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Robustness with respect to small time-varied delay
for linear dynamical systems on Banach spaces

by

Miao Li, Xiao-Hui Gu and Fa-Lun Huang (Chengdu)

Abstract. Under suitable conditions we prove the wellposedness of small time-varied
delay equations and then establish the robust stability for such systems on the phase space
of continuous vector-valued functions.

1. Introduction. The robustness of delay equations has been studied
by many authors (see cf. [Ba1, Ba2, Da, EN, Hu, FN, JGH, Liu]).

In this paper we consider the time-varied delay equation of the form

(1.1)

{
x′(t) = Ax(t) +Bx(t− τ(t)), t ≥ 0,

x(θ) = ξ(θ), −r ≤ θ ≤ 0,

where A generates a C0-semigroup (T (t))t≥0 on a Banach space X, B is
a closed densely defined linear operator on X, τ(t) is continuous and ξ is
taken from some phase space.

Huang ([Hu]) proved the robust stability of the delay equation (1.1)
on the phase space C(−r, 0;X) in the case that B is a bounded operator.
Dropping the assumption that B is bounded, Liu ([Liu]) showed that if A
generates a holomorphic semigroup and B is (−A)α-bounded, then the expo-
nential stability of (1.1) (with τ(t) ≡ r) on the phase space C(−r, 0;D(A))
is robust. Bátkai et al. ([Ba1, Ba2]) proved a similar result on the phase
space X × Lp(−r, 0;D(B)).

Our goal in this paper is to study the robust stability of the time-varied
delay equation (1.1) in the case that B is unbounded. The organization
of the paper is as follows: in Section 2, we will prove the wellposedness of
(1.1) under some general assumptions on A and B, and that the solution
operators are given by Dyson–Phillips series. In Section 3, we prove the
robust stability of the equation with time-varied delay on the phase space of
continuous functions under the assumption that BT (t) is norm continuous
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for t > 0. In addition, we will give an example to show that under this
condition, the semigroup T (t) is not necessarily holomorphic. So our results
in this section generalize that of [Liu]. Moreover, our results show that on
the phase space of continuous functions, the robust stability of the system
without delay persists in the system with time-varied delay. However, the
time-varied delay on the phase space X×Lp(−r, 0;D(B)) will greatly affect
the robustness and even the wellposedness of the delay equation. This will
be taken up in a subsequent paper.

2. Preliminaries and wellposedness. Let X be a Banach space with
norm ‖·‖ and let B(X) be the Banach algebra of all bounded linear operators
onX. If A is a linear operator onX, we writeD(A) for its domain. We denote

by (f ∗ g)(t) =
� t
0 f(t − s)g(s) ds the convolution of f and g. Throughout

this paper the following assumptions will be in force:

General Assumptions. (a1) A generates a C0-semigroup (T (t))t≥0

on X.

(a2) B is a closed linear operator on X, D(A) ⊂ D(B) and there is a
non-negative measurable function k ∈ L1

loc(0,∞) such that

(2.1) ‖BT (t)x‖ ≤ k(t)‖x‖, t ≥ 0, x ∈ D(A).

Since k ∈ L1
loc(0,∞), from [DS, pp. 631, Theorem 19] one knows that

A+B with domain D(A) generates a C0-semigroup (TB(t))t≥0 on X.
Let ω0(T ) be the growth bound of (T (t))t≥0, that is, for ω > ω0(T ) and

0 < δ < ω − ω0(T ), there is a constant M ≥ 1 such that ‖T (t)‖ ≤Me(ω−δ)t

for t ≥ 0. Let t0 > 0 by such that k(t0) is finite. Then by (2.1), for t ≥ t0
and x ∈ D(A), we have

‖BT (t)x‖ = ‖BT (t0)T (t− t0)x‖(2.2)

≤ k(t0)‖T (t− t0)x‖ ≤ k(t0)Me(ω−δ)(t−t0)‖x‖.
This shows that BT (t) extends to a bounded operator on X for t ≥ t0
since D(A) is dense. We will also denote this extension by BT (t) in the
rest of this paper. Moreover, since there is a sequence {tn} ⊂ R+ such that
tn → 0 and k(tn) is finite, we know that BT (t) ∈ B(X) for all t > 0. Let
k0(t) = ‖BT (t)‖. By (2.2), we have k0(t) := k0(t)e−ωt ∈ L1(0,∞) and

(2.3) k0(t) ≤ k0(t0)Me−δ(t−t0), t ≥ t0.
Furthermore, we have

Lemma 2.1. For all t > 0, BTB(t) ∈ B(X) and k1(t) := ‖BTB(t)‖ ∈
L1

loc(0,∞) satisfies

(2.4) k1(t) ≤ k1(t0)Me(ω−δ)(t−t0), t ≥ t0 > 0,
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where ω > max{0, ω0(T ), ω0(TB)} is large enough such that ‖T (t)‖, ‖TB(t)‖
≤Me(ω−δ)t for t ≥ 0 and some constant M ≥ 1, and

(2.5) β := M

∞�

0

k0(t) dt < 1.

Proof. Choose ω > max{0, ω0(T ), ω0(TB)} large enough such that (2.5)
holds. Then for x ∈ X and t > 0, multiplying the equation

(2.6) BTB(t)x = BT (t)x+

t�

0

BT (t− s)BTB(s)x ds

by e−ωt yields

(2.7) e−ωs‖BTB(s)x‖ ≤ k0(s)‖x‖+

s�

0

k0(s− τ)e−ωτ‖BTB(τ)x‖ dτ, s > 0.

Integrating (2.7) from 0 to t gives

t�

0

e−ωs‖BTB(s)x‖ ds ≤
t�

0

k0(s)‖x‖ ds+

t�

0

s�

0

k0(s− τ)e−ωτ‖BTB(τ)x‖ dτ ds

≤ β‖x‖+

t�

0

e−ωτ‖BTB(τ)x‖
t�

τ

k0(s− τ) ds dτ

≤ β‖x‖+ β

t�

0

e−ωτ‖BTB(τ)x‖ dτ.

It follows that

(2.8)

t�

0

e−ωs‖BTB(s)x‖ ds ≤ β(1− β)−1‖x‖, t > 0, x ∈ X.

By induction, from (2.7) using (2.8) we have

(2.9) e−ωt‖BTB(t)x‖ ≤ k2(t)‖x‖, t > 0, x ∈ X,

where k2(t) =
∑

(k0)∗n(t) and (k0)∗n = k0 ∗ · · · ∗k0 is the n-fold convolution
of the kernel k0. Since ‖k0‖L1(0,∞) ≤ β, we have ‖k2‖L1(0,∞) ≤ (1− β)−1β.

Thus from (2.9) we have ‖BTB(t)‖ ≤ eωtβ(1 − β)−1, and similarly to the
proof of (2.2) and (2.3), one can show that (2.4) holds.

Next we consider the norm continuity of BT (t) and BTB(t).

Lemma 2.2. If BT (t) is norm continuous for t > 0, then so is BTB(t).
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Proof. Let t > 0 and 0 < δ < t/2. By (2.6), for |h| < δ and x ∈ X
satisfying ‖x‖ ≤ 1,

‖BTB(t+ h)x−BTB(t)x‖

=
∥∥∥B(T (t+ h)x− T (t))x+

t+h�

t−δ
BT (t+ h− s)BTB(s)x ds

+

t−δ�

0

[BT (t+ h− s)−BT (t− s)]BTB(s)x ds

−
t�

t−δ
BT (t− s)BTB(s)x ds

∥∥∥

≤ ‖BT (t+ h)−BT (t)‖+

t−δ�

0

‖BT (t+ h− s)−BT (t− s)‖k1(s) ds

+Mt

[ t+h�

t−δ
k0(t+ h− s) ds+

t�

t−δ
k0(t− s) ds

]
,

where Mt := max{k1(s) : t/2 ≤ s ≤ 3t/2}; (2.4) implies that Mt is finite
for t > 0. Since BT (t) is norm continuous for t > 0 and k0 ∈ L1

loc(0,∞), for
every ε > 0 there is a δ1 ∈ (0, t/4) such that when |h| < δ/2 and δ ≤ δ1,

‖BT (t+ h)−BT (t)‖+Mt

( t+h�

t−δ
k0(t+ h− s) ds+

t�

t−δ
k0(t− s) ds

)
< ε/2.

Moreover, for given 0 < δ ≤ δ1, since BT (t) is uniformly continuous on
[δ/2, t + δ/2], there exists δε ∈ (0, δ/2) such that for s ∈ [0, t − δ] and
|h| ≤ δε,

‖BT (t+ h− s)−BT (t− s)‖ < 1

2

( t�

0

k1(s) ds
)−1

ε.

Combining all these inequalities, for x ∈ X with ‖x‖ ≤ 1 and |h| < δε we
obtain

‖BTB(t+ h)x−BTB(t)x‖ < ε,

which implies the norm continuity of BTB(t) on (0,∞).

The continuity of BT (t)x for some point x is equivalent to that of
BTB(t)x:

Lemma 2.3. Let x ∈ D(B). Then BT (t)x is continuous for t ≥ 0 if and
only if BTB(t)x is continuous for t ≥ 0.
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Proof. Suppose that BT (t)x is continuous for t ≥ 0. Since for 0 ≤ t ≤ 1,

‖BTB(t)x−Bx‖ =
∥∥∥BT (t)x−Bx+

t�

0

BTB(t− s)BT (s)x ds
∥∥∥

≤ ‖BT (t)x−Bx‖+

t�

0

k1(t− s) ds max
0≤τ≤1

‖BT (τ)x‖,

BTB(t)x is right-continuous at 0. Now let t > 0 and |h| < δ < min{1, t/2}.
Then

‖BTB(t+ h)x−BTB(t)x‖

=
∥∥∥BT (t+ h)x−BT (t)x+

t+h�

0

BTB(s)B(t+ h− s)x ds

−
t�

0

BTB(s)BT (t− s)x ds
∥∥∥

≤ ‖BT (t+ h)x−BT (t)x‖

+

t−δ�

0

k1(s)‖BT (t+ h− s)x−BT (t− s)x‖ ds

+
[ t+h�

t−δ
k1(s) ds+

t�

t−δ
k1(s) ds

]
max

0≤τ≤2
‖BT (τ)x‖.

Since BT (s)x is uniformly continuous for s ∈ [0, t+ 1] and k1 ∈ L1
loc(0,∞),

for every ε > 0 one can find a constant δε ∈ (0,min{1, t/2}) such that for
|h| < δ < δε,

‖BT (s+ h)x−BT (s)x‖ < 1

2

(
1 +

t�

0

k1(s) ds
)−1

ε, s ∈ [0, t+ 1],

and
t+h�

t−δ
k1(s) ds+

t�

t−δ
k1(s) ds <

1

2
( max
0≤τ≤2

‖BT (τ)x‖)−1ε.

By the above estimates, we have

‖BTB(t+ h)x−BTB(t)x‖ < ε, |h| < δε,

which means that BTB(t)x is continuous for t ≥ 0. Conversely, if BTB(t)x
is continuous for t ≥ 0, then from

BT (t)x = BTB(t)x−
t�

0

BT (s)BTB(t− s)x ds, t ≥ 0,

by a similar argument one can show that BT (t)x is continuous for t ≥ 0.
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We are particularly interested in the subspace of X on which BT (t) (and
also BTB(t) by Lemma 2.3) is strongly continuous.

Lemma 2.4. Let Xb be the subspace of X defined by

Xb = {x ∈ D(B) : BT (t)x is continuous for t ≥ 0}.
Then D(A) ⊂ Xb ⊂ D(B) and Xb is a Banach space with norm

(2.10) ‖x‖b = ‖x‖+ sup
s≥0
‖e−ωsBT (s)x‖, x ∈ Xb,

where ω > max{0, ω0(T ), ω0(TB)} is large enough such that ‖T (t)‖+‖TB(t)‖
≤Me(ω−δ)t for t ≥ 0 and some constant M ≥ 1, and

γ := M

∞�

0

e−ωt(k0(t) + k1(t)) dt < 1.

Moreover , the norm

‖x‖b′ := ‖x‖+ sup
s≥0
‖e−ωsBTB(s)x‖

on Xb is equivalent to ‖ · ‖b. Finally , if TB(t) is exponentially stable, that
is, there are constants Mb ≥ 1 and ωb > 0 such that ‖TB(t)‖ ≤Mbe

−ωbt for
t ≥ 0, then the norm

(2.11) ‖x‖s := ‖x‖+ sup
s≥0
‖BTB(s)x‖

on Xb is also equivalent to ‖ · ‖b.
Proof. If x ∈ D(A), then for t ≥ 0 and h > 0,

‖BT (t+ h)x−BT (t)x‖ =
∥∥∥B

t+h�

t

T (s)Axds
∥∥∥ ≤

t+h�

t

k0(s) ds · ‖Ax‖,

so BT (t)x is continuous for t ≥ 0 since k0(·) ∈ L1
loc(0,∞). Hence D(A) ⊂

Xb ⊂ D(B).
Next we show that (Xb, ‖ · ‖b) is a Banach space. Let {xn} ⊂ Xb be a

Cauchy sequence in Xb. Then from the definition of the norm, both {xn} and
{Bxn} are Cauchy sequences in X and thus converge. Suppose that xn → x
and Bxn → y in X. Then from the closedness of B we have x ∈ D(B) and
Bx = y. Now the strong continuity of BT (t)x follows from the facts that
xn converges to x and the convergence of BT (t)xn to BT (t)x is uniform in
compact intervals. Similarly one can show that (Xb, ‖ · ‖b′) is also a Banach
space by using Lemma 2.3.

To see the equivalence of the two norms, by the Inverse Mapping The-
orem, we only need to show that one norm is stronger than the other. Let
x ∈ Xb. By the definition of b′-norm we have

e−ωt‖BTB(t)x‖ ≤ ‖x‖b′ , t ≥ 0,
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thus

‖x‖b′ = ‖x‖+ sup
s≥0
‖e−ωsBTB(s)x‖

≤ ‖x‖+ sup
s≥0
‖e−ωsBT (s)x‖

+ sup
s≥0

∥∥∥
s�

0

e−ω(s−τ)BT (s− τ)e−ωτBTB(τ)x dτ
∥∥∥

≤ ‖x‖b + sup
s≥0

s�

0

e−ω(s−τ)k0(s− τ)e−ωτ‖BTB(τ)x‖ dτ

≤ ‖x‖b + sup
s≥0

s�

0

e−ω(s−τ)k0(s− τ)‖x‖b′ dτ

≤ ‖x‖b + γ‖x‖b′ .
It follows that ‖x‖b′ ≤ (1−γ)−1‖x‖b for x ∈ Xb, and therefore, the ‖·‖b-norm
is stronger than the ‖ · ‖b′-norm.

If TB(t) is exponentially stable, then by Lemma 2.1, BTB(t) ∈ B(X) for
all t > 0 and

‖BTB(t)‖ = ‖BTB(t0)TB(t− t0)‖ ≤ k1(t0)Mbe
−ωb(t−t0), t ≥ t0.

So ‖ · ‖s is a norm on Xb and (Xb, ‖ · ‖s) is a Banach space. Moreover, for
x ∈ Xb,

‖x‖b′ = ‖x‖+ sup
s≥0
‖e−ωsBTB(s)x‖ ≤ ‖x‖+ sup

s≥0
‖BTB(s)x‖ = ‖x‖s,

and again by the Inverse Mapping Theorem, the norms ‖ · ‖s and ‖ · ‖b on
Xb are equivalent.

After these preparations, we now consider the delay equation

(2.12)

{
x′(t) = Ax(t) +Bx(t− τ(t)), t ≥ 0,

x(θ) = ξ(θ), −r ≤ θ ≤ 0,

where 0 ≤ τ ≤ r, τ(t) is continuous for t ≥ 0 and ξ(·) ∈ C(−r, 0;Xb). In the
rest of this paper we will denote by X = C(−r, 0;Xb) the phase space. The
solution of (2.12) also satisfies

(2.13)




x(t) = T (t)ξ(0) +

t�

0

T (t− s)Bx(s− τ(s)) ds, t ≥ 0,

x(θ) = ξ(θ), −r ≤ θ ≤ 0.

We call x(t) a solution of (2.13) if x(t) ∈ C(−r,∞;Xb) satisfies (2.13) and
xt(·) ∈ X is continuous for t ≥ 0, where xt(θ) := x(t + θ) for t ≥ 0 and
−r ≤ θ ≤ 0. In the following we will denote the solution of (2.13) at ξ by
x(t, ξ) and call it the mild solution of (2.12).
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Theorem 2.5. For any r > 0 and ξ ∈ X , (2.13) has a unique solution
x(t, ξ). Let

(Tr(t)ξ)(θ) := xt(θ, ξ), t ≥ 0, −r ≤ θ ≤ 0,

be the solution operator. Then there exist positive constants M0 and ω0,
independent of r, such that

(2.14) ‖Tr(t)ξ‖X ≤M0e
ω0t‖ξ‖X , t ≥ 0, r > 0, ξ ∈ X .

Proof. We will choose the ‖ · ‖b-norm on Xb given by (2.10), with the

constant ω so large that ‖T (t)‖ ≤ Me(ω−δ)t for all t ≥ 0, and ω > δ > M
such that

β0 := M

∞�

0

e−ωtk0(t) dt < 1−Mδ−1.

For r > 0 and ξ ∈ X , define

x(0)(t) =

{
T (t)ξ(0), t ≥ 0,

ξ(t), −r ≤ t < 0,

and for n = 1, 2, . . . ,

(2.15) x(n)(t) =





t�

0

T (t− s)Bx(n−1)(s− τ(s)) ds, t ≥ 0,

0, −r ≤ t < 0.

It is clear from the definition of Xb that x(0)(t) is continuous for t ≥ −r
in Xb, and from

x
(0)
t (θ) =

{
T (t+ θ)ξ(0), t ≥ r,−r ≤ θ ≤ 0 or 0 ≤ t ≤ r,−t ≤ θ ≤ 0,

ξ(t+ θ), 0 ≤ t ≤ r,−r ≤ θ ≤ −t,
we have for t ≥ r,−r ≤ θ ≤ 0 or 0 ≤ t ≤ r,−t ≤ θ ≤ 0,

‖x(0)
t (θ)‖b = ‖T (t+ θ)ξ(0)‖+ sup

s≥0
‖e−ωsBT (s+ t+ θ)ξ(0)‖

≤Meω(t+θ)‖ξ(0)‖+ eω(t+θ) sup
s≥0
‖e−ω(s+t+θ)BT (s+ t+ θ)ξ(0)‖

≤Meωt‖ξ(0)‖b + eωt‖ξ(0)‖b ≤ (1 +M)eωt‖ξ‖X ,
and for 0 ≤ t ≤ r, −r ≤ θ ≤ −t,

‖x(0)
t (θ)‖b = ‖ξ(t+ θ)‖b ≤ ‖ξ‖X .

It follows that

(2.16) ‖x(0)
t (·)‖X ≤ (1 +M)eωt‖ξ‖X , t ≥ 0.

Moreover, from (2.15) it is easy to see that x(1)(t) is continuous for t ≥ 0 in
Xb and by using (2.16) one can show that

‖x(1)
t (·)‖X ≤ (1 +M)β1e

ωt‖ξ‖X , t ≥ 0, ξ ∈ X ,
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where β1 := Mδ−1 + β0 < 1. Then by induction on n we find that x(n)(t) is
continuous in Xb and

(2.17) ‖x(n)
t (·)‖X ≤ (1 +M)βn1 e

ωt‖ξ‖X , t ≥ 0, n = 0, 1, 2, . . . .

Set x(t) =
∑∞

n=0 x
(n)(t) for t ≥ −r. By (2.17) the series

∑∞
n=0 x

(n)(t) is
absolutely convergent on compact intervals in Xb and

‖xt(·)‖X ≤
∞∑

n=0

‖x(n)
t (·)‖X ≤

∞∑

n=0

(1 +M)βn1 e
ωt‖ξ‖X(2.18)

= (1 +M)(1− β1)−1eωt‖ξ‖X .
Thus x(t) is continuous for t ≥ −r in Xb and

x(t) =




T (t)ξ(0) +

∞∑

n=0

t�

0

T (t− s)Bx(n)(s− τ(s)) ds, t ≥ 0,

ξ(t), −r ≤ t ≤ 0,

=




T (t)ξ(0) +

t�

0

T (t− s)B
∞∑

n=0

x(n)(s− τ(s)) ds, t ≥ 0,

ξ(t), −r ≤ t ≤ 0,

=




T (t)ξ(0) +

t�

0

T (t− s)Bx(s− τ(s)) ds, t ≥ 0,

ξ(t), −r ≤ t ≤ 0,

that is, x(t) satisfies (2.13) and by (2.18),

(2.19) ‖xt(·)‖X ≤ (1 +M)(1− β1)−1eωt‖ξ‖X , t ≥ 0, ξ ∈ X .
To show the uniqueness of the solutions, let x(t) be a solution of (2.13)

with initial value ξ(t) ≡ 0 (t ∈ [−r, 0]). Then x(t) = 0 for −r ≤ t ≤ 0, while
for t ≥ 0,

x(t) =

t�

0

T (t− s)Bx(s− τ(s)) ds.

It is easy to show that for t ≥ r,−r ≤ θ ≤ 0 or 0 ≤ t ≤ r,−t ≤ θ ≤ 0,

(2.20) ‖xt(θ)‖b ≤M
t+θ�

0

[e(ω−δ)(t+θ−s) + k0(t+ θ − s)]‖x(s− τ(s))‖b ds,

which implies that

‖xt(·)‖X ≤ β1e
ωt‖xt(·)‖X ;

by using this inequality on the right-hand side of (2.20) and by induction
one obtains

‖xt(·)‖X ≤ βn1 eωt‖xt(·)‖X , n = 1, 2, . . . .
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Since n is arbitrary and β1 < 1, we have xt ≡ 0, which proves the uniqueness
of the solutions. So we can define

(Tr(t)ξ)(θ) = x(t+ θ, ξ), t ≥ 0, −r ≤ θ ≤ 0, ξ ∈ X ,
where x(t, ξ) is the solution of (2.13) at ξ ∈ X . Moreover, (2.19) implies
that (2.14) holds for M0 = (1 + M)(1 − β0)−1 and ω0 = ω. Finally, since
x(n)(t) are uniformly continuous on [−r, t0] for every t0 > −r and x(n)(·) is
continuous for t ≥ 0 in X , by (2.18), we know that xt(·) is continuous for
t ≥ 0 in X .

3. Robustness with respect to small time-varied delay. In this
section we will investigate the stability of the solution of (2.12). To this end,
we rewrite (2.12) as

(3.1)

{
x′(t) = (A+B)x(t) +B(x(t− τ(t))− x(t)), t ≥ 0,

x(θ) = ξ(θ), −r ≤ θ ≤ 0,

where ξ(·) ∈ X , 0 ≤ τ(t) ≤ r and τ(t) is continuous for t ≥ 0. The solution
of (3.1) is related to the integrated equation

(3.2)





x(t) = TB(t)ξ(0)

+

t�

0

TB(t− s)B(x(s− τ(s))− x(s)) ds, t ≥ 0,

x(θ) = ξ(θ), −r ≤ θ ≤ 0.

Lemma 3.1. The space Xb is TB(t)-invariant , i.e., TB(t)Xb ⊂ Xb for
t ≥ 0, and (TB(t))t≥0 is a C0-semigroup on Xb. Moreover , if TB(t) is expo-
nentially stable on X, then so is TB(t) on Xb and

(3.3) ‖TB(t)x‖s ≤ (3 + k1(t0))Mbe
ωbt0e−ωbt‖x‖s, t ≥ 0, x ∈ Xb,

where t0 > 0 is arbitrary , Mb and ωb are positive constants such that
‖TB(t)‖ ≤Mbe

−ωbt for t ≥ 0, and ‖ · ‖s is given by (2.11).

Proof. It is easy to see that Xb is TB(t)-invariant. Now we suppose that
TB(t) is exponentially stable on X. Let x ∈ Xb and t0 > 0. Then for every
ε > 0, there is a Tε ≥ t0 such that for s ≥ Tε and t ≥ 0,

‖BTB(t+ s)x−BTB(s)x‖ = ‖BTB(t0)(TB(t+ s− t0)x− TB(s− t0)x)‖
≤ k1(t0)Mb(e

−ωb(t+s−t0) + e−ωb(s−t0))‖x‖ < ε/2.

On the other hand, by Lemma 2.3, BTB(s)x is continuous for s ≥ 0, and
therefore uniformly continuous on [0, Tε + 1]. So we can find δε ∈ (0, 1) such
that when t ∈ [0, δε],

‖BTB(t+ s)x−BTB(s)x‖ < ε/2, s ∈ [0, Tε].
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Therefore, for t ∈ [0, δε], we have

‖TB(t)x− x‖s = ‖TB(t)x− x‖+ sup
s≥0
‖BTB(s)(TB(t)x− x)‖

≤ ε/2 + ε/2 = ε,

which proves the strong continuity of TB(t) on (Xb, ‖ · ‖s).
Next we show that TB(t) is exponentially stable on (Xb, ‖ · ‖s) and (3.3)

holds. In fact, for x ∈ Xb and t ≥ t0 > 0, we have

‖TB(t)x‖s = ‖TB(t)x‖+ sup
s≥0
‖BTB(s)TB(t)x‖

= ‖TB(t)x‖+ sup
s≥0
‖BTB(s+ t)x‖

= ‖TB(t)x‖+ sup
s≥0
‖BTB(t0)TB(t+ s− t0)x‖

≤Mbe
−ωbt‖x‖+ sup

s≥0
k1(t0)Mbe

−ωb(t+s−t0)‖x‖

≤ (1 + k1(t0)eωbt0)Mbe
−ωbt‖x‖s,

and for 0 ≤ t ≤ t0,

‖TB(t)x‖s = ‖TB(t)x‖+ sup
s≥0
‖BTB(s+ t)x‖

= Mbe
−ωbt‖x‖+ ‖x‖s ≤ (Mb + eωbt0)e−ωbt‖x‖s.

This implies (3.3) since Mb, e
ωbt0 ≥ 1.

In the following we will assume that TB(t) is exponentially stable on X,
and adopt the ‖ · ‖s-norm on Xb. Note that by Lemma 2.4, this norm is
equivalent to the ‖ · ‖b-norm.

Definition 3.2. We say that the exponential stability of TB(t) with
small time-varied delay on the phase space X is robust or the solutions
of (3.2) in X are uniformly exponentially stable with small time-varied delay
if there are positive constants r0,M0, and ω0 such that for t ≥ 0, 0 ≤ τ(t) ≤
r ≤ r0 continuous and ξ ∈ X ,

‖Tr(t)ξ‖X ≤M0e
−ω0t‖ξ‖X .

Remark 3.3. The robustness defined above has some kind of uniformity
since the constants M0 and ω0 (depend on r0) are independent of r.

Our main result is

Theorem 3.4. If BT (t) is norm continuous for t > 0, then the expo-
nential stability of TB(t) with small time-varied delay on the phase space X
is robust.
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Proof. Suppose that ‖TB(t)‖ ≤Mbe
−ωbt for t ≥ 0. By Lemma 3.1, TB(t)

is exponentially stable onXb and (3.3) holds. SinceBT (t) is norm continuous
for t > 0, so is BTB(t) by Lemma 2.2. For r > 0 and ξ ∈ X , by Theorem
2.5, (3.2) has a unique solution xt(·) = xt(·, ξ) = x(t+ ·, ξ) ∈ X and

(3.4) ‖xt(·)‖X ≤ N0e
σ0t‖ξ‖X ,

where N0 and σ0 are independent of r. For ω1 ∈ (0, ωb) and t0 > 0, note
that

eω1tk1(t) = eω1t‖BTB(t)‖ = eω1t‖BTB(t0)TB(t− t0)‖
≤ k1(t0)Mbe

ω1te−ωb(t−t0).

For t ≥ t0 and k1 ∈ L1
loc(0,∞), we have

β2 :=

∞�

0

eω1tk1(t) dt <∞

η(t) := sup
s≥0

s+t�

s

eω1τk1(τ) dτ → 0 as t→ 0+.

Choose τ0 ∈ (0, 1] small enough such that

(3.5)

(eωb + 1)η(τ0) < 1,

eωb
[
τ0Mb

(
1

M1
+

1

ωb − ω1

)
+ 2η(τ0)

]
(1− (eωb + 1)η(τ0))−1 < 1.

Since BTB(t) is norm continuous for t > 0, for r1 = t0/2 there exists r0 ∈
(0, r1) such that

(3.6) ‖BTB(r1 − r)−BTB(r1)‖ < r1, 0 ≤ r ≤ r0.

Now we estimate ‖Bx(t− τ(t))−Bx(t)‖ for t ≥ 0, where 0 ≤ τ(t) ≤ r ≤ r0

and τ(t) is continuous for t ≥ 0. For t ∈ [0, τ0], since τ0 ≤ 1, by (3.4) we
have

‖Bx(t− τ(t))−Bx(t)‖ ≤ ‖x(t− τ(t))− x(t)‖s ≤ 2‖xt(·)‖X(3.7)

≤ 2N0e
σ0t‖ξ‖X ≤ 2N0e

σ0‖ξ‖X .

Let M1 = 2N0e
2σ0 . We will prove that

(3.8) ‖Bx(t− τ(t))−Bx(t)‖ ≤M1e
ω1t‖ξ‖X , t ≥ 0, ξ ∈ X .

For t ∈ [0, τ0], we know from (3.7) that (3.8) holds. Next, suppose that
(3.8) holds for t ∈ [0, nτ0], where n is any positive integer, and let t ∈
[nτ0, (n+ 1)τ0]. If t− τ(t) > nτ0, then by (3.6) and (3.8), we have
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‖Bx(t− τ(t))−Bx(t)‖
=
∥∥∥B(TB(t− τ(t))− TB(t))ξ(0)

+

t−τ(t)�

0

BTB(t− τ(t)− s)B(x(s− τ(s))− x(s)) ds

−
t�

0

BTB(t− s)B(x(s− τ(s))− x(s)) ds
∥∥∥

≤ ‖B(TB(r1 − τ(t))− TB(r1))TB(t− r1)ξ(0)‖

+

nτ0−r1�

0

‖B(TB(r1 − τ(t))− TB(r1))‖

· ‖TB(t− r1 − s)‖ · ‖B(x(s− τ(s))− x(s))‖ ds

+

nτ0�

nτ0−r1
[k1(t− τ(t)− s) + k1(t− s)]‖B(x(s− τ(s))− x(s))‖ ds

+

t−τ(t)�

nτ0

k1(t− τ(t)− s)‖B(x(s− τ(s))− x(s))‖ ds

+

t�

nτ0

k1(t− s)‖B(x(s− τ(s))− x(s))‖ ds,

and the first three terms on the right-hand side are bounded by

r1Mbe
−ωb(t−r1)‖ξ‖X +

nτ0−r1�

0

r1Mbe
−ωb(t−r1)‖ξ‖X ds

+

nτ0�

nτ0−r1
[k1(t− τ(t)− s) + k1(t− s)]M1e

−ω1s‖ξ‖X ds

≤ r1Mbe
−ωb(t−r1)‖ξ‖X + r1MbM1

t−r1�

t−nτ0
e−ωbτe−ω1(t−r1−τ) dτ ‖ξ‖X

+
[ t−nτ0+r1−τ(t)�

t−nτ0−τ(t)

k1(τ)e−ω1(t−τ(t)−τ) dτ

+

t−nτ0+r1�

t−nτ0
k1(τ)e−ω1(t−τ) dτ

]
M1‖ξ‖X

≤ [r1Mbe
ωb(1 +M1(ωb − ω1)−1) + 2M1e

ωbη(r1)]e−ω1t‖ξ‖X
≤M2e

−ω1t‖ξ‖X ,
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where M2 := M1%, % := eωb [τ0Mb(M
−1
1 + (ωb − ω1)−1) + 2η(τ0)]. Therefore,

(3.9) ‖Bx(t− τ(t))−Bx(t)‖

≤M2e
−ω1t‖ξ‖X +

t−τ(t)�

nτ0

k1(t− τ(t)− s)‖B(x(s− τ(s))− x(s))‖ ds

+

t�

nτ0

k1(t− s)‖B(x(s− τ(s))− x(s))‖ ds.

Then by the generalized Gronwall inequality or by induction, from (3.9), we
have for t− τ(t) > nτ0, t ∈ [nτ0, (n+ 1)τ0],

(3.10) ‖B(x(t− τ(t))− x(t))‖ ≤
∞∑

n=0

y(n)(t),

where y(0)(t) := M2e
−ω1t‖ξ‖X and for n = 1, 2, . . . ,

y(n)(t) :=

t−τ(t)�

nτ0

k1(t− τ(t)− s)y(n−1)(s) ds+

t�

nτ0

k1(t− s)y(n−1)(s) ds.

Hence,

y(1)(t) =

t−τ(t)�

nτ0

k1(t− τ(t)− s)y(0)(s) ds+

t�

nτ0

k1(t− s)y(0)(s) ds

=
[ t−nτ0−τ(t)�

0

k1(τ)e−ω1(t−τ(t)−τ) dτ

+

t−nτ0�

0

k1(τ)e−ω1(t−τ) dτ
]
M2‖ξ‖X

≤M2(eω1r + 1)η(τ0)e−ω1t‖ξ‖X ;

and then by induction,

(3.11) y(n)(t) ≤M2(eω1r + 1)nη(τ0)ne−ω1t‖ξ‖X , n = 0, 1, 2, . . . .

Now (3.10) and (3.11) imply

‖B(x(t− τ(t))− x(t))‖ ≤
∞∑

n=0

M2(eω1r + 1)nη(τ0)ne−ω1t‖ξ‖X(3.12)

= M2[1− (eω1r + 1)η(τ0)]−1e−ω1t‖ξ‖X
≤M2[1− (eωb + 1)η(τ0)]−1e−ω1t‖ξ‖X .
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Note that by (3.5), M2[1− (eωb + 1)η(τ0)]−1 < M1, and thus (3.8) holds for
t ∈ [nτ0, (n+ 1)τ0] and t− τ(t) ≥ nτ0. But from the calculations above it is
easy to see that (3.12) is also valid for t ∈ [nτ0, (n+1)τ0] with t−τ(t) ≤ nτ0.
Therefore, (3.8) holds for all t ≥ 0.

Finally, we estimate ‖xt(·)‖X . For t ≥ τ0, −r ≤ θ ≤ 0 and 0 ≤ τ(t) ≤
r ≤ r0, by (3.3) and (3.8) we have

‖xt(θ)‖s =
∥∥∥TB(t+ θ)ξ(0) +

t+θ�

0

TB(t+ θ − s)B(x(s− τ(s))− x(s)) ds
∥∥∥
s

≤ ‖TB(t+ θ)ξ(0)‖s +
∥∥∥
t+θ�

0

TB(t+ θ − s)B(x(s− τ(s))− x(s)) ds
∥∥∥
s

≤ (3 + k1(1))eωbMbe
−ωbt‖ξ(0)‖s

+
∥∥∥
t+θ�

0

TB(t+ θ − s)B(x(s− τ(s))− x(s)) ds
∥∥∥

+ sup
σ≥0

∥∥∥
t+θ�

0

BTB(t+ θ − s)TB(σ)B(x(s− τ(s))− x(s)) ds
∥∥∥

≤ (3 + k1(1))eωbMbe
−ωbt‖ξ‖X

+

t+θ�

0

Mbe
−ωb(t+θ−s)M1e

−ω1sM1e
−ω1s‖ξ‖X ds

+Mb

t+θ�

0

k1(t+ θ − s)M1e
−ω1s‖ξ‖X ds

≤MbM1e
ωb [(3 + k1(1))M−1

1 + (ωb − ω1)−1 + β2]e−ω1t‖ξ‖X ,
which proves

‖xt(·)‖X ≤M3e
−ω1t‖ξ‖X , t ≥ τ0, r ≤ r0,

where M3 := MbM1e
ωb [(3 + k1(1))M−1

1 + (ωb − ω1)−1 + β2]. Moreover, for
t ∈ [0, τ0], by (3.4), we have

‖xt(·)‖X ≤ N0e
σ0τ0‖ξ‖X ≤ N0e

σ0τ0eω1τ0e−ω1t‖ξ‖X
≤ N0e

σ0+ωbe−ω1t‖ξ‖X .
Therefore, for t ≥ 0, r ∈ [0, r0], and ξ ∈ X ,

‖xt(·)‖X ≤ (M3 +N0e
σ0+ωb)e−ω1t‖ξ‖X .

Example 3.5. Let H1, H2 be Hilbert spaces. Suppose that Aj generates
a C0-semigroup Tj(t) on Hj for j = 1, 2 respectively, and T2(·) is holomor-
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phic. Moreover, suppose that B1 : D(B1) ⊂ H1 → H2 is a closed linear
operator satisfying D(B1) ⊃ D((−A2)r), where 0 < r < 1. Since T2(t) is
holomorphic, by [EN], B1T2(t) ∈ B(H2,H1) and there exist constants M
and ω such that ‖B1T2(t)‖ ≤Meωt/tr =: k(t) for t > 0. Let H = H1 ×H2,

A =

(
A1 0

0 A2

)
, B =

(
0 B1

0 0

)
.

Then A generates a C0-semigroup

T (t) =

(
T1(t) 0

0 T2(t)

)
, t ≥ 0,

on H and

BT (t) =

(
0 B1

0 0

)
=

(
T1(t) 0

0 T2(t)

)
=

(
0 B1T2(t)

0 0

)

is norm continuous for t > 0 with ‖BT (t)‖ = ‖B1T2(t)‖B(H2,H1) ≤ k(t) ∈
L1

loc(0,∞). So the operators A and B satisfy the assumptions of Theorems
2.5 and 3.4, but the C0-semigroup T (t) is not holomorphic.

Acknowledgements. The authors are greatly indebted to the refer-
ees for helpful suggestions and for pointing out a mistake in the proof of
Theorem 2.5.
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