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Dedicated to J. Kisyński on the occasion of his 75th birthday

Abstract. We consider some non-autonomous second order Cauchy problems of the
form

ü+B(t)u̇+A(t)u = f (t ∈ [0, T ]), u(0) = u̇(0) = 0.

We assume that the first order problem

u̇+B(t)u = f (t ∈ [0, T ]), u(0) = 0,

has Lp-maximal regularity. Then we establish Lp-maximal regularity of the second order
problem in situations when the domains of B(t1) and A(t2) always coincide, or when
A(t) = κB(t).

1. Introduction. We prove maximal regularity results for some special
cases of the non-autonomous second order Cauchy problem

(1.1) ü+B(t)u̇+A(t)u = f (t ∈ [0, T ]), u(0) = u̇(0) = 0.

Here, B(t) and A(t) are (usually unbounded, and not necessarily closed)
linear operators on a Banach space X.

The terminology of Lp-maximal regularity for the (autonomous) second
order Cauchy problem was introduced by Chill and Srivastava [5], but there
are earlier articles in which Lp-maximal regularity results have been proved.
The notion of Lp-maximal regularity for the second order problem gener-
alises in a suggestive way the notion of Lp-maximal regularity for the first
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order problem

(1.2) u̇+B(t)u = f (t ∈ [0, T ]), u(0) = 0,

which in turn goes back to the notion of maximal regularity of the sum of
two closed operators on a Banach space by Da Prato and Grisvard [8].

Recall that the first order problem (1.2) has Lp-maximal regularity if,
for each f ∈ Lp(0, T ;X), the problem (1.2) admits a unique strong solution
u ∈W 1,p(0, T ;X) such that u(t) ∈ D(B(t)) for almost every t and such that
the function t 7→ B(t)u(t) belongs to Lp(0, T ;X) and depends continuously
on f with respect to the norm of Lp(0, T ;X).

Similarly, the second order problem (1.1) has Lp-maximal regularity if,
for each f ∈ Lp(0, T ;X), the problem (1.1) admits a unique strong solution
u ∈ W 2,p(0, T ;X) such that u(t) ∈ D(A(t)) and u̇(t) ∈ D(B(t)) for almost
every t and such that the functions t 7→ B(t)u̇(t) and t 7→ A(t)u(t) belong
to Lp(0, T ;X) and depend continuously on f with respect to the norm of
Lp(0, T ;X). This definition corresponds to maximal regularity of the sum
of three operators. However, we shall vary this definition slightly at times.

There are by now only a few maximal regularity results for second order
problems. We mention results by J.-L. Lions [9, Chapter XVIII, Section 5],
Favini [12], Cannarsa, Da Prato and Zolésio [4] and Arendt, Chill, Fornaro
and Poupaud [3, Section 5]. For some results for autonomous problems,
see [5].

Maximal regularity results for the non-autonomous first order problem
have been proved by J.-L. Lions [9, Chapter XVIII, Section 3], Tanabe
[23, Section 5.5], Da Prato and Grisvard [8], Di Blasio [10], [11], Monniaux
and Prüss [18], Hieber and Monniaux [13], [14], Prüss and Schnaubelt [20],
Amann [2], Portal and Štrkalj [19], Prüss and Simonett [21], Arendt et al. [3],
and others.

In this article, we shall assume Lp-maximal regularity of the first order
problem (1.2) in order to establish Lp-maximal regularity of the second
order problem (1.1) in two types of case. Actually, we shall show that this
assumption is even necessary in these two cases.

The first case, which we consider in Section 3, is when the domains of
B(t) are constant in time and they coincide with the domains of A(t), al-
though the operators A(t) are not necessarily required to be closed on that
domain. Maximal regularity of second order problems of this type has pre-
viously been considered in [9, Chapter XVIII, Section 5] and [3, Section 5],
but our approach, by means of partitions into small subintervals, requires
weaker assumptions on the coefficients.

The second case, considered in Section 4, is when A(t) = κB(t), possibly
with some additional terms which are relatively small. We shall approach
this case by means of factorisations of operators and perturbation methods.
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A problem of this type has previously been considered in Hilbert spaces [4]
by other methods. Note that, in the autonomous case, Lp-maximal regularity
has been established in [5] for A = κBα for 1 ≤ α < 2, if X is a UMD-
space and B has R-bounded H∞-functional calculus on a sector of angle
less than π/2.

We shall illustrate our results in terms of the following specific evolution
equation:

(1.3)

utt + B(t, x, ∂)ut +A(t, x, ∂)u = f in (0, T )×Ω,
C1(t, x, ∂)ut + C0(t, x, ∂)u = 0 in (0, T )× ∂Ω,
u(0, x) = u0(x),
ut(0, x) = u1(x),

where Ω is a bounded domain in Rn, with Lipschitz boundary ∂Ω and outer
normal ν, and

B(t, x, ∂) = −
∑
i,j

∂i(bij(t, x)∂j) +
∑
i

bi(t, x)∂i + b(t, x),

A(t, x, ∂) = −
∑
i,j

∂i(aij(t, x)∂j) +
∑
i

ai(t, x)∂i + a(t, x),

C1(t, x, ∂) =
∑
i,j

bij(t, x)νi(x)∂j + c1(t, x),

C0(t, x, ∂) =
∑
i,j

aij(t, x)νi(x)∂j + c0(t, x).

The precise assumptions on Ω, the coefficients and the initial conditions will
be given in each example. In fact, under rather weak regularity conditions
in time and a uniform ellipticity condition on the coefficients (bij), we will
prove maximal regularity results in various function spaces.

2. Definition of Lp-maximal regularity. To address the question of
maximal regularity from an abstract point of view, we consider the derivative
operator D on Lp(0, T ;X) defined by

(2.1)
D(D) = W 1,p

0 (0, T ;X) = {u ∈W 1,p(0, T ;X) : u(0) = 0},
Du = u̇,

and multiplication operators B, A, etc. on Lp(0, T ;X) defined by

(2.2)
D(B)={u∈Lp(0, T ;X) : u(t)∈D(B(t)) a.e., B(·)u(·)∈Lp(0, T ;X)},

(Bu)(t)=B(t)u(t) (t ∈ [0, T ]),

and similarly for A. We will generally adopt the usual conventions for
operators A and B that D(A + B) = D(A) ∩ D(B) and D(AB) =
{x ∈ D(B) : Bx ∈ D(A)}.
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The first order problem (1.2) is said to have Lp-maximal regularity if
the sum D + B : D(D) ∩D(B) → Lp(0, T ;X) is bijective and closed as an
operator on Lp(0, T ;X). It is then automatic (by the closed graph theorem)
that D(D+B)−1 and B(D+B)−1 are bounded operators on Lp(0, T ;X). Note
that this definition is equivalent to the definition we gave in the Introduction.

Similarly, the second order problem (1.1) is said to have Lp-maximal
regularity if the operator L := D2 + BD +A with natural domain

D(L) := {u ∈W 2,p
0 (0, T ;X) ∩D(A) : u̇ ∈ D(B)},

where

W 2,p
0 (0, T ;X) = {u ∈W 2,p(0, T ;X) : u(0) = u̇(0) = 0},

is bijective and L−1 is a bounded operator on Lp(0, T ;X). Equivalently,
the second order problem (1.1) has Lp-maximal regularity if L is bijective
from D(L) to Lp(0, T ;X) and closed in Lp(0, T ;X). Then L−1 is bounded
on Lp(0, T ;X), by the closed graph theorem. Indeed, when we say that an
operator L (with domain D(L)) is invertible on an Lp-space, it is implicit
that L−1 is bounded from the Lp-space to itself.

We shall study the above kind of maximal regularity in Section 3. In
Section 4 we shall study the special case when A(t) = κB(t). Then the
second order Cauchy problem can be reformulated as

ü+B(t)(u̇+ κu) = f (t ∈ [0, T ]), u(0) = u̇(0) = 0.

Writing the second order problem in this form instead of (1.1) seems to
be suggested, for example, by the partial differential equation (1.3) and in
particular by the boundary condition therein. Also Cannarsa et al. [4] write
the second order problem in this form. We say that this second order problem
has Lp-maximal regularity if the operator L̃ := D2 +B(D+ κ) with natural
domain

D(L̃) := {u ∈W 2,p
0 (0, T ;X) : u̇+ κu ∈ D(B)}

is bijective and L̃−1 is a bounded operator on Lp(0, T ;X). Again, this is
equivalent to saying that L̃ is bijective from D(L̃) to Lp(0, T ;X) and it is
closed in Lp(0, T ;X).

Clearly, in the special case A = κB one has L ⊆ L̃ but the two operators
may not coincide in general. However, L = L̃ if each operator B(t) is closed,
D(B(t)) is independent of t and the graph norms on D(B(t)) for different
t are uniformly equivalent. In fact, let Y be the common Banach space
D(B(t)). If u ∈ D(L̃) then we may let v = u̇ + κu ∈ D(B) = Lp(0, T ;Y ).
Then

u(t) = ((D + κ)−1v)(t) =
t�

0

e−κ(t−s)v(s) ds ∈ Y = D(B(t)) a.e.
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Hence u̇(t) = v(t)− κu(t) ∈ D(B(t)) a.e., so u ∈ D(L). Thus L = L̃ in this
case.

Throughout the paper, we will take T > 0 and p ∈ (1,∞) to be fixed. For
autonomous Cauchy problems, Lp-maximal regularity is independent of T
and p in this range (see [6] for the second order case). However, Lp-maximal
regularity for the non-autonomous problems (1.2) and (1.1) depends not
only on T but also on p ∈ (1,∞), in general. This is true even for ordinary
differential equations. For example, let

b(t) =
∞∑
k=1

ck|t− tk|−1/p

for some dense sequence (tk) in (0, 1) and some ck > 0 with
∑∞

k=1 ck < ∞.
Then b ∈ Lq(0, 1) whenever 1 < q < p, and the problem

u̇+ b(t)u = f (t ∈ [0, 1]), u(0) = 0,

is easily seen to have Lq-maximal regularity. On the other hand, when B
is considered as an operator on Lp(0, 1), then W 1,p

0 (0, 1) ∩ D(B) = {0}, so
D + B cannot be invertible on Lp(0, 1).

Similarly, if b(t) = b is constant but a(t) =
∑∞

k=1 ck|t− tk|−1/p, then the
problem

ü+ bu̇+ a(t)u = f (t ∈ [0, 1]), u(0) = u̇(0) = 0,

cannot have Lp-maximal regularity, but it does have Lq-maximal regularity
for 1 < q < p.

We shall also use the terminology of this section, adapted in an obvious
way, when [0, T ] is replaced by another interval [a, b].

3. The case of constant domains. In this section, we consider the
case when each operator B(t) is closed, D(B(t)) =: Y is independent of
t ∈ [0, T ], and the graph norms are uniformly equivalent. This implies that
D(B) = Lp(0, T ;Y ) (the space Y is equipped with any of the equivalent
graph norms). We also assume that D(A(t)) = Y and A(t) ∈ L(Y,X) for
every t ∈ [0, T ], but the operators A(t) need not be closed as operators
on X. If A is strongly measurable and if ‖A(·)‖L(Y,X) is dominated by an
Lp function, as we will assume in the following theorem, then

D(D2 + BD +A) = W 2,p
0 (0, T ;X) ∩W 1,p(0, T ;Y ).

The following theorem gives a characterisation of unique solvability of the
second order problem (1.1) in this domain.

Theorem 3.1. Assume that B,A : [0, T ] → L(Y,X) are strongly mea-
surable, and there exists h ∈ Lp(0, T ) such that ‖A(t)‖L(Y,X) ≤ h(t) for
almost every t. Then:
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(a) If the first order Cauchy problem

(3.1) u̇+B(t)u = f (t ∈ [a, b]), u(a) = 0,

has Lp-maximal regularity for each subinterval (a, b) of (0, T ), then
the second order problem (1.1) has Lp-maximal regularity.

(b) If the second order problem

ü+B(t)u̇+A(t)u = f (t ∈ [a, b]), u(a) = u̇(a) = 0,

has Lp-maximal regularity for each subinterval (a, b) of (0, T ), then
the first order problem (1.2) has Lp-maximal regularity.

Proof. (a) We have to prove that the operator L = D2 + BD + A with
natural domain

D(L) = W 2,p
0 (0, T ;X) ∩W 1,p(0, T ;Y )

is invertible on Lp(0, T ;X). By assumption, the operators D + B, with do-
main W 1,p

0 (a, b;X)∩Lp(a, b;Y ), are invertible on Lp(a, b;X) for each subin-
terval (a, b) of (0, T ), and (D+B)−1 : Lp(0, T ;X)→ Lp(0, T ;Y ) is bounded
with norm M (say) by the closed graph theorem. The operator D is invert-
ible on Lp(a, b;X). Hence the operator D2 + BD = (D + B)D, with domain
W 2,p

0 (a, b;X) ∩W 1,p(a, b;Y ), is invertible on Lp(a, b;X).
Let f ∈ Lp(a, b) and extend f by 0 to [0, T ]. Let u be the solution of

(1.2) on [0, T ]. By uniqueness of the solution on [0, a], u|[0,a] = 0. Hence
u|[a,b] is the unique solution of (3.1) on [a, b]. It follows that the norm of
(D+B)−1 as an operator from Lp(a, b;X) to Lp(a, b;Y ) is at most M . The
Volterra operator D−1 : Lp(a, b;Y )→ L∞(a, b;Y ) has norm (b− a)1/p

′
and

A : L∞(a, b;Y ) → Lp(a, b;X) has norm at most ‖h‖Lp(a,b). If ‖h‖Lp(a,b) <

M−1(b − a)−1/p′ then the operator I + A(D2 + BD)−1 is invertible on
Lp(a, b;X). It follows that the operator

D2 + BD +A = (I +A(D2 + BD)−1)(D2 + BD),

with domain W 2,p
0 (a, b;X) ∩W 1,p(a, b;Y ), is invertible on Lp(a, b;X).

If ‖h‖Lp(0,T ) < M−1T−1/p′ , the result is immediate. For the general case,
we will subdivide the interval (0, T ) into small subintervals on which this
special case can be applied and we will build the solutions iteratively.

Choose a partition 0 = τ0 < τ1 < · · · < τn = T such that
	τi+1

τi
h(t)p dt <

M−pT−(p−1) for every i = 0, . . . , n − 1. Such a partition clearly exists.
Then D2 + BD + A, with domain W 2,p

0 (τi, τi+1;X) ∩ W 1,p(τi, τi+1;Y ), is
invertible on Lp(τi, τi+1;X). This is equivalent to saying that for each
f ∈ Lp(τi, τi+1;X) there exists a unique function u ∈ W 2,p(τi, τi+1;X) ∩
W 1,p(τi, τi+1;Y ) which is a solution of

(3.2) ü+B(t)u̇+A(t)u = f (t ∈ [τi, τi+1]), u(τi) = u̇(τi) = 0,
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and there exist constants Ci such that

‖ü‖Lp(τi,τi+1;X) + ‖u̇‖W 1,p(τi,τi+1;Y ) ≤ Ci‖f‖Lp(τi,τi+1;X).

Consider the trace space

(3.3) Trp := {(u(0), u̇(0)) : u ∈W 2,p(0, 1;X) ∩W 1,p(0, 1;Y )},
with

‖(u0, u1)‖Trp = inf{‖u‖W 2,p(0,1;X) + ‖u‖W 1,p(0,1;Y ) :

u ∈W 2,p(0, 1;X) ∩W 1,p(0, 1;Y ), u(0) = u0, u(1) = u1}.
This space depends only on the spaces X and Y , and not on the choice
of the interval (0, 1) in its definition. In fact, by [5, Lemma 6.3], for every
i = 0, . . . , n− 1 we have

Trp = {(u(τi), u̇(τi)) : u ∈W 2,p(τi, τi+1;X) ∩W 1,p(τi, τi+1;Y )}
= {(u(τi+1), u̇(τi+1)) : u ∈W 2,p(τi, τi+1;X) ∩W 1,p(τi, τi+1;Y )},

with the trace norms being equivalent.
We show that for every (u0, u1) ∈ Trp the inhomogeneous initial value

problem

(3.4) ü+B(t)u̇+A(t)u = f (t ∈ [τi, τi+1]), u(τi) = u0, u̇(τi) = u1,

admits a unique solution u ∈W 2,p(τi, τi+1;X) ∩W 1,p(τi, τi+1;Y ), and

(3.5) ‖u‖W 2,p(τi,τi+1;X) + ‖u‖W 1,p(τi,τi+1;Y )

≤ C ′i(‖(u0, u1)‖Tr + ‖f‖Lp(τi,τi+1;X)).

In fact, let v ∈ W 2,p(τi, τi+1;X) ∩W 1,p(τi, τi+1;Y ) be such that v(τi) = u0

and v̇(τi) = u1 and with minimal norm (up to a factor of 2). Then solve the
inhomogeneous problem (3.2) with f replaced by v̈+B(t)v̇+A(t)v+ f , call
the solution w and put u := v − w. Then u is a solution of (3.4), and (3.5)
holds. Uniqueness of the solution follows from unique solvability of (3.2) and
linearity.

Finally, let f ∈ Lp(0, T ;X). Solve first the inhomogeneous problem (3.2)
for i = 0 (i.e., on the interval [τ0, τ1]) and call the solution u0. Then, for
i = 1, . . . , n − 1, we solve iteratively the problem (3.4) with (u0, u1) =
(ui−1(τi), u̇i−1(τi)) and we call the solution ui. These solutions exist and are
unique by unique solvability of the problems (3.2) and (3.4) and by linearity.
For every t ∈ [0, T ] we put

u(t) := ui(t) if t ∈ [τi, τi+1].

Then, by construction, u ∈ W 2,p
0 (0, T ;X) ∩ W 1,p(0, T ;Y ) is a solution

of (1.1). It is easy to verify that this solution must be unique (by show-
ing iteratively that every other solution coincides with u on the intervals
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[τi, τi+1]) and to show iteratively that ‖u‖Lp(0,T ;X) ≤ C‖f‖Lp(0,T ;X). Hence,
the problem (1.1) has Lp-maximal regularity.

(b) By assumption, the operator D2+BD+A, with domain W 2,p
0 (a, b;X)

∩ W 1,p(a, b;Y ), is invertible on Lp(a, b;X) for each subinterval (a, b)
of (0, T ). As in the proof of (a), the norm of (D2+BD+A)−1 from Lp(a, b;X)
to W 1,p(a, b;Y ) is bounded by a constant M1 independent of the interval
(a, b). Since the norm of the embedding of W 1,p

0 (a, b;Y ) in L∞(a, b;Y ) is
bounded by a constant M2 independent of the interval (a, b), it follows that
I−A(D2+BD+A)−1 is invertible on Lp(a, b;X) if ‖h‖Lp(a,b:X) < (M1M2)−1.
Then

(D + B)D = (I −A(D2 + BD +A)−1)(D2 + BD +A),

is an isomorphism of W 2,p
0 (a, b;X) ∩W 1,p(a, b;Y ) onto Lp(a, b;X). Hence

D + B is an isomorphism of W 1,p
0 (a, b;X) ∩ Lp(a, b;Y ) onto Lp(a, b;X),

so (3.1) has Lp-maximal regularity when (a, b) is sufficiently small.
Now the proof of (b) proceeds in a very similar way to (a), using the

first order trace space

Tr1p := {u(0) : u ∈W 1,p(0, 1;X) ∩ Lp(0, 1;Y )},

with

‖u0‖Tr1p
= inf{‖u‖W 1,p(0,1;X) + ‖u‖Lp(0,1;Y ) :

u ∈W 1,p(0, 1;X) ∩ Lp(0, 1;Y ), u(0) = u0}.

Under the stronger assumption that A : [0, T ] → L(Y,X) is strongly
measurable and bounded (but assuming only that (1.2) has maximal reg-
ularity on (0, T )), we can give the following rather simple proof of The-
orem 3.1(a).

Second proof of Theorem 3.1(a). Let Z = W 1,p
0 (0, T ;X) ∩ Lp(0, T ;Y ),

with the norm ‖f‖Z = ‖f‖W 1,p(0,T ;X) + ‖f‖Lp(0,T ;Y ). By the assumption
in (a), (D+B)−1 is a bounded operator from Lp(0, T ;X) to Z. By assumption
in this proof, A is a bounded operator from Z to Lp(0, T ;X). Consequently,
(D + B)−1A is a bounded operator on Z.

The part of D in Z, DZ , has domain W 2,p
0 (0, T ;X) ∩W 1,p(0, T ;Y ), and

−DZ generates the nilpotent C0-semigroup of right shifts on Z. Hence the
bounded perturbation −DZ − (D + B)−1A generates a C0-semigroup of
growth bound −∞, and so it is invertible. Thus DZ + (D + B)−1A is an
isomorphism of W 2,p

0 (0, T ;X) ∩ W 1,p(0, T ;Y ) onto Z. Since D + B is an
isomorphism of Z onto Lp(0, T ;X), the result follows from the factorisation

L = (D + B)(DZ + (D + B)−1A).
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In the case of constant domains, there are basically two situations in
which the first order problem (1.2) is known to have maximal regularity:

• the variational case considered in [9, Chapter XVIII, Section 3] and [23,
Theorem 5.5.1]; in this case the underlying space is a Hilbert space, the
operators B(t) are associated with bounded bilinear forms, and B(t)
may be only measurable in time;
• the case when the autonomous first order problems u̇+B(t′)u = f have
Lp-maximal regularity for each t′ ∈ [0, T ] (we say for short that B(t′)
has Lp-maximal regularity for each t′) and the function B is relatively
continuous in time (see [3] for this result and the definition of relative
continuity, and also [20] and [2] for the case of continuous dependence
on time).

These two cases, together with Theorem 3.1, lead to the applications which
follow in Corollary 3.2 and Corollary 3.6 respectively.

In the first application of Theorem 3.1 we consider the situation when
the underlying Banach space is a Hilbert space and the operators B(t) are
associated with bounded bilinear forms.

Corollary 3.2. Let V and H be real separable Hilbert spaces such that
V ⊂ H = H ′ ⊂ V ′ with continuous and dense embeddings. Let A(t), B(t) :
V → V ′ be bounded linear operators which are weakly measurable in time
and which satisfy

‖B(t)‖L(V,V ′) ≤ C,
〈B(t)u, u〉V ′,V + ω‖u‖2H ≥ c‖u‖2V (u ∈ V ),
‖A(·)‖L(V,V ′) ∈ L2(0, T )

for some positive constants C, ω and c. Then the second order problem (1.1)
has L2-maximal regularity on the domain W 2,2

0 (0, T ;V ′)∩W 1,2(0, T ;V ) with
respect to X = V ′.

Proof. It suffices to note that the first order problem (1.2) has L2-
maximal regularity by [23, Theorem 5.5.1] (see also [9, Théorème 2, p. 620]
for the case of symmetric A and B) and to apply Theorem 3.1.

Remark 3.3. In the case of symmetric A and B, J.-L. Lions already
considered L2-maximal regularity of the second order Cauchy problem (1.1)
in the variational situation of Corollary 3.2 above. He proved L2-maximal
regularity under the stronger regularity assumptions that B is weakly con-
tinuous and A is weakly continuously differentiable in time [9, Théorème 1,
p. 670]. Theorem 3.1 removes these regularity conditions.

Example 3.4. We consider the problem (1.3). We assume that Ω ⊂ Rn

is a domain with Lipschitz boundary. The coefficients satisfy the following
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regularity conditions:

bij ∈ L∞(0, T ;L∞(Ω)),(3.6)
bi, b ∈ L∞(0, T ;L∞(Ω)),(3.7)
c1 ∈ L∞(0, T ;L∞(∂Ω)) and c1 ≥ 0,(3.8)
aij ∈ Lp(0, T ;L∞(Ω)),(3.9)
ai, a ∈ Lp(0, T ;L∞(Ω)),(3.10)
c0 ∈ Lp(0, T ;L∞(∂Ω)) and c0 ≥ 0.(3.11)

Moreover, the coefficients bij are assumed to be uniformly elliptic; that is,
we assume that there exists a constant η > 0 such that for every t ∈ [0, T ],
every x ∈ Ω, and every ξ ∈ Rn,

(3.12)
∑
i,j

bij(t, x)ξiξj ≥ η |ξ|2.

We call a function u ∈ W 2,2(0, T ;H1(Ω)′) ∩W 1,2(0, T ;H1(Ω)) a weak
solution of (1.3) if u satisfies the initial conditions and, for each test function
ϕ ∈ C1

c ((0, T );H1(Ω)), the equality

(3.13) −
T�

0

�

Ω

utϕt +
T�

0

�

Ω

∑
i,j

(bij∂jut∂iϕ+ aij∂ju∂iϕ)

+
T�

0

�

Ω

∑
i

(bi∂iut ϕ+ ai∂iuϕ) +
T�

0

�

Ω

(butϕ+ auϕ)

+
T�

0

�

∂Ω

(c1utϕ+ c0uϕ) =
T�

0

〈f, ϕ〉(H1)′,H1

holds (the integrals over the boundary ∂Ω are understood with respect to the
(n−1)-dimensional Hausdorff measure). This equality is obtained for regular
solutions and coefficients when multiplying equation (1.3) by ϕ, integrating
over (0, T )×Ω and several integrations by parts.

Corollary 3.5. Assume that (3.9)–(3.11) hold with p = 2. Then for
every f ∈ L2(0, T ;H1(Ω)′), every u0 ∈ H1(Ω) and every u1 ∈ L2(Ω) the
problem (1.3) admits a unique weak solution

u ∈W 2,2(0, T ;H1(Ω)′) ∩W 1,2(0, T ;H1(Ω)).

Proof. We first note that weak solutions are solutions of the abstract
second order Cauchy problem

(3.14) ü+B(t)u̇+A(t)u = f (t ∈ [0, T ]), u(0) = u0, u̇(0) = u0,
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in X = H1(Ω)′, if the operators B(t), A(t) : H1(Ω)→ H1(Ω)′ are given by

(3.15) 〈B(t)u, ϕ〉(H1)′,H1 =
�

Ω

∑
i,j

bij∂ju∂iϕ+
�

Ω

∑
i

bi∂iuϕ+
�

Ω

buϕ+
�

∂Ω

c1uϕ

and

〈A(t)u, ϕ〉(H1)′,H1 =
�

Ω

∑
i,j

aij∂ju∂i ϕ+
�

Ω

∑
i

ai∂iuϕ+
�

Ω

auϕ+
�

∂Ω

c0uϕ

for u, ϕ ∈ H1(Ω). Conversely, if u ∈W 2,2(0, T ;H1(Ω)′)∩W 1,2(0, T ;H1(Ω))
is a solution of (3.14), then u is a weak solution of (1.3); this can be seen from
multiplying (3.14) by ϕ with respect to the duality 〈·, ·〉(H1)′,H1 , integrating
over (0, T ) and using the definition of the operators B(t) and A(t).

By the regularity and boundedness conditions (3.6), (3.7), (3.9), (3.10),
the operators B(t) and A(t) are weakly measurable in time, and they satisfy
the boundedness conditions of Corollary 2.3 (with V = H1). The ellipticity
condition (3.12) and the positivity condition in (3.8) and (3.11) imply that
the operators B(t) satisfy the ellipticity condition of Corollary 2.3 (with
H = L2). Hence, by Corollary 2.3, problem (1.1) has L2-maximal regularity.
This ensures existence and uniqueness of solutions for the inhomogeneous
problem if u0 = u1 = 0. In much the same way as for the initial value prob-
lem (3.4), one shows that then (3.14) also admits a solution if (u0, u1) belongs
to the trace space Tr2 defined in (3.3) (with X = H1(Ω)′ and Y = H1(Ω)).
By [5, Lemma 6.2] and [9, Remarque 8, p. 631], Tr2 = H1(Ω)×L2(Ω), and
the proof is complete.

We now give applications of Theorem 3.1 in the other situation, when
(1.2) has maximal regularity due to relative continuity of B with respect to
the embedding of the common domain Y in X. For the definition of rela-
tive continuity of operator-valued functions used in the following corollary,
see [3, Definition 2.5], and note that every continuous function is relatively
continuous. The following result generalises [3, Theorem 5.6] by weakening
the assumptions on regularity of A.

Corollary 3.6. Assume that the function B : [0, T ] → L(Y,X) is
strongly measurable and relatively continuous, and assume that each B(t)
has Lp-maximal regularity for the first order autonomous problem. Assume
that A : [0, T ] → L(Y,X) is strongly measurable and that ‖A(·)‖ is dom-
inated by a function in Lp(0, T ). Then the second order problem (1.1) has
Lp-maximal regularity.

Proof. The assumptions on B (constant domain, maximal regularity for
each B(t) and relative continuity) imply that the first order problem (1.2)
has Lp-maximal regularity by [3, Theorem 2.7]. Thus the claim follows from
our Theorem 3.1.
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Example 3.7. We consider again the problem (1.3). Let Ω ⊂ Rn be a
bounded domain with boundary ∂Ω of class C2, and fix p ∈ (1,∞). In this
example, the coefficients satisfy the following regularity conditions:

bij ∈ C([0, T ];C1(Ω)),(3.16)
aij ∈ Lp(0, T ;W 1,∞(Ω)).(3.17)

For the lower order coefficients bi, b, ai and a we assume (3.7) and (3.10),
as in Example 3.4.

We also assume that the boundary conditions do not depend on time,
and that the two boundary operators C1 and C0 coincide. More precisely, we
assume that there exist functions

(3.18) dj , c ∈ C1(∂Ω)

such that for every (t, x) ∈ [0, T ]× ∂Ω,

dj(x) =
∑
i

bij(t, x)νi(x) =
∑
i

aij(t, x)νi(x),(3.19)

c(x) = c1(t, x) = c0(t, x) and c ≥ 0.(3.20)

Finally, as in Example 3.4, we assume that the ellipticity condition (3.12)
on the coefficients bij holds.

For q ∈ (1,∞) we consider the space

(3.21) Yq :=
{
u ∈W 2,q(Ω) :

∑
j

dj∂ju+ cu = 0 on ∂Ω
}
,

which is a Banach space when it is equipped with the W 2,q-norm.

Corollary 3.8. Let p, q ∈ (1,∞). Then, for each f ∈ Lp(0, T ;Lq(Ω)),
each u0 ∈ Yq and each u1 ∈ (Lq(Ω), Yq)1/p′,p (the real interpolation space),
there exists a unique function

u ∈W 2,p(0, T ;Lq(Ω)) ∩W 1,p(0, T ;Yq),

which is a solution of the problem (1.3) in the following sense: the function u
satisfies the differential equation in (1.3) almost everywhere (the derivatives
all being understood in the Sobolev sense), the initial conditions are satisfied ,
as well as the boundary conditions∑

j

dj∂jut + cut =
∑
j

dj∂ju+ cu = 0.

In particular , all terms on the left-hand side of the differential equation
in (1.3) belong to Lp(0, T ;Lq(Ω)).

Proof. We consider again the operators B(t) : H1(Ω) → H1(Ω)′ given
by (3.15). It is well known that each B(t), when restricted to H1(Ω)∩Lq(Ω),
extends in a unique way to a negative generator of a C0-semigroup on Lq(Ω)
[17, Section 3.1.1]. This negative generator on Lq(Ω) will be denoted again
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by B(t). By [17, Theorem 3.1.2], we have D(B(t)) = Yq, where Yq is as
in (3.21).

Fix t ∈ [0, T ]. By [7, Theorem 6.1], the semigroup generated by −B(t)
satisfies Gaussian estimates. By [15, Theorem 3.1], the operator B(t) − ωt
has Lp-maximal regularity for the autonomous problem on the half-line R+,
which implies that B(t) has Lp-maximal regularity for the autonomous prob-
lem on the finite interval [0, T ].

By the continuity in time of the second order coefficients bij (condi-
tion (3.16)), by condition (3.7), and by following the arguments from the
proof of [3, Theorem 4.1], one deduces that the function B is strongly mea-
surable and relatively continuous.

Finally, if we define the operators A(t) : Yq → Lq(Ω) by

A(t)u =
∑
i,j

aij∂i∂ju+
∑
j

(∑
i

∂iaij + aj

)
∂ju+ au,

then A(t) is bounded for almost every t ∈ [0, T ]. Moreover, the function A
is strongly measurable. By (3.17) and (3.10), and since Lq(Ω) is separable,
‖A(·)‖ belongs to Lp(0, T ). By Corollary 3.6, the problem (1.1) has Lp-
maximal regularity. Solvability for the initial value problem follows as in
Example 3.4.

4. The case when A = κB. In this section we consider the case when
A(t) = κB(t) for some constant κ (and in particular, D(A(t)) = D(B(t))),
but the domain of B(t) may vary with t. To be more precise, we consider
the problem

(4.1) ü+B(t)(u̇+ κu) = f (t ∈ [0, T ]), u(0) = u̇(0) = 0,

which slightly differs from the original second order problem (1.1). We
remark that second order problems of this type appear in [4, Theorems 1.3.2,
2.2.1], and they are also suggested by the type of boundary conditions in
our problem (1.3); see also Example 3.4, and Example 4.3 below.

For the problem of Lp-maximal regularity, we consider the operators D
and B on Lp(0, T ;X) defined by (2.1) and (2.2). Note that the spectrum of
D is empty and

((D + λ)−1f)(t) =
t�

0

e−λ(t−s)f(s) ds (f ∈ Lp(0, T ;X), t ∈ [0, T ]).

For λ ∈ C, let Eλ be the bounded operator on Lp(0;T ;X) defined by

(Eλf)(t) = eλtf(t).

Then Eλ is invertible, E−1
λ = E−λ and

(4.2) E−λBEλ = B, E−λDEλ = D + λ, E−λD−1Eλ = (D + λ)−1.
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For technical reasons, we shall assume that the operator D + B is clos-
able, its closure has non-empty resolvent set (from which it follows by the
similarity relations (4.2) that the resolvent set is C) and

(4.3) ‖(D + B + λ)−1‖ = O(λ−1) as λ→∞.

To establish maximal regularity of (4.1), we continue to assume that (1.2)
has maximal regularity. There are several results in the literature identifying
conditions which are sufficient to ensure that (1.2) has Lp-maximal regular-
ity or the corresponding property in Hölder spaces, without assuming that
the domains D(B(t)) are constant. Instead they rely on regularity conditions
on {B(t)} due to Acquistapace and Terreni [1] or Kato and Tanabe [16], [23].
We mention the following cases:

• X is a Hilbert space and the operators B(t) satisfy the Acquistapace–
Terreni conditions [13];
• X is a UMD space and the operators B(t) satisfy the Acquistapace–

Terreni conditions and are uniformly R-sectorial [22], [19];
• X is a UMD space and the operators B(t) satisfy the Kato–Tanabe

conditions and are uniformly R-sectorial [21].

In each of these cases, the assumption (4.3) is satisfied, so Theorem 4.1
below shows that (4.1) has maximal regularity. When X is a Hilbert space,
a related result has been given by Cannarsa, Da Prato and Zolésio [4, The-
orem 1.3.2].

Theorem 4.1. Assume that (4.3) holds. The second order problem (4.1)
has Lp-maximal regularity if and only if the first order problem (1.2) has
Lp-maximal regularity.

Proof. Assume first that (1.2) has Lp-maximal regularity, so that D+B
is closed and invertible. Since κD(D + κ)−1 is bounded, this implies that
D+B−κD(D+κ)−1 is closed. By our assumption (4.3), there exists λ ∈ C
such that λ > 0, D+B+λ is invertible, and ‖(D+B+λ)−1‖ < 1/2κ. Then

D + B + λ− κ(D + λ)(D + λ+ κ)−1

= (I − κ(I − κ(D + λ+ κ)−1)(D + B + λ)−1)(D + B + λ)

is invertible. By (4.2), D + B − κD(D + κ)−1 is invertible. Thus the prob-
lem (4.1) has Lp-maximal regularity.

Conversely, assume that (4.1) has Lp-maximal regularity, so that D+ B
− κD(D + κ)−1 is invertible. Since κD(D + κ)−1 is bounded, this implies
that D + B is closed. By our assumption (4.3), D + B + λ is invertible for
some λ, and then D + B is invertible by (4.2). Since

L̃ = D2 + B(D + κ) = (D + B − κD(D + κ)−1)(D + κ),

this implies that (1.2) has Lp-maximal regularity.
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Now we give a further theorem of this type involving perturbations of
the equation (4.1). Given an operator B on X and a Banach space Y such
that D(B) ↪→ Y ↪→ X, we say that Y is close to X compared to D(B) if,
for every ε > 0, there exists cε > 0 such that

‖x‖Y ≤ ε‖Bx‖X + cε‖x‖X
for all x ∈ D(B), as in [3, p. 12]. Given a family of operators (B(t))t∈[0,T ]

such that D(B(t)) ↪→ Y for each t ∈ [0, T ], we say that Y is close to X
compared to D(B(t)), uniformly in t, if cε can be chosen independently of t.
This implies that Lp(0, T ;Y ) is close to Lp(0, T ;X) compared to D(B).

Theorem 4.2. Assume that there is a Banach space Y such that
D(B(t)) ↪→ Y ↪→ X and Y is close to X compared to D(B(t)) uniformly
in t. Assume that (4.3) holds and that (1.2) has Lp-maximal regularity. Let
A0, B0 : [0, T ] → L(Y,X) be bounded and strongly measurable. Then the
problem

ü+B(t)(u̇+ κu) +B0(t)u̇+A0(t)u = f (t ∈ [0, T ]),(4.4)
u(0) = u̇(0) = 0,

has Lp-maximal regularity.

Proof. By Theorem 4.1,

L̃ = D2 + B(D + κ) = (D + B − κD(D + κ)−1)(D + κ)

is invertible, and by (4.2) the similar operator (D + λ)2 + B(D + λ + κ) is
invertible for each λ ∈ C. We have to show that L′ := D2 + B(D + κ) +
B0D +A0 is invertible with domain D(L̃).

Let u ∈ D(L̃). Then (D + κ)u ∈ D(B) ⊆ Lp(0, T ;Y ), so u =
(D+κ)−1(D+κ)u ∈W 1,p(0, T ;Y ). Hence, u ∈ D(L′). Thus, D(L′) = D(L̃).

Let λ ∈ C. By (4.2), L′ is similar to

(4.5) (D + λ)2 + B(D + λ+ κ) + B0(D + λ) +A0

= (I+(B0(D+λ)+A0)((D+λ)2+B(D+λ+κ))−1)((D+λ)2+B(D+λ+κ)).

For any f ∈ Lp(0, T ;X) and ε > 0,

‖B0(D + λ)((D + λ)2 + B(D + λ+ κ))−1f‖Lp(0,T ;X)

≤ C‖(D + λ)((D + λ)2 + B(D + λ+ κ))−1f‖Lp(0,T ;Y )

= C‖(D+λ)(D+λ+κ)−1(D+λ+B−κ(D+λ)(D+λ+κ)−1)−1f‖Lp(0,T ;Y )

≤ 2C‖(D + λ+ B − κ(D + λ)(D + λ+ κ)−1)−1f‖Lp(0,T ;Y )

≤ 2Cε‖B(D + λ+ B − κ(D + λ)(D + λ+ κ)−1)−1f‖Lp(0,T ;X)

+ 2Ccε‖(D + λ+ B − κ(D + λ)(D + λ+ κ)−1)−1f‖Lp(0,T ;X).
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By assumption (4.3), ‖(D + λ+ B)−1‖L(Lp(0,T ;X)) → 0 as λ→∞ and

‖B(D + λ+ B)−1‖ = ‖B(D + B)−1(I − λ(D + λ+ B)−1)‖L(Lp(0,T ;X)) ≤M
for all sufficiently large λ > 0. Hence

‖B(D + λ+ B − κ(D + λ)(D + λ+ κ)−1)−1‖L(Lp(0,T ;X))

= ‖B(D+λ−1+B)−1(I+κ2(D+λ+ κ)−1(D+λ−1+B)−1)−1‖L(Lp(0,T ;X))

≤M ′

for all sufficiently large λ, and

‖(D + λ+ B − κ(D + λ)(D + λ+ κ)−1)−1‖L(Lp(0,T ;X))

= ‖(D+λ−1+B)−1(I+κ2(D+λ+ κ)−1(D+λ−1+B)−1)−1‖L(Lp(0,T ;X))

→ 0

as λ → ∞. We may choose ε > 0 so small that 2CεM ′ < 1/8 and then
choose λ > 0 large enough so that

2Ccε‖(D + λ+ B − κ(D + λ)(D + λ+ κ)−1)−1‖Lp(0,T ;X) < 1/8.

It follows that

‖B0(D + λ)((D + λ)2 + B(D + λ+ κ))−1‖L(Lp(0,T ;X)) < 1/4.

Similarly we can arrange that

‖A0((D + λ)2 + B(D + λ+ κ))−1‖L(Lp(0,T ;X)) < 1/4.

Then it follows from (4.5) that (D + λ)2 + B(D + λ + κ) + B0D + A0 is
invertible. By (4.2), L′ is invertible and the claim is proved.

Example 4.3. We consider again the problem (1.3). Let Ω ⊂ Rn be
a bounded domain with boundary ∂Ω of class C2. We make the following
assumptions:

bij ∈ C([0, T ];C1(Ω)) ∩ Cµ([0, T ];C(Ω)), where 0 < µ ≤ 1,(4.6)
bij = bji = aij = aji,(4.7)
c1 = c0 ∈ C([0, T ];C1(∂Ω)) ∩ Cµ([0, T ];C(∂Ω)) and c1 ≥ 0.(4.8)

The lower order coefficients bi, b, ai and a satisfy the conditions (3.7) and
(3.10) from Example 3.4 with p =∞. We assume in addition the ellipticity
condition (3.12) on the coefficients bij .

Corollary 4.4. Let p, q ∈ (1,∞) and assume that u0 = u1 = 0. Then
for every f ∈ Lp(0, T ;Lq(Ω)) there exists a unique function

u ∈W 2,p(0, T ;Lq(Ω)) ∩W 1,p(0, T ;W 2,q(Ω))

which is a solution of the problem (1.3) in the following sense: the function u
satisfies the differential equation in (1.3) almost everywhere (all the deriva-
tives being understood in the Sobolev sense), and the initial and boundary
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conditions are satisfied almost everywhere. In particular , all terms on the
left-hand side of the differential equation in (1.3) belong to Lp(0, T ;Lq(Ω)).

Proof. For every t ∈ [0, T ], we consider the operator B(t) on Lq(Ω)
defined by

D(B(t)) :=
{
u ∈W 2,p(Ω) : C1(t, ·, ∂)u = 0 on ∂Ω

}
,

B(t)u := −
∑
i,j

∂i(bij(t, x)∂ju).

We also define operators B0(t), A0(t) : W 1,q(Ω)→ Lq(Ω) by

B0(t)u :=
∑
i

bi(t, x)∂iu+ b(t, x)u, A0(t)u :=
∑
i

ai(t, x)∂iu+ a(t, x)u.

It is then easy to verify that a function

u ∈W 2,p(0, T ;Lq(Ω)) ∩W 1,p(0, T ;W 2,q(Ω))

is a solution of (1.3) in the sense of the statement if and only if u is a solution
of the problem (4.4) from Theorem 4.2. For one implication one should note
that D(B) ⊂ Lp(0, T ;W 2,q(Ω)), so that u+ u̇ ∈ D(B) and u(0) = 0 implies
u ∈W 1,p(0, T ;W 2,q(Ω)).

It has been shown in [24, Theorem 4.1] that, under the conditions
(4.6)–(4.8), the family (B(t))t∈[0,T ] satisfies the Acquistapace–Terreni con-
ditions. To be precise, in [24], the proof is only given for Neumann type
boundary conditions, that is, c1 = 0, but the proof for arbitrary positive c1,
that is, for Robin type boundary conditions, is similar. It is moreover easy to
verify that the functions B0, A0 : [0, T ] → L(W 1,q(Ω), Lq(Ω)) are bounded
and strongly measurable by the assumptions (3.7) and (3.10) (which we
assumed with p =∞).

By [7, Theorem 6.1], the operators −B(t) generate C0-semigroups on
Lq(Ω) satisfying Gaussian estimates. The Gaussian estimates are uniform
in t due to the uniform boundedness and ellipticity of the coefficients bij .
Moreover, as is shown in [7], the first order problem (1.2) is well-posed in
Lq(Ω) in the sense that it generates a strongly continuous evolution family.
In particular, the closure of D+B is the negative generator of a C0-evolution
semigroup on Lp(0, T ;Lq(Ω)) and hence condition (4.3) holds. By [14, The-
orem 1], the first-order problem (1.2) has Lp-maximal regularity.

Noting finally that the space W 1,q(Ω) is close to Lq(Ω) compared to
D(B(t)) uniformly in t, we deduce the claim from Theorem 4.2.

Remarks 4.5. (a) In the above proof, the maximal regularity of the first
order problem (1.2) can also be shown by using results from [19] or [21].

(b) It is in principle also possible to allow non-zero initial values u0 and
u1 in Corollary 4.4 (compare with the discussion of (3.4) in the constant



222 C. J. K. Batty et al.

domain case). For this to be applicable, it would be necessary to identify
the trace space

Trp := {(u(0), u̇(0)) : u ∈ D(L̃)}.

We have not attempted to identify this space.
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sciences et les techniques. Vol. VIII , INSTN: Collection Enseignement, Masson,
Paris, 1988.

[10] G. Di Blasio, Lp-regularity for solutions of nonautonomous parabolic equations in
Hilbert spaces, Boll. Un. Mat. Ital. C (6) 1 (1982), 395–407.

[11] —, Maximal Lp regularity for nonautonomous parabolic equations in extrapolation
spaces, J. Evol. Equ. 6 (2006), 229–245.

[12] A. Favini, Parabolicity of second order differential equations in Hilbert space, Semi-
group Forum 42 (1991), 303–312.

[13] M. Hieber and S. Monniaux, Pseudo-differential operators and maximal regularity
results for non-autonomous parabolic equations, Proc. Amer. Math. Soc. 128 (2000),
1047–1053.

[14] —, —, Heat kernels and maximal Lp-Lq estimates: the nonautonomous case,
J. Fourier Anal. Appl. 328 (2000), 467–481.

[15] M. Hieber and J. Prüss, Heat kernels and maximal Lp-Lq estimates for parabolic
evolution equations, Comm. Partial Differential Equations 22 (1997), 1647–1669.

[16] T. Kato and H. Tanabe, On the abstract evolution equations, Osaka Math. J. 14
(1962), 107–133.

[17] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,
Progr. Nonlinear Differential Equations Appl. 16, Birkhäuser, Basel, 1995.
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