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Robustness with respect to small time-varied delay
for linear dynamical systems on Banach spaces

by

Miao L1, X1a0-Hut Gu and FA-LUN HUANG (Chengdu)

Abstract. Under suitable conditions we prove the wellposedness of small time-varied
delay equations and then establish the robust stability for such systems on the phase space
of continuous vector-valued functions.

1. Introduction. The robustness of delay equations has been studied
by many authors (see cf. [Bal, Ba2, Da, EN, Hu, FN, JGH, Liu]).
In this paper we consider the time-varied delay equation of the form

z'(t) = Ax(t) + Bx(t — 7(t)), t >0,
(1) - r<6<0,

where A generates a Cp-semigroup (7(¢)):>0 on a Banach space X, B is
a closed densely defined linear operator on X, 7(¢) is continuous and & is
taken from some phase space.

Huang ([Hu]) proved the robust stability of the delay equation (1.1)
on the phase space C(—r,0; X) in the case that B is a bounded operator.
Dropping the assumption that B is bounded, Liu ([Liu]) showed that if A
generates a holomorphic semigroup and B is (—A)®-bounded, then the expo-
nential stability of (1.1) (with 7(¢) = r) on the phase space C(—r,0; D(A))
is robust. Bétkai et al. ([Bal, Ba2]) proved a similar result on the phase
space X x LP(—r,0; D(B)).

Our goal in this paper is to study the robust stability of the time-varied
delay equation (1.1) in the case that B is unbounded. The organization
of the paper is as follows: in Section 2, we will prove the wellposedness of
(1.1) under some general assumptions on A and B, and that the solution
operators are given by Dyson—Phillips series. In Section 3, we prove the
robust stability of the equation with time-varied delay on the phase space of
continuous functions under the assumption that BT'(t) is norm continuous
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for t > 0. In addition, we will give an example to show that under this
condition, the semigroup T'(¢) is not necessarily holomorphic. So our results
in this section generalize that of [Liu]. Moreover, our results show that on
the phase space of continuous functions, the robust stability of the system
without delay persists in the system with time-varied delay. However, the
time-varied delay on the phase space X x LP(—r,0; D(B)) will greatly affect
the robustness and even the wellposedness of the delay equation. This will
be taken up in a subsequent paper.

2. Preliminaries and wellposedness. Let X be a Banach space with
norm ||-|| and let B(X) be the Banach algebra of all bounded linear operators
on X.If A is a linear operator on X, we write D(A) for its domain. We denote
by (f = = So f(t — s)g(s)ds the convolution of f and g. Throughout
this paper the following assumptlons will be in force:

GENERAL ASSUMPTIONS. (al) A generates a Cy-semigroup (7(t)):>0
on X.

(a2) B is a closed linear operator on X, D(A) C D(B) and there is a

non-negative measurable function k € L (0, 00) such that

(2.1) IBT()z| < k@®)|z|, t>0, z€ D(A).

Since k € Ll _(0,00), from [DS, pp. 631, Theorem 19] one knows that
A + B with domain D(A) generates a Cop-semigroup (T5(t))¢>0 on X.

Let wo(T") be the growth bound of (T(t))¢>0, that is, for w > wo(T") and
0 < 0 < w—wo(T), there is a constant M > 1 such that ||T'(t)|| < Me@=9?
for ¢ > 0. Let top > 0 by such that k(to) is finite. Then by (2.1), for ¢ > to
and z € D(A), we have

(2.2)  [[BT()x| = [|BT(t0)T(t — to)x||
< k(to)IT(t — to)al| < k(to)Me= 10 g]].

This shows that BT'(t) extends to a bounded operator on X for t > tg
since D(A) is dense. We will also denote this extension by BT'(t) in the
rest of this paper. Moreover, since there is a sequence {t,} C R such that
tn, — 0 and k(t,) is finite, we know that BT(t) € B(X) for all ¢ > 0. Let
ko(t) = ||BT(t)||. By (2.2), we have k°(t) := ko(t)e ** € L1(0,00) and

(2.3) KO(t) < ko(to)Me™®tt0) ¢ > ¢,

Furthermore, we have

LEMMA 2.1. For allt > 0, BTp(t) € B(X) and ki(t) := ||BTB(t)| €
Ll (0,00) satisfies

(2.4) k1(t) < ky(to)Me@=9—t) ¢ > 45> 0,
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where w > max{0,wy(T),wo(TB)} is large enough such that || T(t)]], || T (t)|
< Melw—0)t fort > 0 and some constant M > 1, and
(2.5) Bi=M | EO(t)dt < 1.

0

Proof. Choose w > max{0,wo(T),wo(Tp)} large enough such that (2.5)
holds. Then for x € X and t > 0, multiplying the equation

t
(2.6) BTp(t)x = BT (t)z + | BT (t — 5)BT(s)z ds
0
by e~“ yields
(2.7) e “%||BTg(s)z| < k°(s) ||z —i—SkO(s —71)e “T||BTg(T)z| dr, s> 0.
0

Integrating (2.7) from 0 to t gives

t t ts
Ve |IBTp(s)z|| ds < \ K(s)||=|| ds + |\ K°(s — 7)e || BTp(r)=|| dr ds
0 0 00
t t
< Bllz|| + e T |BTp(r)x|| | K°(s — 7) dsdr
0 T

t
< Bllall + B e 7| BTp(7)z] dr.
0

It follows that

t
(28) [ |BTs(s)z] ds < B(1 - B) Mz, ¢>0, z € X.
0

By induction, from (2.7) using (2.8) we have
(2.9) e BTp(t)z| < ka(t)[2ll, >0, z€X,

where ko (t) = S°(k9)**(t) and (k°)* = k- - - %k is the n-fold convolution
of the kernel k°. Since [|k°||11(0.00) < B3, We have [[kal11(0,00) < (1 —3)7'5.
Thus from (2.9) we have ||BTg(t)|| < e“'3(1 — 3)~!, and similarly to the
proof of (2.2) and (2.3), one can show that (2.4) holds. =

Next we consider the norm continuity of BT'(t) and BTp(t).

LEMMA 2.2. If BT(t) is norm continuous for t > 0, then so is BTg(t).
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Proof. Let t > 0 and 0 < 6 < t/2. By (2.6), for |h| < 6 and z € X
satisfying |lz| <1,

|BTp(t + h)x — BTg(t)x||

t+h
= HB(T(t +h)z —T(t)z+ | BT(t+h— s)BTp(s)zds
t—4
t—6
+ S [BT(t+h—s)— BT (t —s)|BTg(s)xds
0
— S BT(t — s)BTp(s)x dsH
t—4

t—4
<|BT(t+h)— BT®t)| + | |BT(t+h—s)— BT(t - s)|lki(s)ds
0
t+h t
+Mt[ S ko(t +h —s)ds+ X ko(t — s)ds|,
t—6 t—4&
where M; := max{ki(s) : t/2 < s < 3t/2}; (2.4) implies that M; is finite
for ¢ > 0. Since BT(t) is norm continuous for ¢ > 0 and ko € L], (0, cc), for
every € > 0 there is a §; € (0,¢/4) such that when |h| < /2 and 6 < ¢y,
t+h t
IBT(t+h) = BT@)] + My | kot +h—s)ds+ | kot —s)ds) < /2.
t—4 t—48
Moreover, for given 0 < 0 < dp, since BT(t) is uniformly continuous on
[0/2,t 4+ 6/2], there exists 6. € (0,0/2) such that for s € [0, — d] and
|h| < de,
1/¢ -1
IBT(t +h—s) — BT(t — s)|| < §<Sk1(s) ds) e
0
Combining all these inequalities, for z € X with ||z|| < 1 and |h| < 6. we
obtain
|BTp(t + h)xr — BTp(t)x| < e,

which implies the norm continuity of BT5(t) on (0,00). =

The continuity of BT (t)xz for some point z is equivalent to that of
BTB(t)Cﬂt

LEMMA 2.3. Let x € D(B). Then BT (t)x is continuous for t > 0 if and
only if BT (t)x is continuous for t > 0.
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Proof. Suppose that BT (t)z is continuous for ¢ > 0. Since for 0 < ¢ < 1,

|BTs(t)x — Bz|| = HBT(t)a: — Bz + § BT5(t — s)BT(s)z dsH
0

< _ _
< |BT(t)z — Bz|| +§)k1(t s)ds max [|BT(7)z])
BTpg(t)z is right-continuous at 0. Now let ¢ > 0 and |h| < § < min{1,¢/2}.
Then
|BTp(t+ h)x — BTg(t)x||
t+h
- HBT(t +h)z — BT(t)z + | BTp(s)B(t+h - s)zds
0

t
— | BTs(s BT(t—sxdsH
0

<| T(t+h)x—BT( )z

S)||BT(t +h —s)x — BT(t — s)x|| ds

OLA

t+h t
+ [tgakl(s) ds + t§6k1(s) ds] max | BT(r)al.
Since BT'(s)z is uniformly continuous for s € [0,¢+ 1] and k1 € L{. (0, 00),
for every £ > 0 one can find a constant 0. € (0,min{1,¢/2}) such that for
|h| < d < 0,
1/ -1
|BT(s + h)a = BT(s)a| < 5 (1 +{ki(s) ds) e, sel0t+1],
0

and
t+h t

1
| ki(s)ds+ | ki(s)ds < ( max HBT( )a|[) !
t—8 t—8
By the above estimates, we have
HBTB(t-I-h).T—BTB(t)QSH < g, |h’ < 557

which means that BTg(t)x is continuous for ¢ > 0. Conversely, if BTg(t)x
is continuous for ¢t > 0, then from
t
BT (t)x = BTg(t)x — | BT (s)BT(t — s)zds, t>0,
0
by a similar argument one can show that BT (¢)z is continuous for ¢ > 0. =
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We are particularly interested in the subspace of X on which BT'(t) (and
also BT5(t) by Lemma 2.3) is strongly continuous.

LEMMA 2.4. Let Xy be the subspace of X defined by
Xy ={x € D(B) : BT (t)x is continuous for t > 0}.
Then D(A) C X, C D(B) and Xy is a Banach space with norm
(2.10) lzlle = ]l + sup [|le™ BT (s)zll, = € X,

where w > max{0,wo(T"),wo(TB)} is large enough such that ||T'(t)||+||Ts(t)]]
< Melw=0)t fort > 0 and some constant M > 1, and

[e.9]

M\ e (ko(t) + ka () dt < 1.
0

~
Moreover, the norm

[zllp == |||l + sup le™*BTs(s)z||
s>0

on Xy is equivalent to || - ||p. Finally, if Tp(t) is exponentially stable, that
is, there are constants My > 1 and wy > 0 such that | T (t)|| < Mye=* for
t > 0, then the norm

(2.11) [z]ls == l|z[| 4 sup | BTp(s)z|
5>0
on Xy is also equivalent to || - ||p.
Proof. If x € D(A), then for ¢ > 0 and h > 0,
t+h t+h

|]BT(t+h)x—BT(t)xH:HB | T(s)A:cdsH < | ko(s)ds - | Ax],

so BT (t)x is continuous for ¢ > 0 since ko(-) € LL (0,00). Hence D(A) C
X, C D(B).

Next we show that (X, | - ||p) is a Banach space. Let {x,} C X} be a
Cauchy sequence in Xj. Then from the definition of the norm, both {x,,} and
{Bz,} are Cauchy sequences in X and thus converge. Suppose that =, — z
and Bz, — y in X. Then from the closedness of B we have z € D(B) and
Bx = y. Now the strong continuity of BT(t)x follows from the facts that
x, converges to x and the convergence of BT'(t)z,, to BT (t)x is uniform in
compact intervals. Similarly one can show that (Xp, || - ||») is also a Banach
space by using Lemma 2.3.

To see the equivalence of the two norms, by the Inverse Mapping The-
orem, we only need to show that one norm is stronger than the other. Let
x € Xp. By the definition of ’-norm we have

e |BTp(t)z|| < |lzlly, t >0,
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thus
2|l = |||l + sup |le™**BTs(s)x||
s>0

<[l + sup le™* BT (s)x||

—i—supH —w(=T)BT(s — 7)e " BTg(r .’L'dTH
520

< ||:17||b+Su e ko(s — 7)e T || BT(7)z|| dr

» OL,’;EIJ

< ||a:|]b+sups —w(s=r ko (s — 7)||x||p dT

< [lzlls +7HwaI-

It follows that ||x||y < (1—7)7Y|z|, for € X}, and therefore, the || ||;-norm
is stronger than the || - ||y-norm.

If Tp(t) is exponentially stable, then by Lemma 2.1, BT5(t) € B(X) for
all t > 0 and

IBT5(1)| = | BT5(to)Tn(t — to)ll < ka(to)Mye =), ¢ > tq.

So || - ||s is @ norm on X} and (X3, | - ||s) is a Banach space. Moreover, for
x € Xp,
[l = NIzl + sup [e™* BTg(s)x|| < [lz]| +sup || BTg(s)z|| = |z,
s>0 s>0
and again by the Inverse Mapping Theorem, the norms || - ||s and || - ||, on

X, are equivalent. m

After these preparations, we now consider the delay equation

2'(t) = Ax(t) + Bx(t — 7(t)), t >0,
where 0 < 7 <, 7(t) is continuous for ¢ > 0 and &(-) € C(—r,0; X}). In the
rest of this paper we will denote by X' = C'(—r,0; X}) the phase space. The
solution of (2.12) also satisfies

2(t) = T(H)E(0) + | T(t — 5)Ba(s — 7(s)) ds, t >0,

(2.12)

(2.13) )
z(0) = £(0), —r <0 <0.

We call z(t) a solution of (2.13) if x(t) € C(—r, 00; X;) satisfies (2.13) and

xi(+) € X is continuous for ¢t > 0, where z(6) := z(t + 0) for ¢ > 0 and

—r < 6 < 0. In the following we will denote the solution of (2.13) at & by

x(t,€) and call it the mild solution of (2.12).



296 M. Li et al.

THEOREM 2.5. For any r > 0 and £ € X, (2.13) has a unique solution
x(t,§). Let
(T-()€)(0) = 2:(6,€), =0, —r <6 <0,

be the solution operator. Then there exist positive constants Mgy and wq,
independent of r, such that

(2.14) T ()€ x < Moe®t||€]|lx, t>0, r>0, £E€X.
Proof. We will choose the || - ||;-norm on X}, given by (2.10), with the

constant w so large that ||T(t)|| < Me®@=9 for all t > 0, and w > § > M
such that

Bo =M | e ko(t)dt <1—Ms".
0
For r > 0 and £ € X, define
x(O)(t) _ {T(t)€(0)7 t >0,
(), —r<t<0,
and forn=1,2,...,

(2'15) x(n)(t) _ T(t — S)Ba;(nfl)(s _ T(S)) ds, t>0,

O O e o+

—r <t<O.

)

It is clear from the definition of X} that 2(9)(¢) is continuous for t > —r
in Xp, and from

(0)( )_{T(t+0)§(0), t>r,—r<0<0or0<t<r —t<6<0,
i £(t+0), 0<t<r —r<6<-—t
we have fort > r,—r <0<0or0<t<r,—t<6<0,

21" O)lls = IT(E + 0)6(0)| + sup le™* BT (s +t + 0)(0)|

< Me“MD||£(0)[| + e sup ||lem“CHIO BT (s + ¢ 4 0)€(0)
s>0

< Me“!|€(0) |y + e [€(0)lp < (1 + M)e [|€] x,
and for 0 <t <r, —r <0 < —t,
0
122 O) |y = 1€t + )15 < [1€]| -
It follows that
(2.16) 127 ()l < (1+ M)e!||€]|x, &> 0.

Moreover, from (2.15) it is easy to see that (1 (t) is continuous for ¢ > 0 in
X and by using (2.16) one can show that

20Ol < (14 M)Bre|Ex, >0, €€ X,
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where 31 := Mé~' + By < 1. Then by induction on n we find that (™ (t) is
continuous in X and
217 o O)llx < (1 +M)Brefelx, t20, n=0,1,2,....

Set x(t) = 3.°° 2 (t) for t > —r. By (2.17) the series > o0 (™ (t) is
absolutely convergent on compact intervals in X3 and

(2.18) e ()l < Z 2t ()l < Z 1+ M)p7e|[&]|x

n=0
= (1 +M)(1— ) et |x

Thus z(t) is continuous for ¢ > —r in X; and

() = +TLZ;)§) (t — s)Bz™ (s — 7(s))ds, t>0,
£(t), —r<t<0,
_ { T(£)¢(0) + | T(t - 5)B i:ﬁ(”)(s —7(s))ds, t>0,
£(t), ' —r<t<0,
_ { T(£)¢(0) + | T(t - s)Ba(s — 7(s)) ds, t>0,
£(t), ’ —r<t<0,
that is, z(t) satisfies (2.13) and by (2.18),
(2.19) 2 (e < (1 +M)(1=B) e lE]lx, >0, E€X.

To show the uniqueness of the solutions, let z(t) be a solution of (2.13)
with initial value {(t) =0 (¢ € [—r,0]). Then z(t) = 0 for —r <t <0, while
for t > 0,

xz(t) =\T(t — s)Bx(s — 7(s)) ds.

[

It is easy to show that fort > r,—r <6 <0or0<t<r,—t <0 <0,
t+6
(2.20)  [lze(0)]ly < M | [0 4 ko (¢ 4 0 — )] [|(s — 7(s))[|o ds,
0
which implies that

lze()la < Bre[lze(-)llx;

by using this inequality on the right-hand side of (2.20) and by induction
one obtains

lze ()l < Brelze()lle,  n=1,2,....
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Since n is arbitrary and 51 < 1, we have x; = 0, which proves the uniqueness
of the solutions. So we can define

(T:(0)&)(0) =z(t+0.8), t=0, -r<0<0, X,

where z(¢,€) is the solution of (2.13) at & € X. Moreover, (2.19) implies
that (2.14) holds for My = (1 + M)(1 — Bp)~! and wy = w. Finally, since
2™ (t) are uniformly continuous on [—r, o] for every tg > —r and z("(.) is
continuous for ¢ > 0 in X', by (2.18), we know that x¢(-) is continuous for
t>0inX. m

3. Robustness with respect to small time-varied delay. In this
section we will investigate the stability of the solution of (2.12). To this end,
we rewrite (2.12) as

' (t) = (A+ B)x(t) + B(z(t — 7(t)) — z(t)), t>0,
(3.1) {amszx r<0<0,

where £(+) € X, 0 < 7(t) < r and 7(¢) is continuous for ¢ > 0. The solution
of (3.1) is related to the integrated equation

x(t) = TBt(t)ﬁ(O)

(3.2) +\To(t — s)B(x(s — 7(s)) — x(s)) ds, t>0,
#(6) = €(0), r<o<0.

LEMMA 3.1. The space Xy is Tp(t)-invariant, i.e., Tp(t) Xy C X for
t >0, and (Tp(t))t>0 is a Co-semigroup on Xy,. Moreover, if Tg(t) is expo-
nentially stable on X, then so is Tg(t) on X} and
(3.3) 1T (t)z|s < (3 + ki(to)) Mye*t0e vt |z||,, t>0, z € X,
where tg > 0 is arbitrary, M, and wp are positive constants such that
ITe(t)|| < Mye=¥t fort >0, and || - ||s is given by (2.11).

Proof. It is easy to see that X} is Tp(t)-invariant. Now we suppose that
Tp(t) is exponentially stable on X. Let 2z € X}, and ¢y > 0. Then for every
g > 0, there is a T, > ty such that for s > T, and ¢t > 0,

HBTB(t + S)JZ — BTB(S)HZH = ”BTB(to)(TB(t + s — to)l’ — TB(S — t[)):L’)H
< ke (to) My (e~wrltrs—to) o g=wo(s—t))| 12| < £/2.

On the other hand, by Lemma 2.3, BTp(s)x is continuous for s > 0, and
therefore uniformly continuous on [0, T + 1]. So we can find J. € (0, 1) such
that when t € [0, d],

|BTp(t + s)x — BTp(s)x|| <e/2, se€l0,T:].
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Therefore, for ¢ € [0, d.], we have
1Ts(t)z — xls = [[T(t)z — || + sup |BTp(s)(Ts(t)r — )|
5>

<e/2+¢€/2=¢,

which proves the strong continuity of T (t) on (Xp, || - ||s)-
Next we show that Tz(t) is exponentially stable on (X3, |- ||s) and (3.3)
holds. In fact, for x € X and ¢t > tg > 0, we have

[T (t)x||s = | TB ()| + sup |BTB(s)TB(t)x||

52

= |Ts(t)z| + sup || BTs(s + t)z||
s>0

= Ts@)z] + sup | BTB(to)TB(t + s — to)x||
52

< Mye™0t||z|| 4 sup ky (to) Mpe» (510 |||

s>0

< (1 + ka(to)e™) Mye™ " |||,
and for 0 <t < ¢y,
|Ts(t)zl|s = [|Tp(t)z| + sup | BTp(s +t)z||
s>0

= Mye™"||z]| + [|lzlls < (M + e*"0)e™[l2s.
This implies (3.3) since Mp, e*?0 > 1. u

In the following we will assume that T(t) is exponentially stable on X,
and adopt the || - ||s-norm on Xj. Note that by Lemma 2.4, this norm is
equivalent to the || - ||p-norm.

DEFINITION 3.2. We say that the exponential stability of Tp(t) with
small time-varied delay on the phase space X is robust or the solutions
of (3.2) in X are uniformly exponentially stable with small time-varied delay
if there are positive constants rg, My, and wp such that for ¢t > 0, 0 < 7(¢) <
r < rg continuous and £ € X,

1T ()€l < Moe™ " [[€]|x-

REMARK 3.3. The robustness defined above has some kind of uniformity
since the constants My and wp (depend on 7¢) are independent of 7.

Our main result is

THEOREM 3.4. If BT(t) is norm continuous for t > 0, then the expo-
nential stability of Tp(t) with small time-varied delay on the phase space X
s robust.
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Proof. Suppose that | T(t)|| < Mye ¢! for t > 0. By Lemma 3.1, T(t)
is exponentially stable on X} and (3.3) holds. Since BT'(t) is norm continuous
for t > 0, so is BTp(t) by Lemma 2.2. For r > 0 and £ € X, by Theorem
2.5, (3.2) has a unique solution z¢(+) = z¢(, &) = z(t + -,§) € X and

(3-4) ()12 < Noe™[l¢]lx

where Ny and o are independent of r. For w; € (0,wy) and tg > 0, note
that

ek (t) = e | BTp(t)|| = et || BT (to) T (t — to)|
< ki (to) Mperte—wr(i=to),

For t > tg and k; € Li (0,00), we have

loc

Ba = S ek (t) dt < oo
0
s+t
n(t) :== sup S ek (r)dr — 0 ast— 0+.
s>0

s

Choose 19 € (0, 1] small enough such that
(e*® + 1)n(m) < 1,

35 [TOMI,(MLI T M) ; 2n<m>} (1= (e + (o)) < 1.

Since BTg(t) is norm continuous for ¢t > 0, for r; = t(/2 there exists ro €
(0,71) such that

(36) ||BTB(7’1 — 7’) — BTB(TI)H <r, 0<r< 0.

Now we estimate ||Bx(t — 7(t)) — Bx(t)|| for t > 0, where 0 < 7(t) < r <rg
and 7(t) is continuous for t > 0. For t € [0, 7], since 79 < 1, by (3.4) we

have

(3.7) [1Bx(t = 7(t)) = B(t)[| < [le(t — 7)) —x(®)]ls < 2fz:(-)llx

< 2Npe™ [[€]lx < 2Noe™ €] x-
Let M; = 2Nye??0. We will prove that
(3.8) |Bx(t — 7(t)) — Bx(t)|| < Mye“*!||¢]|lx, t>0, €€ AX.

For t € [0,79], we know from (3.7) that (3.8) holds. Next, suppose that
(3.8) holds for t € [0,n7p], where n is any positive integer, and let ¢ €
[n710, (n+ 1)70]. If t — 7(t) > n7p, then by (3.6) and (3.8), we have
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|Bx(t = 7(t)) = Ba(t)]

_ HB(TB(t —7(t)) — Ts(1)£(0)
t—7(t)
+ S BTg(t —7(t) — s)B(z(s — 7(s)) — x(s)) ds
0

BTt - 9B(a(s - 7(6) - 2(0) ]
0

< | B(Tp(r — 7(6)) — To(r)T(t — m)EO)
£ 1B — () — To(ra))|
ATt — 71— )] [Ba(s — (s)) — ()] ds
b a0 — ) + Rt — I Blals — 7(s) — ()] ds
.
b] k= () — s)IBla(s — (5)) — ()] ds

+ | kit = s)lIB(a(s = 7(s)) — 2(s))]| ds,
nTo
and the first three terms on the right-hand side are bounded by
nTo—ri
riMye e v+ | Myem ||y ds

0
nTo

+ | Bt = 7(0) = 5) + ka(t = 5)| Mrem €] | ds
nTo—7"ri
t—r1
< rMyem gy + MMy | e e T dr g
t—n1o
t—nro+ri—7(t)
+ [ S key (1)e“rt=TO=7) gr
t—n1o—7(t)
t—nTo+11
+ | k(e dr| Myl x

t—nTo
< [r1Mpe®* (1 + M (wp — wl)fl) + 2M b (ry)]e M€ v
< Mae™|¢|| v,
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where My := Mo, 0 := e [roMy(M; ' + (wp — w1)™1) + 21(70)]. Therefore,
(3.9)  [|Bx(t —7(¢)) — Bx(1)|
t—(t)
< Mae el + | ka(t —7(t) = 9)|Bla(s = 7(s)) — z(s))|| ds
+ | kit = 9)|Ba(s = 7(s)) — x(s))|| ds.

Then by the generalized Gronwall inequality or by induction, from (3.9), we
have for t — 7(t) > n7o, t € [n70, (0 + 1)70],

(3.10) IB(2(t —7(t)) —x(t)]| < D> _y™ (1),
n=0
where y(0(t) := Mye “'!||¢||x and for n =1,2,...,
t—7(t) t
y ()= | kit —7(t) =)y (s)ds+ | kit — )y V(s) ds.
nTo nTo
Hence,
t—7(t) t
yt) = | k-7t —s)y@(s)ds+ | ki(t — )y (s) ds
nTo nTo
t—nto—7(t)
= { S k1 (T)e_“”(t_T(t)_T) dr
0
t—n1o
+ | km@)e D ar| sl
0

< Ma(e*" + 1)n(ro)e M [|€]|x;
and then by induction,
(3.11) y™ (1) < Ma(e”'™ +1)"n(m0)" e |€]lxy 1 =10,1,2,....
Now (3.10) and (3.11) imply
(3.12)  [|B(x(t — (1)) — x(®)]| < Y Ma(e” +1)"n(70) e~ [|€]|x

n=0

= Ma[1 — (1" + 1)n(70)] e ||¢]|x
< Ma[1 — (e + Dn(ro)] e €] .
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Note that by (3.5), Ma[l — (e** + 1)n(7)]~! < My, and thus (3.8) holds for
t € [n1o, (n+ 1)719] and t — 7(t) > n7o. But from the calculations above it is
easy to see that (3.12) is also valid for t € [n719, (n+1)70] with t —7(t) < n7p.
Therefore, (3.8) holds for all ¢ > 0.

Finally, we estimate ||x¢(-)||x. For t > 79, —r < 6 <0 and 0 < 7(¢) <
r < ro, by (3.3) and (3.8) we have

t4-0
w2615 = ||T(t + 0)6©0) + | Ta(t+0— $)Bla(s - 7(s)) - (s)) ds
0

S

t-+6
< Tu(t+ 06O+ || § To(t+6—5)Blals - 7(s)) - a(s)) ds
0

s

< (3+ ki (1))e Mye™*H[|€(0) I
t+0
+ H g Tyt + 0 — 8)B(a(s — 7(s)) — 2(s)) dsH

t+0
+ sup H S BTp(t+ 0 —s)Tg(o)B(x(s —7(s)) — z(s)) ds
o>0 0
< (34 ki (1))e” Mye ||| x
t+6
+ | My O My e ds
0
t+0
+ M, S ki(t +0 — s)Mie “**|[€|| x ds
0

< MyMy e [(3+ ki (1)) M + (wp —w1) ™" + Bale ™ )[¢]
which proves
(Y < Mze™ Y [Ellx, > 70, 7 < 70,

where Mz := MyMye“[(3 4 k1(1))M; ! + (wp — wi) ™! + Ba]. Moreover, for
t € [0,70], by (3.4), we have

()2 < Noe™™[|€]lx < Noe™™ e e €]l
< Noe? e ¢] x.

Therefore, for t > 0, r € [0, 7], and £ € X,
e ()] < (M + Noe 0 )e™ H|¢] | x. m

ExXAMPLE 3.5. Let Hy, H> be Hilbert spaces. Suppose that A; generates
a Co-semigroup T}(t) on H; for j =1, 2 respectively, and T5(-) is holomor-
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phic. Moreover, suppose that By : D(B1) C Hy — Ha is a closed linear
operator satisfying D(B1) D D((—Az2)"), where 0 < r < 1. Since T»(t) is
holomorphic, by [EN], B1T>(t) € B(Ha, H1) and there exist constants M
and w such that |B1To(t)|| < Me*t/t" =: k(t) for t > 0. Let H = Hy x Ho,

A
A= 1 0 . B= 0 B
0 A 0 0
Then A generates a Cp-semigroup
Ti(t 0
T = [ B0 , t>0,
0 Tut)
on H and
0 B T (t 0 0 BiT»(t
BT(#) = 1) _ () _ 115(t)
0 0 0 Tu(t) 0 0
is norm continuous for ¢ > 0 with [|BT'(t)|| = |[B1T2(t)|B(m, 1) < k(t) €

Li (0,00). So the operators A and B satisfy the assumptions of Theorems

loc

2.5 and 3.4, but the Cy-semigroup T'(¢) is not holomorphic.

Acknowledgements. The authors are greatly indebted to the refer-
ees for helpful suggestions and for pointing out a mistake in the proof of
Theorem 2.5.
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