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Amenability for dual Banach algebras

by

Volker Runde (Edmonton, AB)

Abstract. We define a Banach algebra A to be dual if A = (A∗)∗ for a closed sub-
module A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also
all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach
spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is
that amenable, dual Banach algebras are rather the exception than the rule. We confirm
this impression. We first show that under certain conditions an amenable dual Banach
algebra is already super-amenable and thus finite-dimensional. We then develop two no-
tions of amenability—Connes amenability and strong Connes amenability—which take the
w∗-topology on dual Banach algebras into account. We relate the amenability of an Arens
regular Banach algebra A to the (strong) Connes amenability of A∗∗; as an application,
we show that there are reflexive Banach spaces with the approximation property such that
L(E) is not Connes amenable. We characterize the amenability of inner amenable locally
compact groups in terms of their algebras of pseudo-measures. Finally, we give a proof of
the known fact that the amenable von Neumann algebras are the subhomogeneous ones,
which avoids the equivalence of amenability and nuclearity for C∗-algebras.

1. Introduction. Amenable Banach algebras were introduced by
B. E. Johnson in [Joh 2], and have since then turned out to be extremely in-
teresting objects of research. The definition of an amenable Banach algebra
is strong enough to allow for the development of a rich general theory, but
still weak enough to include a variety of interesting examples. Very often, for
a class of Banach algebras, the amenability condition singles out an impor-
tant subclass: For a locally compact group G, the convolution algebra L1(G)
is amenable if and only if G is amenable in the classical sense ([Joh 2]); a
C∗-algebra is amenable if and only if it is nuclear ([Con 2], [B–P], [Haa]);
and a uniform algebra with character space Ω is amenable if and only if it
is C0(Ω) ([She]). To determine, for a given class of Banach algebras, which
algebras in it are the amenable ones is an active area of research: For in-
stance, it is still open for which Banach spaces E the Banach algebra K(E)
of all compact operators on E is amenable (see [G–J–W] for partial results),
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and examples of radical amenable Banach algebras have only recently been
given ([Run 1], [Rea]).

In this paper, we consider the following class of Banach algebras:

Definition 1.1. A Banach algebra A is said to be dual if there is a
closed submodule A∗ of A∗ such that A = (A∗)∗.

If A is a dual Banach algebra, the predual module A∗ need not be unique.
In this paper, however, it is always clear, for a dual Banach algebra A, to
which A∗ we are referring. In particular, we may speak of the w∗-topology
on A without ambiguity.

The notion of a dual Banach algebra as defined in Definition 1.1 is by
no means universally accepted. The name “dual Banach algebra” occurs in
the literature in several contexts—often quite far apart from Definition 1.1.
On the other hand, Banach algebras satisfying Definition 1.1 may appear
with a different name tag; for instance, dual Banach algebras in our sense
are called Banach algebras with (DM) in [C–G 1] and [C–G 2].

We note a few elementary properties of dual Banach algebras:

Proposition 1.2. Let A be a dual Banach algebra. Then:

(i) Multiplication in A is separately w∗-continuous.
(ii) A has an identity if and only if it has a bounded approximate identity.
(iii) The Dixmier projection π : A∗∗ ∼= A∗∗∗∗ → A∗∗ ∼= A is an algebra

homomorphism with respect to either Arens multiplication on A∗∗.

Proof. (i) and (ii) are obvious, and (iii) follows from (i) and [Pal 1, The-
orem 1].

The main reason for us to consider dual Banach algebras is that this
class covers a wide range of examples:

Examples. 1. Any W ∗-algebra is dual.
2. If G is a locally compact group, then M(G) is dual (with M(G)∗ =

C0(G)).
3. If E is a reflexive Banach space, then L(E) is dual (with L(E)∗ =

E ⊗̂ E∗).
4. If A is an Arens regular Banach algebra, then A∗∗ is dual; in particular,

every reflexive Banach algebra is dual.

Comparing this list of dual Banach algebras with our stock of amenable
Banach algebras, the overlap is surprisingly small. But although there are
few examples of dual Banach algebras which are known to be amenable,
there are equally few dual Banach algebras for which we positively know
that they are not amenable:

• A W ∗-algebra is amenable if and only if it is subhomogeneous (this
follows from [Was, Corollary (1.9)] and [Con 2]; see also [L–L–W]). Even for
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such a “simple” object asM∞ := `∞-
⊕∞

n=1Mn, the proof of non-amenability
requires that amenability implies nuclearity.
• If G is a locally compact group, then M(G) is amenable if and only if

G is discrete and amenable ([D–G–H]).
• The only Banach spaces E for which L(E) is known to be amenable

are the finite-dimensional ones, and they may well be the only ones. For a
Hilbert space H, the results on amenable von Neumann algebras imply that
L(H) is not amenable unless H is finite-dimensional. It seems to be unknown,
however, if L(`p) is non-amenable for p ∈ (1,∞) \ {2}.
• The only known Arens regular Banach algebras A for which A∗∗ is

amenable are the subhomogeneous C∗-algebras; in particular, no infinite-
dimensional, reflexive, amenable Banach algebra is known. (It seems that
the demand that A∗∗ be amenable is very strong: It necessitates A to be
amenable ([G–L–W], [Gou]) and, for many classes of Banach algebras, forces
A to be finite-dimensional ([G–R–W], [G–L–W], [Run 1]).)

The general impression thus is that amenability in the sense of [Joh 2] is
too strong to allow for the development of a rich theory for dual Banach al-
gebras, and that some notion of amenability taking the w∗-topology on dual
Banach algebras into account is more appropriate ([Grø, Question 10]). Nev-
ertheless, although amenability seems to be a condition which is in conflict
with Definition 1.1, this impression is supported by surprisingly few proofs,
and even where such proofs exist—in the W ∗-case, for instance—they often
seem inappropriately deep.

This paper therefore aims in two directions: First, we want to substanti-
ate our impression that dual Banach algebras are rarely amenable with the-
orems, and secondly, we want to develop a suitable notion of amenability—
which we shall call Connes amenability—for dual Banach algebras.

2. Amenability preliminaries. Let A be a Banach algebra, and let E
be a Banach A-bimodule. A derivation from A into E is a bounded linear
map satisfying

D(ab) = a ·Db+ (Da) · b (a, b ∈ A).

As is customary, we write Z1(A, E) for the Banach space of all derivations
from A into E. For x ∈ E, the linear map

adx : A→ E, a 7→ a · x− x · a,
is a derivation. Derivations of this form are called inner derivations; the
normed space of all inner derivations from A to E is denoted by B1(A, E).
The quotient space H1(A, E) := Z1(A, E)/B1(A, E) is called the first coho-
mology group (or rather: space) of A with coefficients in E.
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The dual space of a Banach A-bimodule can be made into a Banach
A-bimodule as well via

〈x, a · φ〉 := 〈x · a, φ〉, 〈x, φ · a〉 := 〈a · x, φ〉 (a ∈ A, φ ∈ E∗, x ∈ E).

A Banach algebra A is defined to be amenable if H1(A, E∗) = {0} for every
Banach A-bimodule E ([Joh 2]). References for amenable Banach algebras
are [Joh 2] as well as [Hel 1], where a different, but equivalent approach,
based on the notion of flatness in topological homology, is given.

We shall also require a characterization of amenable Banach algebras
in terms of approximate diagonals as given in [Joh 3]. Let A ⊗̂ A denote
the projective tensor product of A with itself. Then A ⊗̂ A is a Banach
A-bimodule through

a · (x⊗ y) := ax⊗ y and (x⊗ y) · a := x⊗ ya (a, x, y ∈ A).

Let ∆ : A ⊗̂ A → A be the multiplication operator, i.e. ∆(a ⊗ b) := ab for
a, b ∈ A (sometimes, when we wish to emphasize the algebra A, we also
write ∆A). An approximate diagonal for A is a bounded net (mα)α in A ⊗̂A

such that

a ·mα −mα · a→ 0 and a∆mα → a (a ∈ A).

The algebra A is amenable if and only if it has an approximate diagonal
([Joh 3]).

There are several variants of amenability, two of which will be discussed
here: super-amenability and Connes amenability.

A Banach algebra A is said to be super-amenable (or contractible) if
H1(A, E) = {0} for every Banach A-bimodule E. Equivalently, A is super-
amenable if it has a diagonal , i.e. a constant approximate diagonal ([C–L,
Theorem 6.1]). All algebras Mn with n ∈ N and all finite direct sums of such
algebras are super-amenable; no other examples are known. Conversely, it
is known that every super-amenable Banach algebra A which satisfies some
rather mild hypotheses in terms of Banach space geometry must be a finite
direct sum of full matrix algebras ([Sel], for example; see [Run 1] for a survey
and some refinements). In particular, every super-amenable Banach algebra
A with the approximation property is of the form

A ∼= Mn1 ⊕ . . .⊕Mnk

with n1, . . . , nk ∈ N.
In [J–K–R], B. E. Johnson, R. V. Kadison, and J. Ringrose introduced a

notion of amenability for von Neumann algebras which takes the ultraweak
topology into account. The basic concepts, however, make sense for arbitrary
dual Banach algebras. Let A be a dual Banach algebra, and let E be a
Banach A-bimodule. Then we call E∗ a w∗-Banach A-bimodule if, for each
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φ ∈ E∗, the maps

A→ E∗, a 7→
{
a · φ,
φ · a,(1)

are w∗-continuous. We write Z1
w∗(A, E

∗) for the w∗-continuous derivations
from A into E∗. The w∗-continuity of the maps (1) implies that B1(A, E∗) ⊂
Z1
w∗(A, E

∗), so that H1
w∗(A, E

∗) := Z1
w∗(A, E

∗)/B1(A, E∗) is a meaningful
definition.

Definition 2.1. A dual Banach algebra A is Connes amenable if
H1
w∗(A, E

∗) = {0} for every w∗-Banach A-bimodule E∗.

Remarks. 1. Although the notion of Connes amenability was intro-
duced in [J–K–R] (for W ∗-algebras), it is most commonly associated with
A. Connes’ paper [Con 1]; this motivates our choice of terminology (compare
also [Hel 2]).

2. Definition 2.1 is a special case of a notion of amenability introduced in
[C–G 1]. There, for an arbitrary Banach algebra A and a submodule Φ of A∗

satisfying certain properties, Φ-amenability is defined. If A is a dual Banach
algebra, then A∗ satisfies all the requirements for Φ in [C–G 1], and A is
Connes amenable if and only if it is A∗-amenable in the sense of [C–G 1].

3. The rôle of the Radon–Nikodým property. Let A be a dual
Banach algebra, and let A∗ be its predual as in Definition 1.1. Let A∗ ⊗̌ A∗
be the injective tensor product of A∗ with itself. Then we have a canonical
map from A⊗̂A into (A∗⊗̌A∗)∗, which has closed range if A has the bounded
approximation property ([D–F, 16.3, Corollary 2]).

If A is amenable, a naive approach to show that A is super-amenable
would be as follows:

Step 1. Let (mα)α be an approximate diagonal for A, and choose an
accumulation point m of (mα)α in the topology induced by A∗ ⊗̌ A∗.

Step 2. Show that m is a diagonal for A.

There are problems in both steps (and since there are amenable, dual
Banach algebras which are not super-amenable this is no surprise). In Step 1,
the main problem is that the accumulation point m ∈ (A∗ ⊗̌ A∗)∗ need not
lie in A ⊗̂ A. In view of [D–F, 16.6, Theorem], it is clear that in order to
make Step 1 work, we have to require the Radon–Nikodým property for A.

We have the following theorem:

Theorem 3.1. Let A be an amenable dual Banach algebra having both
the approximation property and the Radon–Nikodým property. Suppose fur-
ther that there is a family (Iλ)λ of w∗-closed ideals of A, each with finite
codimension, such that

⋂
λ Iλ = {0}. Then there are n1, . . . , nk ∈ N such
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that
A ∼= Mn1 ⊕ . . .⊕Mnk .

Proof. Let A∗ denote the predual of A. Since A has both the approxi-
mation property and the Radon–Nikodým property, we have

A ⊗̂ A ∼= (A∗ ⊗̌ A∗)∗

by [D–F, 16.6, Theorem]. We thus have a natural w∗-topology on A ⊗̂ A.
Let (mα)α be an approximate diagonal for A, and let m ∈ A ⊗̂ A be a
w∗-accumulation point of (mα)α; passing to a subnet we can assume that
m = w∗-limαmα.

We claim that m is a diagonal for A. It is clear that m ∈ Z0(A,A ⊗̂ A),
so all we have to show is that ∆m = eA. Let πλ : A→ A/Iλ be the canonical
epimorphism. Since Iλ is w∗-closed, each quotient algebra A/Iλ is again dual
with the predual

⊥Iλ = {φ ∈ A∗ : 〈φ, a〉 = 0 for all a ∈ Iλ}.
Let ιλ : ⊥Iλ → A∗ be the inclusion map. Then πλ ⊗ πλ : A ⊗̂ A → A/Iλ ⊗̂
A/Iλ is the tranpose of ιλ ⊗ ιλ : ⊥Iλ ⊗̌ ⊥Iλ → A∗ ⊗̌ A∗ (since Iλ has finite
codimension, we clearly have A/Iλ ⊗̂A/Iλ ∼= (⊥Iλ ⊗̌ ⊥Iλ)∗). Thus, πλ ⊗ πλ
is w∗-continuous, so that

(πλ ⊗ πλ)m = w∗-lim
α

(πλ ⊗ πλ)mα.

Since A/Iλ ⊗̂A/Iλ is finite-dimensional, there is only one vector space topol-
ogy on it; in particular, (πλ⊗πλ)d is the norm limit of ((πλ⊗πλ)dα)α. Since

∆A/Iλ ◦ (πλ ⊗ πλ) = πλ ◦∆A,

we obtain

(πλ ◦∆A)m = lim
α

(∆A/Iλ ◦ (πλ ⊗ πλ))mα = eA/Iλ .

Since (πλ)λ separates the points of A, it follows that ∆Am = eA. Hence,
m is a diagonal for A.

Remark. It is essential for Theorem 3.1 to hold that A has the Radon–
Nikodým property. For example, the algebra `∞ is an amenable dual Banach
algebra which has a family (Iλ)λ of w∗-closed ideals as in Theorem 3.1, but
is infinite-dimensional.

Since separable dual spaces as well as reflexive Banach spaces automati-
cally have the Radon–Nikodým property ([D–F, D3]), we obtain the follow-
ing corollaries, the first of which is a nice dichotomy and the second improves
[G–R–W, Corollary 2.3] and is related to [Run 1, Proposition 2.3]:

Corollary 3.2. Let A be an amenable dual Banach algebra having the
approximation property. Suppose further that there is a family (Iλ)λ of w∗-
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closed ideals of A, each with finite codimension, such that
⋂
λ Iλ = {0}.

Then one of the following holds:

(i) A is not separable;
(ii) there are n1, . . . , nk ∈ N such that

A ∼= Mn1 ⊕ . . .⊕Mnk .

Corollary 3.3. Let A be an amenable reflexive Banach algebra having
the approximation property. Suppose further that there is a family (Iλ)λ of
closed ideals of A, each with finite codimension, such that

⋂
λ Iλ = {0}.

Then there are n1, . . . , nk ∈ N such that

A ∼= Mn1 ⊕ . . .⊕Mnk .

Remark. In Corollary 3.3 we can replace the hypothesis that there
is a family (Iλ)λ of closed ideals of A, each with finite codimension, such
that

⋂
λ Iλ = {0} by a weaker one. If we assume that the almost periodic

functionals on A separate points, we still get the same conclusion (this is
proved in the same way as [Run 1, Proposition 3.1]). For examples of almost
periodic functionals that do not arise from finite-dimensional quotients, see
[D–Ü].

4. Connes amenability of biduals. In this section, we investigate
how, for an Arens regular Banach algebra A, the amenability of A and the
Connes amenability of A∗∗ are related.

We begin our discussion with some elementary propositions.

Proposition 4.1. Let A be a Connes amenable dual Banach algebra.
Then A has an identity.

Proof. Let A be the Banach A-bimodule whose underlying linear space
is A equipped with the following module operations:

a · x := ax and x · a := 0 (a, x ∈ A).

Obviously, A is a w∗-Banach A-bimodule, and the identity map from A into
A is a w∗-continuous derivation. Since H1

w∗(A, A) = {0}, this means that A
has a right identity. Analogously, one sees that A also has a left identity.

Proposition 4.2. Let A be a Banach algebra, let B be a dual Banach
algebra, and let θ : A → B be a continuous homomorphism with w∗-dense
range. Then:

(i) If A is amenable, then B is Connes amenable.
(ii) If A is dual and Connes amenable, and if θ is w∗-continuous, then

B is Connes amenable.

Proof. Immediate from the definitions.
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Corollary 4.3. Let A be an Arens regular Banach algebra. Then, if A
is amenable, A∗∗ is Connes amenable.

If A is a C∗-algebra, then the converse of Corollary 4.3 holds: If A∗∗ is
Connes amenable, then A is amenable ([Con 1], [B–P], [Haa], [Eff], [E–K]).
This is a deep, specifically C∗-algebraic result, for which no analogue in
the general Banach algebra setting is available (yet). Under certain cir-
cumstances, however, a converse of Corollary 4.3 holds for general Banach
algebras:

Theorem 4.4. Let A be an Arens regular Banach algebra which is an
ideal in A∗∗. Then the following are equivalent :

(i) A is amenable.
(ii) A∗∗ is Connes amenable.

Proof. Since A∗∗ is Connes amenable, it has an identity by Proposition
4.1. By [Pal 2, Proposition 5.1.8], this means that A has a bounded approx-
imate identity, (eα)α say. By [Joh 2], it is therefore sufficient for A to be
amenable that H1(A, E∗) = {0} for each essential Banach A-bimodule.

Let E be an essential Banach A-bimodule, and let D : A → E∗ be
a derivation. The following construction is carried out in [Joh 2] with the
double centralizer algebra instead of A∗∗, but an inspection of the argument
there shows that it carries over to our situation. Since E is essential, there
are, for each x ∈ E, elements b, c ∈ A and y, z ∈ E with x = b · y = z · c.
Define an A-bimodule action of A∗∗ on E by letting

a · (b · y) := ab · y, (z · c) · a := z · ca (a ∈ A∗∗, b, c ∈ A, y, z ∈ E).

It can be shown that this module action is well defined and turns E into a
Banach A∗∗-bimodule. Consequently, E∗ equipped with the corresponding
dual module action is a Banach A∗∗-bimodule as well.

We claim that E∗ is even a w∗-Banach A∗∗-bimodule. Let (aβ)β be a net

in A∗∗ such that aβ
w∗−→ 0, let φ ∈ E∗, and let x ∈ E. Let b ∈ A and y ∈ E

be such that x = y · b. Since the w∗-topology of A∗∗ restricted to A is the
weak topology, we have baβ

w−→ 0, so that

x · aβ = y · baβ w−→ 0

and consequently
〈x, aβ · φ〉 = 〈x · aβ, φ〉 → 0.

Since x ∈ E was arbitrary, this means that aβ · φ w∗−→ 0. Analogously, one

shows that φ · aβ w∗−→ 0.
Following [Joh 2] again, we define a derivation D̃ : A∗∗ → E∗ by letting

D̃a = w∗-lim
α

[D(aeα)− a ·Deα].
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We claim that D̃ ∈ Z1
w∗(A

∗∗, E∗). Let again (aβ)β be a net in A∗∗ such that

aβ
w∗−→ 0, let x ∈ E, and let b ∈ A and y ∈ E be such that x = b · y. Then

we have

〈x, D̃aβ〉 = 〈b · y, D̃aβ〉 = 〈y, (D̃aβ) · b〉 = 〈y,D(aβb)− aβ ·Db〉 → 0,

since D is weakly continuous and E∗ is a w∗-Banach A∗∗-bimodule.
From the Connes amenability of A∗∗ we conclude that D̃, and hence D,

is inner.

Remark. In [Gou], F. Gourdeau showed that, whenever A is a Banach
algebra, E is a Banach A-bimodule, and D : A→ E is a derivation, there is
an A∗∗-bimodule action on E∗∗ turning D∗∗ : A∗∗ → E∗∗ into a (necessarily
w∗-continuous) derivation. However, even if E is a dual Banach A-bimodule,
there is no need for E∗∗ to be a w∗-Banach A-bimodule, so that, in general,
we cannot draw any conclusion on the amenability of A from the Connes
amenability of A∗∗.

By [G–J–W, Theorem 6.9], the space `p⊕ `q with p, q ∈ (1,∞) \ {2} and
p 6= q has the property that K(`p⊕ `q) is not amenable. Hence, Theorem 4.4
yields:

Corollary 4.5. Let p, q ∈ (1,∞) \ {2}, p 6= q. Then L(`p ⊕ `q) is not
Connes amenable.

Proof. Since K(`p ⊕ `q)∗∗ ∼= L(`p ⊕ `q), and since K(`p ⊕ `q) is not
amenable, L(`p ⊕ `q) is not Connes amenable by Theorem 4.4.

Let A be a dual Banach algebra, and letE be a Banach A-bimodule. Then
we call an element φ ∈ E∗ a w∗-element if the maps (1) are w∗-continuous.

Definition 4.6. A dual Banach algebra with identity A is called strong-
ly Connes amenable if, for each each unital Banach A-bimodule E, every
w∗-continuous derivation D : A → E∗ whose range consists of w∗-elements
is inner.

We shall give an intrinsic characterization of strongly Connes amenable
dual Banach algebras similar to the one given in [Joh 3] for amenable Banach
algebras. Recall a few definitions from [C–G 1] (with a different notation,
however). Let A be a dual Banach algebra with identity, and let L2

w∗(A,C)
be the space of separately w∗-continuous bilinear functionals on A. Clearly,
L2
w∗(A,C) is a Banach A-submodule of L2(A,C) ∼= (A ⊗̂ A)∗. Define

(A ⊗̂w∗ A)∗∗ := L2
w∗(A,C)∗.

Note that the notation (A⊗̂w∗A)∗∗ is merely symbolic: in general, (A⊗̂w∗A)∗∗

is not a bidual space. There is a canonical embedding of the algebraic tensor
product A ⊗ A into (A ⊗̂w∗ A)∗∗, so that we may identify A ⊗ A with a
submodule of (A⊗̂w∗A)∗∗. It is immediate that A⊗A consists of w∗-elements



56 V. Runde

of (A ⊗̂w∗ A)∗∗. Since multiplicaton in a dual Banach algebra is separately
w∗-continuous, we have

∆∗A∗ ⊂ L2
w∗(A,C),

so that the multiplication operator ∆ on A ⊗ A extends to (A ⊗̂w∗ A)∗∗;
we shall denote this extension by ∆∗∗w∗. A virtual w∗-diagonal for A (in
the terminology of [C–G 1]: an A∗-virtual diagonal) is an element M ∈
(A ⊗̂w∗ A)∗∗ such that

a ·M = M · a (a ∈ A) and ∆∗∗w∗M = eA.

In [C–G 1], G. Corach and J. E. Galé showed that a dual Banach algebra
with a virtual w∗-diagonal is necessarily Connes amenable, and wondered if
the converse was also true. For strong Connes amenability, the corresponding
question is easy to answer:

Theorem 4.7. For a dual Banach algebra A, the following are equiva-
lent :

(i) A has a virtual w∗-diagonal.
(ii) A is strongly Connes amenable.

Proof. On [C–G 1, p. 90], it is shown that (i) implies the Connes amen-
ability of A (the argument for von Neumann algebras from [Eff] carries over
verbatim). A closer inspection of the argument given there, however, shows
that we already obtain strong Connes amenability.

For the converse, consider the derivation adeA⊗eA
. Then, clearly, adeA⊗eA

attains its values at the w∗-elements of ker∆∗∗w∗. By the definition of strong
Connes amenability, there is N ∈ ker∆∗∗w∗ such that adN = adeA⊗eA

. It
follows that D := eA ⊗ eA −N is a virtual w∗-diagonal for A.

Remark. In [Eff], E. G. Effros proves that a von Neumann algebra is
Connes amenable if and only if it has a virtual w∗-diagonal. Hence, von
Neumann algebras are Connes amenable if and only if they are strongly
Connes amenable.

For certain Banach algebras A, the strong Connes amenability of A∗∗

entails the amenability of A:

Theorem 4.8. Let A be a Banach algebra with the following properties:

(i) every bounded linear map from A to A∗ is weakly compact ;
(ii) A∗∗ is strongly Connes amenable.

Then A is amenable.

Proof. By [Gro, Satz 1.29], condition (i) implies (and is, in fact, equiva-
lent to) that every bounded bilinear map from A×A into any Banach space
is Arens regular; in particular, it ensures that A∗∗ is indeed a dual Banach
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algebra. It is thus an immediate consequence of (i) that

(A ⊗̂ A)∗∗ ∼= (A∗∗ ⊗̂w∗ A∗∗)∗∗(2)

as Banach A-bimodules. Since A∗∗ has a virtual w∗-diagonal by Theorem
4.7, the isomorphism (2) ensures the existence of a virtual diagonal for A.
Thus, A is amenable.

Examples. 1. Every C∗-algebra satisfies Theorem 4.8(i).
2. Let E be a reflexive Banach space with an unconditional basis. It is

implicitly proved in [Ülg] (although not explicitly stated) that K(E) satisfies
Theorem 4.8(i).

5. Dual Banach algebras associated with locally compact
groups. As was shown by A. Connes ([Con 2]), Connes amenable von
Neumann algebras (with separable predual) are injective. An alternative
proof for this is given in [B–P]. We now give an analogue—in the spirit of
[C–G 1, Proposition 2.2] and [C–G 2, Proposition 2.2]—for arbitrary Connes
amenable dual Banach algebras.

If S is any subset of an algebra B, we use ZB(S) to denote the centralizer
of S in B, i.e.

ZB(S) := {b ∈ B : bs = sb for all s ∈ S}.
In case B = L(E) for some Banach space E, we also write S ′ instead of
ZB(S). Recall (from [B–P] or [C–G 2]) the definition of a quasi-expectation:
If B is a Banach algebra, and if A is a closed subalgebra of B, a quasi-
expectation is a bounded projection Q : B→ A satisfying

Q(axb) = a(Qx)b (a, b ∈ A, x ∈ B).

Note that we do not require ‖Q‖ = 1.

Theorem 5.1. Let A be a Connes amenable dual Banach algebra, let
B be a dual Banach algebra with identity , and let θ : A → B be a unital
w∗-continuous homomorphism. Then there is a quasi-expectation Q : B →
ZB(θ(A)).

Proof. More or less a verbatim copy of the proof of [B–P, Theorem 3].

In this section, we will use Theorem 5.1 to characterize the Connes
amenability of some dual Banach algebras which arise naturally in abstract
harmonic analysis.

For non-discrete abelian G, it has long been known that there are non-
zero point derivations on M(G) ([B–M]), so that M(G) cannot be amenable.
In [L–L], A. T.-M. Lau and R. J. Loy started investigating the amenability
of M(G) for certain non-abelian G. In particular, they were able to show
that, for connected G, the algebra M(G) is amenable only if G = {e} ([L–L,
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Theorem 2.4]). Ultimately, H. G. Dales, F. Ghahramani, and A. Ya. Helem-
skĭı ([D–G–H]) proved: The measure algebra M(G) is amenable if and only
if G is discrete—so that M(G) = `1(G) = L1(G)—and amenable.

The picture is completely different for Connes amenability. We have, for
example:

Proposition 5.2. Let G be a compact group. Then M(G) is strongly
Connes amenable.

Proof. By Theorem 4.7, it is sufficient to construct a virtual w∗-diagonal
for M(G).

For φ ∈ L2
w∗(M(G),C), define φ̄ : G×G→ C and φ̃ : G→ C through

φ̄(x, y) := φ(δx, δy) and φ̃(x) := φ̄(x, x−1) (x, y ∈ G).
Then φ̄ is separately continuous on G×G and thus belongs to L∞(G×G,
µ × ν) for any ν, µ ∈ M(G) ([Joh 1]). Since (normalized) Haar measure
belongs to M(G), this implies that φ̃ ∈ L∞(G) ⊂ L1(G).

Let m denote normalized Haar measure on G, and define a functional
M ∈ (M(G) ⊗̂w∗ M(G))∗∗ via

〈φ,M〉 :=
�

G

φ̃(x) dm(x) (φ ∈ L2
w∗(M(G),C)).

It is routinely checked that ∆∗∗w∗M = δe. Let µ ∈ M(G), and let φ ∈
L2
w∗(M(G),C). Then we have:
〈φ, µ ·M〉 = 〈φ · µ,M〉

=
�

G

φ̃ · µ(x) dm(x)

=
�

G

φ · µ(x, x−1) dm(x)

=
�

G

�

G

φ̄(yx, x−1) dµ(y) dm(x)

=
�

G

�

G

φ̄(yx, x−1) dm(x) dµ(y) (by Fubini’s theorem)(3)

=
�

G

�

G

φ̄(x, x−1y) dm(x) dµ(y) (substituting y−1x for x)

=
�

G

�

G

φ̄(x, x−1y) dµ(y) dm(x) (again by Fubini’s theorem)(4)

=
�

G

µ̃ · φ(x) dm(x)

= 〈µ · φ,M〉
= 〈φ,M · µ〉.

Thus, M is a virtual w∗-diagonal for M(G).
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Remarks. 1. Most of the proof of Proposition 5.2 still works for not
necessarily compact, amenable G, where we replace Haar measure in the
definition of M by a left invariant mean on L∞(G). In this more general
situation, however, we have no substitute for the two applications (3) and
(4) of Fubini’s theorem.

2. The locally compact groups G for which M(G) is Connes amenable
are characterized in the companion paper [Run 2]: They are precisely the
amenable groups. In the same paper, it is also shown that M(G) has a
virtual w∗-diagonal if and only if it is Connes amenable.

Another important dual Banach algebra associated with a locally com-
pact group G is the group von Neumann algebra VN(G). Its Connes amen-
ability was characterized in terms of G by A. T.-M. Lau and A. L. T. Pater-
son ([L–P]). There are analogues of VN(G) acting on Lp(G) for p ∈ (1,∞),
the so-called algebras of pseudo-measures PMp(G) (for information on these
algebras and further references, see [Eym]). We shall now prove an extension
of [L–P, Corollary 3.3] for these algebras of pseudo-measures.

Recall (from [L–P], for example) that a locally compact group is inner
amenable if there is a state m on L∞(G) such that

〈δx ∗ φ ∗ δx−1 ,m〉 = 〈φ,m〉 (x ∈ G, φ ∈ L∞(G)).

Every amenable group is inner amenable, but so is every [IN]-group.

Theorem 5.3. For a locally compact group G consider the following :

(i) G is amenable.
(ii) M(G) is Connes amenable.
(iii) PMp(G) is Connes amenable for every p ∈ (1,∞).
(iv) VN(G) is Connes amenable.
(v) PMp(G) is Connes amenable for one p ∈ (1,∞).

Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v). If G is inner amenable, then also (v)⇒(i).

Proof. (i)⇒(ii). This is is clear in view of Proposition 4.2(i).
(ii)⇒(iii). This follows from Proposition 4.2(ii).
(iii)⇒(iv)⇒(v). Since VN(G) = PM2(G), this is obvious.
(v)⇒(i) for G inner amenable: For any r ∈ [1,∞), let λr and %r denote

the regular left and right representations, respectively, of G on Lr(G).
By [L–R, Proposition 1], it follows from the inner amenability of G that

there is a net (fα)α of positive L1-functions with ‖fα‖1 = 1 such that

‖δx ∗ fα ∗ δx−1 − fα‖1 → 0 (x ∈ G),

or equivalently,

‖λ1(x−1)fα − %1(x)fα‖1 → 0 (x ∈ G).(5)
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Let q ∈ (1,∞) be the index dual to p. Let ξα := f
1/p
α and ηα := f

1/q
α , so

that ξα ∈ Lp(G) and ηα ∈ Lq(G). It follows from (5) and [Pat, 4.3(1)] that

(6) ‖λp(x−1)ξα − %p(x)ξα‖p → 0, ‖λq(x−1)ηα − %q(x)ηα‖q → 0 (x ∈ G).

For φ ∈ UC(G), let Mφ ∈ L(Lp(G)) be defined by pointwise multiplication
with φ. By Theorem 5.1, applied to A = PMp(G), B = L(Lp(G)), and θ the
canonical representation of PMp(G) on Lp(G), there is a quasi-expectation
Q : L(Lp(G))→ PMp(G)′. Define mα ∈ UC(G)∗ by letting

〈φ,mα〉 := 〈Q(Mφ)ξα, ηα〉 (φ ∈ UC(G)).

Let U be an ultrafilter on the index set of (fα)α that dominates the order
filter, and define

〈φ,m〉 := lim
U
〈φ,mα〉 (φ ∈ UC(G)).

Note that %p(G) ⊂ PMp(G)′, and observe again that

%p(x−1)Mφ%p(x) = Mφ∗δx (x ∈ G, φ ∈ UC(G)).

We then obtain for x ∈ G and φ ∈ UC(G):

〈φ ∗ δx,m〉 = lim
U
〈φ ∗ δx,mα〉

= lim
U
〈Q(%p(x−1)Mφ%p(x))ξα, ηα〉

= lim
U
〈%p(x−1)(QMφ)%p(x)ξα, ηα〉

= lim
U
〈(QMφ)%p(x)ξα, %p(x)ηα〉

= lim
U
〈(QMφ)λp(x−1)ξα, λp(x−1)ηα〉 (by (6))

= lim
U
〈λp(x)QMφ)λp(x−1)ξα, ηα〉

= lim
U
〈(QMφ)ξα, ηα〉

= 〈φ,m〉.
Hence, m is right invariant. Clearly, 〈1,m〉 = 1. Taking the positive part of
m and normalizing it, we obtain a right invariant mean on UC(G).

Remarks. 1. The hypothesis that G be inner amenable cannot be drop-
ped: As pointed out in [Pat, p. 84], SL(2,R) is not amenable, but of type I,
so that VN(SL(2,R)) is Connes amenable.

2. In [L–P], Lau and Paterson show that an inner amenable, locally
compact group G such that VN(G) has Schwartz’ property (P) is already
amenable. Schwartz’ property (P) and Connes amenability are equivalent
(see [Pat, (2.35)]), but the implication from Connes amenability to (P) is a
deep result by itself. The proof of Theorem 5.3 is thus much simpler, even
in the particular case p = 2.
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6. A nuclear-free characterization of amenable W ∗-algebras. As
we have mentioned in the introduction, the following characterization of the
amenable W ∗-algebras is known:

Theorem 6.1. For a W ∗-algebra A, the following are equivalent :

(i) A is amenable.
(ii) There are hyperstonean, compact spaces Ω1, . . . , Ωn and n1, . . . , nk ∈

N such that

A ∼=
k⊕

j=1

Mnj ⊗ C(Ωj).

The implication (ii)⇒(i) is obvious, and the converse is a consequence
of [Con 2], [Was, Corollary (1.9)], and the structure theory of W ∗-algebras.

In this section, we give a proof of Theorem 6.1 which avoids the amenabi-
lity-nuclearity nexus and only relies on standard facts about W ∗-algebras,
where we define a standard fact as one that can be found in one of the
standard books on the subject such as [Dix], [K–R], [Sak], and [Tak].

In analogy with [Was], we define:

Definition 6.2. Let A be a Banach ∗-algebra. We say that A is of
type (QE) if, for each ∗-representation (π,H), there is a quasi-expectation
Q : B(H)→ π(A)′′.

Remark. It follows from [B–P] that every C∗-algebra which is of type
(QE) is already of type (E) in the sense of [Was]. However, since we strive
to keep the W ∗-theory required for the proof of Theorem 6.1 to a minimum,
we shall not use this fact.

The next two results are essentially already contained in [Tom]. Here we
give proofs requiring a minimum of W ∗-theory.

Lemma 6.3. Let A be a von Neumann algebra acting on a Hilbert space
H. Then the following are equivalent :

(i) There is a quasi-expectation Q : B(H)→ A.
(ii) For every faithful normal representation (π,K) of A, there is a quasi-

expectation Q : B(K)→ π(A)′′.

Proof. Let π be a faithful W ∗-representation of M on a Hilbert space K,
and let N := π(M). Using the idea of the proof of [Dix, Théorème 3, §I.4],
we can choose a third Hilbert space L such that M ⊗ idL, i.e. the algebra
{x⊗ idL : x ∈M}, on H ⊗̄L and N⊗ idL on K ⊗̄L are spatially isomorphic.
Fix ξ0, η0 ∈ L such that 〈ξ0, η0〉 = 1, and define P0 : L(H ⊗̄ L) → L(H)
through

〈(P0T )ξ, η〉 := 〈T (ξ ⊗ ξ0), η ⊗ η0〉 (T ∈ L(H), ξ, η ∈ H).(7)
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Identifying L(H) with L(H)⊗ idL, we see that P0 is a projection onto L(H).
Furthermore, for T ∈ L(H ⊗̄ L) and R,S ∈ L(H), we have

P0((R⊗ idL)T (S ⊗ idL))ξ, η〉 = 〈(R⊗ idL)T (S ⊗ idL)(ξ ⊗ ξ0), η ⊗ η0〉
= 〈T (Sξ ⊗ ξ0), R∗η ⊗ η0〉
= 〈(P0T )Sξ,R∗η〉
= 〈R(P0T )Sξ, η〉 (ξ, η ∈ H),

so that P0 is a quasi-expectation. Let P : L(H)→M be a quasi-expectation,
and define

P̃ : L(H ⊗̄ L)→M⊗ idL, T 7→ (P ◦ P0)T ⊗ idL;

it is clear that P̃ is also a quasi-expectation. Since M⊗ idL and N⊗ idL are
spatially isomorphic, there is a quasi-expectation Q̃ : L(K ⊗̄ L)→ N⊗ idL.
Fix again ξ0, η0 ∈ L such that 〈ξ0, η0〉 = 1, and define Q0 : L(K ⊗̄L)→ L(K)
as in (7). Then

Q : L(K)→ N, T 7→ (Q0 ◦ Q̃)(T ⊗ idL),

is the desired quasi-expectation.

Proposition 6.4. Every amenable Banach ∗-algebra is of type (QE).

Proof. Let (π,H) be a ∗-representation of A. Then, by [K–R, Exercise
7.6.46], there is a faithful normal, semifinite weight on the von Neumann
algebra π(A)′′. Let (%,K) be the faithful normal representation of π(A)′′ con-
structed from this weight ([K–R, Theorem 7.5.3]). By [C–G 2, Proposition
2.2], applied to the representation (%◦π,K) of A, there is a quasi-expectation
P : B(K) → (% ◦ π)(A)′. Let J : K → K be the conjugate linear isometry
from [K–R, Theorem 9.2.37], i.e.

J2 = idK and J(% ◦ π)(A)′J = (% ◦ π)(A)′′.

Define
Q̃ : B(K)→ (% ◦ π)(A)′′, a 7→ JP(JaJ)J.

It is immediate that Q̃ is a quasi-expectation. Since % is normal and faithful,
it follows from Lemma 6.3 that there is a quasi-expectation Q : B(H) →
π(A)′′.

Our next lemma is an analogue of [Was, Proposition (1.2)], whose proof
carries over almost verbatim:

Lemma 6.5. Let A be a C∗-algebra of type (QE), and let B be a
C∗-algebra such that there is a quasi-expectation Q : A → B. Then B
is of type (QE).

Also, the following proposition is well known: It is an immediate con-
sequence of [L–P, Corollary 3.3], [Tom, Theorem 7.2], and [B–P, Theo-
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rem 2]. We prefer, however, to indicate a proof that completely avoids W ∗-
theoretical arguments and uses ideas from [C–G 2] instead:

Proposition 6.6. For an inner amenable group G, the following are
equivalent :

(i) G is amenable.
(ii) There is a quasi-expectation Q : B(L2(G))→ VN(G).

Proof. For the proof of (i)⇒(ii) note that VN(G) = %2(G)′. An applica-
tion of [C–G 2, Proposition 2.2] then yields the claim.

For the converse implication, we proceed as in the proof of Theorem
5.3, with the rôles of λ2 and %2 interchanged, and obtain a left invariant
m ∈ UC(G)∗ with 〈1,m〉 = 1.

As in [Was], we obtain:

Corollary 6.7. The W ∗-algebras VN(F2) and M∞ are not of type
(QE) and thus, in particular , are not amenable.

Proof. Since F2 is well known (and easily seen) to be non-amenable ([Pat,
Example (0.6)]), there is no quasi-expectation Q : B(`2(F2)) → VN(F2) by
Proposition 6.6.

The case ofM∞ is reduced to VN(F2) as in [Was]: We can find a maximal
ideal M of M∞ corresponding to a point in βN \ N such that A := M∞/M
contains a W ∗-subalgebra B which is isomorphic to VN(F2). As pointed
out in [Tak, pp. 358–359], A is a type II1 factor, which by [Sak, 4.4.23
Proposition] means that there is a (norm one) quasi-expectationQ : A→ B.
Hence, if M∞ were of type (QE), the same would be true for A and, by
Lemma 6.5, for B ∼= VN(F2). However, as we have just seen, VN(F2) fails
to be of type (QE).

Remark. Although the proof for the non-amenability of M∞ given here
is more elementary than the one from [L–L–W], it is not yet as satisfying
as we would like it to be: The proof of Proposition 6.4 relies on Tomita–
Takesaki theory, which still seems to be far too deep in order to prove a
result on an algebra as plain as M∞. We could have avoided the use of
Tomita–Takesaki theory in the proof of Proposition 6.4 by defining type
(QE) via π(A)′ instead of π(A)′′; Proposition 6.4 would then have been a
straightforward application of [C–G 2, Proposition 2.2]. Then, however, we
would have required Tomita–Takesaki theory in the proof of Lemma 6.5.

Proof of Theorem 6.1. Suppose that A is not of the form in Theorem
6.1(ii). Then, just as in [Was], it follows from the general structure theory
of W ∗-algebras that A contains M∞ as a closed subalgebra. As in the proof
of [Was, Corollary (1.8)], a norm one projection Q : A → M∞ can be
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constructed, which is easily, i.e. directly and without [Tom, Theorem 3.1],
seen to be a quasi-expectation.

The proof of Theorem 6.1 would be considerably easier if we could show
by elementary means that, for an amenable C∗-algebra A, a C∗-subalgebra
B, and a quasi-expectation Q : A→ B, the algebra B is amenable as well.
This is indeed true, but in order to prove it we need the deep connections
between amenability, nuclearity and injectivity.

The corresponding claim for general Banach algebras is false:

Example. Let G be a compact group. Then L1(G) is amenable, so that
L1(G) has an approximate diagonal (mα)α. Let U be an ultrafilter on the
index set of (dα)α which dominates the order filter, and define

Q : L1(G)→ Z(L1(G)), f 7→ lim
U
mα · f,

where
(g ⊗ h) · f := g ∗ f ∗ h (f, g, h ∈ L1(G))

and the limit is taken in the norm topology; since multiplication by any
element of L1(G) is compact, this limit does indeed exist. It is clear that
Q is a quasi-expectation. However, there are compact groups G such that
Z(L1(G)) is not amenable ([Ste]).
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[G–R–W] J. E. Galé, T. J. Ransford and M. C. White, Weakly compact homomorphisms,
Trans. Amer. Math. Soc. 331 (1992), 815–824.

[G–L–W] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability
of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996),
1489–1497.

[Gou] F. Gourdeau, Amenability and the second dual of a Banach algebra, Studia
Math. 125 (1997), 75–81.

[Grø] N. Grønbæk, Various notions of amenability, a survey of problems, in: E.
Albrecht and M. Mathieu (eds.), Banach Algebras ’97, de Gruyter, 1998, 535–
548.

[G–J–W] N. Grønbæk, B. E. Johnson and G. A. Willis, Amenability of Banach algebras
of compact operators, Israel J. Math. 87 (1994), 289–324.

[Gro] M. Grosser, Bidualräume und Vervollständigungen von Banachmoduln, Sprin-
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