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Unconditionality of general Franklin systems
in Lp[0, 1], 1 < p <∞

by

Gegham G. Gevorkyan (Yerevan) and Anna Kamont (Sopot)

Abstract. By a general Franklin system corresponding to a dense sequence T =
(tn, n ≥ 0) of points in [0, 1] we mean a sequence of orthonormal piecewise linear functions
with knots T , that is, the nth function of the system has knots t0, . . . , tn. The main result
of this paper is that each general Franklin system is an unconditional basis in Lp[0, 1],
1 < p <∞.

1. INTRODUCTION

The classical Franklin system is a complete orthonormal system con-
sisting of piecewise linear continuous functions with dyadic knots. It was
introduced by Ph. Franklin [9] in 1928 as an example of a complete or-
thonormal system which is a basis in C[0, 1]. Since then, this system has
been studied by many authors from various points of view. In particular,
an important tool in the study of the Franklin system is provided by the
exponential estimates proved by Z. Ciesielski [4]. It is well known that the
classical Franklin system is a basis in C[0, 1] and Lp[0, 1], 1 ≤ p <∞, uncon-
ditional for 1 < p <∞ (S. V. Bochkarev [1]), a basis inHp[0, 1], 1/2 ≤ p ≤ 1,
unconditional for 1/2 < p ≤ 1 (P. Wojtaszczyk [19] for p = 1, P. Sjölin and
J. O. Strömberg [16] for general p), and the coefficients of functions with
respect to the Franklin system give a characterization of Hölder classes in
Lp-norms with exponent α, 0 < α < 1 + 1/p, BMO and VMO (Z. Ciesiel-
ski [4] and P. Wojtaszczyk [19]). Various generalizations of this system, like
systems of orthonormal splines of higher order and regularity on [0, 1], and
versions on R (see e.g. [18]), have also been studied.
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In this paper, we are interested in a generalization of the classical
Franklin system obtained by passing to general sequences of knots. Thus,
given a sequence T = (tn, n ≥ 0) of points in [0, 1] admitting at most double
knots and dense in [0, 1], by a general Franklin system corresponding to
T we mean the complete orthonormal system consisting of piecewise lin-
ear functions with knots T (see Section 2 for a more detailed description).
Z. Ciesielski [3] has proved that the L∞-norm of the orthogonal projection
onto the space of piecewise linear functions with arbitrary knots does not
exceed 3. This implies that each general Franklin system is a basis in Lp[0, 1],
1 ≤ p <∞, and if all knots are simple (so that all functions from the system
are continuous), it is a basis in C[0, 1]. Various properties of these systems
have been studied by Z. Ciesielski and A. Kamont [7], G. G. Gevorkyan
and A. Kamont [10], G. G. Gevorkyan and A. A. Sahakian [11]; see also the
survey article by Z. Ciesielski and A. Kamont [8].

In this paper, we are interested in the unconditionality of general
Franklin systems in Lp[0, 1], 1 < p < ∞. Recall that S. V. Bochkarev [1]
has proved the unconditionality of the classical Franklin system in Lp[0, 1],
1 < p < ∞. For general Franklin systems this question has been treated
in [10] and [11], where some partial answers have been obtained, under
additional conditions on the sequence of knots; those results, as well as
methods of proof, are described in more detail in Section 2.1. Now, devel-
oping the method from [11], we prove that for any sequence of knots dense
in [0, 1], the corresponding Franklin system is an unconditional basis in
Lp[0, 1], 1 < p < ∞. Moreover, we show that each general Franklin system
normalized in Lp[0, 1], 1 < p <∞, is a greedy basis in this space.

For comparison, recall that unconditionality in Lp[0, 1], 1 < p < ∞, of
each general Haar system (i.e. the orthonormal system consisting of piece-
wise constant functions with a given sequence of knots, dense in [0, 1]) follows
from D. L. Burkholder’s results on boundedness of martingale transforms
(see e.g. [2]). On the other hand, it is natural to ask whether one can obtain
an analogous result for orthonormal spline systems of higher order and with
arbitrary knots. It follows from the recent result of A. Yu. Shadrin [15] (uni-
form bound of L∞-norms of orthogonal projections onto splines of higher
order and with arbitrary knots, with the bound depending only on the order
of the splines) that each such system is a basis in Lp[0, 1], 1 ≤ p < ∞, and
C[0, 1]. In fact, it is well known that in the case of dyadic knots orthonormal
spline bases are unconditional in Lp[0, 1], 1 < p <∞ (see Z. Ciesielski [5]).
Under some conditions on the sequence of partitions (in the terminology of
[10], for quasi-dyadic strongly regular sequences of partitions), to get un-
conditionality, it is enough to use estimates from [6] and follow the scheme
of proof from the dyadic case. However, in the general case the estimates
from [6] are not sufficient.
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The paper is organized as follows. In Section 2, we recall the definition
of a general Franklin system and formulate the results: Theorem 2.1 and
Corollary 2.2. In Section 2.1 we recall the results on unconditionality of
general Franklin systems from [10] and [11] and comment on the method
of proof. The basic properties of Franklin functions and Franklin systems
needed for the proof are summarized in Section 3. The proofs of Theorem
2.1 and Corollary 2.2 are given in Section 4. Finally, Section 4.3 contains
some comments and related results.

Notation. Throughout the paper, for a set A ⊂ [0, 1], we denote by χA
the characteristic function of A, by |A| the Lebesgue measure of A, and by
Ac the complement of A; for t ∈ [0, 1], dist(t, A) is the distance from t to A.
For a finite set B, #B denotes the number of elements of B. For a function
f : [0, 1] → R, Mf is the Hardy–Littlewood maximal function of f . The
notation a ∼ b means that there are positive constants c1, c2, independent
of the variables appearing in a, b, such that c1a ≤ b ≤ c2a. Also, the usual
abbreviations x ∨ y = max(x, y), x ∧ y = min(x, y) are used.

2. DEFINITION OF A GENERAL FRANKLIN SYSTEM
AND MAIN RESULTS

Let us begin by recalling the definitions of a general Franklin function and
a general Franklin system.

Let σ = (si, 0 ≤ i ≤ N) be a partition of [0, 1] admitting at most double
knots, i.e., a sequence of points in [0, 1] such that{

0 = s0 < s1 ≤ · · · ≤ sN−1 < sN = 1,

si < si+2 for all i, 0 ≤ i ≤ N − 2.
(2.1)

Denote by S(σ) the space of piecewise linear functions on [0, 1] with knots σ,
that is, functions linear on each (si, si+1), left-continuous at each si (and
right-continuous at s0 = 0) and continuous at each si, 1 ≤ i ≤ N − 1,
satisfying si−1 < si < si+1. Each f ∈ S(σ) has a unique representation

f =
N∑

i=0

aiNσ,i,(2.2)

where

Nσ,0(t) =
s1 − t
s1 − s0

· χ[s0,s1](t), Nσ,N (t) =
t− sN−1

sN − sN−1
· χ[sN−1,sN ](t),

for i such that si−1 < si < si+1 we have

Nσ,i(t) =





t− si−1

si − si−1
for t ∈ [si−1, si],

si+1 − t
si+1 − si

for t ∈ [si, si+1],

0 otherwise,
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and for i such that si−1 = si,

Nσ,i−1(t) =
t− si−2

si−1 − si−2
· χ[si−2,si−1](t), Nσ,i(t) =

si+1 − t
si+1 − si

· χ(si,si+1](t).

The coefficients ai in (2.2) are given by: a0 = f(s0); aN = f(sN ); ai =
f(si) for i such that si−1 < si < si+1; and ai−1 = f(si−1) = f(si) =
limt→si−1−0 f(t) and ai = limt→si+0 f(t) for i such that si−1 = si.

Now, let σ = (si, 0 ≤ i ≤ N) and σ∗ = (s∗i , 0 ≤ i ≤ N + 1) be a pair
of partitions of [0, 1] satisfying (2.1) and such that σ∗ is obtained from σ
by adding one knot s∗. Note that s∗ may be different from all points of σ
(in this case, for some i, we have s∗ = s∗i and s∗i−1 < s∗i < s∗i+1), or for
some i, s∗ = si (then s∗i−1 < s∗i = s∗ = s∗i+1 < s∗i+2). Now, there is a
unique function ϕ ∈ S(σ∗) such that ϕ is orthogonal to S(σ) in L2[0, 1],
‖ϕ‖2 = 1 and ϕ(s∗) > 0. This function is called the general Franklin function
corresponding to the pair of partitions (σ, σ∗).

Now, we turn to sequences of partitions and general Franklin systems.

Definition 2.1. Let T = (tn, n ≥ 0) be a sequence of points in [0, 1].
The sequence T is called admissible if t0 = 0, t1 = 1, tn ∈ (0, 1) for each
n ≥ 2, for each t ∈ (0, 1) there are at most two different indices n1 > n2 ≥ 2
such that t = tn1 = tn2 , and T is dense in [0, 1].

For an admissible sequence of points T = (tn, n ≥ 0) and n ≥ 1, let
πn = (tn,i, 0 ≤ i ≤ n) be the partition of [0, 1] obtained by the nondecreasing
rearrangement of the sequence (ti, 0 ≤ i ≤ n), counting multiplicities. Note
that each πn satisfies (2.1), and πn is obtained from πn−1 by adding one
knot tn.

Definition 2.2. Let T be an admissible sequence of points. A general
Franklin system with knots T is a sequence of functions {fn, n ≥ 0} given by

f0(t) = 1, f1(t) =
√

3 (2t− 1),

and for n ≥ 2, fn is the general Franklin function corresponding to the pair
of partitions (πn−1, πn).

It follows from the estimates of L∞-norms of orthogonal projections onto
piecewise linear functions (see [3]) that for each admissible sequence of knots,
the corresponding Franklin system is a basis in Lp[0, 1], 1 ≤ p < ∞. In
addition, each continuous function on [0, 1] is a limit, in the uniform norm,
of the sequence of its partial sums with respect to a general Franklin system,
and if all knots in T are simple, then the corresponding general Franklin
system is a basis in C[0, 1].

The main result of the present paper is the following:
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Theorem 2.1. Let T = (tn, n ≥ 0) be an admissible sequence of knots
in [0, 1]. Then the corresponding general Franklin system is an unconditional
basis in each Lp[0, 1], 1 < p <∞.

Remark 1. In fact, our proof gives more: for each p, 1 < p < ∞, the
unconditional basic constants for general Franklin systems are bounded by
a constant Cp depending only on p. That is, for each p, there is a finite
constant Cp such that for each admissible sequence T , the corresponding
Franklin system {fn, n ≥ 0}, each sequence of coefficients {an, n ≥ 0} and
each choice of signs {εn, n ≥ 0}, εn ∈ {−1, 1},

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
p
≤ Cp

∥∥∥
∞∑

n=0

anfn

∥∥∥
p
.

The existence of Cp is just a consequence of the method of proof.

To formulate the next result, Corollary 2.2, we need to recall the concept
of greedy basis (see S. V. Konyagin and V. N. Temlyakov [14]). Let (X, ‖ · ‖)
be a Banach space with a normalized basis X = (xn, n ≥ 0) (i.e. with
‖xn‖ = 1). For x ∈ X and m ∈ N, let

σm(x) = inf
n1,...,nm

inf
c1,...,cm

∥∥∥x−
m∑

i=1

cixni

∥∥∥.

In addition, for x =
∑∞

n=0 anxn and given m ∈ N, let Λm be a subset of
indices such that #Λm = m and

min
n∈Λm

|an| ≥ max
n6∈Λm

|an|,

and put Gm(x) =
∑

n∈Λm anxn. Clearly, σm(x) ≤ ‖x − Gm(x)‖. Following
S. V. Konyagin and V. N. Temlyakov [14], a normalized basis X =(xn, n≥0)
of a Banach space (X, ‖ · ‖) is called greedy if there is a constant C > 0 such
that for all m ∈ N and x ∈ X,

‖x−Gm(x)‖ ≤ Cσm(x).(2.3)

Now, we have the following consequence of Theorem 2.1:

Corollary 2.2. Let T = (tn, n ≥ 0) be an admissible sequence of knots
in [0, 1] with the corresponding general Franklin system {fn, n ≥ 0}. For
given p, 1 ≤ p ≤ ∞, let fn,p = fn/‖fn‖p. Then for each p, 1 < p < ∞,
{fn,p, n ≥ 0} is a greedy basis in Lp[0, 1].

Remark 2. For general Franklin systems normalized in Lp[0, 1], 1 <
p <∞, the constants in (2.3) can be chosen so that they depend on p, but
not on the sequence of knots.

2.1. Earlier results and comments on the method of proof. As
already mentioned, unconditionality in Lp[0, 1], 1 < p < ∞, of the classical
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Franklin system (i.e. with dyadic knots) has been proved by S. V. Bochkarev
[1]. In G. G. Gevorkyan and A. Kamont [10] and G. G. Gevorkyan and
A. A. Sahakian [11] some partial answers to the question of unconditionality
in Lp[0, 1], 1 < p < ∞, of general Franklin systems have been obtained.
In both [10] and [11], there are some assumptions on the structure and
regularity of the sequence of knots under consideration. The first assumption
is the quasi-dyadic structure of T = (tn, n ≥ 0). This means the following:
consider a sequence of partitions Tj = {τj,k, 0 ≤ k ≤ 2j}, j ≥ 0, such that
0 = τj,0 < τj,1 < · · · < τj,2j = 1 and τj+1,2k = τj,k for all j, k, 0 ≤ k ≤ 2j ,
i.e. between each pair of knots of Tj , one new knot from Tj+1 is inserted.
Putting t0 = 0, t1 = 1 and tn = τj,2k−1 for n = 2j + k with j ≥ 0 and
1 ≤ k ≤ 2j , we get an admissible sequence T = (tn, n ≥ 0) of simple knots
with quasi-dyadic structure.

In addition, in [10] and [11], there are some regularity conditions imposed
on the quasi-dyadic sequence under consideration. To describe these condi-
tions, set ∆j,k = [τj,k−1, τj,k] and observe that ∆j,k = ∆j+1,2k−1 ∪∆j+1,2k.
In [10], the following weak regularity condition has been assumed: there is a
constant γ, 0 < γ ≤ 1/2, such that for all j, k with 1 ≤ k ≤ 2j ,

γ ≤ |∆j+1,2k−1|
|∆j,k|

,
|∆j+1,2k|
|∆j,k|

≤ 1− γ.

This condition means that the newly inserted point τj+1,2k−1 cannot be close
to the endpoints of the interval ∆j,k into which it is inserted.

In [11], the regularity condition has been weakened as follows: there is
a constant M such that for any subsequence (jl, kjl) with jl < jl+1 and
1 ≤ kjl ≤ 2jl ,

∞∑

l=1

|∆jl,kjl
| ≤M

∣∣∣
∞⋃

l=1

∆jl,kjl

∣∣∣.

It can be seen that the above condition is equivalent to the following:

(∗) there is a constant ζ ≥ 0 such that for any j1 < · · · < jm and ∆ji,ki

such that ∆j1,k1 ⊃ · · · ⊃ ∆jm,km , if |∆jm,km | > |∆j1,k1 |/2 then m ≤ ζ.

The method of proof in [11] is different than in [10], and turns out to be an
important step towards proving unconditionality of general Franklin systems
in Lp[0, 1], 1 < p <∞. This is done in the present paper by developing the
method of [11], without any constraints on the structure or regularity of the
sequence of knots.

The main new idea is a new choice of a “canonical” interval associated
with a general Franklin function. In [11] (and also in [10]), the function fn
with n = 2j + k has been associated with the interval {n} = ∆j,k, i.e. the
interval into which the point tn is inserted, and all estimates, splittings and
reorderings for a general Franklin system have been done with respect to
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positions of {n} or tn. The new choice of the canonical interval (called Jn)
and its consequences (pointwise estimates etc.) are described in Section 3.
The key property of these new intervals is Lemma 3.5, which can be regarded
as condition (∗) for the intervals Jn. Note that condition (∗), which in [11]
has been assumed for the intervals {n}, now is a property of the intervals Jn.

With this new choice of canonical intervals, we prove two technical es-
timates, Lemmas 4.2 and 4.3. Lemma 4.2 corresponds to inequalities (63)
from [11], but with the splitting of a general Franklin system according to
the position of the intervals Jn instead of the points tn, and its proof is
similar to the proof of (63) in [11]. Lemma 4.3 replaces Lemma 3 of [11]. In
the notation of Lemma 4.3, Lemma 3 of [11] states that under condition (∗),

∑

n=n(V )

(
1
θ

)pdn(V )

‖fn‖pLq(V ) · ‖fn‖
p

Lp(Ṽ c)
≤Mp,

where 1/p + 1/q = 1. However, it can be seen that in the general case the
above inequality does not hold, even for quasi-dyadic sequences of partitions
(a counterexample can be constructed by considering the case of Jn ⊂ V ).
In comparison with the proof of Lemma 3 of [11], the proof of our Lemma
4.3 requires new techniques, like splitting the coefficients an with Jn ⊂ V
into three parts and treating each of them in a different way.

Once Lemmas 4.2 and 4.3 are proved, the remaining part of the proof is
the same as in [11]. However, in [11], the parts of the argument which require
condition (∗) and those which do not require (∗) are not clearly separated.
Therefore, for the sake of completeness, we present that part of the proof as
well.

3. BASIC PROPERTIES OF A GENERAL FRANKLIN SYSTEM

3.1. Properties of a single Franklin function. To simplify notation,
assume for a while that

π = {0 = τ−k < τ−k+1 ≤ · · · ≤ τ−1 < τ1 ≤ · · · ≤ τl−1 < τl = 1},
and π∗ = π ∪ {τ} with τ−1 < τ = τ0 ≤ τ1 (with τi < τi+2). The general
Franklin function corresponding to (π, π∗) is defined in Section 2, but now
we recall some more details of its construction. Moreover, we associate with
a general Franklin function a “canonical” interval J .

For convenience, introduce the notation

λi = τi − τi−1.(3.1)

First, consider the case when τ is a simple knot of π∗, i.e. τ−1 < τ =
τ0 < τ1. In this case, the Franklin function ϕ is described as in Section 2.2
of [10]: let G = Gπ∗ = [(Nπ∗,i, Nπ∗,j),−k ≤ i, j ≤ l] be the Gram matrix
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of the system (Nπ∗,i,−k ≤ i ≤ l), and let G−1 = A = [ai,j ,−k ≤ i, j ≤ l].
Then consider the function

ψ =
l∑

i=−k
ηiNπ∗,i, where ηi = − λ1

λ0 + λ1
ai,−1+ai,0−

λ0

λ0 + λ1
ai,1.(3.2)

Representing the functions Nπ,i, i 6= 0, as linear combinations of Nπ∗,j one
can see that Nπ,i = Nπ∗,i for i ≤ −2 and i ≥ 2, and

Nπ,−1 = Nπ∗,−1 +
λ1

λ0 + λ1
Nπ∗,0, Nπ,1 = Nπ∗,1 +

λ0

λ0 + λ1
Nπ∗,0.

Using this, it is easy to see that (ψ,Nπ,i) = 0 for all i 6= 0, and consequently
ϕ = ψ/‖ψ‖2.

In order to describe the choice of J , consider the following intervals:

I = [τ−1, τ1], I− = [τ−2, τ0], I+ = [τ0, τ2],(3.3)

ν = |I|, ν− = |I−|, ν+ = |I+|, µ = min(ν−, ν, ν+).(3.4)

(For k = 1 or l = 1, we take τ−2 = 0 or τ2 = 1, respectively.) Now,
let I∗ = [τi∗ , τi∗+2] be one of the intervals I−, I, I+ such that µ = |I∗|, and
consider its left and right parts I∗,l = [τi∗ , τi∗+1], I∗,r = [τi∗+1, τi∗+2]. Finally,
let J be one of the intervals I∗,l, I∗,r such that |J | = max(|I∗,l|, |I∗,r|).

Observe that with this choice of µ and J we have

|J | ≤ µ ≤ 2|J |.(3.5)

For convenience, set

τ−,− = τ−2, τ− = τ−1, τ+ = τ1, τ+,+ = τ2.

Now, we turn to the case when τ is a double knot of π∗, i.e. τ−1 < τ =
τ0 = τ1 < τ2. In this case we have (Nπ∗,i, Nπ∗,j) = 0 for all i, j such that
i ≤ 0 and j ≥ 1. Consequently, for the inverse matrix A = G−1 (where G
is the Gram matrix of the system (Nπ∗,i,−k ≤ i ≤ l)) we also have ai,j = 0
when i ≤ 0 and j ≥ 1. Now, consider

ψ =
0∑

i=−k
ai,0Nπ∗,i −

l∑

i=1

ai,1Nπ∗,i.(3.6)

SinceNπ,i = Nπ∗,i for i ≤ −1 and i ≥ 2 and Nπ,1 = Nπ∗,0+Nπ∗,1, one can see
that (ψ,Nπ,i) = 0 for all i 6= 0, and consequently ϕ = ψ/‖ψ‖2. To define the
interval J , consider I− = [τ−1, τ0], I+ = [τ1, τ2] and put µ = min(|I−|, |I+|).
Now, we take as J one of I−, I+ such that |J | = µ. Moreover, we put
τ− = τ−1 and τ+ = τ2 (τ−,−, τ+,+ are not needed in this case).

In what follows, some pointwise estimates for a general Franklin function
are needed. In the case of simple knots, the following estimates for a general
Franklin function have been obtained in [10] and [11]. When double knots
are allowed, the proof is analogous, but one has to consider the coefficients
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of ϕ from representation (2.2) instead of the values ϕ(τi), as done in [10]
and [11].

Proposition 3.1. Let π∗ = π ∪ {τ0} be as described above, and let ϕ be
the general Franklin function corresponding to (π, π∗), ϕ =

∑l
i=−k ξiNπ∗,i.

If τ = τ0 is a simple knot of π∗, then{
‖ϕ‖p ∼ µ1/p−1/2, 1 ≤ p ≤ ∞,
|ξ−1| ∼ µ1/2/ν−, |ξ0| ∼ µ1/2/ν, |ξ1| ∼ µ1/2/ν+,

(3.7)

with the implied constants independent of (π, π∗) and p.
In addition, with ε = (

√
2 + 1)/3 and for some positive constant C in

(a2), (b2), independent of π and π∗,

(a) for i ≤ −1:

|ξi−1| ≤
2
3
τi − τi−1

τi − τi−2
|ξi|, |ξi−1| ≤

|ξi|
2
,(a1)

|ξi| ≤ C
(

2
3

)|i| τ−1 − τ−2

τ−1 − τi−1

µ1/2

ν−
,(a2)

|ξi−1|
(

3
2
λi−1 + 2λi

)
≤ |ξi|λi ≤ 2|ξi−1|(λi−1 + λi),(a3)





τi−1�

τi−2

|ϕ(t)|p dt ≤ εp
τi�

τi−1

|ϕ(t)|p dt, 1 ≤ p <∞,

sup
τi−2≤t≤τi−1

|ϕ(t)| ≤ ε sup
τi−1≤t≤τi

|ϕ(t)|,
(a4)

and for i ≤ i+ s ≤ −1:



τi�

0

|ϕ(t)|p dt ≤ εps

1− εp
τi+s�

τi+s−1

|ϕ(t)|p dt,

τi�

0

|ϕ(t)|p dt ≤ εp|i|

1− εp ‖ϕ‖
p
p, 1 ≤ p <∞,

(a5)

sup
t≤τi
|ϕ(t)| ≤ εs sup

τi+s−1≤t≤τi+s
|ϕ(t)|, sup

t≤τi
|ϕ(t)| ≤ ε|i|‖ϕ‖∞,(a6)

(b) for i ≥ 1:

|ξi+1| ≤
2
3
τi+1 − τi
τi+2 − τi

|ξi|, |ξi+1| ≤
|ξi|
2
,(b1)

|ξi| ≤ C
(

2
3

)|i| τ2 − τ1

τi+1 − τ1

µ1/2

ν+ ,(b2)

|ξi+1|
(

3
2
λi+2 + 2λi+1

)
≤ |ξi|λi+1 ≤ 2|ξi+1|(λi+1 + λi+2),(b3)
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



τi+2�

τi+1

|ϕ(t)|p dt ≤ εp
τi+1�

τi

|ϕ(t)|p dt, 1 ≤ p <∞,

max
τi+1≤t≤τi+2

|ϕ(t)| ≤ ε max
τi≤t≤τi+1

|ϕ(t)|,
(b4)

and for 1 ≤ i− s ≤ i:




1�

τi

|ϕ(t)|p dt ≤ εps

1− εp
τi−s+1�

τi−s

|ϕ(t)|p dt,

1�

τi

|ϕ(t)|p dt ≤ εp|i|

1− εp ‖ϕ‖
p
p, 1 ≤ p <∞,

(b5)

sup
τi≤t
|ϕ(t)| ≤ εs sup

τi−s≤t≤τi−s+1

|ϕ(t)|, sup
τi≤t
|ϕ(t)| ≤ ε|i|‖ϕ‖∞.(b6)

If τ = τ0 = τ1 is a double knot of π∗, then

‖ϕ‖p ∼ µ1/p−1/2, 1 ≤ p ≤ ∞, |ξ0| ∼ µ1/2/λ0, |ξ1| ∼ µ1/2/λ2,(3.8)

with the implied constants independent of (π, π∗) and p. Moreover , inequali-
ties (a1) and (a3)–(a6) hold for i ≤ 0 and i ≤ i+s ≤ 0, with (a2) replaced by

(a2′) |ξi| ≤ C
(

2
3

)|i| µ1/2

τ0 − τi−1
,

while inequalities (b1) and (b3)–(b6) hold for i ≥ 1 and i ≥ i− s ≥ 1, with
(b2) replaced by

(b2′) |ξi| ≤ C
(

2
3

)|i| µ1/2

τi+1 − τ1
.

In both cases (i.e. of τ being a simple or a double knot of π∗) we have
|ξi| = (−1)|i|ξi and the following localization of the support of ϕ: if τi−1 =
τi ≤ τ− (respectively , τ+ ≤ τi = τi+1), then suppϕ ⊂ [τi, 1] (respectively ,
suppϕ ⊂ [0, τi]).

Proof. First, consider the case when τ = τ0 is a simple knot of π∗. If all
knots of π∗ are simple, the equivalences (3.7), the property |ξi| = (−1)|i|ξi
and inequalities (a1), (b1), (a3), (b3) are contained in Proposition 2.3 of [10],
and the main argument in the proof is representation (3.2) (cf. formulae
(2.9), (2.10) of [10]) combined with the estimates for the entries of the
matrix A (cf. Proposition 2.1 of [10], or Chapter 6.4 of [13])

Inequalities (a2), (b2) are obtained in Lemma 2 of [11]—more precisely,
(a2), (b2) follow from (a1), (b1), (3.7) by repeated use of the following
elementary inequality:

a

(a+ b)(a+ c)
<

1
a+ b+ c

for a, b, c > 0.(3.9)
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Inequalities (a4), (b4) for p = 1 and p = ∞ are contained in Proposi-
tion 2.4 of [10]. The proof for 1 < p < ∞ is similar to that for p = 1, but
we sketch it for completeness. Let us give the proof of (a4); inequality (b4)
is checked analogously. As the signs of ξi−1 and ξi are opposite, we have

mi,p =
τi�

τi−1

|ϕ(t)|p dt =
λi

p+ 1
|ξi−1|p+1 + |ξi|p+1

|ξi−1|+ |ξi|
.

As p ≥ 1, we get

|ξi|p ≥
|ξi−1|p+1 + |ξi|p+1

|ξi−1|+ |ξi|
≥
( |ξi−1|2 + |ξi|2
|ξi−1|+ |ξi|

)p
≥ 2p(

√
2− 1)p|ξi|p,

and consequently

mi+1,p

mi,p
≥ 2p(

√
2− 1)p

λi+1

λi

|ξi+1|p
|ξi|p

.

This inequality and (a3) give

mi+1,p

mi,p
≥ 2p(

√
2− 1)p

λi+1

λi

(
2 +

3
2
λi
λi+1

)p
≥ 3

4
· 4p(
√

2− 1)p ≥ ε−p.

Formulae (a5), (a6) and (b5), (b6) are just consequences of (a4), (b4),
respectively.

When the double knots of π∗ are allowed, but τ = τ0 is a simple knot
of π∗, the proofs are analogous to those for simple knots. More precisely,
(3.7), the property |ξi| = (−1)|i|ξi and inequalities (a1), (a3), (b1), (b3)
follow from represenation (3.2) and the properties of the matrix A (i.e. the
Gram matrix, cf. Proposition 2.1 of [10]) in the same way as in the case of
simple knots (cf. Proposition 2.3 of [10] and its proof), and the remaining
inequalities are just their consequences; if the intervals appearing on the
right-hand sides of (a4)–(a6) and (b4)–(b6) degenerate to a single point, the
corresponding inequality follows from the localization of the support of ϕ.

The localization of suppϕ when double knots are allowed follows from
the orthogonality conditions. More precisely, by orthogonality of ϕ to S(π)
we have (ϕ,Nπ,j) = 0 for all j 6= 0. Note that Nπ,j = Nπ∗,j for j ≤ −2
and j ≥ 2, Nπ,−1 = Nπ∗,−1 + λ1

λ0+λ1
Nπ∗,0, Nπ,1 = Nπ∗,1 + λ0

λ0+λ1
Nπ∗,0. Now,

calculating (Nπ∗,i, Nπ,j), we find that the orthogonality conditions take the
following form:

ξj−1λj + 2ξj(λj + λj+1) + ξj+1λj+1 = 0 for j ≤ −2 and j ≥ 2,

for j = −1:

ξ−2λ−1 + ξ−1

(
2(λ−1 + λ0) +

λ0λ1

λ0 + λ1

)
+ ξ0(λ0 + 2λ1) + ξ1

λ2
1

λ0 + λ1
= 0,
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and for j = 1:

ξ−1
λ2

0

λ0 + λ1
+ ξ0(2λ0 + λ1) + ξ1

(
2(λ1 + λ2) +

λ0λ1

λ0 + λ1

)
+ ξ2λ2 = 0.

If λi = 0 for some i ≤ −1, then the equations with −k ≤ j ≤ i− 1 contain
only the variables ξ−k, . . . , ξi−1; as the matrix of this subsystem is the Gram
matrix [(Nπ,j1 , Nπ,j2),−k ≤ j1, j2 ≤ i − 1], we get ξ−k = . . . = ξi−1 = 0,
ϕ =

∑l
j=i ξiNπ∗,j and consequently suppϕ ⊂ [τi, 1]. The case λi = 0 for

some i ≥ 2 is analogous.
Finally, consider the case when τ = τ0 = τ1 is a double knot of π∗ (other

double knots of π∗ are also allowed). Then (3.8), the property |ξi| = (−1)|i|ξi
and inequalities (a1), (a3), (b1) (b3) (for the appropriate range of indices)
follow from representation (3.6) and the properties of the matrix A (cf.
Proposition 2.1 of [10]) in the same way as they follow from representation
(3.2) in the case when τ is a simple knot in π∗. Then the remaining properties
(inequalities and localization of supports) are checked in the same way as in
the case when τ is a simple knot.

In what follows, we need some more estimates, in terms of the interval J .
Before formulating Proposition 3.2, we introduce additional notation. For
x, y ∈ [0, 1], we denote by dπ∗(x, y) the number of points of π∗ between x
and y, counting multiplicities, i.e.

dπ∗(x, y) = #{i : x ∧ y ≤ τi ≤ x ∨ y}.
By dπ∗(x) we denote the number of points of π∗ between x and J , counting
multiplicities and endpoints of J , with the understanding that dπ∗(x) = 0
when x ∈ J . Similarly, for an interval V ⊂ [0, 1], by dπ∗(V ) we denote
the number of points of π∗ between V and J , counting multiplicities and
endpoints of J or V , with the understanding that dπ∗(V ) = 0 whenever
V ∩ J 6= ∅.

Proposition 3.2. Let π∗ = π ∪ {τ0} be as described above, and let ϕ be
the general Franklin function corresponding to (π, π∗), ϕ =

∑l
i=−k ξiNπ∗,i.

Then there is a constant C > 0, independent of π, π∗, such that

|ξi| ≤ C
(

2
3

)dπ∗(τi) |J |1/2
|J |+ dist(τi, J) + τi+1 − τi−1

for all i.(3.10)

Moreover , for each p, 1 ≤ p <∞, there is a constant Cp such that if x is to
the left of J then

x�

0

|ϕ(t)|p dt ≤ Cp
(

2
3

)pdπ∗(x) |J |p/2
(|J |+ dist(x, J))p−1 ,(3.11)
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and if x is to the right of J then
1�

x

|ϕ(t)|p dt ≤ Cp
(

2
3

)p dπ∗(x) |J |p/2
(|J |+ dist(x, J))p−1 .(3.12)

In addition,

‖ϕ‖Lp(J) ∼ ‖ϕ‖p ∼ |J |1/p−1/2, 1 ≤ p ≤ ∞,(3.13)

with the implied constants independent of p, π, π∗.

Remark. For comparison with (3.11), (3.12), it follows from (3.10) and
the linearity of ϕ on each (τk, τk+1) that

|ϕ(x)| ≤ C
(

2
3

)dπ∗(x) |J |1/2
|J |+ dist(x, J)

.(3.14)

Proof of Proposition 3.2. We present the proof in the case when τ = τ0
is a simple knot of π∗. If τ = τ0 = τ1 is a double knot of π∗, then the proof
is analogous, but one should use the appropriate definition of J and the
corresponding part of Proposition 3.1.

It should be clear that |i| − 2 ≤ dπ∗(τi) ≤ |i|+ 2.
We start by checking (3.10), and this is done by considering the possible

choices of I∗ and J . Recall that λi = τi − τi−1.

Case 1: J = [τ−2, τ−1]. Then I∗ = [τ−2, τ0] is the shortest of I−, I, I+,
and by the definition of I∗ and J , λ−1 ≥ λ0 and λ−1 ≤ λ1. Consequently,
for i = −1, 0, 1 we have

|J |+ dist(τ−1, J) + τ0 − τ−2 = 2λ−1 + λ0 ∼ λ0 + λ−1 = ν−,

|J |+ dist(τ0, J) + τ1 − τ−1 = λ−1 + 2λ0 + λ1 ∼ λ1 + λ0 = ν,

|J |+ dist(τ1, J) + τ2 − τ0 = λ−1 + λ0 + 2λ1 + λ2 ∼ λ2 + λ1 = ν+.

These equivalences combined with (3.7) give (3.10) for i = −1, 0, 1.
For i < −1 we have

|J |+ dist(τi, J) + τi+1 − τi−1 = (τ−1 − τ−2) + (τ−2 − τi) + (τi+1 − τi−1)

∼ τ−1 − τi−1,

which together with (a2) from Proposition 3.1 and (3.5) implies (3.10) for
i < −1.

For i > 1 we have

|J |+ dist(τi, J) + τi+1 − τi−1 = (τ−1 − τ−2) + (τi − τ−1) + (τi+1 − τi−1)

∼ τi+1 − τ−2 ∼ τi+1 − τ0.

Using this, (b2) of Proposition 3.1, (3.5) and (3.9) with a = τ2 − τ1, b =
τi+1 − τ2 and c = τ1 − τ0, we get (3.10) for i > 1.

Case 2: J = [τ−1, τ0]. Then either I∗ = [τ−2, τ0] or I∗ = [τ−1, τ1]. If
I∗ = [τ−2, τ0], then I− is the shortest of I−, I, I+, λ0 ≥ λ−1, λ−1 ≤ λ1 and
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λ0 ≤ λ1 + λ2. If I∗ = [τ−1, τ1], then I is the shortest of I−, I, I+, λ0 ≥ λ1,
λ−1 ≥ λ1 and λ0 ≤ λ2. Considering each of these cases separately, similarly
to the previous case, we find that for i = −1, 0, 1,

|J |+ dist(τ−1, J) + τ0 − τ−2 ∼ τ0 − τ−2 = ν−,

|J |+ dist(τ0, J) + τ1 − τ−1 ∼ τ1 − τ−1 = ν,

|J |+ dist(τ1, J) + τ2 − τ0 = (τ1 − τ−1) + (τ2 − τ0) ∼ τ2 − τ0 = ν+,

which implies (3.10) for i = −1, 0, 1.
For i < −1 we have

|J |+ dist(τi, J) + τi+1 − τi−1 = (τ0 − τ−1) + (τ−1 − τi) + (τi+1 − τi−1)

∼ τ0 − τi−1,

and (3.10) follows from (a2) of Proposition 3.1 and (3.9) with a = τ−1−τ−2,
b = τ0 − τ−1 and c = τ−2 − τi−1.

For i > 1 we have

|J |+ dist(τi, J) + τi+1 − τi−1 = (τ0 − τ−1) + (τi − τ0) + (τi+1 − τi−1)

∼ τi+1 − τ−1 ∼ τi+1 − τ0,

and (3.10) follows from (b2) of Proposition 3.1 and (3.9) with a = τ2 − τ1,
b = τi+1 − τ2 and c = τ1 − τ0.

The remaining cases J = [τ0, τ1] and J = [τ1, τ2] are treated analogously.
Now, we turn to the proof of (3.11). Take x to the left of J , and let i be

such that τi−1 < x ≤ τi. If i ≤ −1, then |J |+dist(x, J) ≤ |J |+dist(τi, J)+λi.
Using this inequality, (a5) and (a1) of Proposition 3.1, linearity of ϕ and
(3.10) we get

x�

0

|ϕ(t)|p dt ≤ Cp
τi�

τi−1

|ϕ(t)|p dt ≤ Cpλi|ξi|p

≤ Cp
(

2
3

)p·dπ∗ (τi) λi|J |p/2
(|J |+ dist(τi, J) + λi+1 + λi)p

≤ Cp
(

2
3

)p·dπ∗ (x) |J |p/2
(|J |+ dist(x, J))p−1 .

Now, let i > −1; since x is to the left of J , we have i ≤ 1, and conse-
quently 0 ≤ dπ∗(x) ≤ 2. Consider the case i = 0. As x is to the left of J , we
must have J = [τ0, τ1] or J = [τ1, τ2]. In both cases it follows by (3.10) that

|ξ−1|, |ξ0| ≤ C
|J |1/2

|J |+ dist(τ−1, J)
.



Unconditionality of general Franklin systems 175

Since dist(τ−1, J) ≥ λ0, using (3.11) for τ−1 we get
x�

0

|ϕ(t)|p dt ≤
τ−1�

0

|ϕ(t)|p dt+
τ0�

τ−1

|ϕ(t)|p dt

≤ Cp
|J |p/2

(|J |+ dist(τ−1, J))p−1 + λ0 max(|ξ−1|p, |ξ0|p)

≤ Cp
|J |p/2

(|J |+ dist(τ−1, J))p−1 ≤ Cp
|J |p/2

(|J |+ dist(x, J))p−1 .

The remaining case i = 1 is treated similarly.
Inequality (3.12) follows by analogous arguments.

To check (3.13), note that supt∈J |ϕ(t)| ∼ |J |−1/2. As ϕ is linear on J ,
this implies (3.13).

Corollary 3.3. Let π∗ = π ∪ {τ0} be as described above, and let ϕ be
the general Franklin function corresponding to (π, π∗). Let χJ,2 = χJ/|J |1/2.
Then there is a constant C > 0, independent of π, π∗, such that

|ϕ(t)| ≤ CMχJ,2(t), |χJ,2(t)| ≤ CMϕ(t).

Proof. The second inequality follows from (3.13) with p = 1: for t ∈ J ,

Mϕ(t) ≥ 1
|J |

�

J

|ϕ(u)| du ≥ C|J |−1/2 = CχJ,2(t).

Since MχJ,2(t) ∼ |J |1/2/(|J |+ dist(t, J)), (3.14) implies the first inequal-
ity.

3.2. Properties of a general Franklin system. Let T = (tn, n ≥ 0)
be an admissible sequence of points with the corresponding Franklin system
{fn, n ≥ 0}. By In, I∗n, Jn, µn, dn etc. we denote the intervals and quanti-
ties defined above for a general Franklin function and corresponding to the
function fn and the partition πn. In addition, the points t−,−n , t−n , t+n , t+,+n

correspond to tn and πn−1 in the same way as τ−,−, τ−, τ+, τ+,+ correspond
to τ and π in Section 3.1.

Lemma 3.4. Let T = (tn, n ≥ 0) be an admissible sequence of points
with the corresponding Franklin system {fn, n ≥ 0}. Let k, l ≥ 0 be such
that tk ≤ tl and there is no i ≤ max(k, l) with ti ∈ (tk, tl). For all such k, l
we have

#{n : Jn = [tk, tl]} ≤ 5.

Proof. First, note that if tk = tl, then #{n : Jn = [tk, tl]} = 0. Consider
the case tk < tl. If Jn = [tk, tl], then one of the following must happen:

(i) n = max(k, l),
(ii) n > max(k, l) and tn ≥ tl,
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(iii) n > max(k, l) and tn ≤ tk.
Clearly, there is at most one n satisfying (i).
As only double knots are allowed, there is at most one n satisfying (ii)

with tn = tl.
Now, we check that there is at most one n satisfying (ii) with tl < tn.

Note that in such a case tn must be a simple knot of πn. Suppose that
there are n1, n2 with max(k, l) < n1 < n2 and tn1 , tn2 > tl. Then we must
have tl < tn2 < tn1 , t+n2

≤ tn1 , t−n1
= t−n2

= tl and t−,−n1 = t−,−n2 = tk.
Hence, by the definition of Jn1 , |[tk, tl]| ≥ |[tl, tn1 ]|. As tn2 > tl, this implies
|[tk, tn2 ]| > |[tl, t+n2

]|, and consequently Jn2 6= [tk, tl]. Thus, there is at most
one n > max(k, l) with Jn = [tk, tl] and tn > tl.

By analogous considerations, there are at most two n’s satisfying (iii)
with Jn = [tk, tl].

Lemma 3.5. Let T = (tn, n ≥ 0) be an admissible sequence of points
with the corresponding Franklin system {fn, n ≥ 0}. Let k, l ≥ 0 be such
that tk ≤ tl and there is no i ≤ max(k, l) with ti ∈ (tk, tl). For all such k, l
we have

#{n : Jn ⊂ [tk, tl] and |Jn| > |[tk, tl]|/2} ≤ 25.

Proof. Set ∆ = [tk, tl] and

κ = max{n ∈ N : #{i ≤ n : ti ∈ ∆} ≤ 5}.
If n ≤ κ and Jn ⊂ ∆, then #{i ≤ n : ti ∈ ∆} = j, where 2 ≤ j ≤ 5. These j
points define j − 1 intervals, but only one of them can have length > |∆|/2.
Therefore, by Lemma 3.4,

#{n ≤ κ : Jn ⊂ ∆ and |Jn| > |∆|/2} ≤ 20.

It remains to consider n > κ. For such n, if Jn ⊂ ∆, then one of the
following must be satisfied:

(I) tn = tk or tn = tl,
(II) tk < t−n and t+n < tl,

(III) tk = t−n < tn.
(IV) tn < t+n = tl.
(V) tn < tk.

(VI) tn > tl.

Let us count the number of n ∈ N satisfying (I)–(VI).

Case I. There are at most two n > κ satisfying (I).
This follows immediately from the fact that at most double knots are

allowed.

Case II. There is no n such that n > κ, Jn ⊂ ∆, |Jn| > |∆|/2, tk < t−n
and t+n < tl.
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First, consider the case when tn is a simple knot of πn. For such n we
would have tk ≤ t−,−n and t+,+n ≤ tl, so I−n , I

+
n ⊂ ∆. Then |I−n |, |I+

n | ≥ |I∗n| ≥
|Jn| > |∆|/2, so we would have |I−n ∪ I+

n | = |I−n | + |I+
n | > |∆|, which is

impossible.
If tn is a double knot of πn we would have I−n , I

+
n ⊂ ∆, |I−n |, |I+

n | ≥
|Jn| > |∆|/2, and consequently |I−n ∪ I+

n | > |∆|, which is impossible.

Case III. There is at most one n such that n > κ, Jn ⊂ ∆, |Jn| > |∆|/2
and tk = t−n < tn.

First, note that tn must be a simple knot of πn: if tn is a double knot,
then I−n , I

+
n ⊂ ∆, which is impossible by the same argument as in case II.

Since tn is a simple knot of πn, we have t−,−n ≤ tk, so Jn is one of
[t−n , tn], [tn, t+n ], [t+n , t

+,+
n ]. However, we must have Jn = [tn, t+n ]: note that

In, I
+
n ⊂ ∆. If Jn = [t−n , tn], then |I+

n | ≥ |I∗n| ≥ |Jn| > |∆|/2, so we would
have |Jn ∪ I+

n | > |∆|, which is impossible, because Jn ∪ I+
n ⊂ ∆; the case

Jn = [t+n , t
+,+
n ] is eliminated by an analogous argument.

Suppose that there is another n′ with the same properties; clearly, we
may assume that n′ > n. Then we have Jn′ = [tn′, t

+
n′ ], and as t−n′= tk= t−n ,

Jn′ ⊂ [t−n , tn]. Moreover, we have |Jn|, |Jn′| > |∆|/2, which implies |[t−n , t+n ]|
≥ |Jn′ |+ |Jn| > |∆|, and this is impossible, because [t−n , t

+
n ] ⊂ ∆.

Case IV. There is at most one n such that n > κ, Jn ⊂ ∆, |Jn| > |∆|/2
and tn < t+n = tl.

Case IV is considered analogously to case III.

Case V. There are at most two n such that n > κ, Jn ⊂ ∆, |Jn| > |∆|/2
and tn < tk.

Note that if n > κ, tn < tk and tn is a double knot of πn, then Jn ⊂ [0, tk].
Therefore, if n > κ with tn < tk and Jn ⊂ [tk, tl], then tn is a simple knot
of πn.

Observe that if n satisfies the conditions of case V then we must have
t+n = tk < t+,+n , I∗n = I+

n = [tn, t
+,+
n ] and Jn = [t+n , t

+,+
n ]. Moreover, by the

definitions of I∗n and Jn we get

|[t−n , tn]| ≥ |Jn| ≥ |[tn, t+n ]|.(3.15)

Now, suppose that there are at least three indices n < n′ < n′′ satisfying
the conditions of case V. As t+n = t+n′ = t+n′′ = tk, we must have

∆ ⊃ Jn ⊃ Jn′ ⊃ Jn′′ , [tn, t+n ] ⊃ [t−n′ , t
+
n′ ], [tn′ , t

+
n′ ] ⊃ [t−n′′ , t

+
n′′ ].(3.16)

Using (3.16) and (3.15) for n and n′ we get

|[tn′ , t+n′ ]| ≤ |[t−n′ , t+n′ ]|/2 ≤ |[tn, t+n ]|/2 ≤ |Jn|/2 ≤ |∆|/2.(3.17)
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Using (3.15) and (3.16) for n′ and n′′ we get

|∆|/2 < |Jn′′ | ≤ |[t−n′′, tn′′ ]| ≤ |[tn′ , t+n′ ]|,
which contradicts (3.17).

Case VI. There are at most two n such that n > κ, Jn ⊂ ∆, |Jn| > |∆|/2
and tn > tl.

Case VI is treated analogously to Case V.

To complete the proof, note that if there is n > κ satisfying (III) or (V),
then there is no n > κ satisfying (IV) or (VI), and conversely.

Lemma 3.5 has the following consequence:

Corollary 3.6. Let T = (tn, n ≥ 0) be an admissible sequence of points
with the corresponding Franklin system {fn, n ≥ 0}. Let {ns, s ≥ 1} be a
subsequence of N such that Jns ⊃ Jns+1. Then for each γ > 0,

∑

s≥1

|Jns|γ ∼ |Jn1 |γ,
m∑

s=1

|Jns |−γ ∼ |Jnm |−γ,

with the implied constants depending on γ, but independent of T and of the
sequence {ns, s ≥ 1}.

4. PROOFS OF THE RESULTS

Let T be a fixed admissible sequence of knots with the corresponding
general Franklin system {fn, n ≥ 0}. For f ∈ Lp[0, 1], f =

∑∞
n=0 anfn, define

Pf(t) =
( ∞∑

n=0

a2
nf

2
n(t)

)1/2
, S∗f(t) = sup

n≥0

∣∣∣
n∑

i=0

aifi(t)
∣∣∣.

4.1. Technical estimates. As already mentioned, Lemma 4.2 below is
a variant of inequalities (63) from [11], with the splitting of the set of indices
done with respect to the position of the interval Jn, and the proof presented
below is an adaptation of the proof of (63) from [11] to our splitting.

For the proof of Lemma 4.2, the following known property of polynomials
is needed:

Proposition 4.1. Let k ∈ N and 0 < % < 1 be fixed. There is a constant
C = Ck,%, depending only on k and %, such that for every interval [a, b], set
A ⊂ [a, b] with |A| ≥ %|[a, b]| and polynomial Q of degree k,

max
t∈[a,b]

|Q(t)| ≤ Ck,% sup
t∈A
|Q(t)|,

b�

a

|Q(t)| dt ≤ Ck,%
�

A

|Q(t)| dt.
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Lemma 4.2. Let f =
∑∞

n=0 anfn and λ > 0. Let

Eλ = {t ∈ (0, 1) : Pf(t) > λ},
and let V = (α, β) be an interval such thatMχEλ(α) ≤ 1/4 andMχEλ(β) ≤
1/4. Moreover , let

Γ = {n ∈ N : Jn ⊂ V }, Λ = N \ Γ.
Then there is a constant C > 0 such that for all f , λ and V as above,

�

V c

∑

n∈Γ
|anfn(t)| dt ≤ C

�

V

(∑

n∈Γ
|anfn(t)|2

)1/2
dt,(4.1)

(∑

n∈Λ
|anfn(t)|2

)1/2
≤ Cλ for t ∈ V.(4.2)

Remark. It follows from the proof that the constant C in Lemma 4.2
does not depend on T .

Proof of Lemma 4.2. Let us begin with the proof of (4.1). We are going to
estimate � 1

β(. . .); the remaining integral � α0 (. . .) can be treated analogously.
Note that by (b5) of Proposition 3.1 and (3.13) of Proposition 3.2, for

each n ∈ Γ ,
1�

β

|anfn(t)| dt ≤ Cεdn(β)
�

Jn

|anfn(t)| dt.

Let J ln be the left half of Jn. As fn is linear on Jn, and J ln ⊂ Jn and
|J ln| = |Jn|/2, we have � Jn |fn(t)|dt ≤ C � J ln |fn(t)| dt (cf. Proposition 4.1).
This implies

1�

β

|anfn(t)| dt ≤ Cεdn(β)
�

J ln

|anfn(t)| dt(4.3)

≤ Cεdn(β)
�

J ln

(∑

n∈Γ
|anfn(t)|2

)1/2
dt.

Let
Γs = {n ∈ Γ : dn(β) = s}.

Note that Γ0 = ∅: if dn(β) = 0 then β ∈ Jn, but by the definition of the
set Γ we have Jn ⊂ V . If n ∈ Γs with s ≥ 1, then there are exactly s
points between β and Jn. This implies that, for fixed s, the intervals Jn
with n ∈ Γs can be grouped into packets, with intervals from one packet
having a common right endpoint, and with maximal intervals from different
packets disjoint. Therefore, by Lemma 3.5, each point t 6= ti belongs to at
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most 25 intervals J ln for n ∈ Γs. Hence

∑

n∈Γs

1�

β

|anfn(t)| dt ≤ Cεs
∑

n∈Γs

�

J ln

(∑

n∈Γ
|anfn(t)|2

)1/2
dt

≤ Cεs
�

V

(∑

n∈Γ
|anfn(t)|2

)1/2
dt,

so summing over s ≥ 1 we get

∑

n∈Γ

1�

β

|anfn(t)| dt ≤ C
�

V

(∑

n∈Γ
|anfn(t)|2

)1/2
dt.

The corresponding integral over [0, α] can be treated analogously. This com-
pletes the proof of (4.1).

Now, let us turn to the proof of (4.2). Let

Λ′ = {n ∈ Λ : #(πn ∩ V ) ≤ 1}, Λ′′ = Λ \ Λ′.
First, note that there is a constant C such that

( ∑

n∈Λ′
|anfn(t)|2

)1/2
≤ Cλ for all t ∈ V.(4.4)

To see this, let γ be the first point of the sequence T falling into V . Then∑
n∈Λ′ |anfn(t)|2 is a polynomial of degree 2 on both (α, γ) and (γ, β). Since

MχEλ(α) ≤ 1/4 and MχEλ(β) ≤ 1/4, we have |Ec
λ ∩ [α, γ]| ≥ 3

4 |[α, γ]| and
|Ec

λ ∩ [γ, β]| ≥ 3
4 |[γ, β]|. Since Pf(t) ≤ λ on Ec

λ, inequality (4.4) on both
(α, γ) and (γ, β) follows from Proposition 4.1.

Now, let n ∈ Λ′′. Then, by the definition of Γ , Jn 6⊂ V , and V 6⊂ Jn,
as V contains at least two knots of πn. Thus, Λ′′ = Λ− ∪ Λ+, where

Λ− = {n ∈ Λ′′ : Jn ⊂ [0, α] or α ∈ Jn},
Λ+ = {n ∈ Λ′′ : Jn ⊂ [β, 1] or β ∈ Jn}.

Consider the set Λ+. We define inductively a sequence of points βn and an
associated splitting of Λ+. Let n1 = minΛ+, take

β1 ∈ πn1 such that β1 < β and (β1, β) ∩ πn1 = ∅
(note that α < β1), and set

Λ+
1 = {n ∈ Λ+ : (β1, β) ∩ πn = ∅}.

Then we take n2 = minΛ+ \Λ+
1 ; note that #((β1, β)∩ πn2) ≥ 1, so we take

β2 ∈ πn2 with β1 < β2 < β and (β2, β) ∩ πn2 = ∅,
and set

Λ+
2 = {n ∈ Λ+ \ Λ+

1 : (β2, β) ∩ πn = ∅}.
Observe that β2 ∈ πn for all n ≥ n2.
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Having defined points β1, . . . , βk and sets Λ+
1 , . . . , Λ

+
k , we put nk+1 =

minΛ+ \⋃k
i=1 Λ

+
i and note that #((βk, β) ∩ πnk+1) ≥ 1. Then we take

βk+1 ∈ πnk+1 with βk < βk+1 < β and (βk+1, β) ∩ πnk+1 = ∅,
and set

Λ+
k+1 =

{
n ∈ Λ+ \

k⋃

i=1

Λ+
i : (βk+1, β) ∩ πn = ∅

}
.

Note that βk ∈ πn for all n ≥ nk, and if n ∈ Λ+
l with l ≥ k, then n ≥ nk.

Put hk =
∑

n∈Λ+
k
anfn. Observe that for each m and n ∈ ⋃m

i=1 Λ
+
i , fn

is linear on (βm, β). Since MχEλ(β) ≤ 1/4, it follows from Proposition 4.1
that there is an absolute constant C such that

P
( m∑

i=1

hi

)
(t) ≤ Cλ for t ∈ (βm, β).(4.5)

Now, consider Phm on (βk−1, βk) with k ≤ m. Then, for n ∈ Λ+
m, we

have the following possibilities:

(i) tn > βm,
(ii) tn = βm,

(iii) tn < βm.

Case (i). Note that in this case βm ≤ t−n . Let h̃m be the function cor-
responding to the part of the sum defining hm with n satisfying (i), and
further let hm,k be the function corresponding to the part of the sum defin-
ing hm with n satisfying (i) and all βk, . . . , βm being simple knots of fn. As
all fn’s appearing in hm,k are continuous at βm, it follows from (4.5) that
P (hm,k)(βm) ≤ Cλ.

Note that all βi with i ≤ m are knots of fn. If all βk, . . . , βm are simple
knots for fn, then, since βm ≤ t−n , by Proposition 3.1 (cf. (a6) and (a1)),

|fn(t)| ≤ |fn(βk)| ≤ Cεm−k|fn(βm)| for t ≤ βk.
If one of βk, . . . , βm is a double knot, then, since in case (i) we have t−n ≥ βm,
fn(t) = 0 for t < βk (cf. Proposition 3.1). Therefore

P (h̃m)(t) = P (hm,k)(t)≤Cεm−kP (hm,k)(βm)≤Cεm−kλ for t<βk.(4.6)

Case (ii). As at most double knots are allowed, this situation can hap-
pen at most twice. For n ∈ Λ+

m there are no points from πn in (βm, β). Since
either Jn ⊂ [β, 1] or β ∈ Jn, we now have two possibilities:

(ii-a) βm = tn is the left endpoint of Jn (tn may be either a simple or
a double knot of πn); then β ∈ Jn, and since MχEλ(β) ≤ 1/4, by Proposi-
tion 4.1, there is an absolute constant C such that

|anfn(t)| ≤ Cλ for t ∈ intJn.
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(ii-b) βm = tn is a simple knot of πn and t+n is the left endpoint of Jn.
In this case β ≤ t+n . Moreover, by the definitions of the intervals I∗ and
J we have I∗n = [tn, t+n ] ∪ Jn and |Jn| ≥ |[tn, t+n ]|, i.e. |Jn| ≤ |I∗n| ≤ 2|Jn|.
Therefore, also in this case, using MχEλ(β) ≤ 1/4 and Proposition 4.1, we
get for some absolute constant C,

|anfn(t)| ≤ Cλ for t ∈ int Jn.

Now, combining cases (ii-a) and (ii-b) with (a6) of Proposition 3.1
and (3.13) we get

|anfn(t)| ≤ Cεm−kλ for t < βk.(4.7)

Case (iii). Denote by h∗m the function corresponding to the part of the
sum defining hm with n satisfying (iii). If n > nm and tn < βm is a double
knot of πn, then Jn ⊂ [0, βm]. Thus, if tn < βm and we are in case n ∈ Λ+

m,
then tn is a simple knot of πn; moreover, we must have βm = t+n , and t+n is the
left endpoint of Jn. These positions of tn and Jn imply that βm is a simple
knot of fn, fn is continuous at βm and moreover |fn(t+n )| ∼ ‖fn‖∞ ∼ |Jn|−1/2

(cf. (3.7) and (3.13)). This and (4.5) imply that P (h∗m)(βm) ≤ Cλ. Moreover,
by the decay of Franklin functions from Proposition 3.1,

|fn(t)| ≤ Cεm−k|fn(βm)| for t ≤ βk.
Combining these facts we get

P (h∗m)(t) ≤ Cεm−kP (h∗m)(βm) ≤ Cεm−kλ for t ≤ βk.(4.8)

Putting together cases (i)–(iii), i.e. inequalities (4.6)–(4.8) (recall that
there are at most 2 n’s in case (ii)) we get

Phm(t) ≤ Cεm−kλ for t < βk.(4.9)

Now, let t ∈ (βs, βs+1). Using (4.5) and (4.9) we get
∑

n∈Λ+

|anfn(t)|2 ≤
(
P
(∑

k≤s
hk

)
(t)
)2

+
∑

k≥s+1

(Phk(t))2

≤ Cλ2 +
∑

k≥s+1

Cε2(k−s−1)λ2 ≤ Cλ2.

A similar argument, with the use of (4.9) only, gives an analogous inequality
for t ∈ (α, β1), while for t ∈ (βmax, β) (where βmax = supk≥1 βk) it is enough
to use (4.5). Finally, by left-continuity of fn’s, the required inequality holds
for the points βs as well.

The sum
∑

n∈Λ− |anfn(t)|2 is treated analogously, which completes the
proof of inequality (4.2).

Lemma 4.3. Let V = (α, β) ⊂ (0, 1), f ∈ Lp[0, 1] with supp f ⊂ V ,
f =

∑∞
n=0 anfn and 1 < p < 2. Let θ =

√
ε, where ε = (

√
2 + 1)/3. Then
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there is a constant Mp, depending only on p, such that
∞∑

n=n(V )

(
1
θ

)pdn(V )

|an|p‖fn‖p
Lp(Ṽ c)

≤Mp‖f‖pp,

where n(V ) = min{n : πn ∩ V 6= ∅} and Ṽ = (α̃, β̃) with α̃ = α − 2|V |,
β̃ = β + 2|V |.

Proof. Let q denote the conjugate exponent, 1/p + 1/q = 1. Note that
0 < θ < 1.

We give the estimates for the part corresponding to � α̃0 |fn(t)| dt; the
other part is treated analogously.

Let m ≥ 0 be fixed, and consider the set

Tl,m = {n ∈ N : n ≥ n(V ), #([α̃, α] ∩ πn) = m}.
More precisely, #([α̃, α] ∩ πn) counts knots with multiplicities, i.e.

#([α̃, α] ∩ πn) = #{i ≤ n : α̃ ≤ ti ≤ α}.

The “l” in Tl,m and T (i)
l,m below means that we consider splitting of the set of

indices suitable for the estimate of the “left part”, i.e. the part corresponding
to � α̃0 |fn(t)| dt.

To simplify notation, let x1 ≤ · · · ≤ xm be the points from the partitions
πn with n ∈ Tl,m contained in [α̃, α].

We give the estimate of
∑

n∈Tl,m(. . .). For this, we split Tl,m into several
subsets, according to the position of Jn. Observe that Tl,m is finite—this
follows just from the density of T in [0, 1].

T
(1)
l,m = {n ∈ Tl,m : Jn ⊂ [α̃, α]},
T

(2)
l,m = {n ∈ Tl,m : α̃ ∈ Jn, |Jn ∩ [α̃, α]| ≥ |V |, Jn 6⊂ [α̃, α]},
T

(3)
l,m = {n ∈ Tl,m : Jn ⊂ [0, α̃], or α̃ ∈ Jn with

|Jn ∩ [α̃, α]| ≤ |V | and Jn 6⊂ [α̃, α]},
T

(4)
l,m = {n ∈ Tl,m : α ∈ Jn, |Jn ∩ [α̃, α]| ≥ |V |, Jn 6⊂ [α̃, α]},
T

(5)
l,m = {n ∈ Tl,m : Jn ⊂ [α, β̃], or α ∈ Jn with

|Jn ∩ [α̃, α]| ≤ |V | and Jn 6⊂ [α̃, α]},
T

(6)
l,m = {n ∈ Tl,m : Jn ⊂ [β̃, 1], or β̃ ∈ Jn with Jn 6⊂ [α, β̃]}.

Case 1: n ∈ T (1)
l,m. First, note that this case can appear only for m ≥ 2.

Observe that
#T (1)

l,m ≤ 11.(4.10)
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In fact, only the intervals [x1, x2] and [xm−1, xm] can be Jn for some tn 6=
x1, . . . xm, and only one of [xi−1, xi], 3 ≤ i ≤ m−1, can be Jn for tn equal to
the xi, 1 ≤ i ≤ m, which has been added as the last one. Inequality (4.10)
follows now from Lemma 3.4. (Note that some [xi−1, xi] can be Jn for some
n 6∈ Tl,m, but we do not count it here.)

Moreover, by (a5) and (b5) of Proposition 3.1, for n ∈ T (1)
l,m we have

α̃�

0

|fn(t)|p dt ≤ Cpεpdn(α̃)‖fn‖pp,
�

V

|fn(t)|q dt ≤ Cpεqdn(V )‖fn‖qq.

In addition, dn(α̃) + dn(V ) = m and dn(V ) ≤ m. The inequality

|an|p ≤
�

V

|f(t)|pdt ·
( �

V

|fn(t)|qdt
)p/q

(4.11)

and (4.10) give

∑

n∈T (1)
m,l

(
1
θ

)pdn(V )

|an|p
α̃�

0

|fn(t)|p dt ≤ Cθmp‖f‖pp.(4.12)

Case 2: n∈T (2)
l,m. In this case dn(V ) = m. Moreover, if n0 < n1 < · · · < ns

are all elements of T (2)
l,m, then Jn0 ⊃ Jn1 ⊃ · · · ⊃ Jns . By the estimates of

‖fn‖p and pointwise estimates from Proposition 3.1, for n ∈ T (2)
l,m we have

‖fn‖pp ∼ |Jn|1−p/2,
�

V

|fn(t)|q dt ≤ Cqεqm|V | |Jn|−q/2.

This and (4.11) give

|an|p‖fn‖pp ≤ Cpεpm‖f‖pp|V |p−1|Jn|1−p.

By the definition of T (2)
l,m, |Jns | ≥ |V |, so it follows from Corollary 3.6 that
∑

n∈T (2)
l,m

|Jn|1−p ∼ |Jns |1−p ≤ Cp|V |1−p.

This gives
∑

n∈T (2)
l,m

(
1
θ

)pdn(V )

|an|p‖fn‖pp ≤ Cpθmp‖f‖pp.(4.13)

Case 3: n ∈ T (3)
l,m. Let

α∗ = max{α̃, right endpoints of Jn’s, n ∈ T (3)
l,m}.
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More precisely, if there is n ∈ T (3)
l,m with x1 being the right endpoint of Jn

(and with α̃ ∈ Jn), then α∗ = x1, otherwise α∗ = α̃.

Then |V | ≤ |[α∗, α]| ≤ 2|V |, and for all n ∈ T (3)
l,m we have

Jn ⊂ [0, α∗], #([α∗, α] ∩ πn) = m.

Consequently, for n ∈ T
(3)
l,m, dn(V ) = m + dn(α∗) − ζ, where ζ ∈ {0, 1, 2}

(ζ = 0 when α∗ is not a knot of πn, ζ = 1 when α∗ is a simple knot of πn,
and ζ = 2 when α∗ is a double knot of πn).

First, given n ∈ T (3)
l,m, we need to estimate supt∈V |fn(t)|. For this, let ∆

be an interval of linearity of fn (with endpoints in πn) such that ∆∩V 6= ∅.
Note that either both V and ∆ are to the right of Jn, or Jn = ∆ (the
latter can happen only for m = 0), and dn(∆) ≥ dn(V ). It follows from the
position of ∆ that

dist(α, Jn) ≤ dist(Jn,∆) + |∆|.
Therefore by Proposition 3.2 (note that ε > 2/3)

sup
t∈∆
|fn(t)| ≤ Cεdn(∆) |Jn|1/2

|Jn|+ dist(Jn,∆) + |∆|

≤ Cεm+dn(α∗) |Jn|1/2
|Jn|+ dist(α, Jn)

.

This implies that

sup
t∈V
|fn(t)| = max

∆ :V ∩∆6=∅
sup
t∈∆
|fn(t)| ≤ Cεm+dn(α∗) |Jn|1/2

|Jn|+ dist(α, Jn)
.

Consequently,
�

V

|fn(t)|qdt ≤ Cp|V |εq(m+dn(α∗)) |Jn|q/2
(|Jn|+ dist(α, Jn))q

.

Since ‖fn‖pp ∼ |Jn|1−p/2 (cf. (3.13)), the last inequality and (4.11) give
(

1
θ

)pdn(V )

|an|p‖fn‖pp ≤ Cp‖f‖pp θp(m+dn(α∗)) |Jn| · |V |p−1

(|Jn|+ dist(α, Jn))p
.(4.14)

Let J ln denote the left half of Jn. For fixed k, consider all n ∈ T
(3)
l,m with

dn(α∗) = k. For k = 0, the conditions of Case 3 imply that α∗ is the right
endpoint of Jn, and these intervals form a nested family, that is, they can
be ordered so that Jn1 ⊃ · · · ⊃ Jns . For k > 0, observe that if n1 < n2 with
dn1(α∗) = k = dn2(α∗), then all points of the partition πn1 are also in πn2 .
Therefore, the right endpoint of Jn2 either coincides with the right endpoint
of Jn1 (which implies that Jn2 ⊂ Jn1), or it lies between the right endpoint
of Jn1 and α∗ (in this case, also the left endpoint of Jn2 must be between
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the right endpoint of Jn1 and α∗). Therefore, by Lemma 3.5, each t 6= tj can
belong only to 25 intervals J ln with fixed m,k and dn(α∗) = k. In addition,
for t ∈ J ln we have

|Jn|+ dist(α, Jn) = |J ln|+ dist(α, J ln) ∼ |Jn|+ |t− α| ≥ |t− α|.
Recall that Jn ⊂ [0, α∗]. Therefore

∑

n∈T (3)
l,m : dn(α∗)=k

|Jn| · |V |p−1

(|Jn|+ dist(α, Jn))p
≤ Cp

∑

n∈T (3)
l,m : dn(α∗)=k

�

J ln

|V |p−1

|t− α|p dt

≤ Cp|V |p−1
α∗�

−∞

1
|t− α|p dt

≤ Cp
|V |p−1

(α− α∗)p−1 ≤ Cp.

Using this, (4.14) and summing over k we get

∑

n∈T (3)
l,m

(
1
θ

)pdn(V )

|an|p‖fn‖pp ≤ C‖f‖ppθpm.(4.15)

Case 4: n ∈ T (4)
l,m. Note that we can ignore the cases m = 0 or m = 1

and [α̃, α]∩ πn = {α}, since these situations are covered by respective T (2)
l,m.

Now, we have dn(V ) = 0. Since there is at least one point of πn in V and
at least one in [α̃, α), and |Jn ∩ [α̃, α]| ≥ |V |, we have |V | ≤ |Jn| ≤ 3|V |.
As α ∈ Jn, the intervals Jn, n ∈ T (4)

l,m, form a nested family. Therefore, by

Lemma 3.5 we have #T (4)
l,m ≤ 50. Moreover, by (a5) of Proposition 3.1, in

this case
α̃�

0

|fn(t)|pdt ≤ Cpεpm‖fn‖pp.

Combining these observations with (4.11) and with the formulae for ‖fn‖p
and ‖fn‖q (cf. Proposition 3.1) we get

∑

n∈T (4)
l,m

(
1
θ

)pdn(V )

|an|p
α̃�

0

|fn(t)|p dt ≤ Cpεpm‖f‖pp.(4.16)

Case 5: n ∈ T (5)
l,m. Similarly to Case 3, let

α′ = min{α, left endpoints of Jn’s, n ∈ T (5)
l,m}.

Note that if there is n ∈ T
(5)
l,m having xm as the left endpoint of Jn, then

α′ = xm, otherwise α′ = α. Then |V | ≤ |[α̃, α′]| ≤ 2|V |, and for all n ∈ T (5)
l,m
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we have
Jn ⊂ [α′, β̃], #([α̃, α′] ∩ πn) = m.

Therefore, for n ∈ T (5)
l,m, dn(α̃) = m + dn(α′) − ζ ′, where ζ ′ ∈ {0, 1, 2} and

depends on the multiplicity of α′ as a knot of πn. In addition, dn(V ) ≤ dn(α′)
and |Jn| ≤ |[α′, β̃]| ≤ 4|V |.

Note that α̃ is now to the left of Jn. Moreover, dist(α̃, Jn) ≥ |[α̃, α′]|,
which implies |Jn|+ dist(α̃, Jn) ∼ |V |. Therefore, it follows from (3.11) that

α̃�

0

|fn(t)|pdt ≤ Cp
(

2
3

)p(m+dn(α′)) |Jn|p/2
|V |p−1 .(4.17)

For each n ∈ T
(5)
l,m, we decompose [α′, β̃] into a union of three disjoint

intervals V −n , Jn, V +
n (V −n , V +

n are respectively the left and right parts of
[α′, β̃] \ Jn). Set

an,1 =
�

V −n

f(t)fn(t) dt, an,2 =
�

Jn

f(t)fn(t) dt, an,3 =
�

V +
n

f(t)fn(t) dt.

(Since supp f ⊂ [α, β], it would be enough to consider the splitting of V \Jn,
but this would require more careful notation in what follows; thus, we choose
the above splitting to simplify the notation.)

Let us start with the estimate of the part corresponding to an,2. Note
that

|an,2|p ≤ ‖fn‖pq
�

Jn

|f(t)|p dt.

For fixed k, consider n ∈ T (5)
l,m with dn(α′) = k. Recall that if n1 < n2, then all

points of the partition πn1 are also in πn2. Therefore, for fixed k, the indices
n ∈ T (5)

l,m with dn(α′) = k can be joined into packets, with the intervals Jn
from one packet having a common left endpoint, and with maximal intervals
from different packets disjoint. Note that the intervals from one packet form
a nested family of intervals. Now, let Jn0 be one of these maximal intervals.
Then, using (4.17) (recall that ε > 2/3) and Corollary 3.6 we get

∑

n∈T (5)
l,m, dn(α′)=k, Jn⊂Jn0

(
1
θ

)pdn(V )

|an,2|p
α̃�

0

|fn(t)|p dt

≤
∑

n∈T (5)
l,m, dn(α′)=k, Jn⊂Jn0

(
1
θ

)pk �

Jn

|f(t)|p dt ‖fn‖pq
α̃�

0

|fn(t)|p dt

≤ Cpθpkεpm
�

Jn0

|f(t)|p dt
∑

n∈T (5)
l,m, dn(α′)=k, Jn⊂Jn0

|Jn|p/2 · |Jn|p/2−1

|V |p−1
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≤ Cpθpkεpm
�

Jn0

|f(t)|p dt · |Jn0|p−1

|V |p−1

≤ Cpθpkεpm
�

Jn0

|f(t)|p dt.

Summing over maximal intervals we get

∑

n∈T (5)
l,m, dn(α′)=k

(
1
θ

)pdn(V )

|an,2|p
α̃�

0

|fn(t)|p dt ≤ Cpθpkεpm‖f‖pp,

and summing over k yields

∑

n∈T (5)
l,m

(
1
θ

)pdn(V )

|an,2|p
α̃�

0

|fn(t)|p dt ≤ Cpεpm‖f‖pp.(4.18)

Now, we turn to the part corresponding to an,3. For fixed k, let nk,j , j≥1,

be the subsequence of all n’s with n ∈ T
(5)
l,m and dn(α′) = k (arranged in

increasing order). Observe that if n1 < n2 are two such n’s, then all knots
of πn1 are also knots of πn2, and either the left endpoint of Jn2 coincides
with the left endpoint of Jn1 (in this case, Jn2 ⊂ Jn1 and the right endpoint
of Jn2 is in Jn1—it may coincide with the right endpoint of Jn1 , but by
Lemma 3.4, the number of such n’s is at most 5), or the left endpoint of
Jn2 is between α′ and the left endpoint of Jn1 (in this case, also the right
endpoint of Jn2 is between α′ and the left endpoint of Jn1).

Let γnk,j be the right endpoint of Jnk,j , and in addition, let γnk,0 = β̃. Note
that γnk,i is a point of the partition πnk,j for all j ≥ i ≥ 1, γnk,j+1 ≤ γnk,j
and dnk,j (γnk,i) ≥ (j − i− 5)/5. Therefore for j ≥ i, by Proposition 3.1(a5),

γnk,i−1�

γnk,i

|fnk,j(t)|q dt ≤ Cqε
qdnk,j (γnk,i)‖fnk,j‖qq ≤ Cqεq(j−i)/5‖fnk,j‖qq.

Using this and the Hölder inequality we get, with κ = ε1/10,

|ank,j ,3|p =
∣∣∣

β�

γnk,j

f(t)fnk,j(t) dt
∣∣∣
p

=
∣∣∣

j∑

i=1

κ(j−i)κ(i−j)
γnk,i−1�

γnk,i

f(t)fnk,j(t) dt
∣∣∣
p

≤
( j∑

i=1

κq(j−i)
)p/q

·
j∑

i=1

κp(i−j)
∣∣∣
γnk,i−1�

γnk,i

f(t)fnk,j(t) dt
∣∣∣
p

≤ Cp
j∑

i=1

κp(i−j)
γnk,i−1�

γnk,i

|f(t)|p dt ·
( γnk,i−1�

γnk,i

|fnk,j(t)|q dt
)p/q
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≤ Cp
j∑

i=1

κp(i−j)
γnk,i−1�

γnk,i

|f(t)|p dt · κ2p(j−i)‖fnk,j‖pq

= Cp

j∑

i=1

κp(j−i)‖fnk,j‖pq
γnk,i−1�

γnk,i

|f(t)|p dt.

Recall that by Proposition 3.1(a5),

α̃�

0

|fnk,j(t)|pdt ≤ Cpεpdnk,j (α̃)‖fnk,j‖pp ≤ Cpεp(m+dnk,j (α′))‖fnk,j‖pp.

Combining these estimates, for fixed k we get

∑

n∈T (5)
l,m, dn(α′)=k

(
1
θ

)pdn(V )

|an,3|p‖fn‖pLp(0,α̃)≤
∑

j≥1

(
1
θ

)pk
|ank,j ,3|p‖fnk,j‖pLp(0,α̃)

≤ Cp
∑

j≥1

εpmθpk‖fnk,j‖pp‖fnk,j‖pq
j∑

i=1

κp(j−i)
γnk,i−1�

γnk,i

|f(t)|p dt

≤ Cpεpmθpk
∑

i≥1

γnk,i−1�

γnk,i

|f(t)|p dt
∑

j≥i
κp(j−i)

≤ Cpεpmθpk
∑

i≥1

γnk,i−1�

γnk,i

|f(t)|pdt ≤ Cpεpmθpk‖f‖pp.

Summing over k ≥ 0 we get
∑

n∈T (5)
l,m

(1
θ

)pdn(V )
|an,3|p‖fn‖pLp(0,α̃) ≤ Cpε

pm‖f‖pp.(4.19)

It remains to estimate the part corresponding to an,1.
For fixed k and n with dn(α′) = k, let L0,n, . . . , Lk,n be the intervals

of linearity of fn contained between α′ and Jn; in the case of double knots
some of them may degenerate to a single point, or fn may be 0 on some of
these intervals. Note that L0,n has α′ as its left endpoint, and if α′ is not a
point of πn, then L0,n is not an interval of the partition πn.

Define
bi,n =

�

Li,n

f(t)fn(t) dt.

Clearly, for n such that dn(α) = k we have an,1 =
∑k

i=0 bi,k. By the Hölder
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inequality,

|bi,n|p =
∣∣∣

�

Li,n

f(t)fn(t) dt
∣∣∣
p
≤

�

Li,n

|f(t)|p dt
( �

Li,n

|fn(t)|qdt
)p/q

.

By Proposition 3.2 (more precisely, directly by Proposition 3.2 in the case
of i ≥ 1, and by considering L̃0,n, the interval of linearity of fn containing
L0,n, in case i = 0) we have

sup
t∈Li,n

|fn(t)| ≤ C
(

2
3

)k−i |Jn|1/2
|Jn|+ |Li,n|+ dist(Jn, Li,n)

,

which implies

|bi,n|p ≤ Cp
(

2
3

)p(k−i) �

Li,n

|f(t)|p dt |Jn|p/2 · |Li,n|p−1

(|Jn|+ |Li,n|+ dist(Jn, Li,n))p
.(4.20)

Observe that

|Jn|p/2|Li,n|p−1

(|Li,n|+ |Jn|+ dist(Li,n, Jn))p
· |Jn|

p/2

|V |p−1

≤ |Jn|
|V |p−1

(|Li,n|+ |Jn|)2(p−1)

(|Li,n|+ |Jn|+ dist(Li,n, Jn))p

≤ |Jn|
|V |p−1 (|Li,n|+ |Jn|+ dist(Li,n, Jn))p−2.

Combining this observation with (4.17) and (4.20) we get
(

1
θ

)pdn(V )

|bi,n|p
α̃�

0

|fn(t)|p dt

≤ Cp
(

1
θ

)pk(2
3

)p(k−i)(2
3

)p(m+k) �

Li,n

|f(t)|p dt |Jn||V |p−1

× (|Li,n|+ |Jn|+ dist(Li,n, Jn))p−2

≤ Cpθpk
(

2
3

)p(k−i)
εpm

�

Li,n

|f(t)|p dt |Jn||V |p−1

× (|Li,n|+ |Jn|+ dist(Li,n, Jn))p−2.

For fixed k and i, consider the intervals Li,n for n satisfying dn(α′) = k;
observe that these intervals can be grouped into packets such that the in-
tervals in one packet have a common left endpoint, and maximal intervals
from different packets are disjoint. In addition, for Li,n’s from one packet,
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the corresponding Jn’s can again be grouped into subpackets with coincid-
ing left endpoint (hence forming a family of nested intervals, i.e. they can
be arranged so that Jn1 ⊃ · · · ⊃ Jns), and with maximal intervals from
different subpackets disjoint. Denoting by J rn the right half of Jn we note
that by Lemma 3.5 each t 6= ts can belong to at most 25 intervals J rn corre-
sponding to Li,n’s from one packet. Moreover, denoting by u∗ the common
left endpoint of a packet of Li,n’s, for t ∈ Jrn we have

|Li,n|+ |Jn|+ dist(Li,n, Jn) ≥ |t− u∗|.
As p < 2, this implies (L∗i,n denoting the maximal interval in the packet;

also recall Jn ⊂ [α′, β̃]) that

∑

n in one packet

(
1
θ

)pk
|bi,n|p‖fn‖pLp(0,α̃)

≤ Cpθ
pkεpm

|V |p−1

(
2
3

)p(k−i) ∑

n in one packet

�

Li,n

|f(t)|p dt

× |Jn| · (|Li,n|+ |Jn|+ dist(Li,n, Jn))p−2

≤ Cpθ
pkεpm

|V |p−1

(
2
3

)p(k−i) ∑

n in one packet

�

L∗i,n

|f(t)|p dt
�

Jrn

|t− u∗|p−2 dt

≤ Cpθ
pkεpm

|V |p−1

(
2
3

)p(k−i) �

L∗i,n

|f(t)|p dt
β̃�

u∗
|t− u∗|p−2 dt

≤ Cpθpkεpm
(

2
3

)p(k−i) �

L∗i,n

|f(t)|p dt.

As for fixed k and i the maximal intervals L∗i,n are disjoint, we have
∑

packets with dn(α′)=k

�

L∗i,n

|f(t)|p dt ≤ ‖f‖pp,

so that

(4.21)
∑

n∈T (5)
l,m, dn(α′)=k

(
1
θ

)pdn(V )

|bi,n|p‖fn‖pLp(0,α̃)

≤ Cpθpkεpm
(

2
3

)p(k−i)
‖f‖pp.

To complete the estimate, note that by the Hölder inequality, for n with
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dn(α′) = k and κ =
√

2/3,

|an,1|p =
∣∣∣

k∑

i=0

bi,n

∣∣∣
p

=
∣∣∣

k∑

i=0

κk−i · κi−kbi,n
∣∣∣
p
≤ Cp

k∑

i=0

κp(i−k)|bi,n|p.

Combining this with (4.21) we get

∑

n∈T (5)
l,m, dn(α′)=k

(
1
θ

)pdn(V )

|an,1|p‖fn‖pLp(0,α̃)

≤ Cp
∑

n∈T (5)
l,m, dn(α′)=k

(
1
θ

)pdn(V ) k∑

i=0

κp(i−k)|bi,n|p‖fn‖pLp(0,α̃)

= Cp

k∑

i=0

κp(i−k)
∑

n∈T (5)
l,m, dn(α′)=k

(
1
θ

)pdn(V )

|bi,n|p‖fn‖pLp(0,α̃)

≤ Cp
k∑

i=0

κp(i−k)θpk εpm
(

2
3

)p(k−i)
‖f‖pp ≤ Cpθpk εpm‖f‖pp.

Summing over k we get

∑

n∈T (5)
l,m

(
1
θ

)pdn(V )

|an,1|p‖fn‖pLp(0,α̃) ≤ Cpε
pm‖f‖pp.

Combining the last inequality with (4.18) and (4.19) yields

∑

n∈T (5)
l,m

(
1
θ

)pdn(V )

|an|p‖fn‖pLp(0,α̃) ≤ Cpε
pm‖f‖pp.(4.22)

Case 6: n ∈ ⋃∞m=0 T
(6)
l,m. To treat this case, observe that

∞⋃

m=0

T
(6)
l,m ⊂

∞⋃

s=0

T (2)
r,s ∪ T (3)

r,s ,

where T (i)
r,s is the case symmetric to T (i)

l,s , but corresponding to decomposition
of the set

Tr,s = {n ≥ n(V ) : #(πn ∩ [β, β̃]) = s}.

(The “r” in Tr,s and T
(i)
r,s below indicates that the splitting of the set of

indices under consideration is suitable for estimating the “right part”, i.e.
the part corresponding to � 1

β̃ |fn(t)| dt.) More precisely,
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T (1)
r,s = {n ∈ Tr,s : Jn ⊂ [β, β̃]},
T (2)
r,s = {n ∈ Tr,s : β̃ ∈ Jn, |Jn ∩ [β, β̃]| ≥ |V |, Jn 6⊂ [β, β̃]},
T (3)
r,s = {n ∈ Tr,s : Jn ⊂ [β̃, 1], or β̃ ∈ Jn with

|Jn ∩ [β, β̃]| ≤ |V | and Jn 6⊂ [β, β̃]},
T (4)
r,s = {n ∈ Tr,s : β ∈ Jn, |Jn ∩ [β, β̃]| ≥ |V |, Jn 6⊂ [β, β̃]},
T (5)
r,s = {n ∈ Tr,s : Jn ⊂ [α̃, β], or β ∈ Jn with

|Jn ∩ [β, β̃]| ≤ |V | and Jn 6⊂ [β, β̃]},
T (6)
r,s = {n ∈ Tr,s : Jn ⊂ [0, α̃], or α̃ ∈ Jn with Jn 6⊂ [α̃, β]}.

The cases T (i)
r,s , i = 1, 2, 3, 4, 5, are treated analogously to T (i)

l,m. In particular,

for T (2)
r,s and T

(3)
r,s we obtain estimates analogous to (4.13) and (4.15). This

gives

(4.23)
∞∑

m=0

∑

n∈T (6)
l,m

(
1
θ

)pdn(V )

|an|p‖fn‖pLp(0,α̃)

≤
∞∑

s=0

∑

n∈T (2)
r,s ∪T (3)

r,s

(
1
θ

)pdn(V )

|an|p‖fn‖pp ≤ Cp‖f‖pp.

To complete the proof, note that summing over m ≥ 0 inequalities (4.12),
(4.13), (4.15), (4.16), (4.22) and adding (4.23) we get

∑

n≥n(V )

(
1
θ

)pdn(V )

|an|p‖fn‖pLp(0,α̃) ≤ Cp‖f‖p.

The second inequality, i.e.
∑

n≥n(V )

(
1
θ

)pdn(V )

|an|p‖fn‖p
Lp(β̃,1)

≤ Cp‖f‖p,

is obtained by analogous considerations.

4.2. Proofs of Theorem 2.1 and Corollary 2.2. We are ready to
complete the proof of Theorem 2.1. Once we have proved Lemmas 4.2 and
4.3, the remaining part of the proof is the same as in [11], but we present it
for the sake of completeness.

By the duality argument, it is enough to prove unconditionality of {fn,
n ≥ 0} in Lp[0, 1] with 1 < p < 2. For this, we show that for each p,
1 < p < 2, there are constants Cp, cp > 0, depending only on p, such that
for each f ∈ Lp[0, 1],

cp‖Pf‖p ≤ ‖f‖p ≤ Cp‖Pf‖p.(4.24)
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To prove the right-hand inequality in (4.24), let f ∈ Lp[0, 1], f =∑∞
n=0 anfn, and

S∗f(t) = sup
m≥0

∣∣∣
m∑

n=0

anfn(t)
∣∣∣.

Without loss of generality, we may assume that the set {n ≥ 0 : an 6= 0} is
finite.

Now, for fixed λ > 0, let

Eλ = {t ∈ (0, 1) : Pf(t) > λ}, Bλ = {t ∈ (0, 1) :MχEλ(t) > 1/4}.
It follows from the properties of M that

|Bλ| ≤ C|Eλ|, Bλ =
⋃

k

Vk,

where Vk = (αk, βk) are nonoverlapping intervals, and moreover

MχEλ(αk) ≤ 1/4, MχEλ(βk) ≤ 1/4.

Let Γk be the set Γ from Lemma 4.2 corresponding to Vk, and

Γ̃ =
⋃

k

Γk, Λ̃ = N \ Γ̃ , ϕ1 =
∑

n∈Γ̃

anfn, ϕ2 =
∑

n∈Λ̃

anfn.

It follows from (4.1) that
�

Bc
λ

∑

n∈Γ̃

|anfn(t)| dt ≤ C
�

Bλ

Pf(t) dt.

Using the above inequality and the fact that Pf(t) ≤ λ for t 6∈ Eλ we get

ψ1(λ) = |{t ∈ (0, 1) : S∗ϕ1(t) > λ/2}| ≤ |Bλ|+
2
λ

�

Bc
λ

S∗ϕ1(t) dt

≤ |Bλ|+
C

λ

�

Bλ

Pf(t) dt ≤ |Bλ|+ C|Bλ \ Eλ|+
C

λ

�

Eλ

Pf(t) dt,

so
ψ1(λ) ≤ C

(
|Eλ|+

1
λ

�

Eλ

Pf(t) dt
)
.(4.25)

Since Pf(t) ≤ λ for t 6∈ Eλ, inequality (4.2) implies

Pϕ2(t) ≤ Cλ on (0, 1).(4.26)

As S∗g≤64Mg (see [7, Theorem 4.1]), andM is of strong type (2, 2), we get

ψ2(λ) = |{t ∈ (0, 1) : S∗ϕ2(t) > λ/2}| ≤ 1282

λ2 ‖Mϕ2‖22

≤ C

λ2 ‖ϕ2‖22 =
C

λ2 ‖Pϕ2‖22

=
C

λ2

( �

Eλ

(Pϕ2(t))2 dt+
�

Ec
λ

(Pϕ2(t))2 dt
)
.
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This inequality, combined with (4.26), gives

ψ2(λ) ≤ C
(
|Eλ|+

1
λ2

�

Ec
λ

(Pf(t))2 dt

)
.(4.27)

Combining (4.25) and (4.27) we get

ψ(λ) = |{t ∈ (0, 1) : S∗f(t) > λ}| ≤ ψ1(λ) + ψ2(λ)

≤ C
(
|Eλ|+

1
λ

�

Eλ

Pf(t) dt+
1
λ2

�

Ec
λ

(Pf(t))2 dt

)
.

This implies (recall that 1 < p < 2)

‖S∗f‖pp = p

∞�

0

λp−1ψ(λ) dλ

≤ Cp
(∞�

0

λp−1|Eλ| dλ+
∞�

0

λp−2
�

Eλ

Pf(t) dt dλ

+
∞�

0

λp−3
�

Ec
λ

(Pf(t))2 dt dλ
)

≤ Cp
(
‖Pf‖pp +

1�

0

Pf(t)
Pf(t)�

0

λp−2 dλ dt

+
1�

0

(Pf(t))2
∞�

Pf(t)

λp−3 dλ dt
)

≤ Cp‖Pf‖pp.
This implies the right-hand inequality in (4.24).

Now, we turn to the proof of the left-hand inequality in (4.24). For this,
it is enough to show that for each p, 1 < p < 2, P is of weak type (p, p).

The following estimate will be needed (cf. Lemma 4 of [11]):

Lemma 4.4. For a given interval V = (α, β), let

TV f(t) =
{
u1,V ϕ1,V (t) + u2,V ϕ2,V (t) for t ∈ V ,

0 otherwise,
where

ϕ1,V = |V |−1/2 · χV , ϕ2,V (t) = 2
√

3 · |V |−3/2
(
t− α+ β

2

)
χV (t),

and ui,V = � V f(t)ϕi,V (t) dt, i = 1, 2. For each p, λ and f , if � V |f(t)| dt ≤
λ|V | then

‖TV f‖22 ≤ 4λ2|V |, ‖TV f‖p ≤ Cp‖f‖Lp(V ),

where Cp depends only on p.
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It should be clear that on V , TV f is equal to the orthogonal projection
of fχV onto the space of functions linear on V . An easy proof of Lemma 4.4
is omitted.

Let p, 1 < p < 2, be fixed. We need to prove that there is a constant Cp,
depending only on p, such that for each f ∈ Lp[0, 1] and λ > 0,

|{t ∈ (0, 1) : Pf(t) > λ}| ≤ Cp
λp
‖f‖pp.(4.28)

Without loss of generality we can assume that ‖f‖p = 1 and λ > 1. Let

Gλ = {t ∈ (0, 1) :Mf(t) > λ}.
Then

|Gλ| ≤ Cp
‖f‖pp
λp

, Gλ =
⋃

k

Vk,(4.29)

where Vk = (αk, βk) are pairwise disjoint; in particular, |Gλ| =
∑

k |Vk|.
Moreover,

|f(t)| ≤ λ a.e. on Gc
λ,

�

Vk

|f(t)| dt ≤ λ|Vk|, k = 1, 2, . . . .(4.30)

Let
h = f · χGc

λ
+
∑

k

TVkf, g = f − h.

Now, the parts corresponding to Ph and Pg are treated separately.
Using (4.29), (4.30) and Lemma 4.4 we get

‖h‖22 =
�

Gc
λ

f(t)2 dt+
∑

k

�

Vk

(TVkf)(t)2 dt

≤ λ2−p �

Gc
λ

|f(t)|p dt+ λ2|Gλ| ≤ Cpλ2−p‖f‖pp.

The above inequality gives

|{t ∈ (0, 1) : Ph(t) > λ/2}| ≤ 4
λ2 ‖Ph‖

2
2 =

4
λ2 ‖h‖

2
2 ≤ Cp

‖f‖pp
λp

.(4.31)

It remains to treat Pg. As p < 2, we have

(Pg(t))p =
( ∞∑

n=0

an(g)2fn(t)2
)p/2

≤
∞∑

n=0

|an(g)|p|fn(t)|p.

In addition, let Ṽk = (α̃k, β̃k), where α̃k = αk − 2|Vk|, β̃k = βk + 2|Vk| and
G̃λ =

⋃
k Ṽk; observe that |G̃λ| ≤ 5|Gλ|. Now, we have

(4.32) |{t ∈ (0, 1) : Pg(t) > λ/2}| ≤ |G̃λ|+
2p

λp

�

G̃c
λ

(Pg)p(t) dt

≤ Cp
‖f‖pp
λp

+
2p

λp

∑

n

�

G̃c
λ

|an(g)|p|fn(t)|p dt.
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Since by the definition of g and Lemma 4.4,

‖g‖pp =
∑

k

�

Vk

|f(t)− TVkf(t)|p dt ≤ Cp
∑

k

�

Vk

|f(t)|p dt ≤ Cp‖f‖pp,(4.33)

it is enough to prove that
∑

n

�

G̃c
λ

|an(g)|p|fn(t)|p dt ≤ Cp‖g‖pp.(4.34)

For this, put gk = g · χVk . Observe that the supports of gk are disjoint, so
‖g‖pp =

∑∞
k=1 ‖gk‖

p
p and g =

∑∞
k=1 gk, with the series convergent in Lp[0, 1].

Therefore, for each n ≥ 0, an(g) =
∑∞

k=1 an(gk). Moreover, it follows from
the definition of TVk that

�

Vk

gk(t)(at+ b) dt = 0 for all a, b.

In particular, this implies that an(gk) = 0 for n < n(Vk). Thus, with θ as in
Lemma 4.3 we have

|an(g)|p =
∣∣∣

∑

k :n≥n(Vk)

an(gk)
∣∣∣
p
≤
( ∑

k :n≥n(Vk)

(
1
θ

)dn(Vk)

|an(gk)| · θdn(Vk)
)p

≤
( ∑

k :n≥n(Vk)

(
1
θ

)pdn(Vk)

|an(gk)|p
)
·
( ∑

k :n≥n(Vk)

θqdn(Vk)
)p/q

.

Note that if n ≥ n(Vk) then in Vk there is at least one point of πn. This
implies that for each s ≥ 0 there are at most two k such that n ≥ n(Vk) and
dn(Vk) = s. Therefore

( ∑

k :n≥n(Vk)

θqdn(Vk)
)p/q

≤ Cp.

This and the previous inequality give

|an(g)|p ≤ Cp
∑

k :n≥n(Vk)

(
1
θ

)pdn(Vk)

|an(gk)|p.

Recall that supp gk ⊂ Vk. Using the above inequality and Lemma 4.3 we get
∞∑

n=0

�

G̃c
λ

|an(g)|p|fn(t)|p dt

≤ Cp
∞∑

n=0

∑

k :n≥n(Vk)

(
1
θ

)pdn(Vk) �

G̃c
λ

|an(gk)|p|fn(t)|p dt
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≤ Cp
∑

k

∑

n≥n(Vk)

(
1
θ

)pdn(Vk)

|an(gk)|p
�

V c
k

|fn(t)|p dt

≤ Cp
∑

k

‖gk‖pp = Cp‖g‖pp,

i.e. we have proved (4.34). Combining this with (4.32) and (4.33) we obtain

|{t ∈ (0, 1) : Pg(t) > λ/2}| ≤ Cp
‖f‖pp
λp

.(4.35)

As f = g + h, it follows by (4.31) and (4.35) that

|{t ∈ (0, 1) : Pf(t) > λ}| ≤ Cp
‖f‖pp
λp

,

i.e. P is of weak type (p, p) for each p, 1 < p < 2. Since P is also of strong
type (2, 2), by the Marcinkiewicz interpolation theorem it is of strong type
(p, p) for each p, 1 < p < 2, i.e. the left-hand inequality in (4.24) holds.

Since the constants from Lemmas 4.2 and 4.3 do not depend on T ,
it follows from the method of proof that the uncoditional basic constant
for general Franklin systems in Lp[0, 1] can be bounded by a constant Cp,
depending on p, but not on the sequence T of knots.

This completes the proof of Theorem 2.1.

Proof of Corollary 2.2. It has been proved by S. V. Konyagin and V. N.
Temlyakov [14] that a normalized basis X = (xn, n ≥ 0) of a Banach space
(X, ‖·‖) is greedy if and only if it is unconditional and democratic, the latter
meaning that for any two finite subsets of indices A,B with #A = #B,

∥∥∥
∑

n∈A
xn

∥∥∥ ∼
∥∥∥
∑

n∈B
xn

∥∥∥.(4.36)

In addition, the constant C in (2.3) can be chosen so that it depends only
on the unconditional basic constant of the basis X and the constants in
the equivalence (4.36). Thus, it remains to check that {fn,p, n ≥ 0} is demo-
cratic in Lp[0, 1], and that the constants in (4.36) can be chosen independent
of T . This is done by the usual argument using the unconditionality of {fn,p,
n ≥ 0} and the exponential decay of the lengths of nested Jn’s. For this, let
χJn,p = |Jn|−1/pχJn . It follows from the unconditionality and normalization
of {fn,p, n ≥ 0} (cf. (3.7) and (3.8)), Corollary 3.3 and the maximal inequal-
ity of Fefferman and Stein (see e.g. Theorem 1, Chapter II of [17]) that for
each sequence of coefficients {un, n ≥ 0},
∥∥∥
∞∑

n=0

unfn,p

∥∥∥
p

p
∼

1�

0

( ∞∑

n=0

|unfn,p(t)|2
)p/2

dt ∼
1�

0

( ∞∑

n=0

|unχJn,p(t)|2
)p/2

dt.
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Moreover, it follows from Corollary 3.6 that for each t and each choice of
indices n1 < · · · < nm,

( m∑

i=1

|χJni ,p(t)|
2
)p/2

∼ (|Jnm |−2/p)p/2 ∼
m∑

i=1

|χJni ,p(t)|
p.

Therefore ∥∥∥
m∑

i=1

fni,p

∥∥∥
p

p
∼

1�

0

m∑

i=1

|χJni ,p(t)|
p = m,

which proves that {fn,p, n ≥ 0} is democratic in Lp[0, 1]. It follows from the
proof that the implied constants do not depend on T .

4.3. Final remarks

Remark 3 (The case of non-dense sequences T ). A general Franklin
system discussed above is defined for an admissible sequence of knots T (cf.
Definitions 2.1 and 2.2). In particular, Definition 2.1 requires the density of
T in [0, 1]. It should be clear that one can consider general Franklin systems
corresponding to sequences T admitting at most double knots, but not nec-
essarily dense in [0, 1]. If T is not dense in [0, 1], then the corresponding
Franklin system is not a basis in Lp[0, 1] (because it is not dense), but it is
a basic sequence in this space. It follows from Theorem 2.1 and Remark 1
that for any finite collection of points T = {tn, 0 ≤ n ≤ m} and the cor-
responding sequence of Franklin functions {fn, 0 ≤ n ≤ m}, and for any
choice of coefficients {an, 0 ≤ n ≤ m} and signs εn ∈ {−1, 1}, 0 ≤ n ≤ m,

∥∥∥
m∑

n=0

anfn

∥∥∥
p
∼
∥∥∥

m∑

n=0

εnanfn

∥∥∥
p
,

with the implied constants depending only on p. Note that this implies
that for each T admitting at most double knots, the corresponding Franklin
system is an unconditional basic sequence in Lp[0, 1], 1 < p < ∞, and the
implied unconditional basic constants have a finite bound Cp, depending
only on p.

Similarly, it follows from Corollary 2.2 (or more precisely, from the
method of its proof) that for each T admitting at most double knots, the
corresponding Franklin system, normalized in Lp[0, 1], is a greedy basis in
its span in Lp[0, 1], 1 < p <∞, and the constants in inequality (2.3) can be
chosen so that they depend only on p.

Remark 4 (Equivalence of general Franklin systems to subsequences of
the dyadic Haar system). It has been shown in [12] that each general Haar
system is equivalent in Lp[0, 1], 1 < p <∞, to a subsequence of the classical
Haar system (i.e. the Haar system corresponding to dyadic knots). The same
is true for the general Franklin systems.
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The corresponding subsequence of the dyadic Haar system can be ob-
tained as follows. Define Dj,k = [(k − 1)/2j , k/2j]. Let T = (tn, n ≥ 0) be a
sequence of points admitting at most double knots (not necessarily dense in
[0, 1]), with the corresponding general Franklin system {fn, n ≥ 0}. Consider
the corresponding intervals Jn, n ≥ 0. For j ≥ 0, let

Nj = {n ≥ 0 : 1/2j+1 < |Jn| ≤ 1/2j}.
Then for each n ∈ Nj there is a dyadic interval Dj+2,k ⊂ Jn. Now, observe
that for each k, 1 ≤ k ≤ 2j+2, the collection of intervals Jn such that
Dj+2,k ⊂ Jn is a nested family of intervals. It follows from Lemma 3.5 that
for each j and k,

#{n ∈ Nj : Dj+2,k ⊂ Jn} ≤ 25.

Now, there are 32 different dyadic intervals Dj+7,l included in Dj+2,k. This
implies that it is possible to assign to each n ∈ Nj a dyadic interval
D(n) ⊂ Jn of length 1/2j+7 in such a way that D(n1) 6= D(n2) for n1 6= n2.
This means that {HD(n), n ≥ 0} is a permutation of a subsequence of the
dyadic Haar system. Let HD(n) be the Haar function (normalized in L2[0, 1])
with support D(n). By arguments similar to those used in the proof of Corol-
lary 3.3, there is a constant C > 0, independent of T , such that

|fn(t)| ≤ CMHD(n)(t), |HD(n)| ≤ CMfn(t).

Thus, using the Fefferman–Stein maximal inequality and unconditionality
of both {Hn, n ≥ 1} and {fn, n ≥ 1}, for each 1 < p <∞ and any sequence
of coefficients {an, n ≥ 0} we get

∥∥∥
∞∑

n=0

anfn

∥∥∥
p
∼ ‖

∞∑

n=0

anHD(n)‖p,(4.37)

with the implied constants depending only on p. Moreover, one can replace
in (4.37) the pair of systems {fn, n ≥ 0} and {HD(n), n ≥ 0} by their
Lp-normalized versions.

It follows from Corollary 3.3 and the Fefferman–Stein maximal inequality
that for each p, 1 < p < ∞, and each sequence T of at most double knots
with the corresponding Franklin system {fn, n ≥ 0},

∥∥∥
( ∞∑

n=0

|anfn|2
)1/2∥∥∥

p
∼
∥∥∥
( ∞∑

n=0

|anχJn,2|2
)1/2∥∥∥

p
,

with the implied constants depending only on p. For completeness, we show
that the above equivalence also holds for p = 1:

Proposition 4.5. There exist constants C1, C2 > 0 such that for each
sequence T of points in [0, 1], admitting at most double knots, with the cor-
responding Franklin system {fn, n ≥ 0}, and any sequence of coefficients
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{an, n ≥ 0},

C1

∥∥∥
( ∞∑

n=0

|anχJn,2|2
)1/2∥∥∥

1
≤
∥∥∥
( ∞∑

n=0

|anfn|2
)1/2∥∥∥

1

≤ C2

∥∥∥
( ∞∑

n=0

|anχJn,2|2
)1/2∥∥∥

1
.

For the proof of Proposition 4.5, we need the following

Lemma 4.6. There is a constant C > 0 such that for each sequence T
of points in [0, 1], admitting at most double knots, with the corresponding
Franklin system {fn, n ≥ 0}, and each interval V = [α, β] ⊂ [0, 1],

∑

n : Jn⊂V
|Jn|1/2

�

V c

|fn(t)| dt ≤ C|V |.

Proof of Lemma 4.6. Let us estimate the part of the sum corresponding
to � 1

β |fn(t)| dt. It follows from Proposition 3.1(b5) and the estimate of the
L1-norm of fn (cf. (3.7) and (3.8), or (3.13)) that

1�

β

|fn(t)| dt ≤ Cεdn(β)‖fn‖1 ≤ Cεdn(β)|Jn|1/2.

Fix k ≥ 0 and consider n such that dn(β) = k. The corresponding intervals
Jn can be arranged into packets, with the intervals from one packet having
a common right endpoint and forming a nested collection of intervals, and
with maximal intervals of different packets having disjoint interiors. As all
these intervals are included in V , by Corollary 3.6 we get

∑

n : Jn⊂V, dn(β)=k

|Jn|1/2
1�

β

|fn(t)| dt ≤ Cεk
∑

n : Jn⊂V, dn(β)=k

|Jn| ≤ Cεk|V |.

Summing over k yields

∑

n : Jn⊂V
|Jn|1/2

1�

β

|fn(t)| dt =
∑

k≥0

∑

n :Jn⊂V, dn(β)=k

|Jn|1/2
1�

β

|fn(t)| dt

≤ C
∑

k≥0

εk|V | = C|V |.

The part corresponding to � α0 |fn(t)| dt is treated analogously, which com-
pletes the proof of Lemma 4.6.

Proof of Proposition 4.5. For a given T = (tn, n ≥ 0), let IT be the
family of intervals generated by T , i.e.

IT = {[0, 1]} ∪
⋃

n≥2

{(t−n , tn), (tn, t+n )},
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where t−n , t
+
n are as defined in Section 3.2. Consider the maximal function

corresponding to IT ,

MT f(t) = sup
I∈IT : t∈I

1
|I|

�

I

|f(u)| du.

Let us prove the right-hand inequality in Proposition 4.5. To this end,
for a given sequence of coefficients {an, n ≥ 0}, let

F (t) =
∞∑

n=0

|anχJn,2(t)|2,

Er = {t : F (t) > 2r}, r ∈ Z,
Br = {t :MT χEr(t) > 1/2}, r ∈ Z,
Nr = {n : intJn ⊂ Br, intJn 6⊂ Br+1},

ψr(t) =
( ∑

n∈Nr
|anfn(t)|2

)1/2
.

For n ∈ Nr we have |Jn ∩Ec
r+1| ≥ 1

2 |Jn|, which implies
�

Br∩Ec
r+1

χ2
Jn,2(t) dt ≥

�

Jn∩Ec
r+1

χ2
Jn,2(t) dt ≥ 1

2
.

Using this inequality and the fact that F (t) ≤ 2r+1 on Ec
r+1 we get

‖ψr‖22 =
∑

n∈Nr
a2
n ≤ 2

�

Br∩Ec
r+1

∑

n∈Nr
a2
nχ

2
Jn,2(t) dt

≤ 2
�

Br∩Ec
r+1

F (t) dt ≤ 2r+2|Br|.

By the last inequality and Schwarz inequality,
�

Br

ψr(t) dt ≤ ‖χBr‖2 · ‖ψr‖2 ≤ 21+r/2|Br|.(4.38)

To estimate � Bc
r
ψr(t) dt, note that Br is a union of some intervals from IT .

Any two intervals in IT are either disjoint, or one is included in the other.
Let Ir,T be the collection of maximal intervals of IT included in Br. The
intervals in Ir,T are disjoint, so we have

Br =
⋃

V ∈Ir,T
V, |Br| =

∑

V ∈Ir,T
|V |.(4.39)

Observe that if n ∈ Nr, then intJn ⊂ V for some V ∈ Ir,T . Moreover, for
n ∈ Nr we have |an| ≤ 2(r+1)/2|Jn|1/2: if not, then F (t) ≥ |anχJn,2(t)|2 >
2r+1 for t ∈ Jn, so Jn ⊂ Er+1, contrary to the definition of Nr. Combining
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this fact with (4.39) and Lemma 4.6 we get
�

Bc
r

ψr(t) dt ≤
�

Bc
r

∑

n∈Nr
|anfn(t)| dt

≤ 2(r+1)/2
∑

V ∈Ir,T

∑

n∈Nr : int Jn⊂V
|Jn|1/2

�

V c

|fn(t)| dt

≤ C2r/2
∑

V ∈Ir,T
|V | = C2r/2|Br|.

Thus, putting together the last inequality and (4.38) we get
1�

0

ψr(t) dt ≤ C2r/2|Br|.

As MT f(t) ≤ Mf(t) and M is of weak type (1, 1), we have |Br| ≤ C|Er|.
Therefore we obtain

1�

0

( ∞∑

n=0

|anfn(t)|2
)1/2

dt ≤
∑

r∈Z

1�

0

ψr(t) dt

≤ C
∑

r∈Z
2r/2|Er| ≤ C

1�

0

F 1/2(t) dt,

which is the right-hand inequality in Proposition 4.5. It follows from the
proof that the constant C can be chosen independent of T .

The left-hand inequality in Proposition 4.5 follows by an analogous ar-
gument.

Remark 5. Note that in Proposition 4.5, the sequence {χJn,2, n ≥ 0}
can be replaced by the sequence of Haar functions {HD(n), n ≥ 0} from
Remark 4.

References

[1] S. V. Bochkarev, Some inequalities for the Franklin series, Anal. Math. 1 (1975),
249–257.

[2] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504.
[3] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963),

141–157.
[4] —, Properties of the orthonormal Franklin system II , ibid. 27 (1966), 289–323.
[5] —, Equivalence, unconditionality and convergence a.e. of the spline bases in Lp

spaces, in: Approximation Theory, Banach Center Publ. 4, PWN, Warszawa, 1979,
55–68.

[6] —, Orthogonal projections onto spline spaces with arbitrary knots, in: Function
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[16] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983),
111–125.

[17] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality , and Oscillatory
Integrals, Princeton Univ. Press, Princeton, 1993.
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