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Optimal Sobolev imbedding spaces

by

Ron Kerman (St. Catharines) and Luboš Pick (Praha)

Abstract. This paper continues our study of Sobolev-type imbedding inequalities
involving rearrangement-invariant Banach function norms. In it we characterize when the
norms considered are optimal. Explicit expressions are given for the optimal partners
corresponding to a given domain or range norm.

1. Introduction. Our aim is to further study those rearrangement-
invariant Banach function spaces which are optimal in the Sobolev imbed-
dings considered in [2] and [4].

We begin by briefly describing the content of [4]. Suppose Ω is a bounded
domain in Rn, n ≥ 2. Let ∂α/∂xα := ∂α1+···+αn/∂xα1

1 . . . ∂xαnn be a differen-
tial operator of order |α| := α1 + · · ·+αn, where αi ∈ Z+∪{0}, i = 1, . . . , n.
Denote by |Dmu| the Euclidean length of the vector, Dmu, 1 ≤ m ≤ n− 1,
of all derivatives of u of order m or less, whenever such derivatives exist on
Ω in the weak sense. In [4] we considered Sobolev imbedding inequalities of
the form

(1.1) σ(u) ≤ C%(|Dmu|),
in which % and σ are rearrangement-invariant (r.i.) norms (such as those of
Lebesgue, Orlicz and Lorentz) and u belongs to the r.i. Sobolev space

Wm,%(Ω) := {u : Ω → R : %(|Dmu|) <∞};
that is, we investigated when

Wm,%(Ω) ↪→ Lσ(Ω) := {f : Ω → R : σ(f) <∞}.

The focus was on cases in which % and/or σ is optimal, namely Wm,%(Ω)
cannot be made larger and/or Lσ(Ω) cannot be made smaller. Expressions
were given for the optimal partners of % and σ in (1.1). They involved related
r.i. norms, % and σ, defined at functions on IΩ := (0, |Ω|). Thus, for σ, the
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optimal %, called %σ, had

%σ(f) := supσ
(|Ω|�
t

h(s)sm/n−1 ds
)
, f : Ω → R,

the supremum being over all h on IΩ such that
|{t ∈ R+ : |h(t)| > λ}| = |{x ∈ Ω : |f(x)| > λ}|, λ ∈ R+;

as usual, R+ := (0,∞). Again, for %, the optimal σ, denoted by σ%, satisfied

(1.2) σ′%(g) := %′
(
tm/n−1

t�

0

g∗(s) ds
)
, g : Ω → R,

where σ′% and %′ are the Köthe dual norms of σ% and % discussed in Section 2
below and

g∗(t) := inf{λ > 0 : µg(λ) ≤ t}, t ∈ IΩ,
with

µg(λ) := |{x ∈ Ω : |g(x)| > λ}|, λ ∈ R+,

is the decreasing rearrangement of g on IΩ.
Proposition 5.2 in [4] proved that the formula for %σ can be dramatically

improved if σ is optimal in (1.1). There is also a more explicit formula for σ%
when % is optimal in (1.1). These expressions, together with precise criteria
for the optimality of % and σ in (1.1), are the subject of Theorem A below.

To state the theorem we must, first of all, introduce two supremum op-
erators, namely,

(Sn/mf)(t) := tm/n−1 sup
0<s≤t

s1−m/nf∗(s)

and
(Tn/mf)(t) := t−m/n sup

t≤s<|Ω|
sm/nf∗(s), f : IΩ → R, t ∈ IΩ.

Observe that for Sn/mf to be finite one requires

sup
0<s≤|Ω|

s1−m/nf∗(s) <∞,

or, as we will write, f ∈ Ln/(n−m),∞(IΩ). Also, one has
(Sn/mf)∗∗(t) ≈ (Sn/mf

∗∗)(t) ≈ (Sn/mf)(t), f ∈M+(IΩ), t ∈ IΩ.
(We recall the notation X ≈ Y , which signifies that each of X and Y is dom-
inated by a constant multiple of the other, the constants being independent
of all functions involved. More generally, X . Y means X is no bigger than
a constant times Y , with the constant independent of all functions involved.)
For any measurable subset E of Rn, we define

M(E) := {f : E → R : f is measurable}
and denote by M+(E) the class of nonnegative functions in M(E).
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Theorem A. Fix m,n ∈ Z+, with n ≥ 2 and 1 ≤ m ≤ n − 1. Let
Ω be a bounded Lipschitz domain in Rn. Then, an r.i. norm % on M+(Ω),
associated to the r.i. norm % on M+(IΩ), with L%(IΩ) ) Ln/m,1(IΩ), is
optimal in (1.1) for some r.i. norm σ on M+(Ω) if and only if

(1.3) Sn/m : L%′(IΩ)→ L%′(IΩ).

In that case,

(1.4) σ%(f) ≈ %(t−m/n[f∗∗(t)− f∗(t)]) +
1�

0

f∗(t) dt, f ∈M+(Ω),

where f∗∗(t) := t−1
	t
0 f
∗(s) ds.

Again, an r.i. norm σ on M+(Ω), associated to the r.i. norm σ on
M+(IΩ), is optimal in (1.1) for some r.i. norm % on M+(Ω) if and only if

(1.5) Tn/m : Lσ′(IΩ)→ Lσ′(IΩ),

in which case

(1.6) %σ(f) ≈ σ
(|Ω|�
t

f∗(s)sm/n−1 ds
)
, f ∈M+(Ω).

In practice, one starts with a Sobolev space, Wm,%(Ω), and seeks to find
its optimal imbedding space, Lσ%(Ω). One can then go on to form %D := %σ% .
It is readily seen that

Wm,%(Ω) ↪→Wm,%D(Ω) ↪→ Lσ%(Ω)

and, indeed, that Wm,%D(Ω) is the largest Sobolev space that imbeds into
Lσ%(Ω). Accordingly, we refer to %D as the optimal r.i. hull norm for %
in (1.1). Our new description of %D is given in

Theorem B. Fix m,n ∈ Z+, with n ≥ 2 and 1 ≤ m ≤ n− 1. Let Ω be
a bounded Lipschitz domain in Rn and suppose % is an r.i. norm on M+(Ω),
associated to the r.i. norm % on M+(IΩ). Then,

%D(f) ≈ µ′(f∗), f ∈M+(Ω),

where
µ(g) := %′(Sn/mg

∗∗), g ∈M+(IΩ).

The basic technical result on which the proofs of Theorems A and B
depend is

Proposition C. Fixm,n ∈ Z+, with n ≥ 2 and 1 ≤ m ≤ n−1. Let Ω be
a bounded Lipschitz domain in Rn and suppose % is an r.i. norm on M+(Ω),
associated to the r.i. norm % on M+(IΩ) satisfying L%(IΩ) ) Ln/m,1(IΩ).
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Then,

(1.7) σ%(f) ≈ sup
%′(Sn/mg)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt,

where f ∈M+(Ω), g ∈M+(IΩ).

The structure of the paper is as follows. Section 2 contains background
material on r.i. norms and an interpolation-theoretic result involving Sn/m
and Tn/m needed later on. The optimal range, σ%, corresponding to a given %,
is treated in Section 3, which begins with the proof of Proposition C. Theo-
rems A and B are proved in Section 4.

Theorem A is illustrated in the context of Orlicz spaces in the last sec-
tion, using results from [3]. A property of the so-called level function, f◦, of
f ∈M(IΩ), necessary to obtain (1.4), is proved in an appendix.

Finally, we mention that, in [5], Proposition C turns out to be crucial to
characterizing when the imbedding

Wm,%(Ω) ↪→ Lσ(Ω)

is compact.

2. Rearrangement-invariant norms. The decreasing rearrangement
defined above satisfies [1, Chapter 2, Theorem 2.2]

(2.1)
�

Ω

f(x)g(x) dx ≤
|Ω|�

0

f∗(t)g∗(t) dt, f, g ∈M+(Ω).

The operation of rearrangement is not sublinear, though for the Hardy av-
erage of h∗, namely h∗∗(t) := t−1

	t
0 h
∗(s) ds, t ∈ IΩ, we have [1, Chapter 2,

Proposition 3.3]

(2.2) (f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t), f, g ∈M+(Ω), t ∈ IΩ.
Definition 2.1. A rearrangement-invariant (r.i.) Banach function

norm % on M+(Ω) satisfies the following seven axioms:

(A1) %(f) ≥ 0, with %(f) = 0 if and only if f = 0 a.e. on Ω;
(A2) %(cf) = c%(f), c ≥ 0;
(A3) %(f + g) ≤ %(f) + %(g);
(A4) fn ↑ f implies %(fn) ↑ %(f);
(A5) %(χE) <∞ for measurable E ⊂ Ω, |E| <∞;
(A6)

	
E f(x) dx ≤ CE%(f), with E ⊂ Ω, |E| < ∞, CE > 0 independent
of f ;

(A7) %(f) = %(g) whenever µf = µg.

According to a fundamental result of Luxemburg [1, Chapter 2, Theo-
rem 4.10], to every r.i. norm % on M+(Ω) there corresponds an r.i. norm, %,
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on M+(IΩ), such that

(2.3) %(f) = %(f∗), f ∈M+(Ω).

The basic technique for working with an r.i. norm % involves the Hardy–
Littlewood–Pólya (HLP) Principle (see [1, Chapter 2, Proposition 4.6]),
which asserts that

f∗∗(t) ≤ g∗∗(t), t ∈ IΩ, implies %(f) ≤ %(g).
It is based on the following result of Hardy: if f, g, h ∈M+(IΩ), then

(2.4)
t�

0

f(s) ds ≤
t�

0

g(s) ds, t ∈ IΩ,

⇒
|Ω|�

0

f(t)h∗(t) dt ≤
|Ω|�

0

g(t)h∗(t) dt.

The Köthe dual of an r.i. norm % on M+(Ω) is another such norm, %′,
with

%′(g) := sup
%(h)≤1

�

Ω

g(x)h(x) dx, g, h ∈M+(Ω).

It obeys the Principle of Duality,

(2.5) %′′ := (%′)′ = %.

Further, the Hölder inequality,�

Ω

f(x)g(x) dx ≤ %(f)%′(g),

holds for all f, g ∈M+(Ω), and this inequality is saturated, in the sense that,
given f ∈M+(Ω) and ε > 0, there exists g0 ∈M+(Ω) such that %′(g0) = 1
and �

Ω

f(x)g0(x) dx > (1− ε)%(f).

Finally, %′ = %′.
A smaller functional dual to the r.i. norm % on M(IΩ) will also be of

interest to us, namely the down dual norm, %′d, defined by

%′d(g) := sup
%(h)≤1

|Ω|�

0

g(t)h∗(t) dt, g, h ∈M+(IΩ).

One connection between %′ and %′d, observed in [2, p. 312], is

%′(g) = %′d(g
∗), g ∈M+(IΩ).

Recently, G. Sinnamon [7] proved

(2.6) %′d(g) = %′(g◦), g ∈M+(IΩ),
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in which g◦, referred to as the level function of g, is the (nonincreasing)
derivative of the least concave majorant of

	t
0 g(s) ds, t ∈ IΩ. One has

(2.7)
t�

0

g∗(s) ds ≥
t�

0

g◦(s) ds ≈ t sup
t≤s<|Ω|

s−1
s�

0

g(y) dy, g ∈M+(IΩ).

The inequality in (2.7) is almost obvious. The equivalence was pointed out
to us by G. Sinnamon ([8]); a proof of it, due to A. Gogatishvili, appears in
the appendix at the end of this paper.

Corresponding to an r.i. norm % on M+(Ω) is the set

L%(Ω) := {f ∈M(Ω) : %(|f |) <∞},
which becomes a Banach space when

‖f‖L%(Ω) := %(|f |), f ∈ L%(Ω);

indeed, it is a so-called rearrangement-invariant Banach function space, or,
for short, an r.i. space. A detailed treatment of such spaces appears in [1,
Chapters 1 and 2].

The dilation operator Es, s ∈ R+, given at f ∈M+(IΩ), t ∈ IΩ, by

(Esf)(t) :=
{
f(t/s), 0 < t ≤ |Ω|s,
0, |Ω|s < t < |Ω|,

if s ∈ (0, 1), and by

(Esf)(t) := f(t/s), 0 < t ≤ |Ω|,
if s ∈ [1,∞), is bounded on any r.i. space L%(IΩ) ([1, Chapter 3, Proposi-
tion 5.11]).

The Lorentz norms, %p,q, with 1 < p <∞, 1 ≤ q ≤ ∞, are defined by

(2.8) %p,q(f) :=
(|Ω|�

0

(f∗∗(t)t1/p−1/q)q dt
)1/q

when q <∞,

and
%p,∞(f) := sup

0<t<|Ω|
t1/pf∗∗(t), f ∈M+(Ω).

In view of a well-known inequality of Hardy,

%p,p(f) ≈ ‖f‖p :=
( �
Ω

f(x)p dx
)1/p

=
(|Ω|�

0

f∗(t)p dt
)1/p

, f ∈M+(Ω).

We denote L%p,q(Ω) by Lp,q(Ω).
To conclude, we record a special interpolation-theoretic result.
Suppose X0, X1 and X are r.i. spaces of functions in M+(Ω) satisfying

X0 ⊂ X ⊂ X1 or X0 ⊃ X ⊃ X1.
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We say that X is an interpolation space between X0 and X1, denoted X ∈
Int(X0, X1), if, for any linear operator T ,

T : X0 → X0 and T : X1 → X1 implies T : X → X.

For example, if % is any r.i. norm on M+(Ω), then

L1(Ω) ⊃ L%(Ω) ⊃ L∞(Ω) and L%(Ω) ∈ Int(L1(Ω), L∞(Ω));

see [1, Chapter 3, Theorem 2.12].
When X0 and X1 are certain Lorentz spaces, there are simple tests for

L%(Ω) ∈ Int(X0, X1) involving the supremum operators Sn/m and Tn/m.
More specifically, we have

Theorem 2.2. Let m,n ∈ Z+ with n ≥ 2 and 1 ≤ m ≤ n − 1, and
suppose Ω is a bounded Lipschitz domain in Rn. Let % be an r.i. norm on
M+(Ω). Then L%(Ω) ⊃ Ln/m,1(Ω), and

(2.9) L%(Ω) ∈ Int(L1(Ω), Ln/m,1(Ω))

if and only if (1.3) holds.
Again, given L%(Ω) ⊂ Ln/(n−m),1(Ω), we have

L%(Ω) ∈ Int(Ln/(n−m),1(Ω), L∞(Ω))

if and only if (1.5) holds.

The “if” parts are consequences of [4, Corollary 3.7 and Theorem 3.12].
The “only if” parts follow by standard arguments (see, for example, [1, Chap-
ter 4, Section 4]) from the endpoint estimates for Sn/m and Tn/m, in [4,
Lemma 3.5], combined with their “quasisubadditivity” properties

(Sn/m[f + g])(t) ≤ (Sn/mf)(t/2) + (Sn/mg)(t/2)
and

(Tn/m[f + g])(t) ≤ (Tn/mf)(t/2) + (Tn/mg)(t/2), f, g ∈M+(IΩ), t ∈ IΩ,
and the boundedness of the dilation operators on every r.i. space.

One readily sees from [4, Theorem A] that
σ%1 = %n/(n−m),1 and %%∞ = %n/m,1.

Thus, when considering % and σ in (1.1) one may safely assume

L%(Ω) ⊃ Ln/m,1(Ω) and Lσ(Ω) ⊂ Ln/(n−m),1(Ω).

3. The optimal range norm σ%. In the first part of this section we
prove Proposition C. The strategy of the proof is as follows. According
to (1.2),

(3.1) σ′%(g) = %′
(
tm/n−1

t�

0

g∗(s) ds
)

=: λ(g), g ∈M+(Ω).

Thus, we must show λ′(f) is equivalent to the right side of (1.7).
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We begin with two lemmas essential to the proof.

Lemma 3.1. Fix b > 0 and set Ib := (0, b). Let % be an r.i. norm on
M+(Ib) such that L%′(Ib) ( Ln/(n−m),∞(Ib). Then,

(3.2) µ(f) := sup
%′(Sn/mg)≤1

b�

0

f∗(t) d csup
0<s≤t

s1−m/ng∗(s) +
|Ω|�

0

f∗(s) ds,

f, g ∈M+(Ib),

is also an r.i. norm on M+(Ib); in (3.2), csup0<s≤t s
1−m/ng∗(s) =: α(t)

denotes the least concave majorant of sup0<s≤t s
1−m/ng∗(s) =: β(t), t ∈ Ib,

and
b�

0

f∗(t) dα(t) := lim
ε→0+

b−ε�

ε

f∗(t) dα(t).

Proof. To start, observe that β(t) is quasiconcave (so β(t) ≤ α(t) ≤
2β(t)) and that %′(Sn/mg) < ∞ implies β(b−) = (Sn/mg)(b−) < ∞. Thus,
α(t) is continuous on Ib (in fact, locally Lipschitz of order 1) and hence

1−ε�

ε

f∗(t) dα(t)

is well defined as a (Riemann) Stieltjes integral, for all ε with 0 < ε < b/2.
Indeed,

b−ε�

ε

f∗(t) dα(t) =
b−ε�

ε

f∗(t)h(t) dt,

hence
b�

0

f∗(t) dα(t) =
b�

0

f∗(t)h(t) dt,

where h(t) := dα(t)/dt is nonincreasing.
As for µ being an r.i. norm, only the subadditivity requires comment.

But, it readily follows once we observe that, given f1, f2 ∈ M+(Ib), (2.2)
and (2.4) ensure

b�

0

(f1 + f2)∗(t) dα(t) =
b�

0

(f1 + f2)∗(t)h(t) dt ≤
b�

0

[f∗1 (t) + f∗2 (t)]h(t) dt

=
b�

0

f∗1 (t) dα(t) +
b�

0

f∗2 (t) dα(t).

Lemma 3.2. Suppose % is an r.i. norm on M+(Ω), associated to the
r.i. norm % on M+(IΩ), with L%(IΩ) ( Ln/m,∞(IΩ), and let λ be defined as



Optimal Sobolev imbedding spaces 203

in (3.1). Then, λ′ ≈ τ with

τ(f) := sup
%′(Sn/mg)≤1

|Ω|�

0

−t1−m/ng∗(t) df∗(t) +
|Ω|�

0

f∗(t) dt

for f ∈M(Ω), g ∈ C(IΩ).

Proof. In view of Corollary 3.7 and Theorem 3.13 of [4], we may assume

(3.3) λ(g) ≈ ν
(
tm/n−1

t�

0

g∗(s) ds
)
, g ∈M(Ω),

where

(3.4) ν(h) = %′(Sn/mh
∗∗) ≈ %′(Sn/mh), h ∈M(IΩ),

and

(3.5) Sn/m : Lν(IΩ)→ Lν(IΩ).

We first show that τ ′ . λ. For any f, g ∈ C(IΩ), with f∗(0+) < ∞ and
f∗(|Ω|−) = 0, we have

|Ω|�

0

g∗(t)f∗(t) dt ≤
|Ω|�

0

g∗(t)
|Ω|�

t

−df∗(s) dt =
|Ω|�

0

−
t�

0

g∗(s) ds df∗(t)

=
|Ω|�

0

−t1−m/ntm/n−1
t�

0

g∗(s) ds df∗(t)

≤
|Ω|�

0

−t1−m/n sup
t≤s<|Ω|

sm/n−1
s�

0

g∗(y) dy df∗(t)

. λ(g)ν
(
tm/n−1

t�

0

g∗(s) ds
)−1

|Ω|�

0

−t1−m/n sup
t≤s<|Ω|

sm/n−1
s�

0

g∗(y) dy df∗(t)

. λ(g)ν
(

sup
t≤s<|Ω|

sm/n−1
s�

0

g∗(y) dy
)−1

×
|Ω|�

0

−t1−m/n sup
t≤s<|Ω|

sm/n−1
s�

0

g∗(y) dy df∗(t)

. λ(g) sup
ν(h)≤1

|Ω|�

0

−t1−m/nh∗(t) df∗(t) . λ(g)τ(f),

in which (3.3), Theorem 3.9 of [4] and (3.4) combined with (3.5) were used
to obtain the fourth last, third last and second last inequalities, respectively.
Thus, τ ′ . λ.
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To prove λ . τ ′ we show the existence of C > 0 such that to each g ∈
M+(Ω), λ(g) < ∞, there corresponds f0 ∈M+(Ω) satisfying f∗0 (0+) < ∞,
f∗0 (|Ω|−) = 0, τ(f0) ≤ C and

|Ω|�

0

g∗(t)f∗0 (t) dt ≥ C−1λ(g).

Now, λ(g) <∞ implies the existence of k0 ∈M+(IΩ), with %(k0) ≤ 1, such
that

|Ω|�

0

k0(t)tm/n−1
t�

0

g∗(s) ds dt >
1
2
λ(g).

Take f0 such that

f∗0 (t) =
|Ω|�

t

k0(s)sm/n−1 ds, t ∈ IΩ.

Then, for h = h∗ ∈M+(IΩ) with ν(h) ≤ 1,
|Ω|�

0

−t1−m/nh∗(t) df0(t) =
|Ω|�

0

h∗(t)k∗0(t) dt ≤ ν(h)ν ′(k0)

. ν(h)%(k0) (%′ ≤ ν implies ν ′ ≤ %)
≤ C,

and
|Ω|�

0

f∗0 (t) dt =
|Ω|�

0

|Ω|�

t

k0(s)sm/n−1 ds dt =
|Ω|�

0

k0(t)tm/n dt

.
|Ω|�

0

k0(t) dt . %(k0) ≤ C,

so τ(f0) ≤ C. Further,
|Ω|�

0

g∗(t)f∗0 (t) dt =
|Ω|�

0

g∗(t)
1�

t

k0(s)sm/n−1 ds dt

=
|Ω|�

0

k0(t)tm/n−1
t�

0

g∗(s) ds dt ≥ 1
2
λ(g).

The result will follow by the Principle of Duality once we verify

τ(f) ≈ µ(f), f ∈M+(Ω), f∗(0+) <∞, f∗(|Ω|−) = 0,

where µ(f) is defined as in (3.2) with b = |Ω|, since µ was shown to be
an r.i. norm in Lemma 3.1.
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When g = g∗ ∈ C(IΩ) with g∗(0+) <∞,

lim
t→0+

f∗(t) csup
0<s≤t

s1−m/ng∗(s) = lim
t→|Ω|−

f∗(t) csup
0<s≤t

s1−m/ng∗(s) = 0,

and, thus, integration by parts yields
|Ω|�

0

f∗(t) d csup
0<s≤t

s1−m/ng∗(s) =
|Ω|�

0

− csup
0<s≤t

s1−m/ng∗(s) df∗(t)

≥
1�

0

−t1−m/ng∗(t) df∗(t),

whence
µ(f) ≥ τ(f), f ∈M+(IΩ).

Again,

sup
%′(Sn/mg)≤1

|Ω|�

0

− csup
0<s≤t

s1−m/ng∗(s) df∗(t)

. sup
ν(g)≤1

|Ω|�

0

−t1−m/ntm/n−1 csup
0<s≤t

s1−m/ng∗(s) df∗(t)

. sup
ν(g)≤1

|Ω|�

0

−t1−m/n(Sn/mg)(t) d(t)

. sup
ν(Sn/mg)≤1

|Ω|�

0

−t1−m/n(Sn/mg)(t) df∗(t) by (3.5)

. sup
ν(g)≤1

|Ω|�

0

−t1−m/ng∗(t) df∗(t)

. sup
%′(Sn/mg)≤1

|Ω|�

0

−t1−m/ng∗(t) df∗(t) (g = g∗ ∈M+(IΩ))

. τ(f).

To get the second line of the last chain of inequalities, we have used the
quasiconcavity of β(t) = sup0<s≤t s

1−m/ng∗(s), t ∈ IΩ.

Proof of Proposition C. In view of Lemma 3.2, σ% satisfies

(3.6) σ%(f) ≈ sup
%′(Sn/mg)≤1

|Ω|�

0

−t1−m/ng∗(t) df∗(t) +
|Ω|�

0

f∗(t) dt,

where f ∈M+(Ω) and g ∈ C(IΩ). Define the operator P by
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(Ph)(t) := t−1
t�

0

h(s) ds, h ∈M+(IΩ), t ∈ IΩ.

According to [4, Theorem 3.12], Lσ%(IΩ) is an interpolation space between
Ln/(n−m),1(IΩ) and L∞(IΩ), hence Theorem 5.15 in Chapter 3 of [1] ensures

P : Lσ%(IΩ)→ Lσ%(IΩ).

This means we can replace f∗(t) by f∗∗(t) and, indeed, by t−1
	t
0 f
∗∗(s) ds,

on the right side of (3.6).
Now, for each ε with 0 < ε < |Ω|/2,

|Ω|−ε�

ε

−t1−m/ng∗(t) d
[
t−1

t�

0

f∗∗(s) ds
]

=
|Ω|−ε�

ε

−t1−m/ng∗(t)
[
−t−2

t�

0

f∗∗(s) ds+ t−1f∗∗(t)
]
dt

=
|Ω|−ε�

ε

t−m/n
[
t−1

t�

0

[f∗∗(s)− f∗(s)] ds
]
g∗(t) dt,

so
|Ω|�

0

−t1−m/ng∗(t) d
[
t−1

t�

0

f∗∗(s) ds
]

=
|Ω|�

0

t−m/n
[
t−1

t�

0

[f∗∗(s)− f∗(s)] ds
]
g∗(t) dt

=
|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]
[
tm/n

|Ω|�

t

g∗(s)s−m/n−1 ds
]
dt.

Again, the operator Rn/m, defined by

(Rn/mh)(t) := tm/n
|Ω|�

t

h(s)s−m/n−1 ds, h ∈M+(IΩ), t ∈ IΩ,

satisfies
(Rn/mg

∗)(t) ≤ n

m
g∗(t)

and

(Rn/mg
∗)(t/2) ≥ (t/2)m/n

t�

t/2

g∗(s)s−m/n−1 ds

≥ n

m
[1− 2−m/n]g∗(t), g ∈M+(IΩ), t ∈ IΩ.
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We conclude from the foregoing and (3.4) that

σ%(f) ≈ σ%
(
t−1

t�

0

f∗∗(s) ds
)

≈ sup
ν(g)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)](Rn/mg∗)(t) dt+
|Ω|�

0

f∗(t) dt

≈ sup
ν(Rn/mg

∗)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)](Rn/mg∗)(t) dt+
|Ω|�

0

f∗(t) dt

≈ sup
ν(g)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt

≈ sup
%′(Sn/mg)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt,

with f ∈M+(Ω), g ∈M+(IΩ), as required.

Our next result is a part of Theorem A which seems to be of independent
interest.

Theorem 3.3. Let m, n, Ω, % and % be as in Theorem A. Then, (1.3)
implies (1.4).

Proof. As a consequence of Proposition C and (1.3) we have, for f ∈
M+(IΩ),

σ%(f) ≈ sup
%′(g)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt(3.7)

≈ (%′)′d(t
−m/n[f∗∗(t)− f∗(t)]) +

|Ω|�

0

f∗(t) dt

≈ %((s−m/n[f∗∗(s)− f∗(s)])◦(t)) +
|Ω|�

0

f∗(t) dt,

by (2.6) and the Principle of Duality.
The definition of the level function ensures

t�

0

s−m/n[f∗∗(s)− f∗(s)] ds ≤
t�

0

(y−m/n[f∗∗(y)− f∗(y)])◦(s) ds,
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from which (2.4) yields
t�

0

s−m/n[f∗∗(s)− f∗(s)]g∗∗(s) ds ≤
t�

0

(y−m/n[f∗∗(y)− f∗(y)])◦(s)g∗∗(s) ds,

or

(3.8)
t�

0

g∗(s)
t�

s

y−m/n[f∗∗(y)− f∗(y)] dy
y
ds

≤
t�

0

g∗(s)
t�

s

(z−m/n[f∗∗(z)− f∗(z)])◦(y) dy
y
ds,

for f ∈M+(Ω), g ∈M+(IΩ), t ∈ IΩ. But, for f ∈M+(Ω),

|Ω|�

t

s−m/nf∗∗(s)
ds

s
=
|Ω|�

t

s−m/n−2
s�

0

f∗(y) dy ds

=
|Ω|�

0

f∗(y)
|Ω|�

t

s−m/n−2χ(0,s)(y) ds dy

=
t�

0

f∗(y) dy
|Ω|�

t

s−m/n−2 ds+
|Ω|�

t

f∗(y)
|Ω|�

y

s−m/n−2 ds dy

=
|Ω|�

t

f∗(y)
|Ω|�

y

s−m/n−2 ds dy +
n

n+m
t−n/mt−1

t�

0

f∗(s) ds

− n

n+m
|Ω|−m/n−1

t�

0

f∗(s) ds, f ∈M+(IΩ),

and
|Ω|�

t

f∗(y)
|Ω|�

y

s−m/n−2 ds dy −
|Ω|�

t

y−m/n−1f∗(y) dy

=
n

n+m

|Ω|�

t

y−m/n−1f∗(y) ds− n

n+m
|Ω|−m/n−1

|Ω|�

t

f∗(y) dy

−
|Ω|�

t

y−m/n−1f∗(y) dy

= − m

n+m

|Ω|�

t

y−m/n−1f∗(y) dy − n

n+m
|Ω|−m/n−1

|Ω|�

t

f∗(y) dy
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≥ − n

n+m
t−m/nf∗(t)− n

n+m
|Ω|−m/n−1

|Ω|�

0

f∗(t) dt, f ∈M+(IΩ).

Thus,

|Ω|�

t

s−m/n[f∗∗(s)− f∗(s)]ds
s

≥ n

n+m
[f∗∗(t)− f∗(t)]− 2n

n+m
|Ω|−m/n−1

|Ω|�

0

f∗(t) dt,

so
n

n+m
%(t−m/n[f∗∗(t)− f∗(t)])

≤ %
(|Ω|�

t

s−m/n[f∗∗(s)− f∗(s)] ds
s

)
+

2n
n+m

|Ω|%(χIΩ )
|Ω|�

0

f∗(s) ds

. %

(|Ω|�
t

(y−m/n[f∗∗(y)− f∗(y)])◦(s) ds
s

)
+
|Ω|�

0

f∗(t) dt by (3.8) and HLP

. %((s−m/n[f∗∗(s)− f∗(s)])◦(t)) +
|Ω|�

0

f∗(t) dt

. σ%(f), f ∈M+(Ω), by (3.7);
here we have used the facts that the operator

(Qf)(t) :=
|Ω|�

t

f(s)
ds

s
, f ∈M+(IΩ), t ∈ IΩ,

satisfies

Q : L%(IΩ)→ L%(IΩ) if and only if P : L%′(IΩ)→ L%′(IΩ),

and that
L%′(IΩ) ∈ Int(Ln/(n−m),∞(IΩ), L∞(IΩ)).

Since one always has

σ%(f) . %(t−m/n[f∗∗(t)− f∗(t)]) +
|Ω|�

0

f∗(t) dt, f ∈M+(Ω),

because of (3.7) and %(h) ≥ %(h◦) (by (2.7) and the HLP Principle), the
proof is complete.

Corollary 3.4. Let m, n, Ω, % and % be as in Theorem A. Set

(3.9) τ(g) := %′(Sn/mg
∗∗), g ∈M+(Ω).
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Then, τ is an r.i. norm on M+(Ω) and

(3.10) σ%(f) ≈ τ ′(t−m/n[f∗∗(t)− f∗(t)]) +
|Ω|�

0

f∗(t) dt, f ∈M+(Ω).

Proof. The functional τ is readily seen to be an r.i. norm such that
L%(Ω) ⊂ Lτ ′(Ω). Moreover, by (1.3),

(3.11) τ(Sn/mh) ≈ %′(Sn/m(Sn/mh)) = %′(Sn/mh) ≈ τ(h), h ∈M+(IΩ).

Thus, Theorem 3.3 guarantees

στ ′(f) ≈ τ ′(t−m/n[f∗∗(t)− f∗(t)]) +
|Ω|�

0

f∗(t) dt, f ∈M+(IΩ).

But, from Proposition C,

στ ′(f) = sup
τ(Sn/mg)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt

≈ sup
τ(g)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt by (3.11)

≈ sup
%′(Sn/mg)≤1

|Ω|�

0

t−m/n[f∗∗(t)− f∗(t)]g∗(t) dt+
|Ω|�

0

f∗(t) dt

by (3.9) and (1.3)

≈ σ%(f), f ∈M+(Ω),

and (3.10) follows.

Remark 3.5. Some r.i. norms µ require h∗ in order to compute µ(h).
Should this prove difficult for the µ = % and h(t) = t−m/n [f∗∗(t)− f∗(t)]
in (1.4), the first paragraph of the proof of Theorem 3.3, together with (A.1)
below, offers an alternative expression, given P : L%(Ω)→ L%(Ω), namely,

σ%(f) ≈ %
(

sup
t≤s<|Ω|

s−1
s�

0

y−m/n [f∗∗(y)− f∗(y)] dy
)

+
|Ω|�

0

f∗(t) dt,

for f ∈M(Ω). Here, the function h to which the norm % is applied is its own
rearrangement.

4. Proofs of Theorems A and B

Proof of Theorem A. By [4, Corollary 3.14],

L%σ(IΩ) ∈ Int(L1(IΩ), Ln/m,1(IΩ)).
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Theorem 2.2 then yields

(4.1) Sn/m : L%σ ′(IΩ)→ L%σ ′(IΩ),

and this, by Theorem 3.3, implies

(4.2) σ%σ(f) ≈ %σ(t−m/n[f∗∗(t)− f∗(t)]) +
|Ω|�

0

f∗(t) dt, f ∈M+(Ω).

Further, Proposition 5.2 in [4] guarantees

(4.3) %σ%(f) ≈ σ%
(|Ω|�
t

f∗(s)sm/n−1 ds
)
, f ∈M+(Ω).

When % is optimal in (1.1), % ≈ %σ, so (1.3) holds, by (4.1), and (4.2)
becomes (1.4).

Given (1.3), we have (1.4), in view of Corollary 3.4. We claim that (4.3)
and (1.4) together ensure

%σ%(f) ≈ %(f), f ∈M+(Ω),

and, hence, the optimality of % in (1.1). Indeed, for f ∈M+(Ω),

%σ%(f) ≈ σ%
(|Ω|�
t

f∗(s)sm/n−1 ds
)

≈ %
(
t−m/n

[
t−1

t�

0

|Ω|�

s

f∗(y)ym/n−1 dy ds−
|Ω|�

t

f∗(s)sm/n−1 ds
])

+
|Ω|�

0

|Ω|�

t

f∗(s)sm/n−1 ds dt by (1.4)

≈ %
(
t−m/n−1

t�

0

f∗(s)sm/n ds
)
,

since

t−1
t�

0

|Ω|�

s

f∗(y)ym/n−1 dy ds = t−1
t�

0

f∗(s)sm/n ds+
|Ω|�

t

f∗(s)sm/n−1 ds

and
|Ω|�

0

|Ω|�

t

f∗(s)sm/n−1 ds dt =
|Ω|�

0

f∗(s)sm/n ds

= C%
(|Ω|�

0

f∗(s)sm/n ds
)

(C = %(χIΩ )−1)
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≤ C%
(|Ω|�

0

f∗
(
ts

|Ω|

)
sm/n ds

)
≤ C|Ω|m/n−1%

(
t−m/n−1

t�

0

f∗(s)sm/n ds
)
.

The operator

f 7→ t−m/n−1
t�

0

f(s)sm/n ds

is the associate of the operator Rn/m in the proof of Proposition C, and
therefore

%
(
t−m/n−1

t�

0

f∗(s)sm/n ds
)

. %(f), f ∈M+(Ω).

But

t−m/n−1
t�

0

f∗(s)sm/n ds ≥ n

n+m
f∗(t), t ∈ IΩ,

whence

%(f) ≈ %
(
t−m/n−1

t�

0

f∗(s)sm/n ds
)
≈ %σ%(f), f ∈M+(Ω).

The proof of the assertion concerning the optimality of σ is similar to the
one for %. Thus, if σ is optimal in (1.1), then σ ≈ σ% and (1.5) holds by [4,
Theorem 3.12]; in that case, (1.7) is satisfied.

Given (1.5), Proposition 5.2 in [4] ensures (1.6). Using (4.2) and (1.6),
we will obtain

σ%σ(f) ≈ σ(f), f ∈M+(Ω),

and thus, the optimality of σ in (1.1). In fact, it suffices to show

σ%σ(f) . σ(f), f ∈M+(Ω).

Now, if 0 < t < |Ω|/2, then
|Ω|�

t

s−m/n[f∗∗(s)− f∗(s)] ds
s

=
|Ω|�

t

s−m/n−2
s�

0

f∗(y) dy ds−
|Ω|�

t

s−m/n−1f∗(s) ds

=
|Ω|�

t

s−m/n−2 ds

t�

0

f∗(y) dy +
|Ω|�

t

s−m/n−2
s�

t

f∗(y) dy ds

−
|Ω|�

t

s−m/n−1f∗(s) ds
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≥
|Ω|�

t

s−m/n−2 ds

t�

0

f∗(y) dy +
|Ω|�

t

s−m/n−2(s− t)f∗(s) ds

−
|Ω|�

t

s−m/n−1f∗(s) ds

=
|Ω|�

t

s−m/n−2 ds

t�

0

f∗(y) dy − t
|Ω|�

t

s−m/n−2f∗(s) ds

≥ t
2t�

t

s−m/n−2 ds [f∗∗(t)− f∗(t)]

≥ 1
2

n

n+m
t−m/n[f∗∗(t)− f∗(t)],

while if |Ω|/2 ≤ t < |Ω|, then

t−m/n[f∗∗(t)− f∗(t)] ≤
(

2
|Ω|

)m/n+1 |Ω|�

0

f∗(t) dt, f ∈M+(Ω).

We conclude that when f ∈M+(Ω),

σ%σ(f) ≈ %σ(t−m/n[f∗∗(t)− f∗(t)]) +
|Ω|�

0

f∗(t) dt by (4.2)

. %σ

(|Ω|�
t

s−m/n[f∗∗(s)− f∗(s)] ds
s

)
+
|Ω|�

0

f∗(t) dt

. σ

(|Ω|�
t

[|Ω|�
s

y−m/n[f∗∗(y)− f∗(y)] dy
y

]
sm/n−1 ds

)

+
|Ω|�

0

f∗(t) dt by (4.3)

. σ
(|Ω|�
t

s−m/n[f∗∗(s)− f∗(s)]sm/n−1 ds
)

+
|Ω|�

0

f∗(t) dt

= σ

(|Ω|�
t

s−1
s�

0

f∗(y) dy
ds

s
−
|Ω|�

t

f∗(s)
ds

s

)
+
|Ω|�

0

f∗(t) dt

. σ

(
t−1

t�

0

f∗(s) ds− 1
|Ω|

|Ω�

t

f∗(s) ds
)

+
|Ω|�

0

f∗(t) dt

. σ

(
t−1

t�

0

f∗(s) ds
)

+
|Ω|�

0

f∗(t) dt . σ
(
t−1

t�

0

f∗(s) ds
)
,
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since
|Ω|�

t

|Ω|�

s

h(y)
dy

y
sm/n−1 ds =

|Ω|�

t

h(y)
y

y�

t

sm/n−1 ds dy

=
n

m

|Ω|�

t

h(y)
y

[ym/n − tm/n] dy

≤ n

m

|Ω|�

t

h(y)ym/n−1 dy

and
|Ω|�

t

s−1
s�

0

h(y) dy
ds

s
=
|Ω|�

t

s−2 ds

t�

0

h(y) dy +
|Ω|�

t

s−2
s�

t

h(y) dy ds

≤ t−1
t�

0

h(y) dy +
|Ω|�

t

h(y)
dy

y
− 1
|Ω|

|Ω|�

t

h(y) dy, h ∈M+(IΩ).

Finally, (1.5) and [4, Theorem 3.12] imply, as in the proof of Proposition C,
that

P : Lσ(IΩ)→ Lσ(IΩ),

which means

σ
(
t−1

t�

0

f∗(s) ds
)
≈ σ(f), f ∈M+(Ω).

Proof of Theorem B. We know the following:

%D . %, or equivalently, %′ . %′D;(4.4)
%′ . µ, or equivalently, µ′ . %;(4.5)
Sn/m : L%′D(IΩ)→ L%′D(IΩ);(4.6)

Sn/m : Lµ′(IΩ)→ Lµ′(IΩ).(4.7)

Now, (4.4) and (4.6) yield

µ(g) = %′(Sn/mg
∗∗) ≈ %′(Sn/mg∗) . %′D(Sn/mg

∗) . %′D(g∗), g ∈M+(Ω),

and, hence, %D . µ′. So, keeping (4.5) in mind, we see that

%D . µ′ . %.

Since σ%D = σ%, we conclude σµ′ = σ%, that is,

Wm,µ′(Ω) ↪→ Lσ%(Ω),

which, in view of (4.7) and Theorem A, means µ′ ≈ %D.
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5. Examples. We here illustrate Theorem A in the context of Orlicz
spaces.

An Orlicz norm is defined in terms of a Young function A(t) =
	t
0 a(s) ds,

with a(s) increasing on R+, a(0+) = 0 and lims→∞ a(s) = ∞. Given a
domain Ω ⊂ Rn, the (Luxemburg) Orlicz (r.i.) norm, %A, is defined at f ∈
M+(IΩ) by

%A(f) = inf
{
λ > 0 :

�

IΩ

A

(
f(t)
λ

)
dt =

�

IΩ

A

(
f∗(t)
λ

)
dt ≤ 1

}
and at f ∈M+(Ω) by

%A(f) = inf
{
λ > 0 :

�

IΩ

A

(
f∗(t)
λ

)
dt ≤ 1

}
.

The Köthe norm dual to %A is equivalent to the Orlicz norm % eA, where
Ã(t) :=

t�

0

a−1(s) ds, t > 0,

is the Young function complementary to A; in fact,

% eA(g) ≤ %′A(g) ≤ 2% eA(g), g ∈M+(IΩ).

In [3] we determined precisely when Sn/m and Tn/m are bounded be-
tween Orlicz spaces. Theorems B and 5.2 of that paper yield, respectively,
Theorems 5.1 and 5.2 below.

Theorem 5.1. Let m,n and Ω be as in Theorem A and suppose A is a
Young function whose complementary function, Ã, satisfies

Ã(t) = 0, t ∈ IΩ, and L% eA(Ω) ( Ln/(n−m),∞(Ω).

Then % = %A is optimal in (1.1) for some r.i. norm σ on M(Ω) if and only if
t�

|Ω|

Ã(s)
sn/(n−m)+1

ds ≤ Ã(Kt)
tn/(n−m)

, t� |Ω|.

Moreover , in that case,

σ%A(f) ≈ %A(t−m/n [f∗∗(t)− f∗(t)]) +
|Ω|�

0

f∗(t) dt, f ∈M+(Ω).

Theorem 5.2. Let m,n and Ω be as in Theorem A and suppose A is a
Young function whose complementary function, Ã, satisfies

Ã(t) = 0, t ∈ IΩ, and Ln/m,∞(Ω) ( L% eA(Ω).
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Then σ = %A is optimal in (1.1) for some r.i. norm % on M+(Ω) if and only
if

∞�

t

Ã(s)
sn/m+1

ds ≤ Ã(Kt)
tn/m

, t� |Ω|.

Moreover , in that case,

%σ(f) ≈ %A
(|Ω|�
t

f∗(s)sm/n−1 ds
)
, f ∈M+(Ω).

Appendix. The following result concerning the level function, f◦, of an
f ∈M+(IΩ), was communicated to us by G. Sinnamon.

Theorem A.1. For any f ∈M+(IΩ), the function

q(t) := t sup
t≤s<1

s−1
s�

0

f(y) dy

is quasiconcave on IΩ. Moreover ,

(A.1) q(t) ≤
t�

0

f◦(s) ds ≤ 2q(t).

Proof (A. Gogatishvili). Set f(s) = 0 for s > 1 so that

q(t) = t sup
t≤s<∞

s−1
s�

0

f(y) dy, t ∈ IΩ.

Since q(t)/t is clearly nonincreasing, we need only verify that q(t) is nonde-
creasing to get q quasiconcave on IΩ. But this is readily seen from

t sup
t≤s<∞

s−1
s�

0

f(y) dy = sup
1≤s<∞

s−1
ts�

0

f(y) dy.

As q(t) ≥
	t
0 f(y) dy, the least concave majorant of q dominates

	t
0 f(y) dy

and hence
	t
0 f
◦(s) ds. The least concave majorant of a quasiconcave function

q(t) being no greater than 2q(t), we have the second of the inequalities
in (A.1).

Observe that
t�

0

f◦(s) ds = sup
t1≤t, 0<t2<∞

t2
	t−t1
0 f(s) ds+ t1

	t+t2
0 f(s) ds

t1 + t2
, 0 < t < 1.

Fix s and t with t ≤ s < 1. Set t1 = t and t2 = s− t. Then
t2
	t−t1
0 f(s) ds+ t1

	t+t2
0 f(s) ds

t1 + t2
=
t

s

s�

0

f(y) dy,
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whence

q(t) ≤
t�

0

f◦(s) ds

and we are done.
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