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Function theory in sectors

by

Brian Jefferies (Sydney)

Abstract. It is shown that there is a one-to-one correspondence between uniformly
bounded holomorphic functions of n complex variables in sectors of Cn, and uniformly
bounded functions of n+ 1 real variables in sectors of Rn+1 that are monogenic functions
in the sense of Clifford analysis. The result is applied to the construction of functional
calculi for n commuting operators, including the example of differentiation operators on
a Lipschitz surface in Rn+1.

1. Introduction. The ability to form functions of continuous linear op-
erators is essential to many applications of functional analysis. In quantum
mechanics, the projection χE(A) associated with a selfadjoint operator A
and the characteristic function χE of a Borel subset E of the real line repre-
sents the observation that the observable associated with A has values in the
set E. For general linear operators, there is not such an extensive functional
calculus as there is for selfadjoint operators.

Given a bounded linear operator A acting on a Banach space X, the
Riesz–Dunford functional calculus associates the bounded linear operator
f(A) with A by means of the formula

f(A) =
1

2πi

�

C

(λI − A)−1f(λ) dλ.(1)

Here f is holomorphic in a neighbourhood U of the spectrum σ(A) of A in
C and C is a simple closed curve about σ(A) and contained in the domain
U of f .

A higher-dimensional analogue of the Riesz–Dunford functional calculus
has recently been investigated using the techniques of Clifford analysis [5].
The analogue of equation (1) for functions of n bounded linear operators
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A1, . . . , An ∈ L(X) is

f(A1, . . . , An) =
�

∂Ω

Gx(A1, . . . , An)n(x)f(x) dµ(x),(2)

for a suitable bounded open subset Ω of Rn+1 with smooth oriented bound-
ary ∂Ω, outward unit normal n(x) at x ∈ ∂Ω and surface measure µ. The
function f is assumed to be left monogenic in a neighbourhood of Ω in
Rn+1, that is, it takes values in a Clifford algebra C`(Cn) and satisfies
higher-dimensional analogues of the Cauchy–Riemann equations.

Although the simplicity of formula (2) is appealing, the main difficulty
is making sense of the Cauchy kernel x 7→ Gx(A1, . . . , An) and determining
its set γ(A1, . . . , An) of singularities, called the monogenic spectrum of the
n-tuple A = (A1, . . . , An). Under the assumption that the spectrum of each
operator

∑n
j=1 ξjAj is real for ξ ∈ Rn, it turns out that γ(A) is a nonempty

compact subset of Rn and formula (2) defines a function f(A) ∈ L(X) of the
n-tuple A for any function f which is real-analytic in a neighbourhood of
γ(A) in Rn [5, Theorem 3.5]. Such a function automatically has a monogenic
extension to a neighbourhood of γ(A) in Rn+1.

These ideas make sense even if the operators A1, . . . , An do not commute
with one another. If the n-tuple A has a Weyl functional calculus [1], that
is, it satisfies suitable exponential growth conditions, then formula (2) is
the restriction to real-analytic functions f of the Weyl functional calculus
f 7→ f(A) [4, Corollary 5.5].

The approach to joint functional calculi just mentioned was motivated
by A. McIntosh’s study of the commuting n-tuple DΣ = (D1, . . . ,Dn) of
differentiation operators on a Lipschitz surface Σ in Rn+1 in relation to
irregular boundary value problems (see [10]). In the case that Σ is just the
flat surface Rn, the operators

Dj =
1
i

∂

∂xj
, j = 1, . . . , n,

commute with each other and are selfadjoint, otherwise, the unbounded
operators Dj , j = 1, . . . , n, have spectra σ(Dj) contained in a complex
sector Sω(C) = {±z : |arg(z)| ≤ ω} with an angle ω depending on the
variation of the directions normal to the surface Σ.

Arguing by analogy with the situation where Σ = Rn, functions
f̃(D1, . . . ,Dn) of the n-tuple DΣ may be thought of as Fourier multiplier
operators acting on Lp(Σ) for 1 < p < ∞, with the multiplier f̃ being a
bounded holomorphic function defined on some sector in Cn [10, Section
5.6.1]. On the other hand, we can use formula (2) to define f(D1, . . . ,Dn) if
f is a left monogenic function with suitable decay in a sector in Rn+1. This
suggests a connection between left monogenic functions defined on a sector
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in Rn+1 and bounded holomorphic functions defined on a sector in Cn. This
paper is devoted to showing that the mapping f 7→ f̃ is a bijection from
left monogenic functions, uniformly bounded on subsectors of a fixed sector
in Rn+1, onto the space of holomorphic functions, uniformly bounded on
subsectors of a corresponding sector in Cn. The holomorphic function f̃ is
simply the analytic continuation to a suitable sector in Cn of f restricted to
Rn \ {0}.

Given the bounded left monogenic function f , the corresponding holo-
morphic function f̃ is constructed by applying the Cauchy integral formula
(2) to the commuting n-tuple ζ = (ζ1, . . . , ζn) ∈ Cn of multiplication oper-
ators in the Clifford algebra C`(Cn), that is,

f̃(ζ) =
�

∂Ω

Gx(ζ)n(x)f(x) dµ(x).(3)

Then f̃(x) = f(x) for all nonzero x ∈ Rn by the Cauchy integral formula of
Clifford analysis. Care needs to be exercised in forming the Cauchy kernel
x 7→ Gx(ζ) for ζ ∈ Cn. Its set of singularities γ(ζ) ⊂ Rn+1 is the monogenic
spectrum of the complex vector ζ, viewed as an n-tuple of multiplication
operators in C`(Cn). Because the Cauchy kernel Gx(ζ) has the right scaling
properties, a uniform bound for f on a sector in Rn+1 gives a uniform
bound for f̃ on a sector in Cn. In the other direction, reconstructing f from
f̃ , so showing that the mapping f 7→ f̃ is onto, requires the Fourier theory
developed by Li, McIntosh and Qian in [8].

Because we can simply multiply two bounded holomorphic functions f̃ , g̃
to obtain another f̃ · g̃, we also show that there is a Cauchy–Kowalewski
product (f, g) 7→ f ·` g for all bounded left monogenic functions defined
in a sector S in Rn+1. A standard series expansion gives a left monogenic
function f ·` g defined in a neighbourhood of Rn \ {0} coinciding with the
product function fg on Rn \ {0}. It is not so obvious that f ·` g actually
extends left monogenically to a bounded function defined on all of S.

Both Clifford analysis and the theory of functions of several complex
variables are extensions of classical complex analysis. The Cauchy integral
formula of Clifford analysis is especially well adapted to operator theory.
The main result of the present work suggests that we can pass sometimes
from one to the other point of view in some applications. The situation
with domains other than sectors and other function spaces remains to be
investigated.

We start with a brief résumé of Clifford analysis [2, 3] and the mono-
genic functional calculus treated in [5]. The correspondence f 7→ f̃ arises by
considering the spectral theory of the commuting n-tuple (ζ1, . . . , ζn) ∈ Cn
of multiplication operators in the Clifford algebra and this is examined in
Section 2, where the main result, Theorem 2.4, and its corollary concerning
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the Cauchy–Kowalewski product are stated. In Section 3, a scaling argument
is used to show that the mapping f 7→ f̃ introduced in Section 2 actually
sends bounded left monogenic functions to bounded holomorphic functions
on sectors. That the mapping is onto is proved in Section 4 using Fourier
analysis, so completing the proof of Theorem 2.4. Section 5 is devoted to
the construction of an H∞-functional calculus for a system of operators of
type ω using the Cauchy integral formula (2).

1.1. The Clifford algebra C`(Cn). The real and imaginary parts of z ∈
C are denoted by <(z) and =(z) respectively, and for an element ζ =
(ζ1, . . . , ζn) of Cn, the vector <(ζ) = (<(ζ1), . . . ,<(ζn)) ∈ Rn denotes the
real part of ζ and =(ζ) = (=(ζ1), . . . ,=(ζn)) ∈ Rn denotes the imaginary
part of ζ.

Let C`(Cn) be the Clifford algebra generated over the field C by the
standard basis vectors e0, e1, . . . , en of Cn+1 with conjugation u 7→ u. Then
e0 is the unit of C`(Cn), ej and ek anticommute for j, k = 1, . . . , n and j 6= k,
and e2

j = −1 for j = 1, . . . , n. The conjugation satisfies e0 = e0, ej = −ej
for j = 1, . . . , n and uv = v u for all u, v ∈ C`(Cn).

The Clifford algebra C`(Cn) is a complex vector space with a basis eS,
S ⊂ {1, . . . , n}, given by eS = ej1 · · · ejk if S = {j1, . . . , jk} and 1 ≤ j1 <
· · · < jk ≤ n is an ordered enumeration of S. If S = ∅, then e∅ = e0. In
particular, C`(Cn) has complex dimension 2n. A function f : U → C`(Cn)
therefore has a unique representation f =

∑
S fSeS in which fS : U → C

are scalar-valued functions for each subset S of {1, . . . , n}.
The embedding z 7→ ze0, z ∈ C, identifies C with a closed commutative

subalgebra of C`(Cn) and Cn+1 is identified with the closed linear subspace
of all elements z0e0 +z1e1 + · · ·+znen of C`(Cn) with zj ∈ C, j = 0, 1, . . . , n.
Then Cn is always identified with the subspace {0} × Cn of Cn+1 and then
with the corresponding subspace of C`(Cn). Similarly, R, Rn and Rn+1 are
identified with the corresponding real linear subspaces of C`(Cn).

1.2. Clifford analysis. The generalised Cauchy–Riemann operator is
given by

D =
n∑

j=0

ej
∂

∂xj
.

Let U ⊂ Rn+1 be an open set. A function f : U → C`(Cn) is called left
monogenic if Df = 0 in U and right monogenic if fD = 0 in U .

Remark 1.1. Each component fS of a left monogenic function f =∑
S fSeS is harmonic in Rn+1, because if

D =
n∑

j=0

ej
∂

∂xj
= e0

∂

∂x0
− e1

∂

∂x1
− · · · − en

∂

∂xn
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denotes the operator conjugate to D, then we have
∑

S

(∆fS)eS = ∆f = (∆e0)f = (DD)f = D(Df) = 0.

Hence, ∆fS = 0 for all S ⊂ {1, . . . , n}. The same remark applies to right
monogenic functions.

Remark 1.2. In the simplest nontrivial case of n = 2, each function
with values in C`(C2) can be written as

f = f0e0 + f1e1 + f2e2 + f3e1e2,

for complex-valued functions fj , j = 0, 1, 2, 3. Such a function f is left
monogenic if and only if it satisfies the following Cauchy–Riemann type
system of differential equations:

∂f0

∂x0
− ∂f1

∂x1
− ∂f2

∂x2
= 0,

∂f0

∂x1
+
∂f1

∂x0
+
∂f3

∂x2
= 0,

∂f0

∂x2
+
∂f2

∂x0
− ∂f3

∂x1
= 0,

∂f2

∂x1
− ∂f1

∂x2
+
∂f3

∂x0
= 0.

For functions with values in the closed linear subspace Cn+1 of C`(Cn),
we have the following set of equivalent conditions.

Proposition 1.3 ([11, Proposition 1.7]). Let f = f0e0−
∑n

j=1 fjej be a
Cn+1-valued function defined on an open subset U of Rn+1. The following
are equivalent:

(i) The (n + 1)-tuple F := (fj)nj=0 is a system of complex conjugate
harmonic functions in U , in the sense that it satisfies the generalised
Cauchy–Riemann equations divF = 0 and curlF = 0 in U .

(ii) f is left monogenic in U .
(iii) f is right monogenic in U .
(iv) The complex 1-form ω := f0dx0−f1dx1−· · ·−fndxn satisfies dω = 0

and d∗ω = 0 in U , where d and d∗ are the exterior differentiation
operator and its formal adjoint , respectively.

In addition, if the domain U is simply connected , then the above conditions
are further equivalent to the condition that

(v) there exists a unique (up to an additive constant) complex-valued
harmonic function V defined in U such that (fj)nj=0 = gradV in U ,
that is, f = DV .

1.3. The Cauchy integral formula. The Cauchy kernel is given by

k(x− y) =
1
σn

x− y
|x− y|n+1 , x, y ∈ Rn+1, x 6= y,(4)
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with σn = 2π(n+1)/2/Γ ((n+ 1)/2) the volume of the unit n-sphere in Rn+1.
The function k is both left and right monogenic away from the origin. So,
given a left monogenic function f : U → C`(Cn) defined in an open subset U
of Rn+1 and an open subset Ω of U such that the closure Ω of Ω is contained
in U , and the boundary ∂Ω of Ω is a smooth oriented n-manifold, then the
Cauchy integral formula

f(y) =
�

∂Ω

k(x− y)n(x)f(x) dµ(x), y ∈ Ω,

is valid. Here n(x) is the outward unit normal at x ∈ ∂Ω and µ is the volume
measure of the oriented manifold ∂Ω. An element x = (x0, x1, . . . , xn) of
Rn+1 will often be written as x = x0e0 + x with x =

∑n
j=1 xjej . The

expression k(x−y) will also be written asGx(y)—a more convenient notation
when y is replaced by an n-tuple of operators.

1.4. Monogenic extension. Because we shall be dealing with the mono-
genic extension into Rn+1 of complex-valued real-analytic functions defined
on open subsets of Rn, it is worthwhile spelling out how this is done. More
details are to be found from [2, Theorem 14.8]. Suppose that f is an analytic
C-valued function defined on an open neighbourhood of zero in Rn and the
Taylor series of f is given by

f(x) =
∞∑

k=0

1
k!

n∑

l1=1

· · ·
n∑

lk=1

al1...lkxl1 · · ·xlk(5)

for all x ∈ Rn in a neighbourhood of zero. The coefficients al1...lk ∈ C are
assumed to be symmetric in l1, . . . , lk. Expansions about other points p in
Rn are treated by translating x ∈ Rn to x− p.

Then the unique monogenic extension f̃ of f is

f̃(x) =
∞∑

k=0

( ∑

(l1,...,lk)

V l1...lk(x)al1...lk
)

(6)

for all x belonging to some neighbourhood of zero in Rn+1. Here, the sum∑
(l1,...,lk) . . . is over the set {1 ≤ l1 ≤ · · · ≤ lk ≤ n}, and for (l1, . . . , lk) ∈

{1, . . . , n}k, the function V l1...lk : Rn+1 → C`(Cn) is defined as follows. For
each j = 1, . . . , n, the unique monogenic extension of the function xj : x 7→
xj , x ∈ Rn, is given by zj : x 7→ xje0 − x0ej, x ∈ Rn+1. Then V 0(x) = e0,
x ∈ Rn+1, and

V l1...lk =
1
k!

∑

j1,...,jk

zj1 · · · zjk ,(7)

where the sum is over all distinguishable permutations of all of (l1, . . . , lk),
and products are in the sense of pointwise multiplication in C`(Cn). For-
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mula (6) also works if f is C`(Cn)-valued and al1...lk ∈ C`(Cn). Then f̃ is
left monogenic.

If f̃ is left monogenic in the open ball BR(0) of radius R about zero in
Rn+1, then (6) converges normally in BR(0) [2, p. 82].

The function V l1...lk is both left and right monogenic. It is the unique
monogenic C`(Cn)-valued extension of the real-valued function xl1 · · ·xlk de-
fined on Rn to all of Rn+1, called the inner spherical monogenic polynomial
[2, p. 68]. According to [2, Theorem 11.3.4, Remark 11.2.7(ii)], the mono-
genic function V l1...lk actually takes its values in Rn+1 although this is not
immediately apparent from formula (7).

By locally extending power series like equation (5) to expansions like
(6), any analytic function f : U → C defined in an open subset of Rn is the
restriction to U of a unique function f̃ : V → Cn+1 which is both left and
right monogenic in an open subset V of Rn+1 such that U = V ∩Rn (see [2,
Theorem 14.8, Remark 14.9]).

2. Joint spectral theory in the algebra C`(Cn). Let ζ = (ζ1, . . . , ζn)
be a vector belonging to Cn. The complex spectrum σ(iζ) of the element
iζ = i(ζ1e1 + · · ·+ ζnen) of the algebra C`(Cn) is

σ(iζ) = {λ ∈ C : λe0 − iζ does not have an inverse in C`(Cn)}.
Following [10, Section 5.2], we check that

(λe0 + iζ)(λe0 − iζ) = λ2e0 − i2ζ2 = (λ2 − |ζ|2C)e0,

where |ζ|2C =
∑n

j=1 ζ
2
j . So, for all λ ∈ C for which λ 6= ±|ζ|C, the element

λe0 − iζ of the algebra C`(Cn) is invertible and

(λe0 − iζ)−1 =
λe0 + iζ

λ2 − |ζ|2C
.

If |ζ|2C 6= 0, the two square roots of |ζ|2C are written as ±|ζ|C, and |ζ|C = 0 for
|ζ|2C = 0. Hence σ(iζ) = {±|ζ|C}. When |ζ|2C 6= 0, the spectral projections

χ±(ζ) =
1
2

(
e0 +

iζ

±|ζ|C

)
(8)

are associated with each element ±|ζ|C of the spectrum σ(iζ) and iζ has
the spectral representation iζ = |ζ|Cχ+(ζ)+(−|ζ|C)χ−(ζ). In particular, for
any function ψ : σ(iζ)→ C, we set ψ{iζ} = ψ(|ζ|C)χ+(ζ) + ψ(−|ζ|C)χ−(ζ).

Henceforth, we use the symbol |ζ|C to denote the square root of |ζ|2C with
positive real part in the case that |ζ|2C 6∈ (−∞, 0].

On the other hand, according to the point of view mentioned in the
Introduction, for a complex vector ζ ∈ Cn, the monogenic spectrum γ(ζ) of
the n-tuple ζ = (ζ1, . . . , ζn) of multiplication operators should be the set
of singularities of the Cauchy kernel x 7→ Gx(ζ), x ∈ Rn+1, in the algebra
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C`(Cn). Although Gx(ζ) := k(x−ζ) is defined by formula (4) only for ζ ∈ Rn
and x 6= ζ, a natural choice for the Cauchy kernel for ζ ∈ Cn is to take the
maximal holomorphic extension ζ 7→ Gx(ζ) of formula (4) for ζ ∈ Cn:

Gx(ζ) =
1
σn

x+ ζ

|x− ζ|n+1
C

, x ∈ Rn+1,

{ |x− ζ|2C 6∈ (−∞, 0], n even,

|x− ζ|2C 6= 0, n odd.
(9)

Here |x− ζ|2C = x2
0 +
∑n

j=1(xj− ζj)2 for x = (x0, x1, . . . , xn) ∈ Rn+1 and the
complex number |x−ζ|C is the positive square root of |x−ζ|2C, coinciding with
the holomorphic extension of the modulus function ξ 7→ |x−ξ|, ξ ∈ Rn\{x},
in the case x ∈ Rn. There is a discontinuity in the function (x, ζ) 7→ |x− ζ|C
on the set

{(x, ζ) ∈ Rn+1 × Cn : |x− ζ|2C ∈ (−∞, 0]}.
The analogous reasoning for multiplication by x ∈ Rn+1 in the algebra
C`(Cn) just gives us the Cauchy kernel (4), so that γ(x) = {x}, as expected.

Given ζ ∈ Cn, if singularities of (9) occur at x ∈ Rn+1, then |x− ζ|2C ∈
(−∞, 0], otherwise we can simply take the positive square root of |x − ζ|2C
in formula (9) to obtain a monogenic function of x. To determine the set
of x ∈ Rn+1 where singularities occur, write ζ = ξ + iη for ξ, η ∈ Rn and
x = x0e0 + x for x0 ∈ R and x ∈ Rn. Then

|x− ζ|2C = x2
0 +

n∑

j=1

(xj − ζj)2 = x2
0 +

n∑

j=1

(xj − ξj − iηj)2(10)

= x2
0 + |x− ξ|2 − |η|2 − 2i〈x− ξ, η〉.

Thus, |x− ζ|2C belongs to (−∞, 0] if and only if x lies in the intersection of
the hyperplane 〈x− ξ, η〉 = 0 passing through ξ and with normal η, and the
ball x2

0 + |x− ξ|2 ≤ |η|2 centred at ξ with radius |η|. If n is even, then

γ(ζ) = {x = x0e0 + x ∈ Rn+1 : 〈x− ξ, η〉 = 0, x2
0 + |x− ξ|2 ≤ |η|2}.(11)

and if n is odd, then

γ(ζ) = {x = x0e0 + x ∈ Rn+1 : 〈x− ξ, η〉 = 0, x2
0 + |x− ξ|2 = |η|2}.(12)

In particular, if =(ζ) = 0, then γ(ζ) = {ζ} ⊂ Rn.
Off γ(ζ), a calculation shows that the function x 7→ Gx(ζ) is two-sided

monogenic, so the Cauchy integral formula gives

f̃(ζ) =
�

∂Ω

Gx(ζ)n(x)f(x) dµ(x)(13)

for a bounded open neighbourhoodΩ of γ(ζ) with smooth oriented boundary
∂Ω, outward unit normal n(x) at x ∈ ∂Ω and surface measure µ. The
function f is assumed to be left monogenic in a neighbourhood of Ω, but
ζ 7→ f̃(ζ) is a holomorphic C`(Cn)-valued function as the closed set γ(ζ)
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varies inside Ω. Moreover, f̃ equals f on Ω∩Rn by the usual Cauchy integral
formula of Clifford analysis, so if f is, say, the monogenic extension of a
polynomial p : Cn → C restricted to Rn, then f̃(ζ) = p(ζ), as expected. In
this way, with each left monogenic function f defined in a neighbourhood
of γ(ζ), in a natural way we associate a holomorphic function f̃ defined in
a neighbourhood of ζ.

For each 0 < ω < π/2, we set

Sω(Rn+1) = {x ∈ Rn+1 : x = x0e0 + x, |x0| ≤ |x| tanω},
S◦ω(Rn+1) = {x ∈ Rn+1 \ {0} : x = x0e0 + x, |x0| < |x| tanω}.

It is clear that if ζ = ξ + iη lies in a sector in Cn, say, |η| ≤ |ξ| tan ν,
then the monogenic spectrum γ(ζ) lies in a corresponding sector in Rn+1.
More precisely, we have

Proposition 2.1. Let ζ ∈ Cn \ {0} and 0 < ω < π/2. Then γ(ζ) ⊂
Sω(Rn+1) if and only if

|ζ|2C 6= (−∞, 0], |=(ζ)| ≤ <(|ζ|C) tanω.(14)

Proof. The statement is trivially valid if ζ ∈ Rn \ {0}, so suppose that
=(ζ) 6= 0. Then the monogenic spectrum γ(ζ) of ζ given by (11) or (12) is a
subset of Sω(Rn+1) if and only if there exists 0 < θ ≤ ω such that the cone

H+
θ = {x = x0e0 + x ∈ Rn+1 : x0 > 0, x0 = |x| tan θ}(15)

is tangential to the boundary of γ(ζ). A calculation shows that H+
θ is tan-

gential to the boundary of γ(ζ) for all ζ = ξ + iη with ξ, η ∈ Rn, satisfying

|η|2 = sin2 θ · (|ξ|2 + |Pηξ|2 tan2 θ).(16)

Here Pη : u 7→ 〈u, η〉η/|η|2, u ∈ Rn, is the projection operator onto span{η}.
To relate condition (16) to the inequality in (14), suppose that m =

m0e0 +m is the unit vector normal to Hθ such that m lies in the direction
of η. Hence, m0 = cot θ |m|, tan θ = |m|/m0 and Pηξ = 〈ξ,m〉m/|m|2. Then
equation (16) becomes

η = sin θ · (m2
0|ξ|2 + 〈ξ,m〉2)1/2 m

|m|m0
.

But |m0e0 +m| = 1, so (cot2 θ + 1)|m|2 = 1. We have |m| = sin θ and

η = (m2
0|ξ|2 + 〈ξ,m〉2)1/2 m

m0
.(17)

As mentioned in [10, p. 67], the set of all ζ = ξ + iη with η 6= 0 satisfying
(17) is equal to the set of all ζ = ξ + iη with η 6= 0 satisfying

|ζ|2C 6= (−∞, 0], η = <(|ζ|C)
m

m0
.(18)

Because |m|/m0 = tan θ ≤ tanω, we obtain the desired equivalence by
letting m vary over all directions in Rn.
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For each 0 < ω < π/2, let Sω(Cn) denote the set of all ζ ∈ Cn sat-
isfying condition (14) and let S◦ω(Cn) be its interior. The following results
are elementary consequences of the integral representation (13) and Propo-
sition 2.1.

Corollary 2.2. Let 0 < ω < π/2, let f : S◦ω(Rn+1)→ C`(Cn) be a left
monogenic function and suppose that f̃ : S◦ω(Cn) → C`(Cn) is defined by
formula (13) for every ζ ∈ S◦ω(Cn) with Ω chosen such that γ(ζ) ⊂ Ω ⊂
Ω ⊂ S◦ω(Rn+1). Then ζ 7→ f̃(ζ), ζ ∈ S◦ω(Cn), is a holomorphic C`(Cn)-valued
function equal to f on Rn\{0}. If K is a compact subset of S◦ω(Cn) and Ω is
a bounded open neighbourhood of

⋃
ζ∈K γ(ζ) with smooth oriented boundary

∂Ω such that Ω ⊂ S◦ω(Rn+1), then there exists CK,Ω > 0, independent of f ,
such that

sup
ζ∈K
|f̃(ζ)| ≤ CK,Ω sup

ω∈∂Ω
|f(ω)|.

Corollary 2.3. Let 0 < ω < π/2 and let f : S◦ω(Rn+1)→ C`(Cn) be a
left monogenic function. Denote the restriction of f to Rn\{0} by fRn. Then
fRn is the restriction to Rn \ {0} of a holomorphic C`(Cn)-valued function
f̃ defined on S◦ω(Cn). If fRn takes values in C, then so does f̃ .

Proof. According to Proposition 2.1, formula (13) defines a holomorphic
function f̃ : S◦ω(Cn) → C`(Cn), because for every ζ ∈ S◦ω(Cn), the function
f is left monogenic in a neighbourhood of the monogenic spectrum γ(ζ) of ζ.
Moreover, f̃(x) = f0(x) for all nonzero x ∈ Rn, because γ(x) = {x} and the
Cauchy integral formula of Clifford analysis holds. By unique continuation,
f̃ takes values in the same subspace of C`(Cn) in which f0 does.

The sector Sω(Cn) arose in [8] as the set of ζ ∈ Cn for which the expo-
nential functions

e+(x, ζ) = ei〈x,ζ〉e−x0|ζ|Cχ+(ζ), x = x0e0 + x,(19)

have decay at infinity for all x ∈ Rn+1 with 〈x,m〉 > 0 and all unit vectors
m = m0e0 + m ∈ Rn+1 satisfying m0 ≥ |m| cotω; this fact is essential for
the arguments of Section 4. The projection χ+ in formula (19) is defined by
equation (8).

Let 0 < ν < π/2 and let H∞` (S◦ν(Rn+1)) denote the set of all left mono-
genic functions f : S◦ν(Rn+1)→ C`(Cn) that are uniformly bounded on every
subsector S◦ν′(R

n+1), 0 < ν ′ < ν. Endowed with the topology of uniform con-
vergence on subsectors S◦ν′(R

n+1), 0 < ν ′ < ν, the topological vector space
H∞` (S◦ν(Rn+1)) is a Fréchet space. The analogous space for right monogenic
functions is written as H∞r (S◦ν(Rn+1)).

For each 0 < ν < π/2, let H∞(S◦ν(Cn)) denote the set of all holomorphic
functions f : S◦ν(Cn) → C`(Cn) which are uniformly bounded on every
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subsector S◦ν′(C
n), 0 < ν ′ < ν. Endowed with the topology of uniform

convergence on subsectors S◦ν′(C
n), 0 < ν ′ < ν, the topological vector space

H∞(S◦ν(Cn)) is a Fréchet space and a (nonabelian) Fréchet algebra under
pointwise multiplication. The subalgebra of C-valued functions is, of course,
an abelian Fréchet algebra.

The main aim of the present paper is to prove the following function
space isomorphism.

Theorem 2.4. The mapping f 7→ f̃ given by the Cauchy integral for-
mula (13) is an isomorphism of the Fréchet spaces H∞` (S◦ν(Rn+1)) and
H∞(S◦ν(Cn)).

Given two functions f, g ∈ H∞(S◦ν(Rn+1)), the restrictions fRn : Rn\{0}
→ C`(Cn) and gRn : Rn \ {0} → C`(Cn) of f and g to Rn \ {0} are real-
analytic, so their product fRngRn has a unique left monogenic extension f ·`g
to an open neighbourhood of Rn \{0} in Rn+1 by virtue of formula (6). The
analogous product for right monogenic functions is written as f ·r g.

Corollary 2.5. For each f, g ∈ H∞(S◦ν(Rn+1)), the function f ·` g has
a left monogenic extension to S◦ν(Rn+1), denoted by the same symbol , and
f ·` g ∈ H∞(S◦ν(Rn+1)). Moreover , H∞` (S◦ν(Rn+1)) is a Fréchet algebra with
the product (f, g) 7→ f ·` g. The mapping f 7→ f̃ given by the Cauchy integral
formula (13) is an isomorphism of the Fréchet algebras H∞` (S◦ν(Rn+1)) and
H∞(S◦ν(Cn)).

Proof. By Theorem 2.4, the unique left monogenic extension f ·` g to an
open neighbourhood of Rn \ {0} in Rn+1 has the property that fRngRn is
the restriction to Rn \ {0} of the C`(Cn)-valued holomorphic function f̃ · g̃
belonging to H∞(S◦ν(Cn)). But by Theorem 2.4, f̃ · g̃ is the image of some
function belonging to H∞(S◦ν(Rn+1)). By unique continuation of monogenic
functions (see Subsection 1.4), this function must be equal to f ·` g on their
common domain, that is, f ·` g has a unique left monogenic extension to
S◦ν(Rn+1) belonging to H∞(S◦ν(Rn+1)).

If the restrictions fRn , gRn of f and g take values in C rather than C`(Cn),
then both f and g are two-sided monogenic and (f ·r g)̃ = (f ·` g)̃ = f̃ · g̃
= g̃ · f̃ . Hence, f ·` g = g ·`f and the subalgebra of H∞` (S◦ν(Rn+1)) consisting
of such functions is abelian.

3. Bounded monogenic functions in sectors. In this section we
suppose that 0 < ν < π/2 and f : S◦ν(Rn+1) → C`(Cn) is a left monogenic
function that is uniformly bounded in S◦ν(Rn+1). Denote the supremum of
|f(x)| for x ∈ S◦ν(Rn+1) by ‖f‖ν,∞.

According to Corollary 2.3, for every 0 < ν ′ < ν, there exists a holomor-
phic function f̃ : S◦ν′(C

n) → C`(Cn) coinciding with f on Rn. By analytic
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continuation, f̃ takes its values in the subspace spanned by the range of f
on Rn. We are aiming to bound the uniform norm of f̃ on S◦ν′(C

n) in terms
of a uniform bound for f on S◦ν(Rn+1).

We can easily find such a bound on a smaller sector in Sν(Cn). Let
0 < ν ′ < π/2 and let S̃ν′(Cn) denote the set of all ζ ∈ Cn such that
|η| ≤ |ξ| sin ν ′ for ζ = ξ + iη, ξ, η ∈ Rn. Then for each ζ ∈ S̃ν′(Cn) with
ζ = ξ + iη for ξ, η ∈ Rn, the closed ball of radius |η| centred at ξ in Rn+1 is
contained in Sν′(Rn+1). For this to be true, necessarily |η| < |ξ|, which does
not hold for all ζ ∈ Sν′(Cn).

Now let 0 < ν ′ < θ < ν. If ζ ∈ S̃ν′(Cn), then the closed ball Bζ,δ
of radius |η|(1 + δ) centred at ξ strictly contains γ(ζ) and is contained in
Sθ(Rn+1) \ {0} ⊂ S◦ν(Rn+1), provided that 0 < δ ≤ sin θ/sin ν ′ − 1 and then
it follows that

f̃(ζ) =
�

∂Bζ,δ

Gx(ζ)n(x)f(x) dµ(x).

Then |f̃(ζ)|≤2n/2‖f‖ν,∞ � ∂Bζ,δ |Gx(ζ)| dµ(x), so we need to estimate |Gx(ζ)|
for x ∈ Bζ,δ and ζ ∈ S̃ν′(Cn). To this end,

x+ ζ

|x− ζ|n+1
C

=
1
|ζ|n

x/|ζ|+ ζ/|ζ|∣∣x/|ζ| − ζ/|ζ|
∣∣n+1
C

.

Every x ∈ Bζ,δ can be written as x = ξ + |η|(1 + δ)α for α ∈ Sn, the unit
sphere in Rn+1, so that x/|ζ| = ξ/|ζ|+α|η|(1 + δ)/|ζ|. It turns out that the
numbers |ζ| and |ξ| are comparable for ζ ∈ Sν′(Cn) and |η| is dominated by
a |ζ|. Because µ(Bζ,δ) = O(|ζ|n) as ζ goes to infinity or zero, we obtain a
uniform bound on � ∂Bζ,δ |Gx(ζ)| dµ(x) for ζ ∈ S̃ν′(Cn). The bound depends
only on ν ′, δ and n.

If we want to extend this bound from the sector S̃ν′(Cn) to all of Sν′(Cn),
then we need to take into account the geometry of the situation, that is, the
difficulty with fitting a ball into a sector in Rn+1. The obvious remedy is to
replace the ball Bζ,δ by a suitable disk about γ(ζ). We now work out the
details of the approach outlined above for this case.

Given ζ ∈ Sν′(Cn), write ζ = ξ + iη for ξ, η ∈ Rn. Suppose that η 6= 0.
For each δ > 0, let Dζ,δ denote the right hypercylinder in Rn+1 ≡ R × Rn
centred at (0, ξ) with radius |η|(1 + δ) and bounded by the hyperplanes

P± = {x ∈ Rn+1 : x = x0e0 + x, 〈x− (ξ ± δη/2), η〉 = 0}.
Then the monogenic spectrum γ(ζ) of ζ is contained in Dζ,δ and µ(∂Dζ,δ) =
O(|η|n) as ζ goes to zero or infinity in Sν′(Cn), for if Σn is the n-volume of
the unit ball {x ∈ Rn : |x| ≤ 1} in Rn and σn−1 is the (n− 1)-volume of the
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hypersphere {x ∈ Rn : |x| = 1} in Rn, then

µ(∂Dζ,δ) = 2Σn|η|n(1 + δ)n + σn−1|η|n−1(1 + δ)n−1δ|η|.(20)

Of course, Dζ,δ → {ξ} as η → 0.

Lemma 3.1. For each δ > 0, there exists εδ > 0 depending only on δ and
n such that

∣∣|x− ζ|C
∣∣ ≥ εδ|ζ| for all x ∈ ∂Dζ,δ and ζ ∈ Cn with =ζ 6= 0.

Proof. Because Dtζ,δ = tDζ,δ for all t > 0 and the function | · |C is
homogeneous of degree one, it is enough to prove the statement for all ζ ∈ Cn
with |ζ| = 1.

Let Sn−1(Cn) be the set of all ζ ∈ Cn with |ζ| = 1. Given ζ ∈ Sn−1(Cn)
with ζ = ξ+iη for ξ ∈ Rn and η ∈ Rn\{0}, every element of Rn+1 belonging
to the intersection of ∂Dζ,δ with the hyperplane P+ can be parametrised as
x(ζ, r, α) = ξ + δη/2 + |η|(1 + δ)rTηα for 0 ≤ r ≤ 1 and α belonging to
the unit sphere Sn−1 in Rn. Here Tη is a rotation mapping Rn onto the
n-dimensional subspace {η}⊥ of Rn+1 such that η 7→ Tη is continuous on
Sn−1. Then x(ζ, r, α) 6∈ γ(ζ), so |x(ζ, r, α) − ζ|C is nonzero. The function
(ζ, r, α) 7→

∣∣|x(ζ, r, α)− ζ|C
∣∣ is positive and continuous on the compact set

Sn−1(Cn)× [0, 1]× Sn−1 and so

inf
{∣∣|x(ζ, r, α)− ζ|C

∣∣ : (ζ, r, α) ∈ Sn−1(Cn)× [0, 1]× Sn−1}

is a strictly positive number. A similar argument works for the other face
intersecting P−.

On the third face, the parametrisation x(ζ, t, α) = ξ+δηt/2+|η|(1+δ)Tηα
for −1 ≤ t ≤ 1 and α belonging to the unit sphere Sn−1 is used. The required
number εδ is the minimum of these three numbers.

Remark 3.2. The expression
∣∣|x(ζ, r, α)− ζ|2C

∣∣2 is quartic in the 3n+ 1
real variables ξ, η, β and r, if we take β to represent Tηα. Estimating εδ is
likely to be unrewarding.

Lemma 3.3. For each δ>0, let εδ>0 be the number given in Lemma 3.1.
Then �

∂Dζ,δ

|Gx(ζ)| dµ(x) ≤ 3(1 + δ/2)(1 + δ)n(2Σn + σn−1δ)

σnε
n+1
δ

for all ζ ∈ Cn with =ζ 6= 0.

Proof. If x ∈ ∂Dζ,δ and ζ ∈ Cn with =ζ 6= 0, then

|Gx(ζ)| ≤ 1
σn|ζ|n

∣∣x/|ζ|+ ζ/|ζ|
∣∣

∣∣∣∣x/|ζ| − ζ/|ζ|
∣∣n+1
C
∣∣ ≤

1
σn|ζ|n

|x|/|ζ|+ 1∣∣∣∣x/|ζ| − ζ/|ζ|
∣∣
C
∣∣n+1

≤ 1
σn|ζ|n

|x|/|ζ|+ 1

εn+1
δ

,
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by Lemma 3.1. For x ∈ ∂Dζ,δ, we have |x|/|ζ| ≤ 2 + 3δ/2 and from equation
(20), we obtain

µ(∂Dζ,δ)
|ζ|n ≤ 2Σn(1 + δ)n + σn−1(1 + δ)n−1δ.

Combining these estimates gives the stated inequality.

The next result improves Corollary 2.2 in the context of sectors and
proves the first half of Theorem 2.4.

Lemma 3.4. Let 0 < ν < π/2 and let f : S◦ν(Rn+1) → C`(Cn) be a
uniformly bounded left monogenic function. Suppose that f̃ : S◦ν(Cn) →
C`(Cn) is defined by formula (13) for every ζ ∈ S◦ν(Cn) with Ω chosen such
that γ(ζ) ⊂ Ω ⊂ Ω ⊂ S◦ν(Rn+1). Then for every 0 < ν ′ < ν, the function
ζ 7→ f̃(ζ), ζ ∈ S◦ν′(Cn), is a uniformly bounded holomorphic C`(Cn)-valued
function equal to f on Rn \ {0}. It is bounded by ‖f‖ν,∞ times a constant C
depending only on n, ν ′ and ν.

Proof. Let 0 < ν ′ < θ < ν. According to Proposition 2.1, γ(ζ) ⊂
S◦ν′(R

n+1) for all ζ ∈ Sν′(Cn). We can choose δ > 0 such that Dζ,δ ⊂
Sθ(Rn+1) for all ζ ∈ Sν′(Cn). To see this, suppose that ζ = ξ+ iη ∈ Sν′(Cn)
and that the cone H+

θ defined by formula (15) is tangential to one of the
faces of Dζ,δζ normal to η 6= 0 and the other face is contained in Sθ(Rn+1).
According to equation (16), δζ > 0 satisfies one of the quadratic equations

(1 + δζ)2|η|2 = sin2 θ · (|ξ ± δζη/2|2 + tan2 θ · 〈ξ ± δζη/2, η̂〉2)

with η̂ = η/|η|. Then δ = inf{δζ : ζ ∈ Sν′(Cn), |ζ| = 1} is the required
positive number because δtζ = δζ for all t > 0 and ζ ∈ Sν′(Cn) with η 6= 0.
The infimum is attained when |ξ|/|η| is bounded away from zero.

By Cauchy’s theorem in Clifford analysis, we have

f̃(ζ) =
�

∂Dζ,δ

Gx(ζ)n(x)f(x) dµ(x).

Although the boundary ∂Dζ,δ is not smooth, the edges can be smoothed out
to obtain the given representation. Then by Lemma 3.3,

|f̃(ζ)| ≤ 2n/2‖f‖ν,∞
�

∂Dζ,δ

|Gx(ζ)| dµ(x)

≤ 3 · 2n/2‖f‖ν,∞
(1 + δ/2)(1 + δ)n(2Σn + σn−1δ)

σnε
n+1
δ

for all ζ ∈ Sν′(Cn). The positive numbers δ and εδ depend only on n, ν ′ and
ν ′ < θ < ν.

4. Bounded holomorphic functions in sectors. To complete the
proof of Theorem 2.4, we show in this section that the mapping f 7→
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f̃ given by the Cauchy integral formula (13) maps H∞` (S◦ν(Rn+1)) onto
H∞(S◦ν(Cn)). To achieve this, we construct the inverse map and show that
for every 0 < ν ′ < ν ′′ < ν, there exists Cν′,ν′′ > 0 such that for all f̃ ∈
H∞(S◦ν(Cn)), the supremum of |f̃ | over the subsector S◦ν′(C

n) is bounded
by Cν′,ν′′ times the supremum of |f | over the subsector S◦ν′′(R

n+1).
The second half of the proof of Theorem 2.4 has a different flavour to

the proof of the first half given in the preceding section. Here we appeal
to the Fourier theory of monogenic functions exposed in [8]. As mentioned
in Section 2, the sector Sν(Cn) arose in [8] as the set of ζ ∈ Cn for which
the exponential functions (19) have decay at infinity for all x ∈ Rn+1 with
〈x,m〉 > 0 and all unit vectors m = m0e0 + m ∈ Rn+1 satisfying m0 ≥
|m| cot ν. We exploit this property to construct a left monogenic function
f : S◦ν(Rn+1)→ C`(Cn) bounded on subsectors from a holomorphic function
f̃ : S◦ν(Cn)→ C`(Cn) bounded on subsectors. Before doing so, we recall some
facts about the sectors S◦ν(Cn) from [8, Section 4].

4.1. Sectors in Cn. For each unit vector m ∈ Rn+1 with m = m0e0 +m

satisfying m0 > 0, the real n-dimensional manifold m(Cn) in Cn is defined
as the set of all nonzero ζ = ξ+ iη ∈ Cn such that ξ, η ∈ Rn satisfy equation
(17), or equivalently, equation (18).

According to the proof of Proposition 2.1, the manifold m(Cn) is the
collection of all ζ = ξ + iη ∈ Cn such that η ∈ Rn lies in the direction
of m and the monogenic spectrum γ(ζ) of ζ is tangential to the cone H+

θ
given by (15) with tan θ = m0/|m|. Manifolds associated with distinct unit
vectors m are disjoint. Moreover, for 0 < ω < π/2, the sector Sω(Cn) of
all ζ ∈ Cn satisfying condition (14) is the disjoint union of the manifolds
m(Cn) for all unit vectors m ∈ Rn+1 with m = m0e0+m and m0 ≥ |m| cotω
and {0}. Its interior S◦ω(Cn) is the union of all such manifolds m(Cn) with
m0 > |m| cotω. For the vector m = e0, we have e0(Cn) = Rn \ {0}.

Let m ∈ Rn+1 be a unit vector with m = m0e0 +m satisfying m0 > 0.
For all ζ = ξ + iη ∈ m(Cn) with ξ, η ∈ Rn, the quantities |ξ|, |ζ|, <(|ζ|C)
and

∣∣|ζ|C
∣∣ are equivalent:

<|ζ|C ≤ |ξ| ≤
<|ζ|C
m0

(21)

and

<|ζ|C ≤
∣∣|ζ|C

∣∣ ≤ <|ζ|C
m0

≤ |ζ| ≤
√

1 + |m|2<|ζ|C
m0

, ζ ∈ m(Cn).(22)

The Jacobian det(∂ζj/∂ξk) of the parametrisation ξ 7→ ξ + iη of m(Cn)
given by formula (17) satisfies the bound∣∣∣∣det

(
∂ζj
∂ξk

)∣∣∣∣ ≤
1
m0

.(23)
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The pullback of a differential form ω on Cn via the embedding of m(Cn) in
Cn is denoted by the same symbol. In particular, integration with respect
to the complex n-form dζ1 ∧ · · · ∧ dζn on m(Cn) is equivalent to integration
with respect to surface measure on m(Cn). The symbol |dζ1 ∧ · · · ∧ dζn| is
used to denote the image of the measure |det(∂ζj/∂ξk)|dξ with respect to
the parametrisation ξ 7→ ξ+ iη of m(Cn), that is, the surface measure dµ of
the n-dimensional real manifold m(Cn).

Besides the exponential function e+(x, ζ) defined by formula (19), the
function

(24) e−(x, ζ) = ei〈x,ζ〉ex0|ζ|Cχ−(ζ), x = x0e0 + x, ζ ∈ Cn, |ζ|2C 6∈ (−∞, 0],

is also important. The projection χ−(ζ) is defined by formula (8). Then the
functions (x, ζ) 7→ e±(x, ζ) are left monogenic in x ∈ Rn+1 and holomorphic
in ζ ∈ Cn. Let m ∈ Rn+1 be a unit vector with m = m0e0 + m satisfying
m0 ≥ |m| cot ν. Then for x = x0e0 + x ∈ Rn+1 and ζ = ξ + iη ∈ Cn, the
bounds

(25) |e+(x, ζ)|= e−〈x,η〉−x0<|ζ|C |χ+(ζ)| ≤ sec ν√
2
e−〈x,m〉<|ζ|C/m0 , ζ ∈m(Cn),

(26) |e−(x, ζ)|= e−〈x,η〉+x0<|ζ|C |χ−(ζ)| ≤ sec ν√
2
e〈x,m〉<|ζ|C/m0 , ζ ∈m(Cn),

are valid.
The set of x = (x0, x1, . . . , xn) ∈ Rn+1 with x0 > 0 is written as Rn+1

+
and for x0 < 0, as Rn+1

− . For 0 < ν < π/2, let

C+
ν (Rn+1) = {x ∈ Rn+1 : x = x0e0 + x, x0 > −|x| tan ν},

C−ν (Rn+1) = {x ∈ Rn+1 : x = x0e0 + x, x0 < |x| tan ν} = −C+
ν (Rn+1).

Then S◦ν(Rn+1) = C+
ν (Rn+1) ∩C−ν (Rn+1). Given a unit vector m = m0e0 +

m ∈ Rn+1, let Hm denote the half-space {x ∈ Rn+1 : 〈x,m〉 > 0}. We also
note here that

C+
ν (Rn+1) =

⋃
{Hm : m ∈ Sn, m = m0e0 +m, m0 > |m| cot ν},

C−ν (Rn+1) =
⋃
{−Hm : m ∈ Sn, m = m0e0 +m, m0 > |m| cot ν}.

4.2. Fourier analysis in sectors. For each ζ ∈ Cn such that |ζ|2C 6∈
(−∞, 0], set ψ(ζ) = χ+(ζ)|ζ|Ce−|ζ|C and ψt(ζ) = ψ(tζ) for t > 0. Suppose
that b : S◦ν(Cn) → C`(Cn) is a uniformly bounded holomorphic function.
Then for each t > 0, the product b · ψt is a bounded holomorphic function
with exponential decay at infinity in S◦ν(Cn). Hence, the Fourier transform

(b · ψt)∧(ξ) =
�

Rn
e−i〈x,ξ〉b(x)ψt(x) dx

converges for all ξ ∈ Rn.
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Lemma 4.1. Let b : S◦ν(Cn)→ C`(Cn) be a uniformly bounded holomor-
phic function. Then for each t > 0, the Fourier transform (b · ψt)∧ : Rn →
C`(Cn) has a left monogenic extension to C−ν (Rn+1) (denoted by the same
symbol). Moreover , for every 0 < ν ′ < ν, there exists Bν′ > 0 such that for
every uniformly bounded holomorphic function b : S◦ν(Cn) → C`(Cn), the
bound

|(b · ψt)∧(x)| ≤ Bν′‖b‖∞
|x|/t

|x|n(1 + |x|2/t2)
, x ∈ C−ν′(Rn+1),(27)

holds for all t > 0.

Proof. Let m = m0e0 +m ∈ Rn+1 satisfy m0 > |m| cot ν. Set

fm(x) =
�

m(Cn)

e+(−x, ζ)b(ζ)ψt(ζ) dζ1 ∧ · · · ∧ dζn(28)

for all x ∈ Rn+1 such that 〈x,m〉 < 0. Then fm is left monogenic in the
set {x ∈ Rn+1 : 〈x,m〉 < 0} because e+(−x, ζ) is left monogenic in x and
has exponential decay in ζ for 〈x,m〉 < 0 according to the bound (25). By
dominated convergence, limx0→0− fe0(x0e0 + x) = (b · ψt)∧(x), so fe0 is the
left monogenic extension of (b · ψt)∧ to Rn+1

− .
For x ∈ Rn+1 fixed, m 7→ fm(x) is constant on the set of unit vectors

m = m0e0+m ∈ Rn+1 satisfying m0 > |m| cot ν and 〈x,m〉 < 0 by Cauchy’s
theorem (see [10, p. 70]). It follows that fm is the unique extension of (b·ψt)∧
from Rn+1

− to all of {x ∈ Rn+1 : 〈x,m〉 < 0}. Because C−ν (Rn+1) is the
union of these sets for all unit vectors m = m0e0 + m ∈ Rn+1 satisfying
m0 > |m| cot ν, the Fourier transform (b·ψt)∧ has a left monogenic extension
to C−ν (Rn+1) given by formula (28). Denote this left monogenic extension
by (b · ψt)∧ as well.

To check the bound (27), we note that

|(b · ψt)∧(x)| ≤
�

m(Cn)

|e+(−x, ζ)| · |b(ζ)ψt(ζ)| |dζ1 ∧ · · · ∧ dζn|

≤ t‖b‖∞√
2 cos ν

�

m(Cn)

e〈x,m〉<|ζ|C/m0
∣∣|ζ|C

∣∣e−t<|ζ|C |dζ1 ∧ · · · ∧ dζn|

≤ t‖b‖∞√
2m2

0 cos ν

�

Rn
e(〈x,m〉−tm0)|ξ||ξ| dξ

= ‖b‖∞
n!σn−1√
2m2

0 cos ν

t

(−〈x,m〉+ tm0)n+1

for all x ∈ C−ν (Rn+1) and all unit vectors m = m0e0 +m ∈ Rn+1 satisfying
m0 > |m| cot ν and 〈x,m〉 < 0. Here we have appealed to the bounds (21)
and (22) on the manifolds m(Cn) and the bound (23) for the Jacobian of
the parametrization ξ 7→ ξ + iη of m(Cn).
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Now let 0 < ν ′ < ν. There exists aν′ > 0 such that for any x ∈ C−ν′(Rn+1),
we can choose a unit vector m = m0e0 +m ∈ Rn+1 satisfying m0 > |m| cot ν
and −〈x,m〉 ≥ aν′ |x| with aν′ independent of x and m. Then

t

(aν′ |x|+ tm0)n+1 ≤
Aν′

|x|n
|x|n/tn

(|x|/t+ 1)n+1 ≤
Aν′

|x|n
|x|/t

1 + |x|2/t2
and we obtain the bound (27).

We also need some bounds on the denominator of the Cauchy kernel (9).

Proposition 4.2. (i) The bound∣∣|x− ζ|C
∣∣ ≥ |x|(1− κ−1)

holds for all κ ≥ 1, x ∈ Rn+1 and ζ = ξ + iη ∈ Cn with |x| ≥
κ(|ξ|+ |η|).

(ii) The bound ∣∣|x− ζ|C
∣∣ ≤ 2|x|

holds for all x ∈ Rn+1 with |x| ≥ |ζ|.
(iii) Let 0 < ν < π/2. The bound∣∣|ζ − x|C

∣∣ ≥ cos ν
(1 + sin2 ν)1/2

(1− κ−1)|ζ|

holds for all κ > 1, x ∈ Rn+1 and ζ ∈ S◦ν(Cn) such that

|ζ| ≥ κ
(

(1 + 2
√

2)
1 + sin2 ν

cos2 ν

)
|x|.

(iv) For every 0 < ν < θ < π/2, there exists εν,θ > 0 such that∣∣|x− ζ|C
∣∣ > εν,θ|x|

for all ζ ∈ S◦ν(Cn) and x ∈ Rn+1 \ S◦θ (Rn+1).
(v) For every 0 < ν < θ < π/2, there exists ε′ν,θ > 0 such that

∣∣|x− ζ|C
∣∣ > ε′ν,θ|ζ|

for all ζ ∈ S◦ν(Cn) and x ∈ Rn+1 \ S◦θ (Rn+1).

Proof. (i) Let x = x0e0 + x ∈ Rn+1 and ζ = ξ + iη ∈ Cn. Then
∣∣|x− ζ|2C

∣∣2 = |x2
0 + |x− ξ|2 − |η|2 − 2i〈x− ξ, η〉|2

= (x2
0 + |x− ξ|2 − |η|2)2 + 4〈x− ξ, η〉2

≥ (x2
0 + |x− ξ|2 − |η|2)2 = |x|4

(∣∣x/|x| − ξ/|x|
∣∣2 − |η|2/|x|2

)2
,

where we have identified Rn with the subspace {0} × Rn of Rn+1. Now∣∣x/|x| − ξ/|x|
∣∣ ≥ 1− |ξ|/|x| for |x| ≥ |ξ|, so in this case, we have

∣∣|x− ζ|2C
∣∣2 ≥ |x|4((1− |ξ|/|x|)2 − |η|2/|x|2)2

= |x|4
(

1− |ξ|+ |η||x|

)2(
1− |ξ| − |η||x|

)2

≥ |x|4
(

1− |ξ|+ |η||x|

)4

.
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Hence,
∣∣|x− ζ|C

∣∣ ≥ |x|(1− κ−1) for all x ∈ Rn+1 with |x| ≥ κ(|ξ|+ |η|) and
all κ ≥ 1.

(ii) On the other hand, if x ∈ Rn+1, ζ = ξ + iη ∈ Cn and |x| ≥ β(|ξ|2 +
|η|2)1/2 for β ≥ 1, then

∣∣|x− ζ|2C
∣∣2 ≤ |x|4

(∣∣x/|x| − ξ/|x|
∣∣2 − |η|2/|x|2

)2 + 4|x− ξ|2|η|2

≤ |x|4((1 + |ξ|/|x|)2 + |η|2/|x|2)2

≤ |x|4
(

1 +
2|ξ|
|x| +

1
β2

)2

≤ 24|x|4.

Hence,
∣∣|x− ζ|C

∣∣ ≤ 2|x| for all x ∈ Rn+1 with |x| ≥ (|ξ|2 + |η|2)1/2 = |ζ|.
(iii) Here we are looking at the limiting behaviour of |ζ−x|C as |ζ| → ∞ in

S◦ν(Cn). Letm = m0e0+m be a unit vector in Rn+1 such that m0 > |m| cot ν
and let m(Cn) be the real manifold defined by equation (17) in Cn. Then
as noted above, S◦ν(Cn) is the union of all such manifolds, and

∣∣|ζ|C
∣∣ and |ζ|

are comparable on m(Cn). Note that by continuity,

∣∣∣∣ζ/|ζ| − x/|ζ|
∣∣
C
∣∣ ≈

∣∣|ζ|C
∣∣

|ζ| ≥
m0

(1 + |m|2)1/2

on m(Cn) as |ζ| → ∞. Indeed, suppose that ζ ∈ m(Cn) and |ζ| = 1. Then

∣∣|ζ − x|C − |ζ|C
∣∣ =

∣∣|ζ − x|2C − |ζ|2C
∣∣

∣∣|ζ − x|C + |ζ|C
∣∣ ≤

∣∣|ζ − x|2C − |ζ|2C
∣∣

<|ζ|C

≤ (1 + |m|2)1/2

m0

∣∣|ζ − x|2C − |ζ|2C
∣∣

by the estimates (22). If x = x0e0 + x satisfies |x| ≤ 1 and ζ = ξ + iη ∈ Cn
has norm one, we get

∣∣|ζ − x|2C − |ζ|2C
∣∣ = |x2

0 + |x− ξ|2 − |ξ|2 − 2i〈η,x〉|
≤ x2

0 +
∣∣|ξ − x| − |ξ|

∣∣ ·
∣∣|ξ − x|+ |ξ|

∣∣+ 2|η| · |x|
≤ x2

0 + |x| · (2|ξ|+ |x|) + 2|η| |x|
≤ x2

0 + |x|2 + 2(|ξ|+ |η|)|x|
≤ (1 + 2|ξ|+ 2|η|)|x| ≤ (1 + 2

√
2)|x|,

so that
∣∣|ζ − x|C − |ζ|C

∣∣ ≤ (1 + 2
√

2)(1 + |m|2)1/2|x|/m0.
Hence, for all nonzero ζ ∈ m(Cn) and x ∈ Rn+1 satisfying |x| ≤ |ζ|, we

have
∣∣∣∣ζ/|ζ| − x/|ζ|

∣∣
C
∣∣ ≥

∣∣|ζ|C
∣∣

|ζ| − (1 + 2
√

2)
(1 + |m|2)1/2

m0

|x|
|ζ|

≥ m0

(1 + |m|2)1/2

(
1− (1 + 2

√
2)

1 + |m|2
m2

0

|x|
|ζ|

)
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on appealing to the estimates (22) again. Now |m|2(1 + cot2 ν) ≤ 1 = m2
0 +

|m|2 ≤ m2
0(1 + tan2 ν), so m0 > cos ν and |m| < sin ν and the inequality

(iii) follows.
(iv) Let 0 < ν < θ < π/2. Then there exists εν,θ > 0 such that∣∣|x− ζ|C

∣∣ > εν,θ

for all ζ ∈ S◦ν(Cn) and unit vectors x ∈ Rn+1 \ S◦θ (Rn+1). To see this, let
m = m0e0+m be a unit vector in Rn+1 such thatm0 > |m| cot ν and suppose
that κ > 1 and ζ ∈ m(Cn) satisfies |ζ| > r = κ(1 + 2

√
2)(1 + sin2 ν)/cos2 ν.

Then by (iii), we have
∣∣|x− ζ|C

∣∣ > cos ν
(1 + sin2 ν)1/2

(1− κ−1)|ζ| > r cos ν
(1 + sin2 ν)1/2

(1− κ−1).

On the other hand, according to Proposition 2.1, the function (ζ, x) 7→∣∣|x− ζ|C
∣∣ is positive and continuous on the compact set

({|ζ| ≤ r} ∩ Sν(Cn))× (Sn ∩ (Rn+1 \ S◦θ (Rn+1))),

so it must be bounded below there. Then εν,θ is the minimum of these two
lower bounds. It follows that

∣∣|x − ζ|C
∣∣ > εν,θ|x| for all ζ ∈ S◦ν(Cn) and

x ∈ Rn+1 \ S◦θ (Rn+1).
(v) It suffices to prove the result for |ζ| = 1. According to (i), if κ > 1

and |x| >
√

2κ, then
∣∣|x − ζ|C

∣∣ > |x|(1− κ−1) >
√

2 (κ − 1) for all ζ ∈ Cn
with |ζ| = 1. On the other hand the function (ζ, x) 7→

∣∣|x− ζ|C
∣∣ is positive

and continuous on the compact set

({|ζ| = 1} ∩ Sν(Cn))× ({|x| ≤
√

2κ} ∩ (Rn+1 \ S◦θ (Rn+1)),

so it must be bounded below there. Then ε′ν,θ is the minimum of these two
lower bounds.

Lemma 4.3. The function (x, y) 7→ ψ̂t(x − y), x, y ∈ Rn, t > 0, is the
restriction to Rn×Rn of a function (ζ, y) 7→ ψ̂t(ζ−y) which is holomorphic
in ζ ∈ Cn and two-sided monogenic for all y ∈ Rn+1 with y + te0 6∈ γ(ζ).
Moreover ,

ψ̂t(ζ − y) = −(2π)n

σn

(
te0

|y − ζ + te0|n+1
C
− (n+ 1)

(y + ζ + te0)t2

|y − ζ + te0|n+3
C

)
.(29)

Proof. We first note that that the Cauchy kernel (4) can be represented
by

k(x+ te0) =
1

(2π)n
�

Rn
e+(x, ξ)χ+(ξ)e−t|ξ| dξ

for all x ∈ Rn+1
+ and t > 0, so

ψ̂t(x− y) =
�

Rn
e+(−(x− y), ξ)ψt(ξ) dξ = −(2π)nt

∂

∂t
k(y − x+ te0)
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for all x, y ∈ Rn and t > 0. Holomorphically extending in x and monogeni-
cally extending in y gives the expression (29), defined for all y ∈ Rn+1 and
ζ ∈ Cn with y + te0 6∈ γ(ζ).

Lemma 4.4. Let b : S◦ν(Cn)→ C`(Cn) be a uniformly bounded holomor-
phic function. Then for each t > 0 and 0 < ν ′ < ν, the Fourier transform
(b ·ψ2

t )
∧ has a holomorphic extension to S◦ν′(C

n) (denoted by the same sym-
bol) given by

(b·ψ2
t )
∧(ζ) =

1
(2π)n

�

Gθ

ψ̂t(ζ−y)n(y)(b·ψt)∧(y) dµ(y), ζ ∈ S◦ν′(Cn),(30)

where ν ′ < θ < ν and

Gθ = {y ∈ Rn+1 : y = y0e0 + y, y0 = |y| tan θ}.(31)

Proof. First, suppose that ζ = x ∈ Rn. Then y 7→ ψ̂t(x− y) is uniformly
bounded and two-sided monogenic in Rn+1

+ and (b · ψt)∧ is left monogenic
in C−ν (Rn+1) by Lemma 4.1.

According to the bound (27) we have

�

Gθ

|(b · ψt)∧(y)| dµ(y) ≤ C‖b‖∞
∞�

0

r/t

(1 + sec2 θ · r2/t2)
dr

r
<∞,

so that the integral (30) converges for all 0 ≤ θ < ν. The convolution formula

(b · ψ2
t )
∧(x) =

1
(2π)n

(ψ̂t ∗ (b · ψ)∧t )(x), x ∈ Rn,

and Cauchy’s theorem in Clifford analysis now gives the representation (30).
Then we can holomorphically extend the integral and the equality (30) for
all ζ in S◦ν′(C

n).
We need to check that for ζ in a fixed compact subset of S◦ν′(C

n), the
function y 7→ ψ̂t(ζ − y) is uniformly bounded for all y ∈ Gθ. For y ∈ Gθ
and |y| large, this follows from formula (29) and the estimate in Proposi-
tion 4.2(iv). For |y| small, we note that for each t > 0, the positive continuous
function (y, ζ) 7→ |y − ζ + te0|C is necessarily bounded below on compact
subsets of Gθ × S◦ν′(Cn).

Lemma 4.5. Let b : S◦ν(Cn)→ C`(Cn) be a uniformly bounded holomor-
phic function. Then for each t > 0 and 0 < ν ′ < ν, the restriction of b · ψ2

t

to Rn has a left monogenic extension b ·` ψ2
t to S◦ν′(R

n+1). Moreover ,

|(b ·` ψ2
t )(x)| =

{
O((t|x|)1/2) as t|x| → 0 in S◦ν′(R

n+1),

O((t|x|)−n) as t|x| → ∞ in S◦ν′(R
n+1).

(32)

The order of convergence is uniform for ‖b‖∞ ≤ 1.
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Proof. For each x ∈ S◦ν′(Rn+1) = C+
ν′(R

n+1) ∩ C−ν′(Rn+1) set

(b ·` ψ2
t )+(x) =

1
(2π)n

�

m(Cn)

e+(x, ζ)(b · ψ2
t )
∧(ζ) dζ1 ∧ · · · ∧ dζn,(33)

(b ·` ψ2
t )−(x) =

1
(2π)n

�

m′(Cn)

e−(x, ζ)(b · ψ2
t )
∧(ζ) dζ1 ∧ · · · ∧ dζn,(34)

(b ·` ψ2
t ) = (b ·` ψ2

t )+ + (b ·` ψ2
t )−.(35)

Here m = m0e0 + m ∈ Rn+1 and m′ = m′0e0 + m′ ∈ Rn+1 are two unit
vectors satisfying m0 > |m| cot ν ′ and m′0 > |m′| cot ν ′ and 〈x,m〉 > 0 and
〈x,m′〉 < 0. As mentioned in Section 4.1 above, the sector S◦ν′(C

n) is the
disjoint union of all manifolds l(Cn) for all unit vectors l ∈ Rn+1 satisfying
l0 > |l| cot ν ′. According to Lemma 4.4, (b ·ψ2

t )
∧ is defined on S◦ν′(C

n). Once
we establish the absolute convergence of the integrals (33) and (34), the
argument of [10, p. 70] shows that the right hand sides of equations (33) and
(34) are independent of the choice of the unit vectors m,m′, so that (b·`ψ2

t )±
and, hence, (b ·` ψ2

t ) are well defined functions on S◦ν′(R
n+1). Because the

functions e±(·, ζ) are left monogenic for each ζ ∈ Cn, the functions (b ·`ψ2
t )±

and (b ·` ψ2
t ) are left monogenic functions defined on S◦ν′(R

n+1).
We first see that the right hand side of equation (33) converges for all

x ∈ C+
ν′(R

n+1). The integral is estimated for 0<ν ′<θ<ν and x∈C+
ν′(R

n+1)
by
|(b ·` ψ2

t )+(x)| ≤ 1
(2π)n

�

m(Cn)

|e+(x, ζ)| · |(b · ψ2
t )
∧(ζ)| |dζ1 ∧ · · · ∧ dζn|

≤ 1
(2π)2n

�

m(Cn)

�

Gθ

|e+(x, ζ)| · |ψ̂t(ζ − y)|

× |(b · ψt)∧(y)| dµ(y) |dζ1 ∧ · · · ∧ dζn|
=

1
(2π)2n

�

m(Cn)

�

Gθ

|e+(x, ζ)| · |ψ̂t/|ζ|(ζ/|ζ| − y/|ζ|)|

× |(b · ψt)∧(y)| dµ(y)
|dζ1 ∧ · · · ∧ dζn|

|ζ|n

=
1

(2π)2n

�

m(Cn)

�

Gθ

|e+(tx, ζ)| · |ψ̂1/|ζ|(ζ/|ζ| − y/(t|ζ|))|

× |(b · ψt)∧(y)| dµ(y)
|dζ1 ∧ · · · ∧ dζn|

|ζ|n
≤ C ′ν‖b‖∞

�

m(Cn)

�

Gθ

|e+(tx, ζ)| · |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|

× |y|
1 + |y|2

dµ(y)
|y|n

|dζ1 ∧ · · · ∧ dζn|
|ζ|n .
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Here we have used the explicit formula (29), the estimate (27) and the fact
that both measures

|dζ1 ∧ · · · ∧ dζn|
|ζ|n ,

dµ(y)
|y|n

are invariant under dilations. It remains to estimate the function

(y, ζ) 7→ |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|, y ∈ Gθ, ζ ∈ m(Cn),

which is independent of t > 0.
We now show that |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)| = O(|ζ|−1) uniformly in y ∈ Gθ

as |ζ| → ∞ for ζ ∈ Sν′(Cn), and |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)| = O(|ζ|n) uniformly
in y ∈ Gθ as |ζ| → 0 for ζ ∈ Sν′(Cn).

Let κ > 1. Then by Proposition 4.2(i), for ζ ′ ∈ m(Cn) with |ζ ′| = 1
and all x ∈ Rn+1 with |x| >

√
2κ, we have

∣∣|x − ζ ′|C
∣∣ > |x|(1 − κ−1). Set

x = (y + e0)/|ζ| for y ∈ Gθ and ζ ∈ m(Cn). Comparison with formula (29)
shows that

(36) |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)| ≤
(2π)n

σn2(n+1)/2|ζ|

(
1

(κ− 1)n+1 +

√
2κ(n+ 1)/|ζ|
(κ− 1)n+3

)

if |x| >
√

2κ.
According to Proposition 4.2(v), there exists ε′ν,θ such that |x − ζ ′|C >

ε′ν′,θ for all ζ ′ ∈ m(Cn) with |ζ ′| = 1 and all x ∈ Rn+1 \ S◦θ (Rn+1), so if
x = (y + e0)/|ζ| for y ∈ Gθ and |x| ≤

√
2κ, we have

(37) |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)| ≤
(2π)n

σn|ζ|

(
1

(ε′ν′,θ)
n+1 + (n+ 1)

(
√

2κ+ 1)/|ζ|
(ε′ν′,θ)

n+3

)
.

Hence, there exists C > 0 such that

|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)| ≤
C

|ζ|
for all y ∈ Gθ and ζ ∈ m(Cn) with |ζ| ≥ 1.

On the other hand, ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|) = |ζ|nψ̂1(ζ − y). Let x = y + e0.
According to Proposition 4.2(iv), there exists εν,θ such that |x− ζ|C > εν′,θ
for all ζ ∈ m(Cn). For a > 0 and x ∈ Gθ such that |x| ≤ a, we have

|ψ̂1(ζ − y)| ≤ (2π)n

σn

(
e0

(εν′,θ)n+1 + (n+ 1)
1 + a

(εν′,θ)n+3

)

for all ζ ∈ {|ζ| ≤ 1} ∩m(Cn). Now let κ > 1 and suppose that a =
√

2κ.
Then by Proposition 4.2(i), for ζ ∈ m(Cn) with |ζ| ≤ 1 and all x ∈ Rn+1

with |x| >
√

2κ, we have
∣∣|x− ζ ′|C

∣∣ > |x|(1− κ−1), so that

|ψ̂1(ζ − y)| ≤ (2π)n

σn2(n+1)/2

(
e0

(κ− 1)n+1 +

√
2κ(n+ 1)

(κ− 1)n+3

)
.
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We have shown that |ψ̂1/|ζ|(ζ/|ζ|−y/|ζ|)| = O(|ζ|−1) uniformly in y ∈ Gθ
as |ζ| → ∞ for ζ ∈ Sν′(Cn), and |ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)| = O(|ζ|n) uniformly
in y ∈ Gθ as |ζ| → 0 for ζ ∈ Sν′(Cn). In particular,

�

m(Cn)

sup
y∈Gθ

|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|
|dζ1 ∧ · · · ∧ dζn|

|ζ|n <∞.(38)

Therefore,

|(b ·` ψ2
t )+(x)| ≤ C ′′ν ‖b‖∞

�

m(Cn)

|e+(tx, ζ)|

× sup
y∈Gθ

|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|
|dζ1 ∧ · · · ∧ dζn|

|ζ|n

≤ C ′′ν ‖b‖∞ sup
y∈Gθ, ζ∈m(Cn)

{|ζ|−n|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|}

×
�

m(Cn)

|e+(tx, ζ)| |dζ1 ∧ · · · ∧ dζn|

≤ C ′′ν ‖b‖∞ sup
y∈Gθ, ζ∈m(Cn)

{|ζ|−n|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|}

×
�

Rn
e−t〈x,m〉|ξ| dξ

≤ C ′′′ν ‖b‖∞
tn〈x,m〉n sup

y∈Gθ, ζ∈m(Cn)
{|ζ|−n|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|}.

Hence we obtain decay as t|x| → ∞ in S◦ν′(R
n+1). To see this, let ν ′′ satisfy

ν ′ < ν ′′ < θ. Then for all x ∈ S◦ν′(R
n+1) we can find a unit vector m =

m0e0 +m ∈ Rn+1 satisfying m0 > |m| cot ν ′′ such that 〈x,m〉 > a|x|, where
a depends only on ν ′ and ν ′′.

We now estimate the convergence of (b ·`ψ2
t )+(x) as tx→ 0 in S◦ν′(R

n+1).
Set

Vθ(ζ) = sup
y∈Gθ

|ψ̂1/|ζ|(ζ/|ζ| − y/|ζ|)|, ζ ∈ Sν′(Cn).

Then as shown above, Vθ(ζ) = O(|ζ|−1) as |ζ| → ∞ for ζ ∈ Sν′(Cn), and
Vθ(ζ) = O(|ζ|n) as |ζ| → 0 for ζ ∈ Sν′(Cn).

Because

(b ·` ψ2
t )+(0) =

1
(2π)n

�

m(Cn)

χ+(ζ)(b · ψ2
t )
∧(ζ) dζ1 ∧ · · · ∧ dζn,

the number |(b ·` ψ2
t )+(x)− (b ·` ψ2

t )+(0)| is estimated by

C ′′ν ‖b‖∞
�

m(Cn)

|e+(tx, ζ)− χ+(ζ)|Vθ(ζ)
|dζ1 ∧ · · · ∧ dζn|

|ζ|n .
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For notational simplicity, replace tx by x. Then for |x| ≤ 1, we have

�

m(Cn)∩{|ζ|≥|x|−1/2}
|e+(x, ζ)− χ+(ζ)|Vθ(ζ)

|dζ1 ∧ · · · ∧ dζn|
|ζ|n

≤ C
�

m(Cn)∩{|ζ|≥|x|−1/2}
Vθ(ζ)

|dζ1 ∧ · · · ∧ dζn|
|ζ|n

≤ C ′
�

m(Cn)∩{|ζ|≥|x|−1/2}

|dζ1 ∧ · · · ∧ dζn|
|ζ|n+1 ≤ C ′′

∞�

|x|−1/2

dr

r2 = C ′′′|x|1/2.

On the other hand,
�

m(Cn)∩{|ζ|≤|x|−1/2}
|e+(x, ζ)− χ+(ζ)|Vθ(ζ)

|dζ1 ∧ · · · ∧ dζn|
|ζ|n

≤ |x|1/2 sup
|ζ|≤|x|−1/2, ζ∈m(Cn)

|e+(x, ζ)− χ+(ζ)|
|x|1/2

�

m(Cn)

Vθ(ζ)
|dζ1 ∧ · · · ∧ dζn|

|ζ|n .

Because 〈x,m〉 is comparable to |x| for x ∈ S◦ν′(Rn+1) and |ζ| is comparable
to <|ζ|C for ζ ∈ m(Cn), there exist a > 0 and C > 0 such that

sup
|ζ|≤|x|−1/2, ζ∈m(Cn)

|e+(x, ζ)− χ+(ζ)|
|x|1/2 ≤ C sup

|ζ|≤|x|−1/2, ζ∈m(Cn)

1− e−a|x||ζ|
|x|1/2

= C
1− e−a|x|1/2

|x|1/2 ≤ aC.

It follows that |(b ·` ψ2
t )+(x) − (b ·` ψ2

t )+(0)| is O((t|x|)1/2) as t|x| → 0 in
Sν′(Rn+1).

If in the integral representation (33), x ∈ Rn and m0 → e0, m′0 → e0,
then we obtain

b ·` ψ2
t (x) =

1
(2π)n

�

Rn
ei〈x,ξ〉χ+(ξ)(b · ψ2

t )
∧(ξ) dξ

+
1

(2π)n
�

Rn
ei〈x,ξ〉χ−(ξ)(b · ψ2

t )
∧(ξ) dξ = (b · ψ2

t )(x),

as expected, because χ+(ξ) + χ−(ξ) = 1 for all ξ ∈ Rn \ {0}.
Now write the second integral in (33) as (b ·` ψ2

t )−. Then

(b ·` ψ2
t )+(0) + (b ·` ψ2

t )−(0) = (b · ψ2
t )(0) = 0,

and as above, we see |(b ·` ψ2
t )−(x)− (b ·` ψ2

t )−(0)| is O((t|x|)1/2) as t|x| → 0
in Sν′(Rn+1) and |(b ·` ψ2

t )−(x)| is O((t|x|)−n) as t|x| → ∞ in Sν′(Rn+1).
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Because (b ·` ψ2
t )(x) = (b ·` ψ2

t )+(x) + (b ·` ψ2
t )−(x) for all x ∈ Sν′(Rn+1),

it follows that |(b ·` ψ2
t )(x)| is O((t|x|)1/2) as t|x| → 0 in Sν′(Rn+1) and

|(b ·` ψ2
t )(x)| is O((t|x|)−n) as t|x| → ∞ in Sν′(Rn+1). All constants we have

calculated are proportional to the supremum norm ‖b‖∞ of b on Sν(Cn), so
the convergence is uniform for ‖b‖∞ ≤ 1.

Because b ·` ψ2
t has decay O(t|x|) as t|x| → 0 in Rn and b ·` ψ2

t has
exponential decay as t|x| → ∞ in Rn, the estimate (32) may not be the best
possible.

Proof of Theorem 2.4. Let 0 < ν < π/2. It remains to show that if
b : S◦ν(Cn) → C`(Cn) is a uniformly bounded holomorphic function, then
there exists a left monogenic function f : S◦ν(Rn+1) → C`(Cn), uniformly
bounded on subsectors of S◦ν(Rn+1), such that b = f̃ is represented by the
Cauchy integral formula (13). Then f is the left monogenic extension to
S◦ν(Rn+1) of the restriction of b to Rn \ {0}.

For each ζ ∈ Cn such that |ζ|2C 6∈ (−∞, 0], set φ(ζ) = χ−(ζ)|ζ|Ce−|ζ|C
and φt(ζ) = φ(tζ) for t > 0. A similar argument to the proof of Lemma 4.5
shows that we may substitute φ for ψ and the same statement holds. The
bound (27) now holds for x ∈ C+

ν′ when φ is substituted for ψ, because in
formula (28) for (b · φt)∧, the expression e+(−x, ζ) is replaced by e−(−x, ζ)
for all 〈x,m〉 > 0 and ζ ∈ m(Cn). Set

f(x) = 4
∞�

0

(
(b ·` ψ2

t )(x) + (b ·` φ2
t )(x)

) dt
t
.(39)

Then according to Lemma 4.5 and its analogue when ψ is replaced by φ,
the decay estimates (32) ensure that the integral converges absolutely for
all x ∈ S◦ν(Rn+1) and f is a left monogenic function in S◦ν(Rn+1), because
b ·` ψ2

t and b ·` φ2
t are both left monogenic functions there. If x ∈ Rn \ {0},

then we have

f(x) = 4b(x)
∞�

0

(
ψ2
t (x) + φ2

t (x)
) dt
t

= 4b(x)
∞�

0

(
χ+(x) + χ−(x)

)
(t|x|)2e−2t|x| dt

t
= 4b(x)

∞�

0

te−2tdt = b(x).

Here we have used the facts that χ±(x) are projections and χ+(x)+χ−(x)=1
for each nonzero x ∈ Rn. The uniformity of the decay estimates (32) for
‖b‖∞ ≤ 1 ensures that for every 0 < ν ′ < ν, there exists Cν′ > 0 independent
of b such that the bound |f(x)| ≤ Cν′‖b‖∞ holds for all x ∈ S◦ν′(Rn+1). This
completes the proof of Theorem 2.4.

Remark 4.6. Formula (39) represents the inverse mapping of f 7→ f̃

defined by the Cauchy integral formula (13) with b = f̃ . Another way of
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looking at (39) is to set

Ψ(z) = 2(χ<(z)>0ze
−z + χ<(z)<0ze

z), z ∈ S◦ν(C).

Then � ∞0 Ψ2(t)t−1 dt = � ∞0 Ψ2(−t)t−1 dt = 1. As noted in Section 2, the
spectral projections χ±(ζ) are associated with multiplication by iζ on the
Clifford algebra C`(Cn). Let Ψ̃ be the function of ζ ∈ Cn defined by the
functional calculus

Ψ̃(ζ) = Ψ{iζ} = Ψ(|ζ|C)χ+(ζ) + Ψ(−|ζ|C)χ−(ζ)

for multiplication by iζ and set Ψ̃t(ζ) = Ψ̃(tζ) for t > 0. Then formula (39)
may be written as

f =
∞�

0

b ·` Ψ̃2
t

dt

t
.

We have shown that by multiplying a bounded holomorphic function b in a
sector by a suitable holomorphic function Ψ̃t with decay at zero and infinity,
the product b · Ψ̃2

t may be extended from Rn \ {0} to a left monogenic
function b ·` Ψ̃2

t for each t > 0 (cf. [10, p. 65]). Then we can integrate out
the scaling factor t. It is plausible that similar techniques could be applied
to domains other than sectors and other Hardy spaces of functions by using
decompositions of functions other than in terms of trigonometric functions.

5. Application to operator theory. Suppose that T : D(T ) → H
is a single densely defined linear operator acting in the Hilbert space H. If
0 ≤ ω < π/2, then T is said to be of type ω if σ(T ) ⊂ Sω(C) and for each
ν > ω, there exists Cν > 0 such that

‖(zI − T )−1‖ ≤ Cν |z|−1, z 6∈ Sν(C).(40)

Then the bounded linear operator f(T ) is defined by formula (1) for any
function f satisfying the bounds (47) in Sν(C) in the case n = 1 and A = T .
The contour C can be taken to be {z ∈ C : |=(z)| = |<(z)| tan θ}, with
ω < θ < ν.

The operator T of type ω is said to have a bounded H∞-functional calcu-
lus if for each ω < ν < π/2, there exists an algebra homomorphism f 7→ f(T )
from H∞(S◦ν(C)) to L(H) agreeing with (1) and a positive number Cν such
that ‖f(T )‖ ≤ Cν‖f‖∞ for all f ∈ H∞(S◦ν(C)).

The following result is from [7, Theorem 6.2.2].

Theorem 5.1. Suppose that T is a one-to-one operator of type ω in H.
Then T has a bounded H∞-functional calculus if and only if for every ω <
ν < π/2, there exists cν > 0 such that T and its adjoint T ∗ satisfy the square
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function estimates
∞�

0

‖ψt(T )u‖2 dt
t
≤ cν‖u‖2, u ∈ H,(41)

∞�

0

‖ψt(T ∗)u‖2
dt

t
≤ cν‖u‖2, u ∈ H,(42)

for some function (every function) ψ ∈ H∞(S◦ν(C)) which satisfies
∞�

0

ψ3(t)
dt

t
=
∞�

0

ψ3(−t) dt
t

= 1,(43)

|ψ(z)| ≤ Cν
|z|s

1 + |z|2s , z ∈ S◦ν(C),(44)

for some s > 0. Here ψt(z) = ψ(tz) for z ∈ S◦ν(C).

We now use formula (2) to generalise this result to n-tuples of commuting
operators acting in a Hilbert space H.

The (n− 1)-sphere in Rn is denoted by Sn−1. The set of s ∈ Sn−1 with
nonzero coordinates sj for every j = 1, . . . , n is denoted by Sn−1

0 . Then Sn−1
0

is a dense open subset of Sn−1 with full surface measure.

Definition 5.2. Let X be a Banach space and let A = (A1, . . . , An) be
an n-tuple of densely defined linear operators Aj : D(Aj)→ X acting in X
such that

⋂n
j=1D(Aj) is dense in X and let 0 ≤ ω < π/2. Then A is said

to be uniformly of type ω if for all s ∈ Sn−1
0 , the densely defined operator

〈A, s〉 :=
∑n

j=1Ajsj is closed, σ(〈A, s〉) ⊂ Sω(C) and for each ν > ω, there
exists Cν > 0 such that

‖(zI − 〈A, s〉)−1‖ ≤ Cν |z|−1, z 6∈ Sν(C), s ∈ Sn−1
0 .(45)

It follows that s 7→ 〈A, s〉 is continuous on Sn−1
0 in the sense of strong

resolvent convergence [6, Theorem VIII.1.5].
If A is uniformly of type ω, it turns out that we can define the Cauchy

kernel Gx(A) for the n-tuple A by the plane wave formula

Gx(A) =
(n− 1)!

2

(
i

2π

)n
sgn(x0)n−1(46)

×
�

Sn−1

(e0 + is)(〈x, s〉I − 〈A, s〉 − x0sI)−n ds

for all x = x0e0 + x with x0 a nonzero real number and x ∈ Rn. Here Sn−1

is the unit (n−1)-sphere in Rn, ds is surface measure and the inverse power
(〈xI − A, s〉 − x0s)

−n is taken in the Clifford module L(X)⊗C`(Cn), which
is identified with the set L(n)(X(n)) of all left module homomorphisms of
X(n) = X ⊗ C`(Cn).
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Suppose that ω < ν < π/2 and f is a left monogenic function defined on
S◦ν(Rn+1) such that for every 0 < θ < ν there exist Cθ > 0 and s > 0 such
that

|f(x)| ≤ Cθ
|x|s

1 + |x|2s , x ∈ S◦θ (Rn+1).(47)

Now if ω < θ < ν and

Hθ = {x ∈ Rn+1 : x = x0e0 + x, |x0|/|x| = tan θ} ⊂ S◦ν(Rn+1),(48)

then it is easy to check that x 7→ Gx(A)n(x)f(x) is integrable with respect
to n-dimensional surface measure µ on Hθ. Therefore, we define

f(A) =
�

Hθ

Gx(A)n(x)f(x) dµ(x).(49)

If ψ : Rn+1 \ {0} → C`(Cn) has a left monogenic extension ψ̃ to S◦ν(Rn+1)
that satisfies the bound (47) for all 0 < θ < ν, then ψ̃(A) is written just as
ψ(A). The hypersurface Hθ can be varied in the region where x 7→ Gx(A)
is two-sided monogenic in the Clifford module L(X)⊗ C`(Cn) and f is left
monogenic in S◦ν(Rn+1).

Theorem 5.3. Let A = (A1, . . . , An) be an n-tuple of densely defined
commuting linear operators Aj : D(Aj) → H acting in a Hilbert space H
such that

⋂n
j=1D(Aj) is dense in H. Suppose that 0 ≤ ω < π/2 and A is

uniformly of type ω. If T = i(A1e1 + · · ·+Anen) is a one-to-one operator of
type ω acting in H(n) = H⊗C`(Cn) and T has an H∞-functional calculus,
then the n-tuple A has a bounded H∞-functional calculus on S◦ν(Cn) for
any ω < ν < π/2, that is, there exists a homomorphism b 7→ b(A), b ∈
H∞(S◦ν(Cn)), from H∞(S◦ν(Cn)) into L(n)(H(n)) and there exists Cν > 0
such that ‖b(A)‖ ≤ Cν‖b‖∞ for all b ∈ H∞(S◦ν(Cn)).

Moreover , if f is the unique two-sided monogenic function defined on
S◦ν(Rn+1) such that b = f̃ , as in Theorem 2.4, and f satisfies the bound
(47), then b(A) = f(A) is given by formula (49).

Proof. By assumption, the operator T has an H∞-functional calculus, so
there exists ψ ∈ H∞(S◦ν(C)) satisfying (41)–(44). In fact, we are at liberty
to choose the function ψ, so we set ψ(z) = C(χ<(z)>0ze

−z +χ<(z)<0ze
z) for

all z ∈ S◦ν(C). We choose the constant C later.
Following [7, Theorem 6.4.3], our aim is to define b(A) for b∈H∞(S◦ν(Cn))

by the formula

(b(A)u, v) =
∞�

0

((bφt)(A)ψt(T )u, ψt(T )∗v)
dt

t
(50)

for all u, v ∈ H(n). The function φ : S◦ν(Cn) → C is constructed from ψ by
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setting
φ(ζ) = ψ2{iζ} = ψ2(|ζ|C)χ+(ζ) + ψ2(−|ζ|C)χ−(ζ),

for all ζ ∈ S◦ν(Cn), by the functional calculus for multiplication by iζ.
According to Corollary 2.5, the mapping f 7→ f̃ given by the Cauchy in-

tegral formula (13) is an isomorphism of the Fréchet algebrasH∞` (S◦ν(Rn+1))
andH∞(S◦ν(Cn)), so there is a left monogenic function b·`φt∈H∞` (S◦ν(Rn+1))
corresponding to the product function ζ 7→ b(ζ)φt(ζ), ζ ∈ S◦ν(Cn), such that
b · φt = (b ·` φt)̃ .

We know from the estimates (32) that b ·`φt satisfies the bound (47) with
s = 1/2 and Cθ proportional to ‖b‖∞, so (bφt)(A) = b ·` φt(A) is defined by
formula (49) and we have

∞�

0

|((bφt)(A)ψt(iT )u, ψt(iT )∗v)| dt
t

≤ sup
t>0
‖(bφt)(A)‖

{∞�

0

‖ψt(iT )u‖2 dt
t

}1/2{∞�

0

‖ψt(iT )∗u‖2 dt
t

}1/2

≤ C ′‖b‖∞‖u‖ ‖v‖.
If we choose C > 0 such that � ∞0 ψ4(t)dt/t = 1, then we obtain the desired
functional calculus along the lines of [7, Theorem 6.4.3].

The assumptions of Theorem 5.3 are satisfied if the n-tuple A consists
of differentiation operators on a Lipschitz surface [8].
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