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Abstract. We use the scale of Besov spaces Bατ,τ (O), 1/τ = α/d+1/p, α > 0, p fixed,
to study the spatial regularity of solutions of linear parabolic stochastic partial differential
equations on bounded Lipschitz domains O ⊂ R. The Besov smoothness determines the
order of convergence that can be achieved by nonlinear approximation schemes. The proofs
are based on a combination of weighted Sobolev estimates and characterizations of Besov
spaces by wavelet expansions.

1. Introduction. In this paper, the spatial Besov regularity of solu-
tions of linear stochastic evolution equations on bounded Lipschitz domains
is studied. We combine regularity results by Kim [30, 31] on stochastic par-
tial differential equations (SPDEs, for short) on Lipschitz domains in terms
of weighted Sobolev spaces with methods used in Dahlke and DeVore [12],
where the Besov regularity of (deterministic) elliptic equations on Lipschitz
domains is investigated. Our considerations are motivated by the question
whether adaptive and other nonlinear approximation methods for solutions
of SPDEs on Lipschitz domains pay off in the sense that they yield bet-
ter convergence rates than uniform methods. Thus referring to a numeri-
cal theme and combining concepts and methods from different areas and
scientific communities, the article is addressed to readers of both worlds:
stochastic analysis and numerical analysis. Therefore, we give a rather de-
tailed account in the first part of the paper, emphasizing conceptual and
notational clarity.
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Our setting is as follows. On a finite interval [0, T ] ⊂ [0,∞) let (wκt )t∈[0,T ],
κ ∈ N = {1, 2, . . .}, be independent, one-dimensional standard Brownian
motions with respect to a filtration (Ft)t∈[0,T ] of σ-algebras on a complete
probability space (Ω,F ,P). Throughout the paper we assume that (Ft)t∈[0,T ]

is normal, i.e. the filtration satisfies the usual hypotheses (see, e.g., [17,
Section 3.3]). Let O ⊂ Rd be a bounded Lipschitz domain. We consider the
model equation

(1.1) du =
d∑

µ,ν=1

aµνuxµxν dt+
∞∑
κ=1

gκ dwκt , u(0, · ) = u0,

for t ∈ [0, T ] and x ∈ O. Here du is Itô’s stochastic differential with respect
to t, (aµν)1≤µ,ν≤d ∈ Rd×d is a strictly positive definite, symmetric matrix
and the coefficients gκ, κ ∈ N, are random functions depending on t and
x such that the mappings Ω × [0, T ] 3 (ω, t) 7→ gκ(ω, t, · ) are predictable
processes with values in certain function spaces. For details see Section 2.3.

Equation (1.1) is understood in a weak or distributional sense, i.e. u is
a solution of (1.1) if for all ϕ ∈ C∞0 (O) the equality

〈u(t, · ), ϕ〉

= 〈u0, ϕ〉+
d∑

µ,ν=1

t�

0

〈aµνuxµxν (s, · ), ϕ〉 ds+
∞∑
κ=1

t�

0

〈gκ(s, · ), ϕ〉 dwκs

holds for all t ∈ [0, T ] P-almost surely. Here and throughout the paper we
write 〈u, ϕ〉 for the application of a distribution u ∈ D′(O) to a test function
ϕ ∈ C∞0 (O). The existence and uniqueness of solutions of (1.1), respectively
(1.3) below, in certain classes H

γ
p,θ(O, T ) of stochastic processes has been

shown in [30, 31]; see also the earlier papers by Krylov, Lototsky and Kim,
e.g. [29, 32, 33, 37]. Roughly speaking, the classes H

γ
p,θ(O, T ) are Lp-spaces

of functions on Ω× [0, T ] with values in weighted Sobolev spaces Hγ
p,θ−p(O)

that can be regarded as generalizations of the classical Sobolev spaces with
zero Dirichlet boundary condition. Again we refer to Section 2.3 for precise
definitions.

Let us remark that in Examples 3.3, 3.4 and 3.5, illustrating our Besov
regularity result in Section 3, the solution of (1.1) in the class H

γ
2,θ(O, T )

coincides with the unique weak solution with zero Dirichlet boundary condi-
tion in the sense of Da Prato and Zabczyk [17], and hence can be represented
by the well known stochastic variation-of-constants formula

(1.2) u(t, · ) = etAu0 +
t�

0

e(t−s)AG(s) dWs, t ∈ [0, T ].

Here (etA)t≥0 is the semigroup of contractions on L2(O) generated by the
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partial differential operatorA=
∑d

µ,ν=1 a
µν ∂2

∂xµ∂xν
with zero Dirichlet bound-

ary condition considered as an unbounded operator on L2(O), (G(t))t∈[0,T ]

is an operator-valued process and (Wt)t∈[0,T ] is a cylindrical Wiener pro-
cess on `2(N) (see Remarks 2.13 and 2.14). Similarly, for p > 2 a solution
u ∈ H

γ
p,θ(O, T ) to (1.1) may be interpreted within the approach to stochastic

evolution equations in Banach spaces of Brzeźniak [3, 4] and van Neerven,
Veraar and Weis [41, 42] (see Remark 3.7).

As already mentioned, our motivation to study the Besov regularity of
SPDEs is the theme of nonlinear approximation of the solution processes. For
deterministic settings, a detailed overview of nonlinear approximation and
an exposition of the characterization of its efficiency in terms of the Besov
smoothness of the target functions can be found in DeVore [19] (see also
Cohen [7, Chapters 3 and 4]). Let us consider an example of approximation
by wavelets in Lp(O), the Lp-space of real-valued functions onO, p ∈ (1,∞).
To this end, let {ψλ : λ ∈ ∇} be a wavelet basis on O and let f ∈ Lp(O) be
a target function which we want to approximate by functions fN ∈ Lp(O)
belonging to certain approximation spaces SN , where N is the number of
parameters used to describe the elements of SN . We specify the index set
of the wavelet basis by writing ∇ =

⋃
j≥j0−1∇j ; the wavelets ψλ, λ ∈ ∇j ,

j ≥ j0, are those at scale levels j ≥ j0 respectively, and ψλ, λ ∈ ∇j0−1,
are the scaling functions at the coarsest level j0 ∈ Z. In the case of uniform
wavelet approximation up to a highest scale level j0 − 1 + n, n ∈ N, the
approximation spaces are

SN = SN(n)

=
{ j0−1+n∑
j=j0−1

∑
λ∈∇j

cλψλ : cλ ∈ R, λ ∈ ∇j , j ∈ {j0 − 1, . . . , j0 − 1 + n}
}
,

where N = N(n) = |
⋃j0−1+n
j=j0−1 ∇j | ∈ N is the cardinality of the set of all

indices up to scale level j0 − 1 + n. Let eN (f) = inffN∈SN ‖f − fN‖Lp(O) be
the corresponding approximation error measured in Lp(O). It is well known
that—under certain technical assumptions on the wavelet basis—the decay
rate of eN (f) is linked to the Lp-Sobolev smoothness of the target function.
More precisely, there exists an upper bound r ∈ N depending on the wavelet
basis such that, for all s ∈ [0, r],

f ∈W s
p (O) ⇒ eN (f) ≤ C ·N−s/d, N = N(n), n ∈ N,

for some constant C > 0 which does not depend on N . The fractional order
Sobolev spaces W s

p (O) are defined in the next section. One can also show
the converse:

∃C > 0 ∀n ∈ N : eN (f) ≤ C ·N−s/d, N = N(n) ⇒ f ∈W s′
p (O), s′ < s.
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If we consider instead best N -term approximation as a form of nonlinear
approximation, the approximation spaces are

ΣN =
{∑
λ∈Λ

cλψλ : Λ ⊂ ∇, |Λ| ≤ N, cλ ∈ R, λ ∈ Λ
}
,

N ∈ N, and the decay rate of the error σN (f) := inffN∈ΣN ‖f − fN‖Lp(O) is
governed by the smoothness of f measured in certain Lτ (O)-norms, τ < p,
which are weaker than the Lp(O)-norm: For all α ∈ [0, r],

f ∈ Bα
τ,τ (O),

1
τ

=
α

d
+

1
p
⇒ σN (f) ≤ C ·N−α/d, N ∈ N,

Bα
τ,τ (O) being a Besov space as defined in Section 2.2. Therefore, if the target

function f belongs to Bα
τ∗,τ∗(O), 1/τ∗ = α/d+ 1/p, for some α ∈ [0, r], and

if in addition β := sup{s ∈ R : f ∈ W s
p (O)} < α, then the convergence

rate of uniform wavelet approximations is inferior to the convergence rate
of the best N -term wavelet approximation. The latter can be considered
as a benchmark for the convergence rate of adaptive numerical algorithms
(see [8, 9, 11]). This situation is illustrated in Figure 1, where each point
(1/τ, s) represents the smoothness spaces of functions with “s derivatives
in Lτ (O)”. Note that the nonlinear approximation line {(1/τ, s) ∈ [0,∞)2 :
1/τ = s/d+1/p} is also the Sobolev embedding line. For bounded domains,
all spaces left to this line as well as the spaces Bs

τ,τ (O) on the line are
continuously embedded in Lp(O).

1
τ

s

linear

approx. line

nonlinear

approx. line:
1
τ

= s
d

+ 1
p

b

1
p

β

W β
p (O)

bα

1
τ∗

Bα
τ∗,τ∗(O)

Fig. 1. Linear vs. nonlinear approximation illustrated in a DeVore–Triebel diagram

Let us return to equation (1.1) and assume that the solution u=u(ω, t, x),
(ω, t, x) ∈ Ω × [0, T ] × O, vanishes on the boundary ∂O, satisfying a zero
Dirichlet boundary condition. It is clear that the smoothness of x 7→u(ω, t, x)
depends on the smoothness of the mappings x 7→ gκ(ω, t, x), κ ∈ N. However,



Besov regularity for SPDEs 201

even if the spatial smoothness of the gκ is high, the Sobolev smoothness of
x 7→ u(ω, t, x) can be additionally limited by singularities of the spatial
derivatives of u at the boundary of O, due to the zero Dirichlet boundary
condition and the shape of the domain. Such corner singularities are typical
examples for the fact that the spatial Lp-Sobolev regularity of u may be
exceeded by the regularity in the scale of Besov spaces Bα

τ,τ (O), 1/τ =
α/d+ 1/p. In this paper, we present a result on the spatial Besov regularity
of the solution u to (1.1) which has the following structure: If

u ∈ Lp(Ω × [0, T ],P,P⊗ λ; W s
p (O))

and if the functions gκ, κ ∈ N, are sufficiently regular, then

u ∈ Lτ (Ω × [0, T ],P,P⊗ λ; Bα
τ,τ (O))

for certain α > s and 1/τ = α/d+ 1/p. Here P is the predictable σ-algebra
with respect to the filtration (Ft)t∈[0,T ] and λ denotes Lebesgue measure
on [0, T ]. This result is important for the theoretical foundation of adaptive
numerical methods for the approximation of u. The proof is based on a
wavelet expansion of an extension of O 3 x 7→ u(ω, t, x) to Rd, which allows
us to estimate the Bα

τ,τ (O)-norm in terms of the wavelet coefficients. We
apply a strategy similar to the one used in Dahlke and DeVore [12], where the
Besov regularity of (deterministic) elliptic equations on Lipschitz domains
is investigated with the help of an estimate of weighted Sobolev norms of
harmonic functions. Our substitute for the latter is an estimate of weighted
Sobolev norms of the solution of (1.1) provided by Kim [30, 31].

There exists an extensive literature on the Besov regularity of SPDEs.
In general, however, the assumptions on the domain and the scale of pa-
rameters considered do not fit into our setting. To mention an example,
the semigroup approach to SPDEs of Da Prato and Zabczyk [17], which
is placed in a Hilbert space framework, has been generalized to M-type 2
Banach spaces by Brzeźniak [3, 4], for the purpose of gaining better Hölder
regularity results. Roughly speaking, the operator A appearing in equa-
tion (1.2) is considered as the generator of a semigroup on Lp(O) for some
p ≥ 2, and the stochastic integral in (1.2) is considered as a stochastic
integral in an interpolation space X between Lp(O) and D(A) ⊂ Lp(O),
the domain of A, realizing a zero Dirichlet boundary condition. If ∂O is
sufficiently smooth, then D(A) = W 2

p (O) ∩
◦
W 1
p (O) and X ⊆ Bs

p,2(O) for
some s ∈ [0, 2]. In this situation, the Sobolev embedding theorem leads to
Hölder regularity results, and these results become better for large p. With
the help of a theory of stochastic integration in wider classes of Banach
spaces, this approach has been generalized in the works of van Neerven,
Veraar and Weis (see, e.g., [40, 41, 42], compare also Brzeźniak and van
Neerven [5]). In contrast to these works the problem considered here is of a



202 P. A. Cioica et al.

different nature. Firstly, we are explicitly interested in domains with non-
smooth boundary. For polygonal non-convex domains, it is well known that
W 2

2 (O)∩
◦
W 1

2 (O)  D(A), where D(A) := {u ∈
◦
W 1

2 (O) : Au ∈ L2(O)}, A =
∆ =

∑d
µ=1 ∂

2/∂x2
µ (see Grisvard [23, 24], and for more general Lipschitz

domains see Jerison and Kenig [28]). Secondly, we are interested in the spe-
cial scale Bα

τ,τ (O), 1/τ = α/d + 1/p, τ > 0, p fixed, including in particular
spaces which are not Banach spaces but quasi-Banach spaces. The param-
eter τ decreases if α increases and Bα

τ,τ (O) fails to be a Banach space for
τ < 1. While our methods work in this setting, any direct approach requires
(at least!) a fully-fledged theory of stochastic integration in quasi-Banach
spaces which is not yet available. We refer to Remark 3.7 for a concrete
comparison of our result with a related result by van Neerven, Veraar and
Weis [42].

Let us emphasize that our result can be extended to more general linear
equations of the type

(1.3)


du =

d∑
µ,ν=1

(aµνuxµxν + bµuxµ + cu+ f) dt

+
∞∑
κ=1

( d∑
µ=1

σµκuxµ + ηκu+ gκ
)
dwκt , u(0, · ) = u0,

including, in particular, the case of multiplicative noise. Here the coefficients
aµν , bµ, c, σµκ, ηκ and the free terms f and gκ are random functions de-
pending on t and x. This extension is possible because one of our main
tools, the weighted Sobolev norm estimate of Corollary 2.12, holds for equa-
tions of type (1.1) as well as for equations of type (1.3). Since this mainly
adds notational complications, we will focus on equation (1.1) and refer to
Appendix B for a short account of how to treat equations of type (1.3).

The paper is organized as follows: In Section 2 we collect the notation,
definitions and preliminary results needed later on. Some general notation
is introduced in Section 2.1. Section 2.2 provides the necessary facts on
Besov spaces and wavelet decompositions. In Section 2.3 a short introduc-
tion to the general Lp-theory of SPDEs on Lipschitz domains due to Kim
[30, 31] is given, including the definitions of the already mentioned spaces
Hγ
p,θ−p(O), H

γ
p,θ(O, T ). Finally, in Section 3 the Besov regularity result (The-

orem 3.1) is stated and proved, and some concrete examples of application
are given.

2. Preliminaries

2.1. Some notation and conventions. In this and the next subsec-
tion, O ⊆ Rd can be an arbitrary (not necessarily bounded) Lipschitz do-
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main. A domain is called Lipschitz if each point on the boundary ∂O has a
neighbourhood whose intersection with the boundary—after relabeling and
reorienting the coordinate axes if necessary—is the graph of a Lipschitz
function.

By D′(O) we denote the space of Schwartz distributions on O. If not
explicitly stated otherwise, all function spaces or spaces of distributions are
meant to be spaces of real-valued functions or distributions. If f ∈ D′(O) and
α = (α1, . . . , αd) ∈ Nd0 is a multi-index, we write Dαf = ∂|α|f/∂xα1

1 . . . ∂xαdd
for the corresponding derivative with respect to x = (x1, . . . , xd) ∈ O, where
|α| = α1 + · · ·+ αd. As in (1.1) and (1.3) we also use the notation fxµxν =
∂2f/∂xµ∂xν , fxµ = ∂f/∂xµ. For m ∈ N0, Dmf = {Dαf : |α| = m} is the set

of all mth order derivatives of f which is identified with an R
(
d+m−1
m

)
-valued

distribution. Given p ∈ [1,∞) and m ∈ N0, Wm
p (O) denotes the classical

Sobolev space consisting of all (equivalence classes of) measurable functions
f : O → R such that ‖f‖Wm

p (O) = ‖f‖Lp(O)+|f |Wm
p (O) = (

	
O |f(x)|p dx)1/p+∑

|α|=m(
	
O |D

αf(x)|p dx)1/p is finite. For p ∈ (1,∞) and s ∈ (m,m + 1),
m ∈ N0, we define the fractional order Sobolev space W s

p (O) to be the Besov
space Bs

p,p(O) introduced in the next subsection. (This scale of fractional
order Sobolev spaces can also be obtained by real interpolation of Wn

p (O),
n ∈ N0. One can show that Wn

2 (O) = Bn
2,2(O) for all n ∈ N and Wn

p (O) ⊂
Bn
p,p(O) for all n ∈ N, p > 2; see, e.g. Triebel [49, Remark 2.3.3/4 and

Theorem 4.6.1(b)] together with Dispa [21].) Given any countable index
set J , the space of p-summable sequences indexed by J is denoted by `p =
`p(J ) and | · |`p is the corresponding norm. Usually we have `p = `p(N), but
for instance we may also use the notation |Dmf(x)|p`p =

∑
|α|=m |Dαf(x)|p

for f ∈Wm
p (O).

Given a distribution f ∈ D′(O) and a smooth and compactly supported
test function ϕ ∈ C∞0 (O), we write 〈f, ϕ〉 for the application of f to ϕ. If H is
a Hilbert space, then 〈 · , · 〉H denotes the inner product in H. Given another
Hilbert space U , we denote by L(HS)(H,U) and L(nuc)(H,U) the spaces of
Hilbert–Schmidt operators and nuclear operators from H to U respectively
(see, e.g., Pietsch [45, Sections 6 and 15] or Da Prato and Zabczyk [17, Ap-
pendix C] for definitions). We also abbreviate L(HS)(H) = L(HS)(H,H) and
L(nuc)(H) = L(nuc)(H,H).M2,c

T (H, (Ft)) is the space of continuous, square-
integrable, H-valued martingales with respect to the filtration (Ft)t∈[0,T ].
For Ω × [0, T ] we use the shorthand notation ΩT , and

P = σ
(
{(s, t]× Fs : 0 ≤ s < t ≤ T, Fs ∈ Fs} ∪ {{0} × F0 : F0 ∈ F0}

)
is the predictable σ-algebra. P⊗λ is the product measure of the probability
measure P on (Ω,F) and Lebesgue measure λ on ([0, T ],B([0, T ])), where
B([0, T ]) denotes the Borel σ-algebra on [0, T ]. Given any measure space
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(A,A,m), any (quasi-)normed space B with (quasi-)norm ‖ · ‖B and any
summability index p > 0, we denote by Lp(A,A,m;B) the Lp-space of all
strongly measurable functions u : A→ B whose (quasi-)norm ‖u‖Lp(A,A,m;B)

:= (
	
A ‖u(z)‖pBm(dz))1/p is finite.

All equalities of random variables or random (generalized) functions ap-
pearing in this paper are meant to be P-almost sure equalities. Throughout
the paper, C denotes a positive constant which may change its value from
line to line.

2.2. Besov spaces and wavelet decompositions. In this section we
give the definition of Besov spaces and describe their characterization in
terms of wavelets. Our standard reference in this context is the monograph
of Cohen [7].

For a function f : O → R and a natural number n ∈ N let

∆n
hf(x) :=

n∏
i=0

1O(x+ ih) ·
n∑
j=0

(
n

j

)
(−1)n−j f(x+ jh)

be the nth difference of f with step h ∈ Rd. For p ∈ (0,∞) the modulus of
smoothness is given by

ωn(t, f)p := sup
|h|<t
‖∆n

hf‖Lp(O), t > 0.

One approach to introduce Besov spaces is the following.

Definition 2.1. Let s, p, q ∈ (0,∞) and n ∈ N with n > s. Then
Bs
p,q(O) is the collection of all functions f ∈ Lp(O) such that

|f |Bsp,q(O) :=
(∞�

0

[t−sωn(t, f)p]q
dt

t

)1/q

<∞.

These classes are equipped with a (quasi-)norm by taking

‖f‖Bsp,q(O) := ‖f‖Lp(O) + |f |Bsp,q(O).

Remark 2.2. For a more general definition of Besov spaces, including
the cases where p, q =∞ and s < 0, see, e.g., Triebel [50].

We want to describe Bs
p,q(Rd) by means of wavelet expansions. To this

end let ϕ be a scaling function of tensor product type on Rd and let ψi,
i = 1, . . . , 2d − 1, be corresponding multivariate mother wavelets such that,
for a given r ∈ N and some N > 0, the following locality, smoothness and
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vanishing moment conditions hold. For all i = 1, . . . , 2d − 1,

suppϕ, suppψi ⊂ [−N,N ]d,(2.1)

ϕ,ψi ∈ Cr(Rd),(2.2) �
xαψi(x) dx = 0 for all α ∈ Nd0 with |α| ≤ r.(2.3)

We assume that{
ϕk, ψi,j,k : (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd

}
is a Riesz basis of L2(Rd), where we use the standard abbreviations for
dyadic shifts and dilations of the scaling function and the corresponding
wavelets:

(2.4) ϕk(x) := ϕ(x− k), x ∈ Rd,
for k ∈ Zd, and

(2.5) ψi,j,k(x) := 2jd/2ψi(2jx− k), x ∈ Rd,
for (i, j, k) ∈ {1, . . . , 2d− 1}×N0×Zd. Further, we assume that there exists
a dual Riesz basis satisfying the same requirements. More precisely, there
exist functions ϕ̃ and ψ̃i, i = 1, . . . , 2d − 1, such that conditions (2.1)–(2.3)
hold if ϕ and ψ are replaced by ϕ̃ and ψ̃i, and the biorthogonality relations

〈ϕ̃k, ψi,j,k〉 = 〈ψ̃i,j,k, ϕk〉 = 0, 〈ϕ̃k, ϕ`〉 = δk,`, 〈ψ̃i,j,k, ψu,v,`〉 = δi,uδj,vδk,`,

are fulfilled. Here we use analogous abbreviations to (2.4) and (2.5) for the
dyadic shifts and dilations of ϕ̃ and ψ̃i, and δk,l denotes the Kronecker sym-
bol. We refer to Cohen [7, Chapter 2] for the construction of biorthogonal
wavelet bases (see also Daubechies [18] and Cohen, Daubechies and Feau-
veau [10]). To keep notation simple, we will write

ψi,j,k,p := 2jd(1/p−1/2)ψi,j,k and ψ̃i,j,k,p′ := 2jd(1/p
′−1/2)ψ̃i,j,k,

for the Lp-normalized wavelets and the correspondingly modified duals, with
p′ := p/(p− 1) if p ∈ (0,∞), p 6= 1, and p′ :=∞, 1/p′ := 0 if p = 1.

The following theorem shows how Besov spaces can be described by
decay properties of the wavelet coefficients, if the parameters fulfil certain
conditions.

Theorem 2.3. Let p, q ∈ (0,∞) and s > max{0, d(1/p − 1)}. Choose
r ∈ N such that r > s and construct a biorthogonal wavelet Riesz basis as
described above. Then a locally integrable function f : Rd → R is in the
Besov space Bs

p,q(Rd) if, and only if,

(2.6) f =
∑
k∈Zd
〈f, ϕ̃k〉ϕk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k,p′〉ψi,j,k,p
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(convergence in D′(Rd)) with

(2.7)( ∑
k∈Zd
|〈f, ϕ̃k〉|p

)1/p
+
( 2d−1∑

i=1

∑
j∈N0

2jsq
( ∑
k∈Zd
|〈f, ψ̃i,j,k,p′〉|p

)q/p)1/q
<∞,

and (2.7) is an equivalent (quasi-)norm for Bs
p,q(Rd).

Remark 2.4. A proof of this theorem for the case p ≥ 1 can be found in
Meyer [38, §10 of Chapter 6]. For the general case see for example Kyriazis
[35] or Cohen [7, Theorem 3.7.7]. Of course, if (2.7) holds then the infinite
sum in (2.6) converges also in Bs

p,q(Rd). If s > max{0, d(1/p − 1)} we have
the embedding Bs

p,q(Rd) ⊂ Lu(Rd) for some u > 1 (see, e.g., Cohen [7,
Corollary 3.7.1]).

Let us now fix a value p ∈ (1,∞) and consider the scale of Besov spaces
Bs
τ,τ (Rd), 1/τ = s/d+ 1/p, s > 0. A simple computation gives the following

result.

Corollary 2.5. Let p ∈ (1,∞), s > 0 and τ ∈ R be such that 1/τ =
s/d+1/p. Choose r ∈ N such that r > s and construct a biorthogonal wavelet
Riesz basis as described above. Then a locally integrable function f : Rd → R
is in the Besov space Bs

τ,τ (Rd) if, and only if,

(2.8) f =
∑
k∈Zd
〈f, ϕ̃k〉ϕk +

2d−1∑
i=1

∑
j∈N0

∑
k∈Zd
〈f, ψ̃i,j,k,p′〉ψi,j,k,p

(convergence in D′(Rd)) with

(2.9)
( ∑
k∈Zd
|〈f, ϕ̃k〉|τ

)1/τ
+
( 2d−1∑

i=1

∑
j∈N0

∑
k∈Zd
|〈f, ψ̃i,j,k,p′〉|τ

)1/τ
<∞,

and (2.9) is an equivalent (quasi-)norm for Bs
τ,τ (Rd).

2.3. SPDEs on Lipschitz domains and weighted Sobolev spaces.
From now on, let O ⊂ Rd be a bounded Lipschitz domain.

We have already mentioned corner singularities as typical examples
where the regularity of a function on O ⊂ Rd in the Besov scale Bα

τ,τ (O),
1/τ = α/d + 1/p, α > 0, can exceed the regularity in the Sobolev scale
W s
p (O), s > 0. This reflects the sparsity of the large wavelet coefficients of

such a function (given a wavelet basis on the domain O). A general way to
deal with smoothness regardless of certain singularities at the boundary is
to use weighted Sobolev spaces, where the weight function is a power of the
distance to the boundary. The Lp-theory of SPDEs on Lipschitz domains by
Kim [30, 31] is based on spaces of this type, namely the weighted Sobolev
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spaces Hγ
p,θ(O), p ∈ (1,∞), θ, γ ∈ R, introduced in Lototsky [37]. They are

defined in terms of the Bessel-potential spaces

Hγ
p (Rd) = {u ∈ S ′(Rd) : ‖u‖Hγ

p (Rd) = ‖(1−∆)γ/2u‖Lp(Rd) <∞}.

Here, S ′(Rd) ⊂ D′(Rd) is the space of (real valued) tempered distributions
and (1 − ∆)γ/2 : S ′(Rd) → S ′(Rd) is the pseudo-differential operator with
symbol Rd 3 ξ 7→ (1 + |ξ|2)γ/2, i.e. (1 − ∆)γ/2u = F−1((1 + |ξ|2)γ/2Fu),
where F denotes the Fourier transform on the (complex valued) tempered
distributions.

For x ∈ O we write ρ(x) := dist(x, ∂O) for the distance between x and
the boundary of the domain O. Fix c > 1 and k0 > 0, and for n ∈ Z consider
the subsets On of O given by

On := {x ∈ O : c−n−k0 < ρ(x) < c−n+k0}.

Let ζn ∈ C∞0 (On), n ∈ Z, be non-negative functions satisfying
∑

n∈Z ζn(x)
= 1 and |Dmζn(x)| ≤ C · cmn for all n ∈ Z, m ∈ N0, x ∈ O, and a con-
stant C > 0 that does not depend on n, m or x. The functions ζn can be
constructed by mollifying the indicator functions of the sets On (see, e.g.,
Hörmander [27, Section 1.4]). If On is empty we set ζn ≡ 0. For u ∈ D′(O),
ζnu is a distribution on O with compact support which can be extended by
zero to Rd. This extension is a tempered distribution, i.e. ζnu ∈ S ′(Rd).

Definition 2.6. Let ζn, n ∈ Z, be as above and p ∈ (1,∞), θ, γ ∈ R.
Then

Hγ
p,θ(O) :=

{
u ∈ D′(O) :

‖u‖p
Hγ
p,θ(O)

:=
∑
n∈Z

cnθ‖ζ−n(cn ·)u(cn ·)‖p
Hγ
p (Rd) <∞

}
.

According to Lototsky [37] this definition is independent of the specific
choice of c, k0 and ζn, n ∈ Z, in the sense that one gets equivalent norms.
If γ = m ∈ N0 then the spaces can be characterized as

H0
p,θ(O) = Lp,θ(O) := Lp(O, ρ(x)θ−d dx),

Hm
p,θ(O) = {u : ρ|α|Dαu ∈ Lp,θ(O) for all α ∈ Nd0 with |α| ≤ m},

and one has the norm equivalence

(2.10)

C−1‖u‖pHm
p,θ(O) ≤

∑
α∈Nd0, |α|≤m

�

O
|ρ(x)|α|Dαu(x)|pρ(x)θ−d dx ≤ C‖u‖pHm

p,θ(O).

Analogous notation is used for `2 = `2(N)-valued functions g= (gκ)κ∈N.
For p ∈ (1,∞), θ, γ ∈ R and ζn, n ∈ Z, as above,
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Hγ
p (Rd; `2) :=

{
g ∈ (S ′(Rd))N : (1−∆)γ/2gκ ∈ Lp(Rd) for all κ ∈ N and

‖g‖Hγ
p (Rd;`2) :=

∥∥|((1−∆)γ/2gκ)κ∈N|`2
∥∥
Lp(Rd) <∞

}
,

Hγ
p,θ(O; `2) :=

{
g ∈ (D′(O))N :

‖g‖p
Hγ
p,θ(O;`2)

:=
∑
n∈Z

cnθ‖ζ−n(cn ·)g(cn ·)‖p
Hγ
p (Rd;`2)

<∞
}
.

Remark 2.7. (a) One can consider the spaces Hγ
p,θ(O) as generalizations

of the classical Sobolev spaces on O with zero boundary conditions. For
γ = m ∈ N0 we have the identity

Hm
p,d−mp(O) =

◦
Wm
p (O),

and the norms in both spaces are equivalent (see Theorem 9.7 in Kufner
[34]). Here

◦
Wm
p (O) is the closure of C∞0 (O) in the classical Sobolev space

Wm
p (O).

(b) Note that, in contrast to the spaces W s
p (O) = Bs

p,p(O), s ∈ (m,m+1),
m ∈ N0, which can be regarded as real interpolation spaces of the classi-
cal Sobolev spaces Wm

p (O), m ∈ N0 (see, e.g., Triebel [50, Section 1.11.8]
and Dispa [21]), the spaces Hγ

p,θ(O), γ ∈ (m,m + 1), m ∈ N0, are complex
interpolants of the respective integer smoothness spaces (cf. Lototsky [37,
Proposition 2.4]).

We can now define spaces of stochastic processes and random functions
in terms of the weighted Sobolev spaces introduced above.

Definition 2.8. For γ, θ ∈ R and p ∈ (1,∞) we set

Hγp,θ(O, T ) := Lp(ΩT ,P,P⊗ λ; Hγ
p,θ(O)),

Hγp,θ(O, T ; `2) := Lp(ΩT ,P,P⊗ λ; Hγ
p,θ(O; `2)),

Uγp,θ(O) := Lp(Ω,F0,P; Hγ−2/p
p, θ+2−p(O)),

and for p ∈ [2,∞),

H
γ
p,θ(O, T ) :=

{
u ∈ Hγp,θ−p(O, T ) : u(0, ·) ∈ Uγp,θ(O) and

du = f dt+
∞∑
κ=1

gκ dwκt for some

f ∈ Hγ−2
p,θ+p(O, T ), g ∈ Hγ−1

p,θ (O, T ; `2)
}
,

equipped with the norm

‖u‖Hγp,θ(O,T ) := ‖u‖Hγp,θ−p(O,T ) + ‖f‖Hγ−2
p,θ+p(O,T )

+ ‖g‖Hγ−1
p,θ (O,T ;`2)

+ ‖u(0, ·)‖Uγp,θ(O).
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The equality du = f dt+
∑∞

κ=1 g
κ dwκt above is shorthand for

(2.11) 〈u(t, ·), ϕ〉 = 〈u(0, ·), ϕ〉+
t�

0

〈f(s, ·), ϕ〉 ds+
∞∑
κ=1

t�

0

〈gκ(s, ·), ϕ〉 dwκs

for all ϕ ∈ C∞0 (O), t ∈ [0, T ].

Remark 2.9. (a) If p ∈ [2,∞), then the sum of stochastic integrals in
(2.11) converges in the spaceM2,c

T (R, (Ft)) of continuous, square-integrable,
R-valued martingales with respect to (Ft)t∈[0,T ]. For the convenience of the
reader we include a proof in Appendix A.

(b) Using the arguments of Krylov in [32, Remark 3.3], we get the
uniqueness (up to indistinguishability) of the pair (f, g) ∈ Hγ−2

p,θ+p(O, T ) ×
Hγ−1
p,θ (O, T ; `2) which satisfies (2.11). Consequently, the norm in H

γ
p,θ(O, T )

is well defined.

Definition 2.10. We call a predictable D′(O)-valued stochastic process
u = (u(t, ·))t∈[0,T ] a solution to equation (1.1) if it is a solution to (2.11)
where f is replaced by

∑d
µ,ν=1 a

µνuxµxν and u(0, ·) = u0.

The next result is taken from Kim [30, 31].

Theorem 2.11. Let γ ∈ R.

(i) For p ∈ [2,∞), there exists a constant κ0 ∈ (0, 1), depending only on
d, p, (aµν)1≤µ,ν≤d and O, such that for any θ ∈ (d+ p− 2− κ0, d+
p−2+κ0), g ∈ Hγ−1

p,θ (O, T ; `2) and u0 ∈ Uγp,θ(O), equation (1.1) has
a unique solution u in the class H

γ
p,θ(O, T ). For this solution

(2.12) ‖u‖p
Hγp,θ(O,T )

≤ C(‖g‖p
Hγ−1
p,θ (O,T ;`2)

+ ‖u0‖pUγp,θ(O)
),

where the constant C depends only on d, p, γ, θ, (aµν)1≤µ,ν≤d, T
and O.

(ii) There exists p0 > 2 such that the following statement holds: if p ∈
[2, p0), then there exists a constant κ1 ∈ (0, 1), depending only on
d, p, (aµν)1≤µ,ν≤d and O, such that for any θ ∈ (d − κ1, d + κ1),
g ∈ Hγ−1

p,θ (O, T ; `2) and u0 ∈ Uγp,θ(O), equation (1.1) has a unique
solution u in the class H

γ
p,θ(O, T ). For this solution, estimate (2.12)

holds.

We will need the following straightforward consequence of Theorem 2.11.
Recall that if m ∈ N and f ∈ D′(O) is sufficiently regular, then |Dmf |`p
stands for (

∑
|α|=m |Dαf |p)1/p, the (pointwise) `p-norm of the vector of the

mth order derivatives of f .
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Corollary 2.12. In the situation of Theorem 2.11 with γ = m ∈ N,
for every τ ∈ [0, p],

�

Ω

T�

0

‖ρm−δ|Dmu(ω, t, ·)|`p‖τLp(O) dtP(dω)

≤ C(‖g‖Hm−1
p,θ (O,T ;`2) + ‖u0‖Ump,θ(O))

τ ,

where δ = 1 + (d− θ)/p.

Proof. Theorem 2.11 implies, in particular, that

‖u‖Hmp,θ−p(O,T ) ≤ C(‖g‖Hm−1
p,θ (O,T ;`2) + ‖u0‖Ump,θ(O)),

and we have

‖u‖pHmp,θ−p(O,T ) =
�

Ω

T�

0

‖u(ω, t, ·)‖pHm
p,θ−p(O,T ) dtP(dω)

≥ C
�

Ω

T�

0

m∑
k=0

‖ρk+(θ−p−d)/p|Dku(ω, t, ·)|`p‖
p
Lp(O) dtP(dω)

≥ C
�

Ω

T�

0

‖ρm−δ|Dmu(ω, t, ·)|`p‖
p
Lp(O) dtP(dω)

with δ = 1+(d− θ)/p ∈ ((2−κ0)/p, (p+κ0)/p). Now let τ ∈ [0, p]. Jensen’s
inequality for concave functions (see, e.g., Schilling [47, Theorem 12.14])
yields

�

Ω

T�

0

‖ρm−δ|Dmu(ω, t, ·)|`p‖τLp(O) dtP(dω)

≤ C(T )(‖g‖pHm−1
p,θ (O,T ;`2)

+ ‖u0‖pUmp,θ(O))
τ/p

≤ C(‖g‖Hm−1
p,θ (O,T ;`2) + ‖u0‖Ump,θ(O))

τ .

In the last step we have used the fact that all norms on R2 are equivalent.

Remark 2.13. Consider the Hilbert space case p = 2 and assume g ∈
Hγ2,θ(O, T ; `2). The expression

∑∞
κ=1

	t
0 g

κ(s, ·) dwκs can be considered as an

Hγ
2,θ(O)-valued stochastic integral

	t
0G(s) dWs with respect to a cylindrical

Wiener process (Wt)t∈[0,T ] on `2 whose coordinate processes are (wκt )t∈[0,T ],
κ ∈ N. (See, e.g., Da Prato and Zabczyk [17] or Peszat and Zabczyk
[44] for stochastic integration with respect to cylindrical processes.) Here
(G(t))t∈[0,T ] is a stochastic process in the space L(HS)(`2, H

γ
2,θ(O)) of Hilbert–
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Schmidt operators defined by

G(ω, t) : `2 → Hγ
2,θ(O), (xκ)κ∈N 7→

∑
κ∈N

gκ(ω, t, ·)xκ, (ω, t) ∈ ΩT ,

and it is an element of the space L2(ΩT ;L(HS)(`2, H
γ
2,θ(O))). Indeed, for

fixed (ω, t) ∈ ΩT we have

‖G(ω, t)‖2L(HS)(`2,H
γ
2,θ(O)) =

∑
κ∈N
‖gκ(ω, t, ·)‖2Hγ

2,θ(O)

=
∑
κ∈N

∑
n∈Z

cnθ‖ζ−n(cn ·)gκ(ω, t, cn ·)‖2Hγ
2 (Rd)

=
∑
n∈Z

cnθ‖ζ−n(cn ·)g(ω, t, cn ·)‖2Hγ
2 (Rd;`2)

by Tonelli’s theorem, so that

‖G‖L2(ΩT ;L(HS)(`2;Hγ
2,θ(O))) = ‖g‖Hγ2,θ(O,T ;`2).

As a consequence, (1.1) can be rewritten in the form

(2.13) du =
d∑

µ,ν=1

aµνuxµxν dt+ dMt, u(0, ·) = u0,

where (Mt)t∈[0,T ] ∈ M
2,c
T (Hγ

2,θ(O), (Ft)) is the Hγ
2,θ(O)-valued, square-inte-

grable martingale given by

Mt :=
t�

0

G(s) dWs, t ∈ [0, T ].

Remark 2.14. In Examples 3.3–3.5 below the solution u of (1.1) in
H
γ
2,θ(O, T ) as given by Theorem 2.11 coincides with the weak solution of

(2.13) with zero Dirichlet boundary condition in the sense of Da Prato and
Zabczyk [17].

In these examples we consider equation (2.13) driven by certain Wiener
processes (Mt)t∈[0,T ] in L2(O) with u0 ∈ U2

2,2(O), d = 2 and the solution u

is in the class H2
2,2(O, T ) ⊂ H2

2,0(O, T ). (Strictly speaking, in Example 3.5
(Mt)t∈[0,T ] is not a Wiener process, but it is one conditioned on the family
of random variables Yλ, λ ∈ ∇.) Thus, by Remark 2.7(a) we know that u is
an element of L2(ΩT ;

◦
W 1

2 (O)). Let us now introduce the operator

(A,D(A)) :=
( d∑
µ,ν=1

aµν
∂2

∂xµ∂xν
,
{
u ∈

◦
W 1

2 (O) :
d∑

µ,ν=1

aµνuxµxν ∈ L2(O)
})

and consider the equation

(2.14) du = Audt+ dMt, u(0, ·) = u0, t ∈ [0, T ].
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A weak solution of (2.14) in the sense of Da Prato and Zabczyk [17] is an
L2(O)-valued predictable process u = (u(t, ·))t∈[0,T ] with P-almost surely
Bochner integrable trajectories t 7→ u(ω, t, ·) satisfying

(2.15) 〈u(t, ·), ζ〉L2(O) = 〈u0, ζ〉L2(O) +
t�

0

〈u(s, ·), A∗ζ〉L2(O) ds+ 〈Mt, ζ〉L2(O)

for all t ∈ [0, T ] and ζ ∈ D(A∗). It is given by the variation of constants
formula

u(t, ·) = etAu0 +
t�

0

e(t−s)A dMs, t ∈ [0, T ],

where (etA)t≥0 is the contraction semigroup on L2(O) generated by A.
It is clear that the solution u ∈ H2

2,2(O, T ) given by Theorem 2.11 satisfies

(2.16) 〈u(t, ·), ϕ〉L2(O)

= 〈u0, ϕ〉L2(O) +
t�

0

〈A1/2u(s, ·), A1/2ϕ〉L2(O) ds+ 〈Mt, ϕ〉L2(O)

for all t ∈ [0, T ] and ϕ ∈ C∞0 (O). Note that the operator A is self-adjoint
because the coefficients aµν , 1 ≤ µ, ν ≤ d, are constants. Since every ζ ∈
D(A∗) = D(A) ⊂

◦
W 1

2 (O) is the limit in W 1
2 (O) of a sequence (ϕk)k∈N ⊂

C∞0 (O), one can let k →∞ for ϕ = ϕk in (2.16) to obtain (2.15).

3. Besov regularity for SPDEs. In this section we state and prove
our main result. We give some concrete examples to illustrate its applicabil-
ity. The result is formulated in terms of the Lτ -spaces

Lτ (ΩT ;Bs
τ,τ (O)) = Lτ (ΩT ,P,P⊗ λ;Bs

τ,τ (O)), τ ∈ (0,∞), s ∈ (0,∞),

and the spaces introduced in the preceding section.

Theorem 3.1. Let g ∈ Hγ−1
p,θ (O, T ; `2) and u0 ∈ Uγp,θ(O) for some γ ∈ N,

where θ and p satisfy one of the following conditions:

p ∈ [2,∞) and θ ∈ (d+ p− 2− κ0, d+ p− 2 + κ0),(i)
p ∈ [2, p0) and θ ∈ (d− κ1, d+ κ1),(ii)

with κ0, κ1 and p0 from Theorem 2.11. Let u be the unique solution in the
class H

γ
p,θ(O, T ) of equation (1.1) and assume furthermore that

(3.1) u ∈ Lp(ΩT ; Bs
p,p(O)) for some s ∈

(
0, γ ∧

(
1 +

d− θ
p

)]
.

Then

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α

d
+

1
p
, for all α ∈

(
0, γ ∧ sd

d− 1

)
,
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and

(3.2) ‖u‖Lτ (ΩT ;Bατ,τ (O))

≤ C(‖g‖Hγ−1
p,θ (O,T ;`2)

+ ‖u0‖Uγp,θ(O) + ‖u‖Lp(ΩT ;Bsp,p(O))).

The constant C depends only on d, p, γ, α, s, θ, (aµν)1≤µ,ν≤d, T and O.

Remark 3.2. Since the constant κ1 = κ1(d, p, (aµν),O) is greater than
zero, we can always choose θ = d, provided p ∈ [2, p0) with p0 > 2 from
Theorem 2.11. In this case, we know that for each γ ∈ N we have a unique
solution u in the class H

γ
p,d(O, T ) if the free term g and the initial condition

u0 are sufficiently regular. In particular, we get

u ∈ Hγp,d−p(O, T ) = Lp(ΩT ;Hγ
p,d−p(O)) ⊆ Lp(ΩT ;

◦
W 1
p (O))

⊆ Lp(ΩT ;B1
p,p(O)).

Thus, the additional requirement (3.1) holds with s = 1. Since O is an
arbitrary bounded Lipschitz domain, the regularity of the solution u in the
scale Lp(ΩT ;W s

p (O)), s > 0, is in general limited by some s∗ < 2, i.e. there
exists s∗ < 2, such that u /∈ Lp(ΩT ;W s

p (O)) for all s ≥ s∗ (see [36]).
However, if γ ≥ 2 our result shows that we obtain higher regularity than

s = 1 in the nonlinear approximation scale, namely

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α

d
+

1
p
, for all α <

d

d− 1
.

Proof of Theorem 3.1. We fix α and τ as stated in the theorem and
choose a wavelet Riesz basis

{ϕk, ψi,j,k : (i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd}
of L2(Rd) which satisfies the assumptions from Section 2.2 with r > γ. Given
(j, k) ∈ N0 × Zd let

Qj,k := 2−jk + 2−j [−N,N ]d,

so that suppψi,j,k ⊂ Qj,k for all i ∈ {1, . . . , 2d−1} and suppϕk ⊂ Q0,k for all
k ∈ Zd. Remember that the supports of the corresponding dual basis meet
the same requirements. For our purpose the set of all indices associated with
those wavelets that may have common support with the domain O will play
an important role and we denote them by

Λ := {(i, j, k) ∈ {1, . . . , 2d − 1} × N0 × Zd : Qj,k ∩ O 6= ∅}.
In particular, we will also use the following notation:

Γ := {k ∈ Zd : Q0,k ∩ O 6= ∅}.
Due to the assumption u ∈ Lp(ΩT ;Bs

p,p(O)) we have u(ω, t, ·) ∈ Bs
p,p(O)

for P⊗λ-almost every (ω, t) ∈ ΩT . As O is a Lipschitz domain there exists a
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bounded linear extension operator E : Bs
p,p(O)→ Bs

p,p(Rd), i.e. there exists
a constant C > 0 such that for P⊗ λ-almost every (ω, t) ∈ ΩT ,

Eu(ω, t, ·)|O = u(ω, t, ·) and ‖Eu(ω, t, ·)‖Bsp,p(Rd) ≤ C‖u(ω, t, ·)‖Bsp,p(O)

(see, e.g., Rychkov [46]). In the following we will omit the E in our notation
and write u instead of Eu.

Theorem 2.3 tells us that for almost all (ω, t) ∈ ΩT the following equality
holds on the domain O:

u(ω, t, ·) =
∑
k∈Γ
〈u(ω, t, ·), ϕ̃k〉ϕk +

∑
(i,j,k)∈Λ

〈u(ω, t, ·), ψ̃i,j,k,p′〉ψi,j,k,p,

where the sums converge unconditionally in Bs
p,p(Rd). Furthermore (cf. Cor-

ollary 2.5), for P⊗ λ-almost all (ω, t) ∈ ΩT ,

(3.3) ‖u(ω, t, ·)‖τBατ,τ (O)

≤ C
[∑
k∈Γ
|〈u(ω, t, ·), ϕ̃k〉|τ +

∑
(i,j,k)∈Λ

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ
]
.

Hence, it is enough to prove that

(3.4)
�

Ω

T�

0

∑
k∈Γ
|〈u(ω, t, ·), ϕ̃k〉|τ dtP(dω) ≤ C‖u‖τLp(ΩT ;Bsp,p(O))

and

(3.5)
�

Ω

T�

0

∑
(i,j,k)∈Λ

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ dtP(dω)

≤ C(‖g‖Hγ−1
p,θ (O,T ;`2)

+ ‖u0‖Uγp,θ(O) + ‖u‖Lp(ΩT ;Bsp,p(O)))
τ .

We start with (3.4). The index set Γ introduced above is finite because
of the boundedness of O, so that we can use Jensen’s inequality to get, for
P⊗ λ-almost all (ω, t) ∈ ΩT ,∑

k∈Γ
|〈u(ω, t, ·), ϕ̃k〉|τ ≤ C

[(∑
k∈Γ
|〈u(ω, t, ·), ϕ̃k〉|p

)1/p]τ
≤ C‖u(ω, t, ·)‖τBsp,p(O).

In the last step we used Theorem 2.3 and the boundedness of the exten-
sion operator. Integration with respect to P⊗ λ and another application of
Jensen’s inequality yield (3.4).
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To prove (3.5), we introduce the following notation:

ρj,k := dist(Qj,k, ∂O) = inf
x∈Qj,k

ρ(x),

Λj := {(i, l, k) ∈ Λ : l = j},
Λj,m := {(i, j, k) ∈ Λj : m2−j ≤ ρj,k < (m+ 1)2−j},

Λ0
j := Λj \ Λj,0, Λ0 :=

⋃
j∈N0

Λ0
j ,

where j,m ∈ N0 and k ∈ Zd. We split the left hand side of (3.5) into

(3.6)
�

Ω

T�

0

∑
(i,j,k)∈Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ dtP(dω)

+
�

Ω

T�

0

∑
(i,j,k)∈Λ\Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ dtP(dω) =: I + II

and estimate each term separately.
Let us begin with I. Fix (i, j, k) ∈ Λ0 and (ω, t) ∈ ΩT such that

�

O

∣∣ρ(x)γ−s|Dγu(ω, t, x)|`p
∣∣p dx <∞.

By Corollary 2.12 this holds for P⊗λ-almost all (ω, t) ∈ ΩT . By a Whitney-
type inequality, also known as the Deny–Lions lemma (see, e.g., DeVore and
Sharpley [20, Theorem 3.4]), there exists a polynomial Pj,k of total degree
less than γ such that

‖u(ω, t, ·)− Pj,k‖Lp(Qj,k) ≤ C2−jγ |u(ω, t, ·)|W γ
p (Qj,k)

,

where the last norm is finite since ρj,k = dist(Qj,k, ∂O) > 0. Since ψ̃i,j,k,p′ is
orthogonal to every polynomial of total degree less than γ, one gets

|〈u(ω, t, ·), ψ̃i,j,k,p′〉| = |〈u(ω, t, ·)− Pj,k, ψ̃i,j,k,p′〉|

≤ ‖u(ω, t, ·)− Pj,k‖Lp(Qj,k) ‖ψ̃i,j,k,p′‖Lp′ (Qj,k)
≤ C2−jγ |u(ω, t, ·)|W γ

p (Qj,k)

≤ C2−jγρs−γj,k

( �

Qj,k

∣∣ρ(x)γ−s |Dγu(ω, t, x)|`p
∣∣p dx)1/p

=: C2−jγρs−γj,k µj,k(ω, t).

Fix j ∈ N0. Summing over all indices (i, j, k) ∈ Λ0
j and applying Hölder’s

inequality with exponents p/τ > 1 and p/(p− τ) one finds
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(3.7)
∑

(i,j,k)∈Λ0
j

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ

≤ C
∑

(i,j,k)∈Λ0
j

2−jγτρ(s−γ)τ
j,k µj,k(ω, t)τ

≤ C
( ∑

(i,j,k)∈Λ0
j

µj,k(ω, t)p
)τ/p( ∑

(i,j,k)∈Λ0
j

2
−pjγτ
p−τ ρ

(s−γ)pτ
p−τ

j,k

) p−τ
p
.

Since any x ∈ O lies outside of all but at most a constant number C > 0
of the cubes Qj,k, k ∈ Zd, we get the following bound for the first factor on
the right hand side:

(3.8)
( ∑

(i,j,k)∈Λ0
j

µj,k(ω, t)p
)τ/p

=
( ∑

(i,j,k)∈Λ0
j

�

Qj,k

∣∣ρ(x)γ−s |Dγu(ω, t, x)|`p
∣∣p dx)τ/p

≤ C‖ργ−s|Dγu(ω, t, ·)|`p‖τLp(O).

In order to estimate the second factor in (3.7) we use the Lipschitz character
of the domain O, which implies that

|Λj,m| ≤ C2j(d−1) for all j,m ∈ N0.(3.9)

The constant C > 0 does not depend on j or m. Moreover, the boundedness
of O yields Λj,m = ∅ for all j,m ∈ N0 with m ≥ C2j . Consequently,

(3.10)
( ∑

(i,j,k)∈Λ0
j

2
−pjγτ
p−τ ρ

(s−γ)pτ
p−τ

j,k

)p−τ/p

≤
( C2j∑
m=1

∑
(i,j,k)∈Λj,m

2
−pjγτ
p−τ ρ

(s−γ)pτ
p−τ

j,k

) p−τ
p

≤ C
( C2j∑
m=1

2j(d−1) 2−j
pγτ
p−τ (m 2−j)

(s−γ)pτ
p−τ

) p−τ
p

≤ C
(
2j(d−1− spτ

p−τ ) + 2j(d−
γpτ
p−τ )) p−τp .

Now, let us sum over all j ∈ N0 and integrate over ΩT with respect to P⊗λ
on both sides of (3.7). By using (3.10), (3.8) and Corollary 2.12 we get
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�

Ω

T�

0

∑
(i,j,k)∈Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ dtP(dω)

≤ C
∑
j∈N0

(2j(d−1− spτ
p−τ ) + 2j(d−

γpτ
p−τ ))

p−τ
p

·
�

Ω

T�

0

‖ργ−s |Dγu(ω, t, ·)|`p‖τLp(O) dtP(dω)

≤ C
( ∑
j∈N0

2j(d−1− spτ
p−τ ) p−τ

p +
∑
j∈N0

2j(d−
γpτ
p−τ ) p−τ

p

)
· (‖g‖Hγ−1

p,θ (O,T ;`2)
+ ‖u0‖Uγp,θ(O))

τ .

One can see that the sums on the right hand side converge if, and only if,
α ∈ (0, γ ∧ s d

d−1). Finally,

(3.11)
�

Ω

T�

0

∑
(i,j,k)∈Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ dtP(dω)

≤ C(‖g‖Hγ−1
p,θ (O,T ;`2)

+ ‖u0‖Uγp,θ(O))
τ .

Now we estimate the term II in (3.6). First we fix j ∈ N0 and use
Hölder’s inequality and (3.9) to get∑

(i,j,k)∈Λj,0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉
∣∣τ

≤ C 2j(d−1) p−τ
p

[ ∑
(i,j,k)∈Λj,0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|p
]τ/p

.

Summing over all j ∈ N0 and using Hölder’s inequality again yields∑
(i,j,k)∈Λ\Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ

=
∑
j∈N0

[ ∑
(i,j,k)∈Λj,0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ
]

≤ C
∑
j∈N0

[
2j(d−1) p−τ

p

( ∑
(i,j,k)∈Λj,0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|p
)τ/p]

≤ C
[ ∑
j∈N0

2j(
(d−1)(p−τ)

p
−τp) p

p−τ
] p−τ

p

·
[ ∑
j∈N0

∑
(i,j,k)∈Λj,0

2jsp|〈u(ω, t, ·), ψ̃i,j,k,p′〉|p
]τ/p

.
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Using Theorem 2.3 and the boundedness of the extension operator, for P⊗λ-
almost every (ω, t) ∈ ΩT one gets∑

(i,j,k)∈Λ\Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ

≤ C‖u(ω, t, ·)‖τBsp,p(O)

( ∑
j∈N0

2j(
(d−1)(p−τ)

p
−τp) p

p−τ
) p−τ

p
.

The series on the right hand side converges if and only if α ∈ (0, sd/(d− 1)).
But this is part of our assumptions, so that for P ⊗ λ-almost every (ω, t)
∈ ΩT , ∑

(i,j,k)∈Λ\Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ ≤ C‖u(ω, t, ·)‖τBsp,p(O).

Let us integrate over ΩT with respect to P⊗ λ and use Jensen’s inequality
to get

�

Ω

T�

0

∑
(i,j,k)∈Λ\Λ0

|〈u(ω, t, ·), ψ̃i,j,k,p′〉|τ dtP(dω)

≤ C
�

Ω

T�

0

‖u(ω, t, ·)‖τBsp,p(O) dtP(dω)

≤ C
( �
Ω

T�

0

‖u(ω, t, ·)‖pBsp,p(O) dtP(dω)
)τ/p

.

Because of (3.11) this proves (3.5). Now (3.4) and (3.3) finish the proof.

Next, we give some examples for an application of Theorem 3.1. We
are mainly interested in the Hilbert space case p = 2 since it provides a
natural setting for numerical discretization techniques like adaptive wavelet
schemes.

Example 3.3. Let us first consider equation (1.1) in the form (2.13)
where the driving process (Mt)t∈[0,T ] is a Wiener process in

◦
W 1

2 (O) with co-

variance operator Q ∈ L(nuc)(
◦
W 1

2 (O)). It can be represented as a stochastic
integral process (

	t
0G(s) dWs)t∈[0,T ] with respect to the cylindrical Wiener

process (Wt)t∈[0,T ] on `2 by defining the integrand process (G(t))t∈[0,T ] in

the space L(HS)(`2,
◦
W 1

2 (O)) of Hilbert–Schmidt operators as the constant
deterministic process

(3.12) G(ω, t) : `2 →
◦
W 1

2 (O), (xκ)κ∈N 7→
∑
κ∈N

√
λκx

κeκ, (ω, t) ∈ ΩT ,
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where (eκ)κ∈N is an orthonormal basis of
◦
W 1

2 (O) consisting of eigenvectors
of Q with positive eigenvalues (λκ)κ∈N.

This corresponds to defining g = (gκ)κ∈N in (1.1) by

(3.13) gκ(ω, t, ·) :=
√
λκeκ, κ ∈ N, (ω, t) ∈ ΩT .

It is easy to see that g is an element of H1
2,d(O, T ; `2). By definition

‖g‖2H1
2,d(O,T ;`2) = T 2

∑
n∈Z

cnd‖ζ−n(cn ·)(
√
λκeκ(cn ·))κ∈N‖2H1

2 (Rd;`2)(3.14)

= T 2
∑
κ∈N

λκ
∑
n∈Z

cnd‖ζ−n(cn ·)eκ(cn ·)‖2H1
2 (Rd)

= T 2
∑
κ∈N

λκ‖eκ‖2H1
2,d(O).

Using the norm equivalence (2.10), one has

‖g‖2H1
2,d(O,T ;`2) ≤ CT

2
∑
κ∈N

λκ
∑
|α|≤1

‖ρ|α|Dαeκ‖2L2(O)

≤ CT 2
∑
κ∈N

λκ
∑
|α|≤1

‖Dαeκ‖2L2(O) = CT 2
∑
κ∈N

λκ < ∞.

Thus, in a 2-dimensional setting, Theorem 2.11 with d = θ = γ = 2 tells
us that for every initial condition u0 ∈ U2

2,2(O) = L2(Ω,F0,P;H1
2,2(O))

equation (1.1) has a unique solution u in the class H2
2,2(O, T ) ⊂ H2

2,0(O, T ) =
L2(ΩT ;H2

2,0(O)). As a trivial consequence,

u ∈ L2(ΩT ;W 1
2 (O)) = L2(ΩT ;B1

2,2(O))

because we have the equality

H2
2,0(O) =

{
u ∈ D′(O) : ρ|α|−1Dαu ∈ L2(O) for all α ∈ N2

0 with |α| ≤ 2
}
.

(In fact, according to Remark 2.7 we even know that u ∈ L2(ΩT ;
◦
W 1

2 (O)).)
Note that in general it is not true that u belongs to L2(ΩT ;W s

2 (O)) for
all s < 2. Since O is an arbitrary bounded Lipschitz domain, certain second
derivatives might explode near the boundary and the norm ‖u(ω, t, ·)‖W 2

2 (O)

as well as ‖u(ω, t, ·)‖W s
2 (O), where s ∈ (1, 2), might not be finite. For O

being a polygonal domain, an explicit upper bound for the regularity in the
Sobolev scale L2(ΩT ;W s

2 (O)), s ≥ 0, has been derived in [36]. Adapting
techniques used in Grisvard [23, 24] to our stochastic setting, it has been
shown that u /∈ L2(ΩT ; W s

2 (O)) if s > 1+π/γmax, where γmax is the measure
of the largest interior angle at a corner of ∂O.

However, in the situation under study, Theorem 3.1 with s = 1 states
that

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α

2
+

1
2
, for all α < 2.
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τ
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2

Fig. 2. Besov regularity in the scale Bατ,τ (O), 1/τ = α/2 + 1/2, vs. Sobolev regularity of
the solution, illustrated in a DeVore–Triebel diagram

This is illustrated in Figure 2, where each point (1/τ, s) represents the
smoothness spaces of functions with “s derivatives in Lτ (O)”. Based on the
knowledge that u ∈ L2(ΩT ;W 1

2 (O)) and u ∈ Lτ (ΩT ;Bα
τ,τ (O)) for all α < 2,

1/τ = α/2 + 1/2, interpolation and embedding theorems show that u also
belongs to each of the spaces Lτ (ΩT ;Bs

τ,τ (O)), 0 < τ < 2, s < (1/2+1/τ)∧2.
This is indicated by the shaded area.

Example 3.4. In view of equality (3.14) it is clear that we can apply
Theorems 2.11 and 3.1 in the same way as in Example 3.3, i.e. with d =
θ = γ = 2 and s = 1, if the driving process (Mt)t∈[0,T ] in (2.13) is a
Wiener process in W 1

2 (O) with covariance operator Q ∈ L(nuc)(W 1
2 (O)),

and even if it is a Wiener process in H1
2,2(O) with covariance operator Q ∈

L(nuc)(H1
2,2(O)). In the first case (Mt)t∈[0,T ] does not satisfy a zero Dirichlet

boundary condition as in Example 3.3, and in the second case (Mt)t∈[0,T ]

behaves even more irregularly near the boundary in the sense that the first
derivatives are allowed to blow up near ∂O.

In these cases we choose (eκ)κ∈N in (3.12) and (3.13) to be an orthonor-
mal basis of the space W 1

2 (O), respectively H1
2,2(O), consisting of eigenvec-

tors of Q ∈ L(nuc)(W 1
2 (O)), respectively Q ∈ L(nuc)(H1

2,2(O)), with corre-
sponding eigenvalues (λκ)κ∈N.

As in Example 3.3 the solution u lies in the space L2(ΩT ;W 1
2 (O)) =

L2(ΩT ;B1
2,2(O)) and, by Theorem 3.1, it also lies in L2(ΩT ;Bα

τ,τ (O)), 1/τ =
α/2 + 1/2, α < 2 (see Figure 2).
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Example 3.5. Let the driving process (Mt)t∈[0,T ] in (2.13) be a time-
dependent version of the stochastic wavelet expansion introduced in Abra-
movich et al. [1] in the context of Bayesian nonparametric regression and
generalized in Bochkina [2] and Cioica et al. [6]. This noise model is for-
mulated in terms of a wavelet basis expansion on the domain O ⊂ Rd with
random coefficients of prescribed sparsity and thus tailor-made for apply-
ing adaptive techniques with regard to the numerical approximation of the
corresponding SPDEs. Via the choice of certain parameters specifying the
distributions of the wavelet coefficients it also allows for an explicit control
of the spatial Besov regularity of (Mt)t∈[0,T ]. We first describe the general
noise model and then deduce a further example for the application of The-
orem 3.1.

Let {ψλ : λ ∈ ∇} be a multiscale Riesz basis for L2(O) consisting of
scaling functions at a fixed scale level j0 ∈ Z and of wavelets at level j0
and all finer levels. As in the introduction, the notation we use here is dif-
ferent from that used in Section 2.2 because we do not consider a basis on
the whole space Rd but on the bounded domain O. Information like scale
level, spatial location and type of the wavelets or scaling functions are en-
coded in the indices λ ∈ ∇. We refer to Cohen [7, Sections 2.12, 2.13 and
3.9] and Dahmen and Schneider [14]–[16] for detailed descriptions of multi-
scale bases on bounded domains. Adopting the notation of Cohen we write
∇ =

⋃
j≥j0−1∇j , where for j ≥ j0 the set ∇j ⊂ ∇ contains the indices of all

wavelets ψλ at scale level j and where ∇j0−1 ⊂ ∇ is the index set referring
to the scaling functions at scale level j0 which we denote by ψλ, λ ∈ ∇j0−1,
for notational simplicity. We make the following assumptions concerning our
basis. Firstly, the cardinalities of the index sets ∇j , j ≥ j0 − 1, satisfy

(3.15) C−12jd ≤ |∇j | ≤ C2jd, j ≥ j0 − 1.

Secondly, we assume that the basis admits norm equivalences similar to
those described in Theorem 2.3. There exists an r ∈ N (depending on
the smoothness of the scaling functions ψλ, λ ∈ ∇j0−1, and on the de-
gree of polynomial exactness of their linear span) such that, given p, q > 0,
max{0, d(1/p − 1)} < s < r, and a real valued distribution f ∈ D′(O), we
have f ∈ Bs

p,q(O) if and only if f can be represented as f =
∑

λ∈∇ cλψλ,
(cλ)λ∈∇ ⊂ R (convergence in D′(O)), such that

(3.16)
( ∞∑
j=j0−1

2jq(s+d(1/2−1/p))
( ∑
λ∈∇j

|cλ|p
)q/p)1/q

<∞.

Furthermore, ‖f‖Bsp,q(O) is equivalent to the quasi-norm (3.16). Concrete
constructions of bases satisfying these assumptions can be found in the lit-
erature mentioned above. Concerning the family (wκt )t∈[0,T ], κ ∈ N, of inde-
pendent standard Brownian motions in (1.1) respectively (2.13), we modify
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our notation and write (wλt )t∈[0,T ], λ ∈ ∇, instead. The description of the
noise model involves parameters a ≥ 0, b ∈ [0, 1], c ∈ R, with a + b > 1.
For every j ≥ j0 − 1 we set σj = (j − (j0 − 2))cd/22−a(j−(j0−1))d/2 and let
Yλ, λ ∈ ∇j , be Bernoulli distributed random variables on (Ω,F0,P) with
parameter pj = 2−b(j−(j0−1))d such that the random variables and processes
Yλ, (wλt )t∈[0,T ], λ ∈ ∇, are stochastically independent. Now we are ready to
define (Mt)t∈[0,T ] by

(3.17) Mt :=
∞∑

j=j0−1

∑
λ∈∇j

σjYλψλ · wλt , t ∈ [0, T ].

Using (3.16), (3.15) and a + b > 1, it is easy to check that the infinite
sum converges in L2(ΩT ;L2(O)) as well as in the space M2,c

T (L2(O), (Ft))
of continuous, square-integrable, L2(O)-valued martingales with respect to
the filtration (Ft)t∈[0,T ]. Moreover, by the choice of the parameters a, b and
c one has an explicit control of the convergence of the infinite sum in (3.17)
in the (quasi-)Banach spaces Lp2(ΩT ;Bs

p1,q(O)), s < r, p1, q > 0, p2 ≤ q.
(Compare Cioica et al. [6] which can easily be adapted to our setting.)

With regard to Theorems 2.11 and 3.1 let d = p = γ = θ = 2. Equation
(2.13) with (Mt)t∈[0,T ] defined as above corresponds to equation (1.1) if we
set

gλ(ω, t, ·) := σjYλ(ω)ψλ(·), λ ∈ ∇j , j ≥ j0 − 1, (ω, t) ∈ ΩT ,
and sum over all λ ∈ ∇ instead of κ ∈ N. In the following we write
`2 = `2(∇). Since a + b > 1 and ‖g‖H0

2,2(O,T ;`2) =
√

2/T‖M‖L2(ΩT ;L2(O))

we have g ∈ H0
2,2(O, T ; `2). Let us impose a bit more smoothness on g and

assume that a + b > 2. This is sufficient to ensure that g ∈ H1
2,2(O, T ; `2):

Using (2.10) one sees that the H1
2,2(O, T ; `2)-norm of g = (gλ)λ∈∇ satisfies

‖g‖2H1
2,2(O,T ;`2) = E

T�

0

∑
n∈Z

cn2‖ζ−n(cn ·)g(t, cn ·)‖2H1
2 (Rd;`2) dt

= E
T�

0

∑
λ∈∇
‖gλ(t, ·)‖2H1

2,2(O) dt

= TE
∞∑

j=j0−1

∑
λ∈∇j

σ2
jY

2
λ ‖ψλ‖2H1

2,2(O)

≤ C
∞∑

j=j0−1

∑
λ∈∇j

σ2
j pj

∑
|α|≤1

‖ρ|α|Dαψλ‖2L2(O)

≤ C
∞∑

j=j0−1

∑
λ∈∇j

σ2
j pj‖ψλ‖2W 1

2 (O).
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Since W 1
2 (O) = B1

2,2(O) with equivalent norms we can use the equivalence
(3.16) with f = ψλ to get

‖g‖2H1
2,2(O,T ;`2) ≤ C

∞∑
j=j0−1

∑
λ∈∇j

σ2
j pj2

2j

= C

∞∑
j=j0−1

|∇j |(j − (j0 − 2))2c2−2a(j−(j0−1))2−2b(j−(j0−1))22j

≤ C
∞∑

j=j0−1

(j − (j0 − 2))2c2−2j(a+b−2).

In the last step we used (3.15) with d = 2. Thus g ∈ H1
2,2(O, T ; `2). As in

Example 3.3 we may apply Theorems 2.11 and 3.1 to conclude that for every
initial condition u0 ∈ L2(Ω,F0,P;H1

2,2(O)) there exists a unique solution
of equation (1.1) in the class H2

2,2(O, T ), for which it is in general not true
that it belongs to L2(ΩT ;W s

2 (O)) for all s < 2, but it does belong to every
space L2(ΩT ;Bα

τ,τ (O)) with α < 2 and τ = 2/(α+ 1).

Remark 3.6. In practice, many adaptive wavelet-based algorithms are
realized with the energy norm of the problem which is equivalent to a
Sobolev norm. Let us denote by {ηλ : λ ∈ ∇} a wavelet Riesz basis of
W s

2 (O) for some s > 0, which can be obtained by rescaling the wavelet basis
{ψλ : λ ∈ ∇} of L2(O) (see, e.g., Cohen [7] or Dahmen [13]). For the best
N -term approximation in this Sobolev norm, it is well known that

u ∈ Bα
τ,τ (O),

1
τ

=
α− s
d

+
1
2
⇒ σN,W s

2 (O)(u) ≤ CN−(α−s)/d,

where

σN,W s
2 (O)(u) := inf

{
‖u− uN‖W s

2 (O) : uN =
∑
λ∈Λ

cληλ, Λ ⊂ ∇, |Λ| ≤ N,

cλ ∈ R, λ ∈ Λ
}
.

Therefore, similar to the L2(O)-setting, the approximation order of the best
N -term wavelet scheme in W s

2 (O) depends on the Besov regularity of the
object one wants to approximate.

There exist adaptive wavelet-based algorithms which are guaranteed to
converge and which indeed asymptotically realize the convergence rate of
best N -term approximation with respect to the Sobolev norm. For example,
Cohen, Dahmen and DeVore [8] designed such an adaptive numerical scheme
for solving (deterministic) elliptic PDEs. First results for parabolic problems
were obtained by Schwab and Stevenson [48].

Once again, the use of adaptive algorithms is justified if the rate of ap-
proximation that can be achieved is higher than in classical uniform schemes.
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Let uN , N ∈ N, denote a uniform approximation scheme (e.g. a Galerkin
approximation) of u. It is well-known that under certain natural conditions
(see, e.g., Dahlke, Dahmen and DeVore [11], DeVore [19] or Hackbusch [25])

‖u− uN‖W s
2 (O) ≤ CN−(α−s)/d‖u‖Wα

2 (O).

This means that, even in this case, adaptivity can pay off if the Besov
smoothness of the solution is higher than its Sobolev regularity.

Let us discuss this relationship in more detail for the examples above.
We consider approximation in W 1

2 (O). As already mentioned in Example
3.3, in general we cannot expect that the spatial Sobolev regularity of the
solution is higher than 3/2 (see [36]). Therefore, uniform schemes yield an
approximation rate of O(N−1/4).

0 1
0

1

2

1
τ

s

b

1
2

3
2

W
3/2
2 (O)

bc

3
2

B2
2/3,2/3(O)

1
τ

= α−1
2

+ 1
2

1
τ

= α
2

+ 1
2

bc B
5/3

6/5,6/5(O)

Fig. 3. Besov regularity in the scale Bατ,τ (O), 1/τ = (α−1)/2+1/2, vs. Sobolev regularity
of the solution illustrated in a DeVore–Triebel diagram

On the other hand, our main result shows that

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α

2
+

1
2
, for all α < 2.

Therefore, by interpolation and embedding of Besov spaces we can achieve
that the solution is contained in all the spaces Lτ (ΩT ;Bα

τ,τ (O)) correspond-
ing to the points in the trapezoid with vertices (1/2, 0), (1/2, 3/2), (3/2, 2),
(3/2, 0) and to the points to the right of this trapezoid in the DeVore–Triebel
diagram of Figure 3. As a consequence, by a short computation we get

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α− 1

2
+

1
2
, for all α <

5
3
.

Thus, best N -term wavelet approximation provides order O(N−1/3), so that
again the use of adaptivity is completely justified.
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Remark 3.7. Examples 3.3–3.5 are stated in the Hilbert space setting
p = 2 and in Remarks 2.13, 2.14 we pointed out how this setting relates to
the semigroup approach to SPDEs by Da Prato and Zabczyk [17]. A draw-
back of the restriction to p = 2 is that it does not allow for optimal regularity
results since for bounded domains the L2(O)-norm is of course weaker than
the Lp(O)-norm for p > 2. Let us, therefore, exemplarily consider Exam-
ple 3.3 for p ≥ 2 and make a comparison with closely related results for
stochastic evolution equations in UMD Banach spaces by van Neerven, Ver-
aar and Weis [42]. (“UMD” is an abbreviation for “unconditional martingale
differences”.)

Firstly, we sketch how our setting relates to the one in [42]. Let p ≥ 2,
γ0 ≥ 0, θ ∈ R and g ∈ Hγ0p,θ(O, T ; `2). Similar to Remark 2.13, the expres-

sion
∑∞

κ=1

	t
0 g

κ(s, ·) dwκs can be considered as an Hγ0
p,θ(O)-valued stochas-

tic integral Mt =
	t
0G(s) dWs with respect to a cylindrical Wiener process

(Wt)t∈[0,T ] on `2. The integrand process (G(t))t∈[0,T ], defined exactly as in
Remark 2.13, takes values in the space γ(`2, H

γ0
p,θ(O)) of γ-radonifying op-

erators (see van Neerven [39] for a comprehensive survey on this class of
operators). Using the definition of Hγ0

p,θ(O; `2), equality (2.3) in [42] with
X = R, Theorem 3.20 in [39] and the Kahane–Khintchine inequalities [39,
Proposition 2.7], one sees that, for all (ω, t) ∈ Ω × [0, T ],

C−1‖G(ω, t)‖γ(`2,Hγ0
p,θ(O)) ≤ ‖g(ω, t, ·)‖Hγ0

p,θ(O;`2)(3.18)

≤ C‖G(ω, t)‖γ(`2,Hγ0
p,θ(O)).

Since Hγ0
p,θ(O) is a UMD Banach of type 2, Corollary 3.10 and Proposition

4.3 in van Neerven, Veraar and Weis [40] yield

E sup
t∈[0,T ]

∥∥∥ t�
0

G(s) dWs

∥∥∥p
H
γ0
p,θ(O)

≤ C‖G‖p
Lp(ΩT ;γ(`2,H

γ0
p,θ(O)))

≤ C‖g‖pHγ0p,θ(O,T ;`2)
.

The UMD property of Hγ0
p,θ(O) follows from the fact that Lp(O) is a UMD

space and that closed subspaces of UMD spaces are UMD. The type 2 prop-
erty follows since Lp(O) is type 2, from the norm equivalence (2.10) and
complex interpolation. In this remark, let the operator (A,D(A)) be de-
fined as in Remark 2.14 but with integrability parameter 2 replaced by p. In
the following situation the solution u to (1.1) in the class H2

p,d(O, T ) coin-
cides with the weak solution u to (2.14) as defined in Veraar [51, Definition
7.5.8] (which is in this case even a strong solution).

Secondly, we consider, analogously to Example 3.3, equation (2.14) where
the driving process M = (Mt)t∈[0,T ] is a Wiener process in the space

◦
W 1
p (O)

= H1
p,d−p(O) and u0 ∈ U2

p,d(O). We also assume that p ∈ [2, p0), where p0

has the same meaning as in Theorem 2.11. The process M has a represen-
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tation as a stochastic integral process (
	t
0G(s) dWs)t∈[0,T ] with respect to

a cylindrical Wiener process (Wt)t∈[0,T ] on `2, where (G(t))t∈[0,T ] is a con-

stant deterministic process in γ(`2,
◦
W 1
p (O)) with suitably chosen value, say

G ∈ γ(`2,
◦
W 1
p (O)). The existence of G follows from the Karhunen–Loève the-

orem [39, Theorem 7.3] and the fact that the Cameron–Martin space of M
is separable (see, e.g., Hairer [26]). This corresponds to defining g = (gκ)κ∈N
in (1.1) by

(3.19) gκ(ω, t, ·) := Gbκ ∈
◦
W 1
p (O), κ ∈ N, (ω, t) ∈ ΩT ,

where (bκ)κ∈N is the natural orthonormal basis in `2. From (3.18) it follows
that g, defined by (3.13), belongs to H1

p,d−p(O, T ; `2) ⊂ H1
p,d(O, T ; `2). Hence

we can apply Theorems 2.11 and 3.1 with γ = 2, θ = d and s = 1 and obtain
a unique solution u ∈ H2

p,d(O, T ) to (1.1), such that

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α

d
+

1
p
, for all α <

d

d− 1
.

Let us compare this situation to the spatial regularity we get from the
results in van Neerven, Veraar and Weis [42], where the semigroup approach
to SPDEs is used. We have to check the abstract condition assumed in [42]
that the operater (−A,D(A)) has bounded H∞-calculus of angle < π/2.
For d ≥ 3, this follows from Duong and McIntosh [22] and the fact that
(A,D(A)) is the generator of an analytic semigroup of contractions on Lp(O)
whose resolvent set contains (0,∞). The latter can be shown analogously
to the proof of Theorem 3.6 in Pazy [43, Chapter 7] if one uses the Green
formula for bounded Lipschitz domains according to [24, Theorem 1.5.1].
Thus, if one knows that G ∈ γ(`2, D((−A)1/2)) and if u0 is sufficiently
regular, one can apply Theorem 4.5 in [42] (with H = `2) to deduce that the
solution u ∈ H2

p,d(O, T ) to (1.1) considered above is even a strong solution
to (2.14) and

u ∈ Lp(ΩT ;D(A)).

For C2-domains O it is well known that D((−A)1/2) =
◦
W 1
p (O) (cf. [42,

Section 9]), which fits the definition of G as an element of γ(`2,
◦
W 1
p (O))

above.
Applying the results in van Neerven, Veraar and Weis [41], similar com-

parisons with our result can be made for more irregular Wiener processes M
in (2.14). Also, more general equations of type (1.3)—for which our result
remains valid, see Appendix B—can be embedded in the setting of [41, 42].

Appendix A. Convergence of stochastic integrals. In this section
we give a proof of theM2,c

T (R, (Ft))-convergence of the sum of the stochas-
tic integral processes (

	t
0〈g

κ(s, ·), ϕ〉 dwκs )t∈[0,T ], κ ∈ N, appearing in (2.11).
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Let us assume that g ∈ Hγp,θ(O, T ; `2) for some p ∈ [2,∞) and γ, θ ∈ R.
We use an analogous strategy to [32, Remark 3.2]. Due to the indepen-
dence of the Brownian motions (wκt )t∈[0,T ], κ ∈ N, the covariation process
([wκ, w`]t)t∈[0,T ] vanishes if κ 6= `, and by Itô’s isometry we have

E
∣∣∣ ∞∑
κ=1

T�

0

〈gκ(s, ·), ϕ〉 dwκs
∣∣∣2

= E
[ ∞∑
κ=1

(·)�

0

〈gκ(s, ·), ϕ〉 dwκs ,
∞∑
κ=1

(·)�

0

〈gκ(s, ·), ϕ〉 dwκs
]
T

= E
∞∑
κ=1

T�

0

|〈gκ(s, ·), ϕ〉|2 ds.

We are going to show that the last term is at most a constant times
‖g‖2Hγp,θ(O,T ;`2)

, which is finite due to our assumption. Then the convergence

of the integral processes in M2,c
T (R, (Ft)) follows by Doob’s maximal in-

equality for martingales.
For u ∈ D′(O) and n ∈ Z we use the notation un := ζ−n(cn ·)u(cn ·)

∈ S ′(Rd). Let us abbreviate Lτ (Rd) by Lτ for all τ ≥ 1. Setting p′ =
p/(p− 1), we denote by 〈 ·, · 〉Lp×Lp′ : Lp × Lp′ → R the dual form obtained
by continuous extension of 〈ϕ,ψ〉 =

	
ϕ(x)ψ(x) dx, ϕ,ψ ∈ C∞0 (Rd). Now we

estimate as follows:
∞∑
κ=1

T�

0

|〈gκ(s, ·), ϕ〉|2 ds =
∞∑
κ=1

T�

0

∣∣∣∑
n∈Z

cnd〈gκn(s, ·), ϕn〉
∣∣∣2 ds

=
∞∑
κ=1

T�

0

∣∣∣∑
n∈Z

cnd〈(1−∆)γ/2gκn(s, ·), (1−∆)−γ/2ϕn〉Lp×Lp′
∣∣∣2 ds

≤
∞∑
κ=1

T�

0

(∑
n∈Z

cnd
∥∥|(1−∆)γ/2gκn(s, ·)| · |(1−∆)−γ/2ϕn|1/2

∥∥
L2

·
∥∥|(1−∆)−γ/2ϕn|1/2

∥∥
L2

)2
ds

≤
∞∑
κ=1

T�

0

[(∑
n∈Z

c2nd
∥∥|(1−∆)γ/2gκn(s, ·)| · |(1−∆)−γ/2ϕn|1/2

∥∥2

L2

)1/2

·
(∑
n∈Z
‖(1−∆)−γ/2ϕn‖L1

)1/2]2
ds.

Here we have used Hölder’s inequality twice. Since ϕ has compact support in
O and ζ−n equals zero outside O−n, the functions ϕn vanish on Rd for all but
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finitely many n ∈ Z. As a consequence, the sum
∑

n∈Z ‖(1 −∆)−γ/2ϕn‖L1

has only finitely many non-zero terms. Therefore,

∞∑
κ=1

T�

0

|〈gκ(s, ·), ϕ〉|2 ds

≤ C
∞∑
κ=1

T�

0

∑
n∈Z

c2nd
∥∥|(1−∆)γ/2gκn(s, ·)| · |(1−∆)−γ/2ϕn|1/2

∥∥2

L2
ds

= C

T�

0

∑
n∈Z

c2nd
〈 ∞∑
κ=1

|(1−∆)γ/2gκn(s, ·)|2, |(1−∆)−γ/2ϕn|
〉
Lp/2×Lp/(p−2)

ds,

where the constant C depends on ϕ. In the last step we used the fact that

(1−∆)γ/2gn(s, ·) = ((1−∆)γ/2gκn(s, ·))κ∈N ∈ Lp(Rd; `2)

P ⊗ λ-almost everywhere in ΩT , which results from g being an element of
Hγp,θ(O; `2). Applying again Hölder’s inequality we obtain

∑
n∈Z

c2nd
〈 ∞∑
κ=1

|(1−∆)γ/2gκn(s, ·)|2, |(1−∆)−γ/2ϕn|
〉
Lp/2×Lp/(p−2)

≤
∑
n∈Z

c2nθ
∥∥|(1−∆)γ/2gn(s, ·)|`2

∥∥1/2

Lp
c2n(d−θ)‖(1−∆)−γ/2ϕn‖Lp/(p−2)

≤ C
(∑
n∈Z

cnθ
∥∥|(1−∆)γ/2gn(s, ·)|`2

∥∥p
Lp

)2/p

·
(∑
n∈Z

c2n(d−θ)p/(p−2)‖(1−∆)−γ/2ϕn‖p/(p−2)
Lp/(p−2)

)(p−2)/p

≤ C
(∑
n∈Z

cnθ
∥∥|(1−∆)γ/2gn(s, ·)|`2

∥∥p
Lp

)2/p
,

where we have used the fact that p ≤ 2 and that only finitely many of the
ϕn, n ∈ Z, are non-zero. All in all we have shown

∞∑
κ=1

T�

0

|〈gκ(s, ·), ϕ〉|2 ds ≤ C
T�

0

(∑
n∈Z

cnθ
∥∥|(1−∆)γ/2gn(s, ·)|`2

∥∥p
Lp

)2/p
ds.

Finally, taking the expectation and applying Jensen’s inequality yields

E
∞∑
κ=1

T�

0

|〈gκ(s, ·), ϕ〉|2 ds ≤ C‖g‖2Hγp,θ(O,T ;`2),

and this finishes the proof.



Besov regularity for SPDEs 229

Appendix B. General linear equations. In the introduction we have
indicated that our main result can be extended to equation (1.3). The major
reason is, that by a result of Kim [30, 31] an estimate similar to the one
proved in Corollary 2.12 holds not only for the model equation (1.1) but for
equations of the type (1.3), provided the coefficients aµν , bµ, c, σµκ and ηκ,
the free terms f and gκ and the initial value u0 satisfy certain conditions.
We can use this fact to extend our regularity result to such equations. In
this section we point out more precisely how to do this.

For the convenience of the reader we begin by presenting the result from
Kim [31, Theorem 2.12] (see also Remark 2.13 therein). Therefore, we need
some additional notation. For x, y ∈ O we write ρ(x, y) := ρ(x) ∧ ρ(y). For
α ∈ R, δ ∈ (0, 1] and k ∈ N0 we set

[f ](α)
k := sup

x∈O
ρ(x)k+α|Dkf(x)|,

[f ](α)
k+δ := sup

x,y∈O
|β|=k

ρ(x, y)k+α
|Dβf(x)−Dβf(y)|

|x− y|δ
,

|f |(α)
k :=

k∑
j=0

[f ](α)
j and |f |(α)

k+δ := |f |(α)
k + [f ](α)

k+δ,

whenever it makes sense. We shall use the same notation for `2-valued func-
tions (just replace the absolute values in the above definitions by the `2-
norms). Furthermore, let us fix an arbitrary function

µ0 : [0,∞)→ [0,∞),

vanishing only on the set of non-negative integers, i.e. µ0(j) = 0 if, and only
if, j ∈ N0. We set

t+ := t+ µ0(t).

Now we are able to present the assumptions on the coefficients of (1.3)
(see Kim [30, Assumptions 2.5 and 2.6] as well as [31, Assumptions 2.10]).

[K1] For any fixed x ∈ O, the coefficients

aµν(·, ·, x), bµ(·, ·, x), c(·, ·, x), σµκ(·, ·, x), ηκ(·, ·, x) : Ω × [0, T ]→ R

are predictable processes with respect to the given normal filtration
(Ft)t∈[0,T ].

[K2] (Stochastic parabolicity) There are constants δ0,K > 0 such that
for all (ω, t, x) ∈ Ω × [0, T ]×O and λ ∈ Rd,

δ0|λ|2 ≤ aµν(ω, t, x)λµλν ≤ K|λ|2,

where aµν := aµν − 1
2〈σ

µ, σν〉`2 for µ, ν ∈ {1, . . . , d}.
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[K3] For all (ω, t) ∈ Ω × [0, T ],

|aµν(ω, t, ·)|(0)
|γ|+ + |bµ(ω, t, ·)|(1)

|γ|+ + |c(ω, t, ·)|(2)
|γ|+

+ |σµ(ω, t, ·)|(0)
|γ|+ + |η(ω, t, ·)|(1)

|γ+1|+ ≤ K.

[K4] The coefficients aµν and σµ are uniformly continuous in x ∈ O, i.e.
for any ε > 0 there is a δ = δ(ε) > 0 such that

|aµν(ω, t, x)− aµν(ω, t, y)|+ |σµ(ω, t, x)− σµ(ω, t, y)|`2 ≤ ε

for all (ω, t) ∈ Ω × [0, T ] whenever x, y ∈ O with |x− y| ≤ δ.
[K5] The behaviour of the coefficients bµ, c and ν can be controlled near

the boundary of O in the following way:

lim
ρ(x)→0
x∈O

sup
ω∈Ω
t∈[0,T ]

{ρ(x)|bµ(ω, t, x)|+ρ(x)2|c(ω, t, x)|+ρ(x)|η(ω, t, x)|`2} = 0.

Here is the main result of Kim [31].

Theorem B.1. Let γ ∈ R.

(i) Let assumptions [K1]–[K5] be satisfied for some p ∈ [2,∞) with
K, δ0 > 0. Then there exists a constant κ0 = κ0(d, p, δ0,K,O) ∈ (0, 1) such
that, if θ ∈ (d+ p− 2− κ0, d+ p− 2 + κ0), then for any f ∈ Hγ−2

p,θ+p(O, T ),
g ∈ Hγ−1

p,θ (O, T ; `2) and u0 ∈ Uγp,θ(O), equation (1.3) with initial value u0

admits a unique solution u ∈ H
γ
p,θ(O, T ), i.e. there exists a D′(O)-valued

predictable process u ∈ Hγp,θ−p(O, T ), unique up to indistinguishability, such
that for any ϕ ∈ C∞0 (O) the equality

〈u(t, ·), ϕ〉 = 〈u(0, ·), ϕ〉

+
t�

0

〈aµν(s, ·)uxµxν (s, ·) + bµ(s, ·)uxµ(s, ·) + c(s, ·)u(s, ·) + f(s, ·), ϕ〉 ds

+
∞∑
κ=1

t�

0

〈σµκ(s, ·)uxµ(s, ·) + ηκ(s, ·)u(s, ·) + gκ(s, ·), ϕ〉 dwκs

holds for all t ∈ [0, T ] with probability 1. Moreover, for this solution we have

(B.1) ‖u‖p
Hγp,θ(O,T )

≤ C(‖f‖p
Hγ−2
p,θ+p(O,T )

+ ‖g‖p
Hγ−1
p,θ (O,T ;`2)

+ ‖u0‖pUγp,θ(O)
),

where C is a constant depending only on d, γ, p, θ, δ0, K, T and O.
(ii) There exists p0 > 2 such that the following statement holds: if

assumptions [K1]–[K5] are satisfied for some p ∈ [2, p0) with
K, δ0 > 0, then there exists a constant κ1 = κ1(d, p, δ0,K,O) ∈ (0, 1) such
that, if θ ∈ (d−κ1, d+κ1), then for any f ∈Hγ−2

p,θ+p(O, T ), g ∈ Hγ−1
p,θ (O, T ; `2)
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and u0 ∈ Uγp,θ(O), equation (1.3) with initial value u0 admits a unique solu-
tion u ∈ H

γ
p,θ(O, T ). For this solution, estimate (B.1) holds.

An immediate consequence of this theorem is the following estimate.

Corollary B.2. In the situation of Theorem B.1 with γ = m ∈ N, the
following inequality holds for every τ ∈ [0, p]

�

Ω

T�

0

‖ρm−δ|Dmu(ω, t, ·)|`p‖τLp(O) dtP(dω)

≤ C(‖f‖Hm−2
p,θ+p(O,T ) + ‖g‖Hm−1

p,θ (O,T ;`2) + ‖u0‖Ump,θ(O))
τ ,

where δ = 1 + (d− θ)/p.

Proof. Just repeat the arguments of the proof of Corollary 2.12 and use
estimate (B.1) instead of (2.12) at the beginning.

Now we can present our main result in the generalized setting.

Theorem B.3. Let γ ∈ N and let assumptions [K1]–[K5] be satisfied
with appropriate constants K, δ0 > 0. Moreover, let f ∈ Hγ−2

p,θ+p(O, T ), g ∈
Hγ−1
p,θ (O, T ; `2) and u0 ∈ Uγp,θ(O), where p and θ satisfy one of the following

conditions:

p ∈ [2,∞) and θ ∈ (d+ p− 2− κ0, d+ p− 2 + κ0),(i)
p ∈ [2, p0) and θ ∈ (d− κ1, d+ κ1),(ii)

with κ0, κ1 and p0 from Theorem B.1. Denote by u the unique solution of
equation (1.3) in the class H

γ
p,θ(O, T ). Assume furthermore that

u ∈ Lp(ΩT ;Bs
p,p(O)) for some s ∈

(
0, γ ∧

(
1 +

d− θ
p

)]
.

Then

u ∈ Lτ (ΩT ;Bα
τ,τ (O)),

1
τ

=
α

d
+

1
p
, for all α ∈

(
0, γ ∧ sd

d− 1

)
,

and

‖u‖Lτ (ΩT ;Bατ,τ (O))

≤ C(‖f‖Hγ−2
p,θ+p(O,T )

+ ‖g‖Hγ−1
p,θ (O,T ;`2)

+ ‖u0‖Uγp,θ(O) + ‖u‖Lp(ΩT ;Bsp,p(O))).

Proof. We can argue as in the proof of Theorem 3.1. We just have to
use Corollary B.2 where we used Corollary 2.12.
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