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On the Kaczmarz algorithm of approximation
in infinite-dimensional spaces

by

Stanisław Kwapień (Warszawa) and Jan Mycielski (Boulder, CO)

Abstract. The Kaczmarz algorithm of successive projections suggests the following
concept. A sequence (ek) of unit vectors in a Hilbert space is said to be effective if for each
vector x in the space the sequence (xn) converges to x where (xn) is defined inductively:
x0 = 0 and xn = xn−1 + αnen, where αn = 〈x − xn−1, en〉. We prove the effectivity of
some sequences in Hilbert spaces. We generalize the concept of effectivity to sequences of
vectors in Banach spaces and we prove some results for this more general concept.

Introduction. In 1937 S. Kaczmarz [2] proved that given nonzero vec-
tors (ek) in a finite-dimensional vector space and numbers (ck), a solution
(if it exists) to the system of linear equations 〈x, ek〉 = ck, k = 1, . . . , N , can
be obtained as the limit of the sequence defined inductively by

x0 = 0, xn = xn−1 +
cn − 〈xn−1, en〉
〈en, en〉

en

(here the sequences (en), (cn) are extended to infinite sequences by making
them N -periodic). Since then, the method (also known as the “row-action
method”) has been extended and modified in many ways. (For a review
of the method, its generalizations, outlines of applications and references
see [1].)

In this paper we consider the following generalization of the method:
Let X be a real or complex Banach space. Let (ek, fk) be a sequence such
that ek ∈ X, fk ∈ X∗, fk(ek) = 1 for all positive integers k (X∗ denotes
the dual space). The Kaczmarz algorithm of approximation of elements of
X constructs for each x ∈ X an approximating sequence xn defined by the
iterative procedure

x0 = 0, xn = xn−1 + fn(x− xn−1)en.
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If Y is a (not necessarily closed) subspace of X then we will say that
the sequence (ek, fk) is effective in Y if the sequence (xn) converges to x for
each x ∈ Y . If (ek, fk) is effective in the whole space X we say simply that
it is effective. If X is a Hilbert space then we will assume that ek = fk for
all k and we will speak about effectivity of the sequence (ek) rather than of
(ek, ek).

Our motivation for considering this generalization is the following prob-
lem connected with a model in learning theory (see [3], [4]): given a T -
periodic continuous function h : R1 → R1 with h(0) = 1 (base function)
and a sequence of times (tn), the question is which continuous T -periodic
functions x (patterns) can be uniformly approximated (recognized) by the
sequence (xn) defined by the iteration (learning procedure)

x0(t) = 0, xn(t) = xn−1(t) +αnh(t− tn) where αn = x(tn)−xn−1(tn).

If X is the Banach space of all T -periodic continuous functions on R1,
h ∈ X, en is the function h(t− tn) and fn is the evaluation at tn functional,
that is, fn(u) = u(tn), then the question is in which subspaces the sequence
(ek, fk) is effective.

We are especially interested in the sequences (tn) = (nα) with α/T
irrational (systematic learning) or when the tn are chosen at random inde-
pendently and uniformly in T (casual learning). For such sequences of times,
under some natural assumptions on the fuction h, we prove that the class of
functions x which can be uniformly approximated by the procedure contains
some special, everywhere dense subspace with a natural Hilbert structure.
We also prove that if we modify the above procedure (as suggested by the re-
laxation method in row-action algorithms, for references see [1]) by putting
in the above definition αn = 0 whenever |x(tn)− xn−1(tn)| < ε (ε is a fixed
positive number) then each continuous, T -periodic function x is uniformly,
up to ε, approximated by the sequence xn which for large n is a fixed func-
tion. These results will be derived from more general theorems on effective
sequences in Banach (mainly Hilbert) spaces. We think that these abstract
theorems are of independent interest.

Section 1 contains Examples 1, 2 in which we reformulate the above
problem in learning theory. In Section 2 we prove that if we choose the
sequence (ek) at random (more exactly if (ek) is a sequence of independent
random unit vectors in H, with distribution which has support linearly
dense in H) then the sequence is effective a.s. This is a consequence of a
result (Proposition 1) on products of random projections in a Hilbert space.
In Section 3 we characterize the stationary sequences in Hilbert space (see
Section 3) which are effective as those whose spectral measure is either
singular or coincides with the Lebesgue measure. Finally in Section 4, using
the results obtained for Hilbert spaces, we prove an abstract version of a
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result concerning the problem of uniform approximation by means of the
relaxed algorithm.

1. Effective sequences. Definitions and basic properties. Let X
be a real or complex Banach space and let X∗ denotes its dual space. Let
(ek, fk) be a sequence such that ek ∈ X, fk ∈ X∗, fk(ek) = 1 for all positive
integers k. If we define the sequence (gk) in X∗ by induction: g1 = f1

and gn = fn −
∑n−1
k=1 fn(ek)gk then the approximating sequence xn for x,

which was defined in the introduction, can be written in the form xn =∑n
k=1 gk(x)ek. Hence the last sum, which we will abbreviate by Kn(x), is a

linear operator on X.
Obvious necessary conditions for the effectivity of the sequence (ek, fk)

are that (ek) be linearly dense in X and that (fk) separate points of X. This
will be assumed throughout the paper.

We check easily that if we define Pk=Id−ek⊗fk (i.e. Pk(x)=x−fk(x)ek
for x ∈ X) then Pk is a projection onto the kernel of fk and for x ∈ X we
have

(1.0) x−Kn(x) = PnPn−1 . . . P1(x).

Therefore by the Banach–Steinhaus Theorem the sequence (ek, fk) is
effective if and only if there exists a constant C such that

(1.1) ‖PnPn−1 . . . P1‖ ≤ C for all n,

and

(1.2) lim
n→∞

PnPn−1 . . . P1(x) = 0 for all x

in a linearly dense subset of X.

If X is a Hilbert space then the assumptions fk(ek) = 1 and fk = ek
imply that (ek) is a sequence of unit vectors and that the projections Pk
are orthogonal. Then the condition (1.1) is satisfied with C = 1. Moreover
for each n the vector pn = x − xn = PnPn−1 . . . P1(x) is orthogonal to
pn−1−pn = gn(x)en = 〈x, gn〉en. Hence ‖x−xn‖2 = ‖x‖2− (|g1(x)|2 + . . .+
|gn(x)|2). Therefore the sequence (ek) is effective in the Hilbert space X if
and only if the associated sequence (gk) satisfies ‖x‖2 =

∑∞
k=1 |〈x, gk〉|2 for

all x ∈ X. In wavelet theory this condition means that (gk) is a normalized
tight frame.

Not all linearly dense sequences of unit vectors in a Hilbert space are
effective. Indeed, we check easily that for all x ∈ X and each n > 2 we have
‖x−xn‖ ≥ |〈en−1, en〉|·‖x−xn−1‖. Hence ‖x−xn‖ ≥ |〈e1, e2〉 . . . 〈en−1, en〉|·
‖x − x1‖. Therefore an obvious necessary condition for the effectivity of a
sequence (ek) of unit vectors in a Hilbert space is that
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(1.3)
∞∏

k=1

〈ek, ek+1〉 = 0.

In the general case of Banach spaces it is hard to check the condition
(1.1) which is necessary for the effectivity of a sequence (ek, fk). But in a
Hilbert space it suffices only to check (1.2). In some concrete examples this
can still be a difficult problem. In what follows we will discuss some special
cases for which we are able to prove that this condition holds. The cases we
consider constitute an abstract version of the following two examples which
we will keep in mind throughout the paper.

Example 1. Let T = {z : |z| = 1} be the unit circle in the complex
plane (which is a group under multiplication), and let dt be the normalized
Lebesgue measure (Haar measure) on T. Let L2(T) be the Hilbert space of
all square integrable functions on T. Let b ∈ L2(T) be such that ‖b‖2 =�
T |b(t)|2 dt = 1 and all the Fourier coefficients b̂(n) are nonzero. Moreover

let (tk) be a dense sequence in T. For each t ∈ T the translation of b by t
is denoted by bt, i.e., bt(s) = b(st). We are interested in the question if the
sequence (btk) is effective. In the next sections we will prove that it is so for
all functions b as above if (tk) = (zk0 ) for any constant z0 ∈ T which is not
a root of 1, and it is so almost surely (a.s.) if the sequence (tk) is chosen at
random such that the tk are independent and uniformly distributed in T.

Note that not all sequences (btk) are effective. Indeed, for t, s ∈ T we
have 〈bs, bt〉 = h(ts), where the function h is defined below in Example 2.
Therefore if h has a derivative at t = 1 it is easy to find a sequence (tk)
with distances between consecutive times going to zero, which is dense in T
and such that

∏∞
k=1 |h(tktk+1)| > 0. This shows that the condition (1.3) is

not satisfied and hence the sequence (btk) is not effective. (Effective learning
needs bigger breaks between lessons!)

Example 2. Under the same notation and assumptions as in Example 1
consider the function h = b ? b∗, i.e., h(t) =

�
T b(ts)b(s) ds for t ∈ T. A ques-

tion of interest is if in the Banach space C(T) the sequence (htk , δtk) is effec-
tive (here δt denotes the evaluation functional at t ∈ T, i.e., δt(x) = x(t)).
We do not know if such sequences exist. In Section 4 we will show that this
is not so for the sequences (tk) of the two forms in Example 1. However, in
that section, for sequences of these types we will construct large subspaces
Y ⊂ C(T) in which the sequence (htk , δtk) is effective. And we will show that
the relaxed algorithm gives an ε-uniform approximation for each x ∈ C(T).

Remark 1. We made the assumption that b̂(n) 6= 0 for all n because
only in this case is the sequence (btk) (resp. (htk)) linearly dense in L2(T)
(resp. C(T)).
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2. Random effective sequences in a Hilbert space. We will prove
that in a Hilbert space “almost all” sequences (ek) of vectors of norm 1 are
effective. To make the statement precise we introduce the following notation.
If µ is a Borel probability measure on a separable metric space S then
µ∞ denotes the infinite product of µ on S∞, which is the metric space
consisting of all sequences of elements from S. The support of µ is defined
as the smallest closed set with measure 1. S(H) denotes the unit sphere of
a Hilbert space H.

Theorem 1. If H is a separable Hilbert space and µ is a probabil-
ity measure on S(H) with support linearly dense in H then µ∞({(ek) :
(ek) is effective}) = 1.

Theorem 1 can be reformulated as follows: If (ek) is a sequence of in-
dependent random unit vectors in a separable Hilbert space H which are
identically distributed by a law with linearly dense support in H then the
sequence is effective a.s.

For such sequences the projections Pk, which were defined in Section 1,
are equidistributed and moreover Id−Pk = ek ⊗ ek is an orthogonal pro-
jection of rank 1. Hence the operator R = E(Id−Pk) is nuclear with trace
tr(R) equal to 1 (here E denotes the expectation of a random operator
and the integration is taken with respect to the strong operator topology).
The operator R is strictly positive (i.e., 〈Rx, x〉 > 0 for x 6= 0). Indeed,
if 〈Rx, x〉 = 0 for some x 6= 0 then, since 〈Rx, x〉 = E|〈x, ek〉|2, we get
〈x, ek〉 = 0 a.s. This implies that the support of the distribution of ek is
contained in the space orthogonal to x and so it is not linearly dense in H.
Therefore, by (1.0), we see that Theorem 1 is a direct consequence of the
following

Proposition 1 (1). If (Pk) is a sequence of independent identically dis-
tributed random orthogonal projections such that the operator R=E(Id−P1)
is nuclear and strictly positive, then the sequence Qn = PnPn−1 . . . P1 is a.s.
convergent to 0 in the strong operator topology , i.e., Qn(x)→ 0 for each x.

Proof. Since each Pk is a contraction, for each x ∈ H the sequence
(‖Qn(x)‖) is nonincreasing. Therefore to prove that a.s. the sequence
(‖Qn(x)‖) converges to 0 for all x ∈ X, it is enough to prove that for
each x ∈ H the sequence converges in probability to 0. Indeed, let D be
any countable dense subset of H and assume that the sequence (Qn(x))
converges in probability to 0 for each x ∈ H. Given d ∈ D we can choose
a sequence (mn) of positive integers such that ‖Qmn(d)‖ → 0 a.s. In view

(1) A more general result was proved by Joel Zinn and the first author. It will appear
elsewhere.
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of the monotonicity of the sequence (‖Qn(d)‖) this implies that the last se-
quence is convergent to 0 a.s. Then, since D is countable, for all d ∈ D the
sequence (‖Qn(d)‖) is convergent to 0 a.s. Since D is dense in H and the
Qn are contractions we have ‖Qn(x)‖ → 0 for all x ∈ H a.s. Convergence in
probability follows from convergence in the second moment. Thus to prove
Proposition 1 it is enough to show that E‖Qn(x)‖2 → 0 for each x ∈ H. For
each x we have E‖Qn(x)‖2 = E〈x,Q∗nQnx〉 = 〈x,EQ∗nQnx〉 = 〈x,Anx〉,
where

An = EQ∗nQn = E(P1P2 . . . PnPn . . . P2P1).

Thus it suffices to prove that An → 0 in the strong operator topology. Since
the Pn are independent and equidistributed we obtain

An = EP1(EP2 . . . PnPn . . . P2)P1 = EP1An−1P1.

The last equality and an easy induction imply that An−1−An are positive
operators. Indeed, if we put A0 = Id then for n = 1 we have 0 ≤ EP1 =
A1 ≤ Id = A0. For n > 1 if 0 ≤ An ≤ An−1 ≤ Id then

0 ≤ An+1 = EP1AnP1 ≤ EP1An−1P1 = An ≤ Id.

This proves that the sequence of operators An is monotone and bounded.
Such a sequence is convergent in the strong operator topology. Denoting the
limit by A∞ we obtain 0 ≤ A∞ ≤ Id and EP1A∞P1 = A∞. By the last
equality,

E(Id−P1)A∞ + EA∞(Id−P1) = E(Id−P1)A∞(Id−P1),

or equivalently, RA∞+A∞R = E(Id−P1)A∞(Id−P1). Taking the trace on
both sides we get

2 tr(RA∞) = tr(E(Id−P1)A∞(Id−P1)) = E tr((Id−P1)A∞(Id−P1))

= E tr((Id−P1)2A∞) = E tr((Id−P1)A∞)

= tr(E(Id−P1)A∞) = tr(RA∞).

Thus tr(RA∞) = 0. Since R is strictly positive and A∞ ≥ 0, this yields
A∞ = 0, which concludes the proof of Proposition 1.

Corollary 1. If (tk) is a sequence of independent , equidistributed ran-
dom variables in T and the support of their common distribution is T then
the sequence (btk), defined as in Example 1, is effective a.s.

Proof. The random vectors btk satisfy the assumptions of Theorem 1.

Corollary 2. If (ek) is a sequence of unit vectors which is linearly
dense in a Hilbert space H then there exists a sequence (mk) of positive
integers such that the sequence (emk) is effective.

This corollary also follows from Theorem 1. It is enough to pick the
mk at random independently according to any law which assigns positive
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probability to each positive integer. Of course in such sequences each pos-
itive integer appears infinitely many times. (Repetitions are needed for an
effective learning!)

3. Stationary effective sequences in Hilbert space. A sequence
(ek) in a Hilbert space H is said to be stationary if 〈ek+m, el+m〉 = 〈ek, el〉
for any positive integers k, l,m. It follows by Bochner’s Theorem that if we
define am for m ∈ Z (the set of all integers) by am = 〈ek, ek+m〉 where
k is any positive integer with k > −m then there exists a unique positive
measure σ on T (called the spectral measure of the stationary sequence) such
that

am = �
T
zm σ(dz) for each m ∈ Z.

A stationary sequence consists of unit vectors if and only if its spectral
measure is a probability measure. And it is orthonormal if and only if its
spectral measure coincides with the normalized Lebesgue measure on T.

Theorem 2. A stationary sequence of unit vectors which is linearly
dense in a Hilbert space is effective if and only if its spectral measure either
coincides with the normalized Lebesgue measure or is singular with respect
to Lebesgue measure.

Proof. Let (ek) be a stationary sequence of unit vectors in a Hilbert
space H. Let σ be its spectral probability measure on T and let (am) be
defined as above. If we define the complex function F by

F (z) = �
T

σ(dw)
1− zw

then F is well defined in D = {z : |z| < 1} and F (z) =
∑∞
n=0 anz

n. Since
the map z 7→ 1/(1− z) transforms D onto {z : Re(z) > 1/2} and since σ is a
probability measure we get Re(F (z)) > 1/2 for all z ∈ D. Taking the inverse
map we see that for the function G(z) = 1− 1/F (z) we have |G(z)| < 1 for
z ∈ D. Therefore, since F (0) = 1, the Taylor series of 1/F (z) =

∑∞
n=0 cnz

n

is convergent in D and
∑∞
n=0 |cn|2 ≤ 2. It is clear that

(2.1) c0 = a0 = 1 and
n∑

k=0

ckan−k = 0 for n ≥ 1.

The above equalities easily imply that if (gk) is the sequence associated to
(ek) as in Section 1, then gk =

∑k
i=1 ck−iei. Hence

Kn(x) =
n∑

k=1

( k∑

i=1

ck−i〈x, ei〉
)
ek.
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Since (ek) is linearly dense the sequence is effective if and only if
limn→∞Kn(ei) = ei for i = 1, 2, . . .

Using (2.1) we check that Kn(e1) = e1 and, for i = 2, 3, . . . ,

Kn(ei)− ei =
i−1∑

j=1

aj

( n+j−i∑

l=0

clel+i−j
)
.

Therefore the condition (1.2) is satisfied if and only if for any positive inte-
gers i, j such that aj 6= 0 and i > j the series

∑∞
l=0 clel+i−j converges to 0

in H. Since the sequence (ek) is stationary, for fixed positive integers i > j
the map el 7→ el+i−j , l = 1, 2, . . . , extends to an isometry of H into itself.
Thus the last series converges to 0 if and only if

∑∞
l=0 clel+1 converges to 0.

Hence if aj 6= 0 for some j > 0, then the sequence is effective if and only if
the series

∑∞
l=0 clel+1 is convergent to 0 in H, or equivalently, the sequence

(rn) of numbers defined by r2
n = ‖∑n

l=0 clel+1‖2 converges to zero. How-
ever, if aj = 0 for all j = 1, 2, . . . , then the sequence (ek) is orthonormal,
the spectral measure coincides with the normalized Lebesgue measure on T
and Theorem 1 is trivial in this case.

We will prove by induction that (rn) satisfies

r2
n = 1− |c1|2 − |c2|2 − . . .− |cn|2.

Indeed, for n = 0 both sides are equal to 1. For each n > 1 we have

r2
n = r2

n−1 + 2 Re
(〈 n−1∑

l=0

clel+1, cnen+1

〉)
+ |cn|2

= r2
n−1 + 2 Re

(
cn

n−1∑

l=0

clan−l
)

+ |cn|2 = r2
n−1 − |cn|2

(because by (2.1),
∑n−1
l=0 clan−l = −cn). This concludes the inductive step.

Since
∑∞
n=1 |cn|2 =

�
T |G(z)|2 dz, we see that the sequence (ek) is effec-

tive if and only if
�
T |G(z)|2 dz = 1. Also |G(z)| ≤ 1, therefore this is so if

and only if G(z) = 1 a.e. on T. The last condition means that G is an inner
function. This is equivalent to the fact that σ is a singular measure with
respect to the Lebesgue measure on T (see [5] where the correspondence
between singular measures and inner functions is studied in detail). This
concludes the proof of Theorem 2.

Corollary 3. If (tk) = (zk0 ) for some z0 ∈ T which is not a root of 1
and b is as in Example 1 then the sequence (btk) is effective in L2(T).

Proof. With (tk) = (zk0 ) the sequence (btk) is stationary and its spectral
measure is σ =

∑∞
m=−∞ |̂b(m)|2δzm0 . This measure is discrete and so it is

singular with respect to the Lebesgue measure. Under the given assumption
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on b and z0 the sequence (btk) is linearly dense in L2(T). Thus by Theorem 2
the sequence is effective.

Remark 2. From the point of view of prediction theory of stationary se-
quences in Hilbert space, it is interesting to note that the proof of Theorem 2
yields that if a stationary sequence (em), m ∈ Z, has a singular probabil-
ity spectral measure then em+1 = −∑m

l=−∞ cm+1−lel. This is an explicit
prediction formula. The formula is valid only for stationary sequences with
singular spectral measures. As far as we know, no such formula is known for
all predictable stationary sequences.

4. Effective sequences in Banach spaces. Let us prove the following
claims made in Example 2:

Proposition 2. If b and h are as in Examples 1 and 2 and (tk) = (zk0 )
then the sequence (htk , δtk) is not effective in C(T). If (tk) is chosen at
random, as in Corollary 1, then a.s. the sequence (htk , δtk) is not effective
in C(T).

Proof. Let (tk) be an arbitrary sequence of different points in T and
assume that Kn(x) converges uniformly to x for each x ∈ C(T). Then by
the Banach–Steinhaus Theorem, ‖Kn‖ ≤ C for some constant C and all n.
Since gn(x) = (x−Kn−1(x))(tn) we have ‖gn‖ ≤ C + 1. On the other hand
gn(x) =

∑n
i=1 cn,ix(ti), where the triangular matrix (cn,i)n≥i is the inverse

of the triangular matrix (h(tnti))n≥i which we denote by (an,i). Therefore if
the sequence (htk , δtk) is effective in C(T) then

∑n
i=1 |cn,i| = ‖gn‖ ≤ C + 1.

Now let (tk) = (zk0 ) and assume that (htk , δtk) is effective. Let (ck)
and (ak) be sequences and F the function defined as in Section 2 for the
stationary sequence (bzk) in L2(T). We check easily that in this case cn,i =
cn−i and an,i = an−i = h(zn−i0 ). Thus

∑∞
n=0 |cn| ≤ C + 1 for some C.

Therefore 1/F is continuous on D ∪ T and hence the same is true about F .
But then

∑∞
n=0 |an|2 < ∞ and this is a contradiction since (ak) = (h(tk))

does not converge to 0.
The above also proves that if (tk) is chosen at random, as in Corollary 1,

then a.s. the sequence (htk , δtk) is not effective in C(T). Indeed, assume to
the contrary that the probability that it is effective is positive. Because the
matrix (an,i) is triangular, for each interval J of positive integers the entries
of the inverse matrix (cn,i) with indices n, i ∈ J depend only on the entries
an,i with n, i ∈ J . Fix z0 ∈ T which is not a root of 1. If (tk) is random, as in
Corollary 1, then a.s. we can find arbitrarily large intervals of integers k for
which tk is as close to zk0 as we wish and thus for n, i in such intervals the
terms of the inverse matrices for these two sequences are close. Therefore
the sums of absolute values of the rows of the matrix (cn,i) are arbitrarily
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large because this was shown for the sequence (zk0 ) in the first case. This is
a contradiction.

Thus in the above cases we can only hope for “large” subspaces Y ⊂ C(T)
in which the sequence (htk , δtk) is effective. A construction of such subspaces
is provided by the following abstract proposition.

Proposition 3. Let i : H → X be a continuous operator from a Hilbert
space into a Banach space with a dense image. Assume that (dk) is an
effective sequence in H and (ek, fk) is a sequence in X × X∗ such that
i(dk) = ek and i∗(fk) = dk (i∗ : X∗ → H is the adjoint operator). Then in
the Banach space X the sequence (ek, fk) is effective in i(H).

Proof. This is obvious since if (xn) is an approximating sequence for x
corresponding to the sequence (dk) in H, then (i(xn)) is the approximating
sequence for i(x) corresponding to (ek, fk) in X.

Corollary 4 (cf. Example C of [4]). Let b, h and (tk) be as in Exam-
ples 1, 2. If the sequence (btk) is effective in L2(T) then in C(T) the sequence
(htk , δtk) is effective in the space Y = {x ∈ C(T) :

∑∞
n=−∞ |x̂(n)|2/ĥ(n)

<∞}.
Proof. Let i : L2(T)→ C(T) be the operator defined by

i(x)(z) =
∞∑

n=−∞
x̂(n)b̂(n)zn.

We check that i(bt) = ht, i∗(δt) = bt for each t ∈ T and i(L2(T)) = Y . Thus
the assertion follows from Proposition 3.

The last and the preceding corollaries can be combined to prove the
effectivity of sequences (htk , δtk) in subspaces Y ⊂ C(T).

We will conclude the paper with a nonlinear modification of the Kacz-
marz algorithm.

Let ε be a fixed positive number and let (ek, fk) be a sequence in a
Banach space X as at the beginning of Section 1. Given x ∈ X we define by
induction sequences (xεn) of vectors and (gεk(x)) of numbers as follows:

x0 = 0, gε0 = 0 and xεn = xεn−1 + gεn(x)en

where gεn(x) = fn(x− xεn−1) if |fn(x− xεn−1)| > ε and otherwise gεn(x) = 0.
The functionals gεk and the operators Kε

n defined by Kε
n(x) = xεn =∑n

k=1 g
ε
k(x)ek are nonlinear in X. To formulate our next result we need the

following definition. A sequence (fk) in X∗ is said to be norming if ‖fk‖ ≤ 1
for all k and lim supk→∞ |fk(x)| = ‖x‖ for each x ∈ X. An example of such
a sequence is (δtk) in C(T) whenever (tk) is dense in T. #A is the number
of elements in A.



Kaczmarz algorithm of approximation 85

Theorem 3. Let (ek, fk) be a sequence in X × X∗ such that (ek) is
linearly dense in X and (fk) is norming. Assume that for a Hilbert space
H, a sequence (dk) of unit vectors in H and a linear operator i : H → X
satisfy i(dk) = ek and i∗(fk) = dk for all k. Then for each ε > 0 and x ∈ X,
‖x−Kε

n(x)‖ ≤ ε for n sufficiently large and

#{n : Kε
n(x) 6= Kε

n−1(x)} ≤ inf{2ε−2‖v‖2H : v ∈ H, ‖i(v)− x‖ ≤ ε/4}.
Proof. For x ∈ X let v ∈ H be such that ‖i(v) − x‖ ≤ ε/4 and let

vn =
∑n
k=1 g

ε
k(x)dk. For each n we have i(vn) = xεn, |gεn(x)| = ‖vn−vn−1‖H

and vn 6= vn−1 implies fn(vn) = fn(x). Since i∗(fn) = dn, for each w ∈ H
we have fn(i(w)) = 〈w, dn〉H . Therefore we check easily that if vn 6= vn−1

then
‖v − vn−1‖2H = ‖v − vn‖2H + ‖vn − vn−1‖2H + 2 Re〈v − vn, vn − vn−1〉H

= ‖v − vn‖2H + ‖vn − vn−1‖2H + 2 Re〈v − vn, gεn(x)dn〉H
= ‖v − vn‖2H + ‖vn − vn−1‖2H + 2 Re(gεn(x)fn(i(v − vn)))

≥ ‖v − vn‖2H + ‖vn − vn−1‖2H − 2‖vn − vn−1‖H‖i(v)− x‖
≥ ‖v − vn‖2H + ‖vn − vn−1‖2H −

ε

2
‖vn − vn−1‖H

(the inequalities hold since ‖fn‖ ≤ 1 and ‖i(v)− x‖ ≤ ε/4). But vn 6= vn−1

implies that ‖vn−vn−1‖H ≥ ε and hence ‖vn−vn−1‖2H−(ε/2)‖vn−vn−1‖H ≥
ε2/2. Thus

‖v − vn−1‖2H ≥ ‖v − vn‖2H + ε2/2 whenever vn 6= vn−1.

Summing these inequalities over all n with vn 6= vn−1 we conclude that

‖v‖2H ≥
ε2

2
#{n : vn 6= vn−1} ≥

ε2

2
#{n : xεn 6= xεn−1}.

This proves the second statement of Theorem 3. And it follows that there
exists N such that xεn = xεN for all n > N . Therefore |fn(x − xεN )| < ε
for n > N . Because (fk) is norming this proves that ‖x − xεN‖ ≤ ε. This
completes the proof.

Remark 3. If a sequence (fk) is norming and a sequence (ek) is linearly
dense in a Banach space X then for the sequence (ek, fk) there exist i : H →
X and (dk) which satisfy the assumptions of Theorem 3 if and only if the
matrix (an,k) = (fn(ek)) is positive definite and the entries on the diagonal
are equal to 1.

An immediate consequence of Theorem 3 is the following

Corollary 5. If h is as in Example 2, (tk) is a dense sequence in T
and ε is a fixed positive number then Kε

n corresponding to (htk , δtk) has the
property that for each x ∈ C(T) the inequality ‖Kε

n(x)−x‖ ≤ ε holds for all
n large enough.
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Proof. To apply Theorem 3 it is enough to take for i : H → X the
operator defined in the proof of Corollary 4 and to put (dk) = (btk).
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