b| < 1\}} = \emptyset$.

COROLLARY 4.3. Let b be a Blaschke product. If $\mu \in M_s^+$ and $\mu(S(b)) = 0$, then $\mathcal{Z}(\mu) \cap \overline{\{|b| < 1\}} = \emptyset$.

Proof. By (4.2), $\overline{\{|b| < 1\}} \cap \overline{\bigcup_{\xi \in \partial D \setminus S(b)} \mathcal{M}_{\xi}} = \emptyset$; now apply Corollary 3.8. \blacksquare

COROLLARY 4.4. Let $\mu \in M^+_{s,c}$. Then $Z(b) \not\subset Z(\mu)$ for every Blaschke product b.

Proof. Let $\{z_n\}_n$ be the zeros of b in D. Then there is a subsequence $\{z_{n_j}\}_j$ such that $z_{n_j} \to \zeta$ for some $\zeta \in \partial D$. Let b_1 be the Blaschke product with zeros $\{z_{n_j}\}_j$. Then $S(b_1) = \{\zeta\}$. Hence by Corollary 4.3, $\mathcal{Z}(\mu) \cap Z(b_1) = \emptyset$. Since $Z(b_1) \subset Z(b)$, we obtain our assertion.

COROLLARY 4.5. Let $\mu \in M_{s.c}^+$. Then int $\mathcal{Z}(\mu) = \emptyset$.

Proof. Suppose that $\operatorname{int} \mathcal{Z}(\mu) \neq \emptyset$. Then there is an interpolating Blaschke product b such that $Z(b) \subset \operatorname{int} \mathcal{Z}(\mu)$. But by Corollary 4.4, $Z(b) \not\subset \mathcal{Z}(\mu)$. This is a contradiction.

We have $\mathcal{W}(\mu) \cap M(L^{\infty}) = \emptyset$ for every $\mu \in M_{\mathrm{s}}^+$. Then by Corollary 3.8, for each $\zeta \in \partial D$ we have

$$\mathcal{M}_{\zeta} \cap \bigcup_{\{\mu \in M_{\mathrm{s}}^{+}; \, \mu(\{\zeta\}) = 0\}} \mathcal{W}(\mu) \subset \mathcal{M}_{\zeta} \cap \bigcup_{\{\xi \in \partial D; \, \xi \neq \zeta\}} \mathcal{M}_{\xi}.$$

Moreover we have the following.

PROPOSITION 4.6. Let $\zeta \in \partial D$. Then

$$\mathcal{M}_{\zeta} \cap \overline{\bigcup_{\{\mu \in M_{\mathrm{s}}^+; \, \mu(\{\zeta\}) = 0\}} \mathcal{W}(\mu)} \subsetneq \mathcal{M}_{\zeta} \cap \overline{\bigcup_{\{\xi \in \partial D; \, \xi \neq \zeta\}} \mathcal{M}_{\xi}}.$$

To prove this, we need a lemma.

LEMMA 4.7. Let $\zeta \in \partial D$. Then there exists a sparse Blaschke product b satisfying the following conditions.

- (i) $S(b) = \{\zeta\}.$
- (ii) Let $\mu \in M_s^+$. Then there exists $\nu \in M_s^+$ such that $\nu \sim \mu$ and $|\psi_{\nu}| = 1$ on $\overline{\{|b| < 1\}}$.

Proof. There exists a sequence $\{z_n\}_n$ in D such that $|\psi_{\delta_{\zeta}}(z_n)| \to 1$ and $z_n \to \zeta$ as $n \to \infty$. Considering a subsequence, we may assume that $\{z_n\}_n$ is sparse. Let b be the Blaschke product with zeros $\{z_n\}_n$. Then $S(b) = \{\zeta\}$, and by (4.2),

$$\overline{\{|b|<1\}} \cap \bigcup_{\{\xi \in \partial D; \, \xi \neq \zeta\}} \mathcal{M}_{\xi} = \emptyset.$$

Let $\mu \in M_s^+$. Write $\mu = a\delta_{\zeta} + \mu_1$, where $\mu_1(\{\zeta\}) = 0$. Then by Proposition 3.7, there exists $\nu_1 \in M_s^+$ such that $\nu_1 \sim \mu_1$ and $|\psi_{\nu_1}| = 1$ on $\overline{\{|b| < 1\}}$. Since $Z(b) = \overline{\{z_n\}_n} \setminus \{z_n\}_n$, it follows that $|\psi_{\delta_{\zeta}}| = 1$ on Z(b). By Lemma 4.1, $|\psi_{\delta_{\zeta}}| = 1$ on $\overline{\{|b| < 1\}}$. Put $\nu = a\delta_{\zeta} + \nu_1$. Then $\nu \sim \mu$ and $|\psi_{\nu_1}| = |\psi_{\delta_{\zeta}}|^a |\psi_{\nu_1}| = 1$ on $\overline{\{|b| < 1\}}$.

Proof of Proposition 4.6. We may assume that $\zeta = 1$. Let $\{J_n\}_n$ be a sequence of open subarcs of ∂D such that $J_n \subsetneq J_{n-1}$ and $\bigcap_{n=1}^{\infty} J_n = \{1\}$. Then there is a sequence $\{\xi_n\}_n$ such that ξ_n is an interior point of $J_n \setminus J_{n-1}$ and $\xi_n \to 1$ as $n \to \infty$. We may assume that $\xi_n \neq \xi_k$ for $n \neq k$. Let $\mu \in M_s^+$ and $\mu(\{1\}) = 0$. Put $\mu_n = \mu_{|(J_{n-1} \setminus J_n)}$. Then $\mu = \sum_{n=1}^{\infty} \mu_n$. For each n, by Lemma 4.7 there exist a sparse Blaschke product q_n and $\nu_n \in M_s^+$ such that $S(q_n) = \{\xi_n\}, \nu_n \sim \mu_n, \|\nu_n\| = \|\mu_n\|$, and $|\psi_{\nu_n}| = 1$ on $Z(q_n)$. Let $\nu = \sum_{n=1}^{\infty} \nu_n$. Then $\nu \in M_s^+$ and $\nu \sim \mu$. Since $\xi_n \notin \text{supp}(\nu - \nu_n)$, we have $|\psi_{\nu-\nu_n}| = 1$ on \mathcal{M}_{ξ_n} . Since $S(q_n) = \{\xi_n\}$, it follows that $Z(q_n) \subset \mathcal{M}_{\xi_n}$. Hence

(4.4)
$$|\psi_{\nu}| = |\psi_{\nu-\nu_n}| |\psi_{\nu_n}| = 1 \text{ on } Z(q_n).$$

Let $\{w_{n,k}\}_k$ be the zeros of q_n . Then $w_{n,k} \to \xi_n$ as $k \to \infty$. Since $\xi_n \neq \xi_k$ for $n \neq k$, there is a sequence $\{N_n\}_n$ of positive integers such that $\{w_{n,k}; k \geq N_n, n = 1, 2, \ldots\}$ is a sparse sequence (see [8, Lemma 1.5]). Since $\xi_n \to 1$, taking N_n sufficiently large, we may assume that $cl\{w_{n,k}; k \geq N_n\} \setminus \{w_{n,k}; k \geq N_n\} = \{1\} \cup \{\xi_n\}_n$. Let b be the associated sparse Blaschke product. Then $\bigcup_{n=1}^{\infty} Z(q_n) \subset Z(b)$ and $Z(b) \setminus \bigcup_{n=1}^{\infty} Z(q_n) \subset \mathcal{M}_1$. Hence by (4.4), $\{|\psi_{\nu}| < 1\} \cap Z(b) \subset \mathcal{M}_1$.

For each positive integer j, let b_j be a subproduct of b with zeros

$$[w_{n,k}; |\psi_{\nu}(w_{n,k})| < 1 - 1/j, \, k \ge N_n, \, n = 1, 2, \dots \}.$$

Then $Z(b_j) \subset \{ |\psi_{\nu}| < 1 \} \cap Z(b) \subset \mathcal{M}_1$. Hence

$$Z(b_j) \cap \overline{\bigcup_{\{\xi \in \partial D; \, \xi \neq 1\}} \mathcal{M}_{\xi}} = \emptyset.$$

We also have

$$\bigcup_{j=1}^{\infty} Z(b_j) = \{ |\psi_{\nu}| < 1 \} \cap Z(b).$$

Therefore by Proposition 3.7 (considering $E = \{1\}$), there exists $\lambda \in M_s^+$ such that $\lambda \sim \mu$ and

(4.5)
$$|\psi_{\lambda}| = 1$$
 on $\{|\psi_{\nu}| < 1\} \cap Z(b)$.

Let $\sigma = \nu \wedge \lambda$. Then $\sigma \sim \mu$ and $|\psi_{\sigma}| \geq \max\{|\psi_{\nu}|, |\psi_{\lambda}|\}$. Hence by (4.5), $|\psi_{\sigma}| = 1$ on Z(b). By Lemma 4.1, $\{|\psi_{\sigma}| < 1\} \cap \{|b| < 1\} = \emptyset$. Thus $\mathcal{W}(\mu) \cap \{|b| < 1\} = \emptyset$, so that

$$\{|b|<1\}\cap \bigcup_{\{\mu\in M_{\mathrm{s}}^+;\,\mu(\{1\})=0\}}\mathcal{W}(\mu)=\emptyset.$$

Since $\{|b| < 1\} \cap \mathcal{M}_{\xi_n} \neq \emptyset$, it is not difficult to see that

$$\{|b| < 1\} \cap \mathcal{M}_1 \cap \bigcup_{\{\xi \in \partial D; \xi \neq 1\}} \mathcal{M}_{\xi} \neq \emptyset.$$

Thus we get our assertion. \blacksquare

By Lemma 4.7, we have the following.

PROPOSITION 4.8. Let $\zeta \in \partial D$. Then there exists a Blaschke product b such that $S(b) = \{\zeta\}$ and $\mathcal{Z}(\mu) \cap \overline{\{|b| < 1\}} = \emptyset$ for every $\mu \in M_s^+$.

One may ask whether there is a Blaschke product b such that $S(b) = \partial D$ and $\mathcal{Z}(\mu) \cap \overline{\{|b| < 1\}} = \emptyset$ for every $\mu \in M_s^+$. The following says that the answer is "no".

THEOREM 4.9. Let b be a Blaschke product such that $S(b) = \partial D$. Then

(i) $\mathcal{Z}(\delta_{\zeta}) \cap Z(b) \neq \emptyset$ for some $\zeta \in \partial D$. (ii) $\mathcal{Z}(\mu) \cap Z(b) \neq \emptyset$ for some $\mu \in M^+_{s.c.}$

Proof. Let

(4.6)
$$\Gamma(e^{i\theta}) = \left\{ z \in D; \, \frac{|e^{i\theta} - z|}{1 - |z|} < 2 \right\}.$$

Then

(4.7)
$$\lim_{|z| \to 1, z \in \Gamma(e^{i\theta})} \psi_{\delta_{e^{i\theta}}}(z) = 0$$

(see [5, p. 76]). Let b be a Blaschke product such that $S(b) = \partial D$. Let $\{z_n\}_n$ be the zeros of b. Write

$$z_n = r_n e^{i\theta_n}$$

By induction, we shall choose a subsequence $\{z_{n_j}\}_j$ of $\{z_n\}_n$. Put $n_1 = 1$. Since $S(b) = \partial D$, $\{e^{i\theta_n}\}_n$ is dense in ∂D . Then by (4.6), there exists a positive integer n_2 such that

$$z_{n_1} \in \Gamma(e^{i\theta_{n_2}}), \quad \theta_{n_1} < \theta_{n_2}, \quad \theta_{n_2} - \theta_{n_1} < 1/2.$$

Then $z_{n_2} \in \Gamma(e^{i\theta_{n_2}})$, so that there exists n_3 such that

$$z_{n_1}, z_{n_2} \in \Gamma(e^{i\theta_{n_3}}), \quad \theta_{n_2} < \theta_{n_3}, \quad \theta_{n_3} - \theta_{n_2} < 1/2^2.$$

Continuing, we get $\{z_{n_j}\}_j$ satisfying

 $\begin{array}{ll} (4.8) \quad z_{n_k} \in \Gamma(e^{i\theta_{n_j}}) \quad \text{for } 1 \leq k \leq j, \quad \theta_{n_j} < \theta_{n_{j+1}} \quad \theta_{n_{j+1}} - \theta_{n_j} < 1/2^{j+1}.\\ \text{Thus } \theta_{n_j} \to \theta_0 \text{ as } j \to \infty \text{ for some } \theta_0. \text{ By } (4.8), \, z_{n_k} \in \operatorname{cl} \Gamma(e^{i\theta_0}) \text{ for every } k.\\ \text{Then by } (4.7), \, \psi_{\delta_{e^{i\theta_0}}}(z_{n_k}) \to 0 \text{ as } k \to \infty, \text{ so that } Z(\psi_{\delta_{e^{i\theta_0}}}) \cap Z(b) \neq \emptyset.\\ \text{Therefore we get } \mathcal{Z}(\delta_{e^{i\theta_0}}) \cap Z(b) \neq \emptyset. \end{array}$

To prove (ii), we need to work more. In the proof of (i), we choose one point in each step. In the proof of (ii), we choose two points. Let

$$\Lambda_k = \{ (\alpha_1, \dots, \alpha_k); \, \alpha_j = 0 \text{ or } 1 \}, \quad \Lambda_\infty = \{ (\alpha_1, \alpha_2, \dots); \, \alpha_j = 0 \text{ or } 1 \}.$$

For $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Lambda_k$, put $|\alpha| = k$ and $\alpha^j = (\alpha_1, \ldots, \alpha_j)$ for $j \leq k$. By induction, we shall choose a sequence $\{n_{\alpha}; \alpha \in \Lambda_k\}, k = 1, 2, \ldots$, of finite sets of positive integers. Take positive integers n_0 and n_1 such that $\theta_{n_0} < \theta_{n_1}$. We have

$$z_{n_0} \in \Gamma(e^{i\theta_{n_0}}), \quad z_{n_1} \in \Gamma(e^{i\theta_{n_1}}).$$

Then take $n_{(l,m)}$ for l, m = 0, 1 such that

$$z_{n_{l}} \in \Gamma(e^{i\theta_{n_{(l,m)}}}) \quad \text{for } l, m = 0, 1, \\ 0 < |\theta_{n_{(l,m)}} - \theta_{n_{l}}| < |\theta_{n_{1}} - \theta_{n_{0}}|/4 \quad \text{for } l, m = 0, 1, \\ \theta_{n_{(l,m)}} \neq \theta_{n_{(t,s)}} \quad \text{if } (l,m) \neq (t,s). \end{cases}$$

Assume that $\{n_{\alpha}; \alpha \in \Lambda_j\}$, $1 \leq j \leq k$, are chosen so that $z_{n_{\alpha j}} \in \Gamma(e^{i\theta_{n_{\alpha}}})$ for $1 \leq j \leq |\alpha|$ and $\theta_{n_{\alpha}} \neq \theta_{n_{\beta}}$ for $\alpha, \beta \in \bigcup_{j=1}^{k} \Lambda_j, \alpha \neq \beta$. Let $\alpha \in \Lambda_k$. Take $n_{(\alpha,0)}$ and $n_{(\alpha,1)}$ such that

(4.9)
$$z_{n_{\alpha^j}} \in \Gamma(e^{i\theta_{n_{(\alpha,l)}}}) \quad \text{for } 1 \le j \le k \text{ and } l = 0, 1,$$

$$(4.10) \quad 0 < |\theta_{n_{(\alpha,l)}} - \theta_{n_{\alpha}}| < \frac{1}{4} \min\left\{ |\theta_{n_{\lambda}} - \theta_{n_{\gamma}}|; \lambda, \gamma \in \bigcup_{j=1}^{k} \Lambda_{j}, \lambda \neq \gamma \right\} \quad \text{for } l = 0, 1.$$

This finishes our induction.

Let $\alpha = (\alpha_1, \alpha_2, \ldots) \in \Lambda_{\infty}$. Put $\alpha^k = (\alpha_1, \ldots, \alpha_k) \in \Lambda_k$. Then by (4.10),

$$|\theta_{n_{\alpha^k}} - \theta_{n_{\alpha^j}}| < \left(\frac{1}{4}\right)^{k-1} \left(\sum_{l=1}^{j-k} \left(\frac{1}{4}\right)^l\right) |\theta_{n_1} - \theta_{n_0}| \quad \text{for } j > k.$$

Hence $\{\theta_{n_{\alpha}k}\}_k$ converges to some point, say θ_{α} . By (4.9),

(4.11)
$$z_{n_{\alpha j}} \in \Gamma(e^{i\theta_{\alpha}})$$
 for every j .

246

Let $\beta \in \Lambda_{\infty}$ and $\alpha \neq \beta$. Then we may assume that

$$\alpha = (\alpha_1, \dots, \alpha_k, 0, \alpha_{k+2}, \dots), \qquad \beta = (\alpha_1, \dots, \alpha_k, 1, \beta_{k+2}, \dots)$$

By (4.10), we have

$$|\theta_{n_{\alpha^{j}}} - \theta_{n_{(\alpha_{1},...,\alpha_{k},0)}}| < \sum_{l=1}^{j-k-1} \left(\frac{1}{4}\right)^{l} |\theta_{n_{(\alpha_{1},...,\alpha_{k},0)}} - \theta_{n_{(\alpha_{1},...,\alpha_{k},1)}}| \quad \text{for } j \ge k+2.$$

Hence

$$|\theta_{\alpha} - \theta_{n_{(\alpha_1,\ldots,\alpha_k,0)}}| < \frac{1}{3} |\theta_{n_{(\alpha_1,\ldots,\alpha_k,0)}} - \theta_{n_{(\alpha_1,\ldots,\alpha_k,1)}}|.$$

Similarly,

$$|\theta_{\beta}-\theta_{n_{(\alpha_1,\ldots,\alpha_k,1)}}|<\frac{1}{3}\,|\theta_{n_{(\alpha_1,\ldots,\alpha_k,0)}}-\theta_{n_{(\alpha_1,\ldots,\alpha_k,1)}}|.$$

Thus we get $\theta_{\alpha} \neq \theta_{\beta}$. By our construction, $\{\theta_{\alpha}; \alpha \in \Lambda_{\infty}\}$ is the set of cluster points of $\bigcup_{k=1}^{\infty} \{\theta_{n_{\alpha}}; \alpha \in \Lambda_k\}$. Hence $\{\theta_{\alpha}; \alpha \in \Lambda_{\infty}\}$ is a perfect set. Then there exists $\mu \in M_{s,c}^+$ such that $\operatorname{supp} \mu \subset \{\theta_{\alpha}; \alpha \in \Lambda_{\infty}\}$. By [5, p. 76],

$$\lim_{|z|\to 1, z\in\Gamma(\theta_{\alpha})}\psi_{\mu}(z)=0$$

for some $\alpha \in \Lambda_{\infty}$. Therefore by (4.11), we have $Z(\psi_{\mu}) \cap Z(b) \neq \emptyset$. By Lemma 3.2, we obtain $\mathcal{Z}(\mu) \cap Z(b) \neq \emptyset$.

Here we have the following problem.

PROBLEM 4.10. Does there exist an interpolating Blaschke product b_0 such that $S(b_0) = \partial D$ and $\mathcal{Z}(\mu) \cap Z(b_0) \neq \emptyset$ for every $\mu \in M_s^+$?

5. Construction of interpolating Blaschke products. For a measurable subset E of ∂D , we denote by |E| the Lebesgue measure of E. In this section, for a given closed subset K of ∂D with |K| = 0, we construct a special interpolating Blaschke product b_K associated with K. In Section 6, we shall prove that $Z(b_K) \cap \mathcal{Z}(\mu) \neq \emptyset$ for every $\mu \in M_s^+$ with $\operatorname{supp} \mu \subset K$.

THEOREM 5.1. Let K be a closed subset of ∂D with |K| = 0. Then there exists a sequence $\{J_{n,j}\}_{j=1}^{N_n}$, $n = 1, 2, \ldots$, of open arcs such that for every n and k,

(i)
$$K \subset \bigcup_{j=1}^{N_n} J_{n,j} \subset \bigcup_{j=1}^{N_{n-1}} J_{n-1,j},$$

(ii)
$$\sum_{j} \{ |J_{n,j}|; J_{n,j} \subset J_{n-1,k} \} \le |J_{n-1,k}|/2.$$

Let $e^{i\theta_{n,j}}$ be the center of the arc $J_{n,j}$ and

$$z_{n,j} = \left(1 - \frac{|J_{n,j}|}{2\pi}\right) e^{i\theta_{n,j}}.$$

Then $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ is an interpolating sequence and the set of cluster points of $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ in the closed unit disk \overline{D} coincides with K.

Let b_K be the Blaschke product with zeros $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, \ldots\}$. We call b_K the interpolating Blaschke product associated with K.

Proof of Theorem 5.1. Let K be a non-empty closed subset of ∂D and |K| = 0. Then K is totally disconnected. For an open arc V of ∂D such that $V \cap K$ is a non-empty closed set, there are finitely many disjoint open arcs $\{V_j\}_{j=1}^k$ of ∂D such that $V_j \cap K$ are non-empty closed sets and

$$V \cap K \subset \bigcup_{j=1}^{k} V_j \subset V, \quad \sum_{j=1}^{k} |V_j| \le |V|/2.$$

Now using the above fact inductively, we shall choose a family $\{J_{n,j}\}_{j=1}^{N_n}$ of open arcs for each n. Let $J_0 = \partial D$. Put $V = J_0$ in the above; then there are finitely many disjoint open arcs $\{J_{1,j}\}_{j=1}^{N_1}$ of ∂D such that $J_{1,j} \cap K$ are non-empty closed sets and

$$J_0 \cap K \subset \bigcup_{j=1}^{N_1} J_{1,j} \subset J_0, \quad \sum_{j=1}^{N_1} |J_{1,j}| \le |J_0|/2.$$

We proceed to the next step. For each $J_{1,j}$, $1 \leq j \leq N_1$, there are finitely many disjoint open arcs $\{J_{1,j,l}\}_{l=1}^{m_j}$ of ∂D such that $J_{1,j,l} \cap K$ are non-empty closed sets and

$$J_{1,j} \cap K \subset \bigcup_{l=1}^{m_j} J_{1,j,l} \subset J_{1,j}, \qquad \sum_{l=1}^{m_j} |J_{1,j,l}| \le |J_{1,j}|/2$$

Let $N_2 = \sum_{j=1}^{N_1} m_j$ and

$${J_{2,j}}_{j=1}^{N_2} = {J_{1,j,l}; 1 \le j \le N_1, 1 \le l \le m_j}.$$

We have

$$K \subset \bigcup_{j=1}^{N_2} J_{2,j}.$$

Continuing this process, at the *n*th step we have a finite family $\{J_{n,j}\}_{j=1}^{N_n}$ of disjoint open arcs of ∂D such that for $1 \leq k \leq N_{n-1}$,

(5.1)
$$J_{n-1,k} \cap K \subset \bigcup_{j} \{J_{n,j}; J_{n,j} \subset J_{n-1,k}\} \subset J_{n-1,k},$$

 $J_{n,j} \cap K$ is non-empty closed for every j with $1 \leq j \leq N_n$,

(5.2)
$$K \subset \bigcup_{j=1}^{N_n} J_{n,j} \subset \bigcup_{j=1}^{N_{n-1}} J_{n-1,j},$$

(5.3)
$$\sum_{j} \{ |J_{n,j}|; J_{n,j} \subset J_{n-1,k} \} \le |J_{n-1,k}|/2.$$

Thus we get the first half of our assertion.

By the above, we have

(5.4)
$$\bigcap_{n=1}^{\infty} \bigcup_{j=1}^{N_n} J_{n,j} = K.$$

Let $1 \leq j \leq N_n$. For l > n, we have

$$\sum_{t} \{ |J_{l,t}|; \ J_{l,t} \subset J_{n,j} \} = \sum_{k} \sum_{t} \{ |J_{l,t}|; \ J_{l,t} \subset J_{l-1,k} \subset J_{n,j} \} \quad \text{by (5.1)}$$
$$= \frac{1}{2} \sum_{k} \{ |J_{l-1,k}|; \ J_{l-1,k} \subset J_{n,j} \} \quad \text{by (5.3)}.$$

Hence

$$\sum_{t} \{ |J_{l,t}|; J_{l,t} \subset J_{n,j} \} \le \left(\frac{1}{2}\right)^{l-n} |J_{n,j}|,$$

so that

(5.5)
$$\sum_{l=n}^{\infty} \sum_{t} \{ |J_{l,t}|; J_{l,t} \subset J_{n,j} \} \le 2|J_{n,j}|.$$

For $n \ge 1$ and $1 \le j \le N_n$, let $e^{i\theta_{n,j}}$ be the center of the arc $J_{n,j}$,

$$z_{n,j} = \left(1 - \frac{|J_{n,j}|}{2\pi}\right) e^{i\theta_{n,j}},$$

and

(5.6)
$$R(z_{n,j}) = \{ re^{i\theta}; e^{i\theta} \in J_{n,j}, 1 - |J_{n,j}|/2\pi \le r < 1 \}.$$

Then $z_{n,j} \in R(z_{n,j})$ and $1 - |z_{n,j}| = |J_{n,j}|/2\pi$. By (5.4), K is the set of cluster points of $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ in \overline{D} .

We prove that $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ is an interpolating sequence. It is not difficult to see that $\{z_{n,j}\}_{n,j}$ is ρ -separated, that is,

$$\inf\{\varrho(z_{n,j}, z_{k,l}); (n,j) \neq (k,l)\} > 0;$$

I leave the proof to the reader. To prove that $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$

is interpolating, it is sufficient to show that

$$\sigma = \sum_{n=1}^{\infty} \sum_{j=1}^{N_n} (1 - |z_{n,j}|) \delta_{z_{n,j}} = \sum_{n=1}^{\infty} \sum_{j=1}^{N_n} |J_{n,j}| \delta_{z_{n,j}} / 2\pi$$

is a Carleson measure (see [2] and also [5, pp. 286–287]). Let

(5.7)
$$\Omega = \{ re^{i\theta}; 1 - \varepsilon \le r < 1, \, \theta_0 \le \theta \le \theta_0 + 2\pi\varepsilon \}, \quad \text{where } 0 < \varepsilon < 1,$$

be an arbitrary Carleson square. We need to show that there is an absolute constant C, independent of ε , such that

(5.8)
$$\sum_{n,j} \{ |J_{n,j}|; z_{n,j} \in \Omega \} \le C\varepsilon$$

By our construction, there exists a sequence $\{z_{n_k,j_k}\}_{k=1}^{\infty}$ (maybe a finite set) satisfying

(5.9) $z_{n_k,j_k} \in \Omega$ for every k,

(5.10)
$$R(z_{n_k,j_k}) \cap R(z_{n_i,j_l}) = \emptyset \quad \text{for every } k \neq l,$$

(5.11) if $z_{n,j} \in \Omega$, there exists k such that $R(z_{n,j}) \subset R(z_{n_k,j_k})$.

Then

$$\sum_{n,j} \{ |J_{n,j}|; z_{n,j} \in \Omega \} = \sum_{k=1}^{\infty} \left(\sum_{n,j} \{ |J_{n,j}|; R(z_{n,j}) \subset R(z_{n_k,j_k}) \} \right) \text{ by (5.11)}$$
$$= \sum_{k=1}^{\infty} \left(\sum_{n,j} \{ |J_{n,j}|; J_{n,j} \subset J_{n_k,j_k} \} \right) \text{ by (5.6)}$$
$$\leq 2 \sum_{k=1}^{\infty} |J_{n_k,j_k}| \text{ by (5.5).}$$

By (5.6) and (5.10), $J_{n_k,j_k} \cap J_{n_m,j_m} = \emptyset$ if $k \neq m$. By (5.9),

$$J_{n_k,j_k} \cap \{e^{i\theta}; \, \theta_0 \le \theta \le \theta_0 + 2\pi\varepsilon\} \ne \emptyset$$

and

$$|\{e^{i\theta}; \theta_0 \le \theta \le \theta_0 + 2\pi\varepsilon\}| \ge |J_{n_k, j_k}|.$$

Hence by (5.7),

$$\sum_{k=1}^{\infty} |J_{n_k,j_k}| \le 6\pi\varepsilon.$$

Thus we get (5.8), so that $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ is interpolating. This completes the proof.

250

6. Properties of $\mathcal{Z}(\mu)$. First we prove the following theorem.

THEOREM 6.1. Let K be a non-empty closed subset of ∂D with |K| = 0, and $\mu \in M_s^+$ be such that supp $\mu \subset K$. Then $Z(b_K) \cap \mathcal{Z}(\mu) \neq \emptyset$, where b_K is the interpolating Blaschke product associated with K.

Let K be a non-empty closed subset of ∂D with |K| = 0. Generally, there are uncountably many measures $\{\mu_{\alpha}\}_{\alpha \in \Lambda}$ in $M_{\rm s}^+$ such that $\operatorname{supp} \mu_{\alpha} \subset K$ and $\mu_{\alpha} \perp \mu_{\beta}$ if $\alpha \neq \beta$. By Theorems 3.1 and 6.1, $\{Z(b_K) \cap \mathcal{Z}(\mu_{\alpha})\}_{\alpha}$ is a family of non-empty mutually disjoint subsets in $Z(b_K)$. So b_K is a very convenient interpolating Blaschke product to study the properties of ψ_{μ} with $\operatorname{supp} \mu \subset K$.

Proof of Theorem 6.1. Let $\nu \in M_s^+$ and $\nu \sim \mu$. We show that

(6.1)
$$Z(b_K) \cap Z(\psi_{\nu}) \neq \emptyset.$$

Let $\{J_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ and $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, ...\}$ be families given in Theorem 5.1. First, we prove that

(6.2)
$$\limsup_{n \to \infty} \max_{1 \le j \le N_n} \frac{\nu(J_{n,j})}{|J_{n,j}|} = \infty.$$

Suppose not. Then there exists a positive constant C such that

(6.3)
$$\max_{1 \le j \le N_n} \frac{\nu(J_{n,j})}{|J_{n,j}|} \le C \quad \text{for every } n.$$

Then for each n, we have

$$\nu(K) \leq \sum_{j=1}^{N_n} \nu(J_{n,j}) \qquad \text{by Theorem 5.1(i)}$$
$$\leq C \sum_{j=1}^{N_n} |J_{n,j}| \qquad \text{by (6.3)}$$
$$\leq \frac{C}{2} \sum_{j=1}^{N_{n-1}} |J_{n-1,j}| \qquad \text{by Theorem 5.1(ii)}$$
$$\leq \frac{2\pi C}{2^n}.$$

Hence $\nu(K) = 0$, contrary to our assumption, so that (6.2) holds.

By (6.2), there exist $\{n_k\}_k$ and $\{j_k\}_k$ such that $1 \le j_k \le N_{n_k}$ and

(6.4)
$$\frac{\nu(J_{n_k,j_k})}{|J_{n_k,j_k}|} \to \infty \quad \text{as } k \to \infty.$$

By Theorem 5.1,

(6.5)
$$|J_{n_k,j_k}| = 2\pi (1 - |z_{n_k,j_k}|).$$

Let $e^{it} \in J_{n_k, j_k}$. Then

$$\begin{aligned} |e^{it} - z_{n_k, j_k}| &\leq \left| |z_{n_k, j_k}| - e^{i\pi(1 - |z_{n_k, j_k}|)} \right| \\ &\leq (1 - |z_{n_k, j_k}|) + |1 - e^{i\pi(1 - |z_{n_k, j_k}|)}| \\ &\leq (1 + \pi)(1 - |z_{n_k, j_k}|). \end{aligned}$$

Then

$$|P_{z_{n_k,j_k}}(e^{it})| = \frac{1 - |z_{n_k,j_k}|^2}{|e^{it} - z_{n_k,j_k}|^2} \ge \frac{1}{(1 + \pi)^2 (1 - |z_{n_k,j_k}|)}.$$

Hence by (6.5),

$$|P_{z_{n_k,j_k}}| \ge \frac{2\pi}{(1+\pi)^2 |J_{n_k,j_k}|}$$
 on J_{n_k,j_k} .

Consequently, we have

$$\begin{aligned} -\log|\psi_{\nu}(z_{n_{k},j_{k}})| &= \int_{0}^{2\pi} P_{z_{n_{k},j_{k}}}(e^{i\theta}) \, d\nu(\theta) \ge \int_{J_{n_{k},j_{k}}} P_{z_{n_{k},j_{k}}}(e^{i\theta}) \, d\nu(\theta) \\ &\ge \frac{2\pi\nu(J_{n_{k},j_{k}})}{(1+\pi)^{2}|J_{n_{k},j_{k}}|}. \end{aligned}$$

Therefore by (6.4), $\psi_{\nu}(z_{n_k,j_k}) \to 0$ as $k \to \infty$. Since b_K is the Blaschke product with zeros $\{z_{n,j}; 1 \leq j \leq N_n, n = 1, 2, \ldots\}$, we obtain $Z(b_K) \cap Z(\psi_{\nu}) \neq \emptyset$. Then Lemma 3.2 yields the assertion.

COROLLARY 6.2. Let $\mu \in M_s^+$. Then $\mathcal{Z}(\mu)$ contains non-trivial points.

Proof. Since μ is a singular measure, there exists a closed subset K of ∂D such that |K| = 0 and $\mu(K) > 0$. By Lemma 3.3(ii), $\mathcal{Z}(\mu_{|K}) \subset \mathcal{Z}(\mu)$, and by Theorem 6.1, $\emptyset \neq Z(b_K) \cap \mathcal{Z}(\mu_{|K}) \subset Z(b_K) \cap \mathcal{Z}(\mu)$. Since b_K is interpolating, we have $Z(b_K) \subset G$.

Let $\mu \in M_s^+$. We denote by $M(L^{\infty}(\mu))$ the maximal ideal space of the Banach algebra $L^{\infty}(\mu)$. Then $M(L^{\infty}(\mu))$ is a totally disconnected space. For $f \in L^{\infty}(\mu)$, let \widehat{f} be the Gelfand transform of f. For a measurable subset Sof supp μ , there exists an open and closed subset \widehat{S} of $M(L^{\infty}(\mu))$ such that $\widehat{\chi}_S = \chi_{\widehat{S}}$. Then the family $\{\chi_{\widehat{S}}\}_S$ coincides with the set of idempotents in $C(M(L^{\infty}(\mu)))$, the space of continuous functions on $M(L^{\infty}(\mu))$. We have $\widehat{S^c} = (\widehat{S})^c$. For each $x \in M(L^{\infty}(\mu))$, let

(6.6)
$$\Phi_{\mu}(x) = \bigcap_{\{S; x \in \widehat{S}\}} \mathcal{Z}(\mu_{|S}).$$

The set $\Phi_{\mu}(x)$ is a closed subset in \mathcal{M} associated with the point $x \in M(L^{\infty}(\mu))$. It is interesting to study $\Phi_{\mu}(x)$ from the point of view of measures on ∂D .

We have the following.

252

THEOREM 6.3. Let $\mu \in M_s^+$.

- (i) $\emptyset \neq \Phi_{\mu}(x) \subset \mathcal{Z}(\mu)$ for $x \in M(L^{\infty}(\mu))$.
- (ii) $\Phi_{\mu}(x) \cap \Phi_{\mu}(y) = \emptyset$ if $x, y \in M(L^{\infty}(\mu))$ and $x \neq y$.
- (iii) $\mathcal{Z}(\mu) = \bigcup_{x \in M(L^{\infty}(\mu))} \Phi_{\mu}(x).$

Proof. First, assume that $\mu = \delta_{\zeta}$ for some $\zeta \in \partial D$. Then $M(L^{\infty}(\mu))$ is a one-point set, say $\{x\}$, and it is easy to see that $\Phi_{\mu}(x) = Z(\psi_{\delta_{\zeta}}) = \mathcal{Z}(\delta_{\zeta})$. Hence we obtain the assertion.

Next suppose that μ is not a point mass. Then $M(L^{\infty}(\mu))$ contains more than one point. Let S be a measurable subset of supp μ . Then $\mu = \mu_{|S} + \mu_{|S^c}$ and $\mu_{|S} \perp \mu_{|S^c}$. Hence by Theorem 2.2, $\mathcal{Z}(\mu_{|S}) \cap \mathcal{Z}(\mu_{|S^c}) = \emptyset$ and $\mathcal{Z}(\mu_{|S}) \subset \mathcal{Z}(\mu)$. By Lemma 3.3, $\mathcal{Z}(\mu) = \mathcal{Z}(\mu_{|S}) \cup \mathcal{Z}(\mu_{|S^c})$. Thus if $\mu_{|S} \neq 0$, then $\mathcal{Z}(\mu_{|S})$ is a non-empty open and closed subset of $\mathcal{Z}(\mu)$.

Let $x \in M(L^{\infty}(\mu))$. Suppose that $\Phi_{\mu}(x) = \emptyset$. Then there exist S_1, \ldots, S_n such that $x \in \widehat{S}_j$ for every j and $\bigcap_{j=1}^n \mathcal{Z}(\mu_{|S_j}) = \emptyset$. Set $S = \bigcap_{j=1}^n S_j$. Then $x \in \widehat{S}$, so that $\mu_{|S} \neq 0$. Hence by Proposition 3.1, $\mathcal{Z}(\mu_{|S}) \neq \emptyset$. By Lemma 3.3, $\mathcal{Z}(\mu_{|S}) \subset \bigcap_{j=1}^n \mathcal{Z}(\mu_{|S_j})$. This is a contradiction. Thus we get (i).

Let $x, y \in M(L^{\infty}(\mu))$ and $x \neq y$. Then there exists S such that $x \in \widehat{S}$ and $y \notin \widehat{S}$. We have $y \in \widehat{S^c}$, and hence by Theorem 2.2,

$$\Phi_{\mu}(x) \cap \Phi_{\mu}(y) \subset \mathcal{Z}(\mu_{|S}) \cap \mathcal{Z}(\mu_{|S^c}) = \emptyset.$$

Thus (ii) holds.

Suppose (iii) does not hold. Then there is $\zeta \in \mathcal{Z}(\mu)$ such that $\zeta \notin \Phi_{\mu}(x)$ for every $x \in M(L^{\infty}(\mu))$. Hence for each $x \in M(L^{\infty})$, there exists a measurable subset S_x of supp μ such that $x \in \widehat{S}_x$ and $\zeta \notin \mathcal{Z}(\mu|_{S_x})$. Since \widehat{S}_x is an open subset of $M(L^{\infty}(\mu))$, there exist S_{x_1}, \ldots, S_{x_n} such that

$$M(L^{\infty}(\mu)) = \bigcup_{j=1}^{n} \widehat{S}_{x_j}.$$

Put $S = \bigcup_{j=1}^{n} S_{x_j}$. Then $\widehat{S} = \bigcup_{j=1}^{n} \widehat{S}_{x_j} = M(L^{\infty}(\mu))$, so that $\mu_{|S|} = \mu$. By Lemma 3.3,

$$\mathcal{Z}(\mu) = \bigcup_{j=1}^{n} \mathcal{Z}(\mu_{|S_{x_j}}).$$

Hence $\zeta \in \mathcal{Z}(\mu_{|S_{x_i}})$ for some *j*. This is a contradiction.

We have the following problem.

PROBLEM 6.4. Let $\mu \in M_s^+$. Is $\Phi_{\mu}(x)$ a connected set for every $x \in M(L^{\infty}(\mu))$?

We give some results on the sets $\Phi_{\mu}(x)$.

PROPOSITION 6.5. Let $\mu \in M_s^+$ and $x \in M(L^{\infty}(\mu))$.

- (i) If $\zeta \in \Phi_{\mu}(x)$, then $P(\zeta) \subset \Phi_{\mu}(x)$.
- (ii) $\Phi_{\mu}(x)$ contains trivial points.
- (iii) If $\mu \in M^+_{s,c}$, $\zeta \in \Phi_{\mu}(x)$, $\operatorname{supp} \mu_{\zeta} \subset \operatorname{supp} \mu_{\xi}$, and $\xi \in \mathcal{M} \setminus D$, then $\xi \in \Phi_{\mu}(x)$.

Proof. Let $\zeta \in \Phi_{\mu}(x)$. Then $\psi_{\nu}(\zeta) = 0$ for every $\nu \in M_{s}^{+}$ with $\nu \sim \mu$. Since ψ_{ν} is a singular inner function, we have $P(\zeta) \subset Z(\psi_{\nu})$. Hence $P(\zeta) \subset \mathcal{Z}(\mu)$. Thus we get (i).

(ii) follows from (i) and Budde's theorem [1], and (iii) from Corollary 3.10 and (6.6). \blacksquare

One may ask whether each $\Phi_{\mu}(x)$ contains non-trivial points. Here is the answer.

THEOREM 6.6. Let $\mu \in M_s^+$ and $x \in M(L^{\infty}(\mu))$. Then $\Phi_{\mu}(x)$ contains non-trivial points.

Proof. Let $\mu \in M_s^+$. By the regularity of μ , there is a sequence $\{K_n\}_n$ (maybe finite) of non-empty closed subsets satisfying

(6.7) $|K_n| = 0$ for every n,

(6.8)
$$K_n \cap K_m = \emptyset \quad \text{if } n \neq m$$

(6.9)
$$\mu = \sum_{n=1}^{\infty} \mu_{|K_n}.$$

For each n, there exists an interpolating Blaschke product b_{K_n} associated with K_n . Let $\{w_{n,j}\}_j$ be the zeros of b_{K_n} in D. Then by Theorem 5.1, K_n is the set of cluster points of $\{w_{n,j}\}_j$ in \overline{D} . Then by (6.8), we have $\{|b_{K_n}| < 1\} \cap \{|b_{K_m}| < 1\} = \emptyset$ if $n \neq m$. By the proof of [8, Lemma 1.5], there is a sequence $\{k_j\}_j$ of positive integers such that $\{w_{n,j}; j \geq k_n, n = 1, 2, \ldots\}$ is an interpolating sequence.

Let

$$b'_{K_n}(z) = \prod_{j=k_n}^{\infty} \frac{-\overline{w}_{n,j}}{|w_{n,j}|} \frac{z - w_{n,j}}{1 - \overline{w}_{n,j}z}, \quad b_{\mu}(z) = \prod_{n=1}^{\infty} b'_{K_n}(z), \quad z \in D.$$

Then b_{μ} is an interpolating Blaschke product and

(6.10)
$$Z(b'_{K_n}) = Z(b_{K_n}), \quad \bigcup_{n=1}^{\infty} Z(b_{K_n}) \subset Z(b_{\mu}).$$

Let S be a measurable subset of supp μ such that $x \in \widehat{S}$. Since $\mu_{|S|} \neq 0$, by (6.9) there exists a positive integer n such that $\mu_{|K_n \cap S|} \neq 0$. By (6.7) and Theorem 6.1, $Z(b_{K_n}) \cap \mathcal{Z}(\mu_{|K_n \cap S|}) \neq \emptyset$. Then by (6.10), $Z(b_{\mu}) \cap \mathcal{Z}(\mu_{|K_n \cap S|}) \neq \emptyset$. Hence by Lemma 3.3, we have $Z(b_{\mu}) \cap \mathcal{Z}(\mu_{|S|}) \neq \emptyset$. In the same way as in the proof of Theorem 6.3(i), we have $Z(b_{\mu}) \cap \Phi_{\mu}(x) \neq \emptyset$. Since b_{μ} is interpolating, $\Phi_{\mu}(x)$ contains non-trivial points.

PROBLEM 6.7. Let $\mu \in M_s^+$ and $x \in M(L^{\infty}(\mu))$. Does $\Phi_{\mu}(x)$ contain sparse points?

The author would like to thank the referee for his/her comments on the first version of the manuscript.

References

- [1] P. Budde, Support sets and Gleason parts, Michigan Math. J. 37 (1990), 367–383.
- [2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
- [3] —, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. 76 (1962), 547–559.
- [4] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.
- [5] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [6] P. Gorkin, Decompositions of the maximal ideal space of L[∞], Trans. Amer. Math. Soc. 282 (1984), 33–44.
- [7] P. Gorkin, H.-M. Lingenberg, and R. Mortini, Homeomorphic disks in the spectrum of H^{∞} , Indiana Univ. Math. J. 39 (1990), 961–983.
- [8] C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables 31 (1996), 51–64.
- H. Hedenmalm, Thin interpolating Blaschke products and three algebras of analytic functions, Proc. Amer. Math. Soc. 99 (1987), 489-495.
- [10] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- [11] —, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74–111.
- K. Izuchi, Weak infinite powers of Blaschke products, J. Anal. Math. 75 (1998), 135–154.
- [13] —, Singular inner functions of L^1 -type II, J. Math. Soc. Japan 53 (2001), 285–305.
- [14] K. Izuchi and N. Niwa, Singular inner functions of L¹-type, J. Korean Math. Soc. 36 (1999), 787–811.

Department of Mathematics Niigata University Niigata 950-2181, Japan E-mail: izuchi@math.sc.niigata-u.ac.jp

> Received February 14, 2003 Revised version December 15, 2003 (5145)