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An upper bound for the distance to
finitely generated ideals in Douglas algebras

by

Pamela Gorkin (Lewisbury, PA), Raymond Mortini (Metz) and
Daniel Suárez (Núñez)

Abstract. Let f be a function in the Douglas algebra A and let I be a finitely
generated ideal in A. We give an estimate for the distance from f to I that allows us to
generalize a result obtained by Bourgain for H∞ to arbitrary Douglas algebras.

1. Introduction. The theory of division and multiplication in H∞, the
algebra of bounded analytic functions, is well understood. One may also
view these results as contributing to our understanding of the behavior of
the ideals in this algebra. For example, if f and g are bounded analytic
functions and |f(z)| ≤ |g(z)| for all points z in the open unit disk, D, then
f is divisible by g; in other words, f is in the principal ideal generated by
g. One can consider the corona theorem [3] to be a statement about ideals
as well: if f1, . . . , fn are bounded analytic functions and

|f1(z)|+ . . .+ |fn(z)| ≥ δ > 0 for all z ∈ D,

then 1 is in the ideal generated by f1, . . . , fn. Wolff’s generalization of the
corona theorem ([6, p. 329]) states that if f and f1, . . . , fn are bounded
analytic functions satisfying

|f(z)| ≤ |f1(z)|+ . . .+ |fn(z)| on D,

then f3 is in the ideal generated by f1, . . . , fn. In [2], Bourgain proved
that if α is a real-valued function satisfying α(t)/t → 0 as t → 0 and if
f, f1, . . . , fn ∈ H∞ are such that

|f | ≤ α(|f1|+ . . .+ |fn|) on D,
then f is in the closed ideal I generated by f1, . . . , fn. More recently, atten-
tion has turned to similar questions in algebras other than H∞. While these
results are about ideals in the algebras under consideration, they offer insight
into the structure of the algebra, division and factorization of functions.
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Let A be a uniform algebra. The maximal ideal space of A is defined
to be

MA = {ϕ : A→ C : ϕ is linear, multiplicative, and ϕ 6= 0}.
Provided with the weak-star topology, MA is a compact Hausdorff space.
The Gelfand transform, defined by f̂(ϕ) = ϕ(f) for f ∈ A and ϕ ∈MA, em-
beds A isometrically and isomorphically onto a closed subalgebra of C(MA).
In what follows, we will identify a function f with its Gelfand transform and
consider A as a uniform algebra on MA. For H∞, the multiplicative linear
functional which is evaluation at a point z of the open unit disk is identified
with the point and we think of the disk as contained in MH∞ . The corona
theorem is equivalent to the statement that the disk is dense in the maximal
ideal space of H∞. Thus, we may reformulate the theorems above in terms
of the maximal ideal space. For example, we know that if |ϕ(f)| ≤ |ϕ(g)| for
all ϕ ∈MH∞ , then f is divisible by g in H∞.

In this paper, we consider closed subalgebras A of L∞ on the unit circle
containing H∞. Such algebras are called Douglas algebras (see [6, IX] for
definitions and general background). We then ask the questions above for
these algebras. The techniques involved in generalizing results for H∞ are
necessarily different, as there is no space as natural and as easy to work
with as the disk for a general Douglas algebra. A simple illustration of the
differences that we can find is that a formally valid version of Bourgain’s
theorem for a general Douglas algebra requires imposing the additional con-
dition α(0) = 0. The density of the disk in MH∞ makes the last condition
completely irrelevant when dealing with H∞.

If f, g ∈ A and |f | ≤ |g| on MA, is f divisible by g in A? Such questions
were first studied by Guillory and Sarason [8], who gave an example to show
that one can have |f | ≤ |g| on MA, but f is not divisible by g in A. On the
other hand, for the algebra H∞+C, consisting of sums of bounded analytic
functions and continuous functions, they found the existence of an integer
N (independent of the function f) such that the condition |f | ≤ |g| on
MH∞+C implies that fN is divisible by g. Though their example showed
that N cannot be chosen so that N = 1, K. Izuchi and Y. Izuchi [10]
showed that N = 2 does indeed work. In this same vein, one may ask the
following question. If f, f1, . . . , fn ∈ A and |f | ≤ |f1| + . . . + |fn| on MA,
how far is f from the ideal generated by f1, . . . , fn? From the comments
above, it is clear that f need not be in the ideal generated by f1, . . . , fn. In
this paper we carefully examine Bourgain’s proof and extend it to Douglas
algebras. Our examination reveals that Bourgain’s theorem can be stated in
a more quantitative form. In particular, we will provide answers to questions
about closed ideals by determining an upper bound for the distance from
the function f to the ideal I in the Douglas algebra.
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2. Carleson measures and regions. In this section we state several
known results that are required during the rest of the paper.

The pseudohyperbolic metric is defined for z, ω ∈ D by

%(z, ω) = |(z − ω)/(1− ωz)|.
For 0 < r ≤ 1 and θ0 ∈ [0, 2π) let

Q = {z ∈ D : 1− r ≤ |z| < 1 and θ0 ≤ arg z ≤ θ0 + 2πr}.
If µ is a complex measure on D such that there is a positive constant C
with |µ|(Q) ≤ Cr for all such Q, then µ is called a Carleson measure. The
smallest constant C will be denoted by ‖µ‖C. Consider the Cauchy–Riemann
operator ∂ = 2−1(∂/∂x+i∂/∂y). In [11] Jones constructed a special solution
in the distributional sense of the equation ∂G = µ, where µ is a Carleson
measure (see also [6, pp. 358–361]). We summarize his result in the next
lemma.

Lemma 1. Let µ be a Carleson measure on D. Then there is an absolute
constant K > 0 and a function G(z) defined for every z ∈ D and for almost
every z ∈ ∂D, such that ∂G = µ, ‖G‖L∞(∂D) ≤ K‖µ‖C, and

1
2πi

�

∂D
f(z)G(z) dz =

�

D
f(z) dµ(z) for all f ∈ H1.(1)

The function G of the lemma is given constructively. When µ = gλΓ ,
where Γ ⊂ D is a rectifiable curve whose arclength induces a Carleson
measure λΓ , and g is a bounded function on Γ , the proof in [6, pp. 358–363]
shows that if 0 < a < 1 then G is bounded and analytic on {z ∈ D :
%(z, Γ ) > a}.

The next result was proved by Marshall (see [12] or [6, VIII. 4]) in transit
to proving his part of the Chang–Marshall theorem.

Lemma 2. Given 0 < α < 1 there exists β(α), with α < β(α) < 1, such
that for any inner function u there is a set R ⊂ D with rectifiable boundary
such that

{|u(z)| ≥ β(α)} ⊂ R ⊂ {|u(z)| ≥ α}
and ‖λ∂R‖C ≤ K, where K > 0 is an absolute constant.

Clearly, if 0 < α1 < α2 < 1 then the parameter β(α2) in the lemma also
works for α1. This makes the lemma most interesting when α is close to 1.
The lemma holds under the more general assumption that u is a harmonic
function on D with |u(eit)| = 1 almost everywhere on ∂D. This result allowed
Marshall to show that if A is a Douglas algebra and U ⊂ MH∞ is an open
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neighborhood of MA, then there is an inner function b such that |b| ≡ 1 on
MA and sup{|b(z)| : z ∈ D \ U} < 1.

At the opposite extreme there is a result of Bourgain [2] stating that if
b is a Blaschke product and 0 < ε < 1, then there is a region R ⊂ D with
rectifiable boundary ∂R such that ‖λ∂R‖C ≤ C (an absolute constant), and

{|b(z)| ≤ δ(ε)} ⊂ R ⊂ {|b(z)| ≤ ε},(2)

where 0 < δ(ε) < ε. The main difference between this result and Carleson’s
original construction for the corona theorem is that ‖λ∂R‖C is bounded in-
dependently of ε. In [2, p. 166] it is stated without proof that (2) holds for
every function in the unit ball of H∞. We briefly sketch below a proof of
this fact that is based on a standard argument given in [6, p. 334]. Factor
f = Fb, where F is zero free on D, ‖F‖ ≤ 1 and b is a Blaschke product.
Changing δ(ε) it is enough to show that (2) holds separately for F and b.
Fix an arbitrary ε0 ∈ (0, 1) and let 0 < ε < 1. Now let p = p(ε) > 0 be
such that εp0 = ε. Applying Carleson’s result to the function F 1/p we see
that there exists a γ0 depending on ε0 and a region S ⊂ D with rectifiable
boundary such that

{|F 1/p(z)| ≤ γ0} ⊂ S ⊂ {|F 1/p(z)| ≤ ε0},
and ‖λ∂S‖C ≤ C(ε0), a constant independent of ε. This clearly means that
(2) holds for F with δ(ε) = γ

p(ε)
0 . Summing up, we can restate Bourgain’s

result as

Lemma 3. For 0 < ε < 1 there exists 0 < δ(ε) < ε with the following
property. If f ∈ H∞ has norm 1 then there is a region R ⊂ D such that

{|f(z)| ≤ δ(ε)} ⊂ R ⊂ {|f(z)| ≤ ε},(3)

and ‖λ∂R‖C ≤ C, where C > 0 is an absolute constant.

We can assume without loss of generality that the region R in either of
Lemma 2 or 3 is open or closed (in the topological space D). Also, for techni-
cal reasons, it will be useful to assume that the function δ(ε) of Lemma 3 is
continuous and strictly monotone. This can be achieved using the following
elementary argument:

Suppose that a function δ(ε) satisfying the lemma has already been given
and choose a sequence {rk}k≥1 such that 0 < rk < δ(1/2k) and rk+1 < rk.
Let δ∗ be the function defined in each interval [1/2k+1, 1/2k], with k ≥ 0, by

δ∗(t/2k + (1− t)/2k+1) = trk+1 + (1− t)rk+2 (0 ≤ t ≤ 1).

As easily verified, δ∗ is continuous, strictly increasing and

δ∗(ε) ≤ rk+1 < δ(1/2k+1) when ε ∈ [1/2k+1, 1/2k].

Since δ satisfies the lemma, the two inequalities δ∗(ε) < δ(1/2k+1) and
ε ≥ 1/2k+1 immediately imply that δ∗ does also.
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3. The distance estimate. The next theorem generalizes a result dis-
covered by Bourgain about the algebra H∞ to arbitrary Douglas algebras
[2]. The proof is based on Bourgain’s proof; the essential difference is that
some estimates involving ∂-equations are no longer valid on D, but rather
on regions of D that are asymptotically close to the maximal ideal space of
the Douglas algebra. In the next theorem, δ(ε) is the function of Lemma 3
and C denotes a positive absolute constant, not necessarily the same in each
occurrence.

Theorem 4. Let A be a Douglas algebra and let f, f1, . . . , fn ∈ A be
such that ‖f‖ = 1 and ‖fj‖ ≤ 1 for j = 1, . . . , n. Let I ⊂ A be the ideal
generated by f1, . . . , fn and 0 < ε < 1. Suppose that |f1|+ . . .+ |fn| > 0 on
the set {x ∈MA : |f(x)| ≥ δ(ε)}. Then there is an absolute constant C > 0
such that

dist(f, I)

≤ ε+ Cn2 sup
{ |f(x)|
|f1(x)|+ . . .+ |fn(x)| : x ∈MA, δ(ε) ≤ |f(x)| ≤ ε

}
.

Proof. In what follows, we will write δ in place of δ(ε). Also, in order to
simplify the proof we have divided it in four steps, and present these below.

Step 1: Preliminary estimates. Assume first that f, f1, . . . , fn ∈ H∞.
By Lemma 3 there exists an open set R ⊂ D such that

{|f(z)| ≤ δ} ⊂ R ⊂ {|f(z)| ≤ ε}(4)

and ‖λ∂R‖C ≤ C. Write F = |f1|+ . . .+ |fn| and take γ > 0 such that

γ < inf{F (x) : x ∈MA, |f(x)| ≥ δ}.
Then there exists an open neighborhood U of MA in MH∞ such that

F (x) > γ whenever x ∈ U and |f(x)| ≥ δ.(5)

Notice that γ ≤ n since ‖fj‖ ≤ 1 for all j. By a result of Dahlberg [5] (see
also [6, VIII, Thm. 6.1]), for τ > 0 there exist vj ∈ C∞(D), for 1 ≤ j ≤ n,
such that

‖fj − vj‖L∞(D) < τ and ‖ |∇vj |dxdy‖C ≤ Cτ−1.(6)

An elementary estimate yields |f1v1 + . . .+fnvn| ≥ n−1(|f1|+ . . . |fn|)2−nτ .
Hence, if we take τ = γ2/(2n2), (5) gives

(7) |f1v1 + . . .+ fnvn| ≥
(
F 2

n
− γ2

2n

)
≥ F 2

2n
on U ∩ D ∩ {|f | ≥ δ}.

Since U is an open neighborhood of MA, using Marshall’s half of the Chang–
Marshall theorem we obtain an inner function u such that |u| ≡ 1 on MA

and |u| < α on D \ U for some 0 < α < 1. Let β(α) be the parameter given
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by Lemma 2 and choose α2 with β(α) < α2 < 1. Therefore, applying Lemma
2 we obtain a closed region R1 ⊂ D such that

(8) R2 := {|u(z)| > α2} ⊂ {|u(z)| > β(α)} ⊂ R1 ⊂ {|u(z)| > α} ⊂ U ∩ D,
and ‖λ∂R1‖C ≤ C. Observe that R1 \R ⊂ U ∩D ∩ {|f | ≥ δ} by (8) and (4).
Let

gj = vj(f1v1 + . . .+ fnvn)−1χR1\R, 1 ≤ j ≤ n,
where, as usual, χE denotes the characteristic function of the set E. By (7)
and (6), on U ∩ D ∩ {|f | ≥ δ} we have

|fgj| ≤ 2n
|fvj|
F 2 ≤ 2n

|f |
F

( |fj |+ τ

F

)
≤ 2n

|f |
F

(
1 +

τ

F

)
≤ 4n|f |

F
,(9)

where the last inequality holds because τ = γ2/(2n2) ≤ γ/2 < F on U ∩D∩
{|f | ≥ δ}. Since the support of gj is contained in U ∩D∩ {|f | ≥ δ}, (5) and
(9) yield

‖fgj‖L∞(D) ≤ 4nγ−1.(10)

Step 2: Bounded solutions of some ∂-equations. We will use Lemma 1
to find solutions with L∞(∂D)-norm control of the ∂-equations

∂aj,k = fgj∂gk(11)

and

∂bj = fgjχR2∂χR1\R,(12)

where 1 ≤ j, k ≤ n. Here ∂χR1\Rdxdy is a complex measure whose variation
is essentially λ∂(R1\R). Since

∂gk = ∂vk

( n∑

i=1

fivi

)−1
χR1\R

− vk
( n∑

i=1

fivi

)−2( n∑

i=1

fi∂vi

)
χR1\R + vk

( n∑

i=1

fivi

)−1
∂χR1\R,

we find that (6), (7) and our choice of τ lead to

‖∂gk dxdy‖C ≤ Cτ−1 2n
γ2 + C(1 + τ)nτ−1 4n2

γ4

+ (1 + τ)
2n
γ2 (‖λ∂R1‖C + ‖λ∂R‖C)

≤ C
(
n3

γ4 +
n5

γ6 +
n

γ2

)
≤ C

(
n

γ

)6

,
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where the last inequality holds because n/γ ≥ 1. Using this estimate, (10)
and Lemma 1 we see that there exists a solution of (11) such that

‖aj,k‖L∞(∂D) ≤ C
(
n

γ

)7

.(13)

On the other hand, by (8) the measure µ = |fgj|χR2λ∂(R1\R) is majorized
by |fgj|λR2∩∂R. Since (4) and (8) imply that R2 ∩ ∂R ⊂ {z ∈ U ∩ D : δ ≤
|f(z)| ≤ ε}, (9) yields

‖µ‖C ≤ sup{|fgj| : z ∈ U ∩ D, δ ≤ |f(z)| ≤ ε}‖λ∂R‖C(14)

≤ 4n sup{|f |F−1 : z ∈ U, δ ≤ |f(z)| ≤ ε}‖λ∂R‖C.
Let S = sup{|f |F−1 : x ∈ MA, δ ≤ |f(x)| ≤ ε}. Then given any ζ > 0 we
can choose the open neighborhood U of MA so small that

sup{|f |F−1 : z ∈ U, δ ≤ |f(z)| ≤ ε} ≤ S + ζ.

Putting this estimate together with ‖λ∂R‖C ≤ C in (14) we get

‖µ‖C ≤ Cn(S + ζ).

Now Lemma 1 tells us that (12) admits a solution satisfying

‖bj‖L∞(∂D) ≤ Cn(S + ζ),(15)

where ζ > 0 can be taken as small as we wish.

Step 3: Correcting the functions gj. Consider the functions

hj = fgj +
∑

1≤k≤n
(aj,k − ak,j)fk − bj (1 ≤ j ≤ n).(16)

For applications we need to show that hj has a bounded boundary function
a.e. on ∂D that satisfies an equality like (1). This clearly reduces to proving
the same for fgj.

Proposition. The function fgj has a radial limit at almost every point
of ∂D, such that

(17)
1

2πi

�

∂D
k(z)(fgj)(z) dz =

�

D
k(z)∂(fgj)(z) dx dy for k ∈ H∞.

Proof. Using the fact that the H∞ functions fi are uniformly continuous
with respect to % and (7), we see that there is some 0 < ξ0 < 1 such that
|∑n

i=1 fivi| is bounded below away from zero on the set V = {z ∈ D :
%(z,R1 \R) < ξ0}. Therefore

q := fvj(f1v1 + . . .+ fnvn)−1 ∈ C∞(V ) ∩ L∞(V ).

Let 0 < ξ < min{ξ0, 1/4}. We can modify χR1\R on a pseudohyperbolic
ξ-neighborhood of ∂(R1 \ R) to obtain a function φξ ∈ C∞(D, [0, 1]) such
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that (1 − |ω|)|∇φξ(ω)| ≤ cξ−1 for some c > 0. Since λ∂(R1\R) is a Carleson
measure, so is |∇φξ|dxdy.

Thus, qφξ ∈ C∞(D) ∩ L∞(D), qφξ ≡ qχR1\R outside a pseudohyper-
bolic ξ-neighborhood of ∂(R1 \R), and |∂(qφξ)|dxdy is a Carleson measure.
Clearly, the measures ∂(qφξ)dxdy converge weak-star to ∂(qχR1\R)dxdy as
ξ → 0+. Hence,

�

D
k∂(qχR1\R) dx dy = lim

ξ→0+

�

D
k∂(qφξ) dx dy for k ∈ H∞.(18)

We claim that both functions φξ and χR1\R have nontangential limits a.e. on
∂D and that they coincide. There is a standard procedure to pick an inter-
polating sequence {ωn} in ∂(R1\R) (see [6, p. 341]) such that %(z, {ωn}) < ξ
for every z ∈ ∂(R1 \R). Let b be the associated Blaschke product. If z ∈ D
is such that %(z, z0) < ξ for some z0 ∈ ∂(R1 \R) then

%(z, {ωn}) ≤ %(z, z0) + %(z0, {ωn}) ≤ 2ξ < 1/2.

This means that |b| < 1/2 on the set W = {z ∈ D : %(z, ∂(R1 \ R)) < ξ}.
The claim follows because b has nontangential limits of modulus 1 a.e. on
∂D, and φξ(z) = χR1\R(z) when %(z, ∂(R1 \R)) > ξ.

Since |∇vi|dxdy is Carleson by (6), the proof of Corollary 6.2 in [6,
pp. 348–349] shows that vi has radial limit a.e. on ∂D (for 1 ≤ i ≤ n).
Hence, the same holds for qχR1\R, and qφξ = qχR1\R in L∞(∂D). Therefore

(19)
1

2πi

�

∂D
k(z)(qφξ)(z) dz =

1
2πi

�

∂D
k(z)(qχR1\R)(z) dz for k ∈ H∞.

For a fixed ξ let 0 < r < 1 and write Gξ,r(z) = (qφξ)(rz). By Green’s
theorem

(20)
1

2πi

�

∂D
k(rz)Gξ,r(z) dz =

�

D
k(rz)(∂Gξ,r)(z) dx dy for k ∈ H∞.

By changing the variable ω = rz (with ω = u + iv), the second integral
becomes �

D
k(ω)r∂(qφξ)(ω)χrD(ω)r−2 du dv.

Since |∂(qφξ)| ∈ L1(dudv), we can apply the dominated convergence theorem
to this integral as r → 1−, and since ‖Gξ,r‖L∞(D) ≤ ‖q‖L∞(V ) for every r,
we can do the same with the first integral in (20). Then

1
2πi

�

∂D
k(z)(qφξ)(z) dz =

�

D
k(z)∂(qφξ)(z) dx dy for k ∈ H∞.

Since qχR1\R = fgj, the proposition follows from the above equality, (18)
and (19).
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By (17) and Lemma 1,

1
2πi

�

∂D
k(z)hj(z) dz =

�

D
k(z)∂hj(z) dx dy for k ∈ H∞.(21)

By (10) and (13) the L∞(∂D)-norms of the functions hj are bounded by
K0 + ‖bj‖L∞(∂D), where K0 > 0 is a constant that only depends on n and γ.
Since S ≤ 1/γ by (5), taking ζ < 1 in (15) we obtain a function K(n, γ) > 0
such that

‖hj‖L∞(∂D) ≤ K(n, γ).(22)

Since
n∑

k=1

fkgk = χR1\R(23)

we see that
∑n

k=1 fk∂gk = ∂χR1\R, and since R1 is closed and R is open,
f∂gj is supported on R1 \R. This means that f∂gj = χR1\Rf∂gj. Therefore
(11), (12) and (23) yield

∂hj = f∂gj +
n∑

k=1

(fgj∂gk − fgk∂gj)fk − ∂bj(24)

= f∂gj

[
χR1\R −

n∑

k=1

fkgk

]
+ fgj

n∑

k=1

fk∂gk − ∂bj

= fgj∂χR1\R − ∂bj = fgjχD\R2∂χR1\R.

By (10) the measure

ν := fgjχD\R2λ∂(R1\R)

is majorized by Cnγ−1χD\R2(λ∂R1 +λ∂R). Therefore ν is a Carleson measure
of the type considered in the comment that follows Lemma 1. It is supported
on a curve contained in D \ R2 = {z ∈ D : |u(z)| ≤ α2}. Choose α3 with
α2 < α3 < 1. If z ∈ D is such that |u(z)| > α3, then for every ω in the
support set of ν, denoted by supp ν, the Schwarz–Pick inequality implies
that

%(z, ω) ≥ %(u(z), u(ω)) >
α3 − α2

1− α3 α2
:= a > 0.

That is, %(z, supp ν) ≥ a whenever |u(z)| > α3. By Lemma 1 and the remark
that follows it, there exists a function Gj on D such that

(i) ∂Gj = fgjχD\R2∂χR1\R,
(ii) ‖Gj‖L∞(∂D) ≤ C‖ν‖C, and

(iii) Gj is bounded and analytic on the set {z ∈ D : |u(z)| > α3}.
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By (i) and (24) the function dj := hj − Gj satisfies the equation ∂dj = 0,
and therefore is analytic. By (ii) and (22), ‖dj‖L∞(∂D) < ∞. In order to
conclude that dj ∈ H∞ we observe that by (1) and (21),

1
2πi

�

∂D
k(z)dj(z) dz =

�

D
k(z)∂dj(z) dx dy = 0 for k ∈ H∞.

Hence hj = dj − Gj is bounded and analytic on {z ∈ D : |u(z)| > α3}.
Since |u| ≡ 1 on MA, Theorem 5.2 of [6, p. 392] says that hj ∈ A. By (16)
and (23),

(25) fχR1 −
n∑

j=1

fjhj = f (χR1 − χR1\R) +
n∑

j=1

fjbj = fχR1∩R +
n∑

j=1

fjbj .

Since R1 ∩R ⊂ {|f | ≤ ε} by (4), we have ‖fχR1∩R‖L∞(D) ≤ ε. Finally, since
(8) implies that χR1 ≡ 1 in L∞(∂D), going back to (25) we see that

∥∥∥f −
n∑

j=1

fjhj

∥∥∥
L∞(∂D)

≤ ‖fχR1∩R‖L∞(D) +
n∑

j=1

‖bj‖L∞(∂D)

≤ ε+ n2C(S + ζ) ≤ ε+ Cn2S + ζ ′,

where ζ ′ = Cn2ζ > 0, and the second inequality follows from (15). Since ζ
can be taken arbitrarily small, we have dist(f, I) ≤ ε+ Cn2S, as claimed.

Step 4: The general case. Now suppose that f, f1, . . . , fn ∈ A are any
functions satisfying the hypothesis of the theorem, and let 0 < γ < inf{|f1|+
. . . + |fn| : |f | ≥ δ(ε)}. By the Chang–Marshall theorem, for η > 0 there
are g, g1, . . . , gn ∈ H∞ with norm ≤ 1 and ‖g‖ = 1, and an inner function u
with |u| ≡ 1 on MA, so that

‖f − ug‖ < η and ‖fj − ugj‖ < η (1 ≤ j ≤ n).(26)

If we fix some ε0 > ε, our assumption that δ is a strictly increasing contin-
uous function allows us to take η so small that δ(ε) < δ(ε0)− η. Therefore
(26) implies

{δ(ε0) ≤ |g|} ⊂ {δ(ε0)− η ≤ |f |} ⊂ {δ(ε) ≤ |f |},
where the sets are considered as subsets of MA. Hence, if η is sufficiently
small, the above inclusions and (26) yield

|g1|+ . . .+ |gn| ≥
n∑

j=1

(|fj| − |fj − ugj|) ≥ γ − nη ≥ γ/2 on {δ(ε0) ≤ |g|}.

Let G = |g1| + . . . + |gn|. In the previous case we proved that under these
conditions, for an arbitrary ζ ′ > 0 there exist hj ∈ A with ‖hj‖ ≤ K(n, γ/2),
for 1 ≤ j ≤ n, such that
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(27)
∥∥∥g −

n∑

j=1

hjgj

∥∥∥

≤ ε0 + Cn2 sup
{ |g(x)|
G(x)

: x ∈MA, δ(ε0) ≤ |g(x)| ≤ ε0

}
+ ζ ′.

On the other hand, (26) implies that
∥∥∥f −

n∑

j=1

hjfj

∥∥∥ ≤ ‖f − ug‖+
∥∥∥u(g −

n∑

j=1

hjgj)
∥∥∥+

n∑

j=1

‖hj‖ · ‖ugj − fj‖

≤ η +
∥∥∥g −

n∑

j=1

hjgj

∥∥∥+ nK(n, γ/2)η.

Since K(n, γ/2) does not depend on η or ε0 and {δ(ε0) ≤ |g| ≤ ε0} ⊂
{δ(ε) ≤ |f | ≤ ε0 + η}, by letting η → 0, ε0 → ε and applying both (26) and
(27), we obtain the desired result.

The technicalities involved in the proof of Theorem 4 are specific for a
Douglas algebra other than H∞. A simplified version of the proof also works
for H∞. However, in this particular case, this “simplified version” reduces
to a careful examination of Bourgain’s proof. While ideal theory for H∞ has
been widely examined, many questions remain open (including a complete
description of the closed ideals [7]). Ideal theory for Douglas algebras other
than H∞ remains even more elusive due to the sort of study presented in
the proof above.

4. Consequences and examples

Corollary 5. Let A be a Douglas algebra and f, f1, . . . , fn ∈ A. Sup-
pose that there is a real-valued function α such that α(0) = 0, α(t)/t → 0
as t→ 0 and

|f | ≤ α(|f1|+ . . .+ |fn|) on MA.(28)

Then f belongs to the closed ideal I generated by f1, . . . , fn.

Proof. The result above is clear if f = 0. If this is not the case, we
may assume without loss of generality that ‖f‖ = 1 and ‖fj‖ ≤ 1 for all
j. Indeed, if a > 0 is a number such that ‖afj‖ ≤ 1 for 1 ≤ j ≤ n, then
|f |/‖f‖ ≤ α̃(|af1|+ . . .+ |afn|), where α̃(t) = ‖f‖−1α(a−1t). Now, condition
(28) clearly implies that the hypothesis of Theorem 4 is satisfied for every
ε > 0. Let ε > 0 and write F = |f1|+ . . .+ |fn|. If δ(ε) ≤ |f(x)| ≤ ε, then

|f(x)|
F (x)

≤ m(x) := min
{

ε

F (x)
,
α(F (x))
F (x)

}
.

By hypothesis sup{m(x) : δ(ε) ≤ |f(x)| ≤ ε} → 0 as ε→ 0. The result now
follows from Theorem 4.
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It is clear that the above corollary holds for A = L∞ under the relaxed
hypothesis α(t) ≤ Ct for some C > 0. We will see that this is not the case
for any other Douglas algebra. When A = H∞, by modifying an example
of Rao [13], Bourgain showed that there are two Blaschke products b1, b2
such that b1b2 is not in the closed ideal generated by b2

1 and b22, though
clearly |b1b2| ≤ |b21|+ |b22|. In [7] it is shown that a modification of Bourgain’s
construction works for any Douglas algebra other than L∞. That is, for every
Douglas algebra A 6= L∞ there are Blaschke products b1, b2 (depending on
A) such that b1b2 is not in the closed ideal of A generated by b2

1 and b22. A
more dramatic example can be given for a Douglas algebra different from
L∞ and H∞, as we show below.

Example. Let µx be the representing measure of x ∈MH∞ . If f ∈ L∞,
the formula

f(x) :=
�
f dµx

determines a natural continuous extension of f to MH∞ . When f belongs
to a Douglas algebra A and x ∈ MA then this value of f(x) coincides with
the usual value given by the Gelfand transform.

Let A be a Douglas algebra different from L∞ and H∞. Then there
exists a clopen set E ⊂ ML∞ such that χE ∈ L∞ \ A. By Axler’s theorem
[1, Thm. 1] there is a Blaschke product b such that bχE ∈ H∞ + C. Since
H∞ +C is regular on ML∞ (see [1, Cor. 1]) and Ec = ML∞ \E is a clopen
set, the theorem of [9, p. 190] says that

(29) bχE ≡ 0 on {x ∈MH∞+C : suppµx ∩ Ec 6= ∅}
= {x ∈MH∞+C : χE(x) < 1}.

On the other hand, if x ∈MH∞+C is such that χE(x) = 1, then suppµx ⊂ E.
Consequently,

(bχE)(x) =
�

suppµx

bχE dµx =
�

suppµx

b dµx = b(x).(30)

By (29) and (30) we have |bχE| ≤ |b| on MH∞+C , and hence on MA. How-
ever, if f ∈ A then

‖bχE − bf‖ = ‖χE − f‖ ≥ dist(χE , A) > 0,

implying that bχE does not belong to the closed ideal of A generated by b.

Let I be an ideal in a Douglas algebra A and f ∈ A. Our next result
shows how to use Theorem 4 to provide a sufficient condition for f ∈ I, even
when I is not finitely generated. The result, which cannot be deduced from
Corollary 5, illustrates the main advantage of Theorem 4 over Corollary 5.

Corollary 6. Let A be a Douglas algebra, I ⊂ A an ideal and f ∈ A be
a function of norm 1. Suppose that there exist γ > 0 and a positive integer n
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such that for every 0 < δ < 1 there are f1, . . . , fn ∈ I of norm at most 1
satisfying

|f1|+ . . .+ |fn| ≥ γ on {x ∈MA : |f(x)| ≥ δ}.
Then f is in the closure of I.

Proof. Given 0 < ε < 1, let δ(ε) as in Theorem 4. By hypothesis there
are f1, . . . , fn ∈ I such that |f1| + . . . + |fn| ≥ γ on {|f | ≥ δ(ε)}. Theorem
4 then says that dist(f, I) ≤ ε+ Cn2εγ−1 → 0 as ε→ 0.

For an ideal I in the Douglas algebra A let

Z(I) = {x ∈MA : f(x) = 0 for all f ∈ I}, J = {f ∈ A : f ≡ 0 on Z(I)}.
Then J is the largest ideal of A with the property that Z(J) = Z(I), or
equivalently, it is the intersection of all the maximal ideals that contain I.

It is clear that if I denotes the closure of I then I ⊂ J , and we will see
that Corollary 6 provides a sufficient condition for the reverse inclusion. In
fact, suppose that there are γ > 0 and a positive integer n such that for every
open neighborhood V of Z(I) there exist f1, . . . , fn ∈ I of norm at most one
with |f1| + . . . + |fn| ≥ γ on MA \ V . Therefore, if f ∈ A is a normalized
function with f ≡ 0 on Z(I), then the set Vδ = {x ∈ MA : |f(x)| < δ} is
an open neighborhood of Z(I) for every 0 < δ < 1. Thus, the corollary says
that f ∈ I.
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