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Special symmetries of Banach spaces
isomorphic to Hilbert spaces

by

Jarno Talponen (Aalto)

Abstract. We characterize Hilbert spaces among Banach spaces in terms of tran-
sitivity with respect to nicely behaved subgroups of the isometry group. For example,
the following result is typical: If X is a real Banach space isomorphic to a Hilbert space
and convex-transitive with respect to the isometric finite-dimensional perturbations of the
identity, then X is already isometric to a Hilbert space.

1. Introduction. The expression “special symmetries” in the title
refers to suitable subgroups of G(X) = {T : X → X : T an isometric
automorphism} where X is a real Banach space. We denote the closed unit
ball of X by BX and the unit sphere by SX. The orbit of x ∈ SX with
respect to a family F ⊂ L(X) is given by F(x) = {T (x) : T ∈ F}. An
inner product (· | ·) : X×X→ R is said to be invariant with respect to F if
(T (x) |T (y)) = (x | y) for each x, y ∈ X, T ∈ F . The concept of an invariant
inner product is an important tool applied frequently in this article. We
say that X is transitive, almost transitive or convex-transitive with respect
to F if F(x) = SX, F(x) = SX or conv(F(x)) = BX, respectively, for all
x ∈ SX. If F = G(X) above, then we will omit mentioning it. This article
can be regarded as a part of the field generated around the well-known open
Banach–Mazur rotation problem, which asks whether each transitive sepa-
rable Banach space is isometrically a Hilbert space. See [3] for an exposition
of the topic.

In [5] F. Cabello Sánchez studied the subgroup

GF = {T ∈ G(X) : Rank(T − Id) <∞}
consisting of the finite-dimensional perturbations of the identity. There a
classical result appearing in [1, 11] is applied, namely, that each finite-dimen-
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sional Banach space admits an invariant inner product. This motivated the
work in [5], where an elegant proof was presented for the following result:

Theorem 1.1. If the norm of X is transitive with respect to GF , then X
is isometric to a Hilbert space.

Cabello raised the question whether this result can be extended to the
almost transitive setting. It turns out that the answer is affirmative under
the additional assumption that X is isomorphic to a Hilbert space:

Theorem 1.2. Let X be a Banach space isomorphic to a Hilbert space.
Then X is convex-transitive with respect to GF if and only if X is isometric
to a Hilbert space.

This paper is also motivated by the following problems posed in [4, 5]:

• Is an almost transitive Banach space isometric to a Hilbert space if it
is isomorphic to one?
• Find ideals J ⊂ L(X) (with F ⊂ J) for which Theorem 1.1 remains

true if the condition T − Id ∈ F is replaced by T − Id ∈ J (here F is
the ideal of finite-rank operators).

Questions of this type are treated in what follows, and we will also show that
the existence of an invariant inner product on X follows from the existence
of an invariant inner product for each finitely generated subgroup of G(X)
(see Theorem 2.2).

1.1. Preliminaries. We refer to [3], [7], [9], [10], [13] and [14] for some
background information. Recall that a norm ‖·‖ on X is maximal if G(X,‖·‖) ⊂
G(X,|||·|||) for an equivalent norm ||| · ||| implies that G(X,‖·‖) = G(X,|||·|||). If X
is convex-transitive, then the norm of X is maximal (see [6]). We denote by
Aut(X) the group of isomorphisms T : X→ X.

Given a topological group G we denote by UCB(G) the space of uni-
formly continuous bounded functions on G. Here we consider the uniform
structure ΦG of G as being generated by a basis of entourages of the diagonal
having the form

(1.1) W = {(g, h) ∈ G×G : gh−1, g−1h ∈ V },
where V runs over a neighbourhood basis of e in G. The space UCB(G) is
endowed with the ‖ · ‖∞-norm.

For convenience we isolate the following condition: Suppose that there
is a positive functional F ∈ UCB(G)∗ with ‖F‖ = 1 such that

(1.2) F (f(·g)) = F (f(·)) for all f ∈ UCB(G), g ∈ G.
This type of condition can be viewed as a weaker version of amenability of G
(see [12]). We note that the rotation group of Lp with the strong operator
topology is extremely amenable for 1 ≤ p <∞ (see [9]).
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Recall that the product topology of XX inherited by L(X) is called the
strong operator topology (SOT ).

We often consider subgroups G ⊂ G(X) which enjoy the following prop-
erty:

(∗) Given n ∈ N, T1, . . . , Tn ∈ G and a finite-codimensional subspace
Z ⊂ X there exists a finite-codimensional subspace Y ⊂ Z such that
T1(Y) = · · · = Tn(Y) = Y.

Clearly GF is an example of a subgroup of G(X) satisfying (∗).
It is easy to see that if H is a Hilbert space, then GF ⊂ G(H) is dense in

G(H) in the topology of uniform convergence on compact sets. On the other
hand, given a Banach space X the group G(X) is SOT-closed in Aut(X).

2. Results

Theorem 2.1. Let X be a maximally normed Banach space which is
isomorphic to a Hilbert space. Suppose that G(X) endowed with the strong
operator topology is amenable in the sense of condition (1.2). Then X is
isometrically isomorphic to a Hilbert space.

Proof. We may assume without loss of generality that (X, ‖ · ‖) and
(X, | · |) are isomorphic via the identical mapping, where | · | is a norm
induced by an inner product (· | ·) on X. We denote by G(X) = G(X,‖·‖) and
G(X,|·|) the corresponding rotation groups, and these are regarded with the
strong operator topology. Recall that ΦG(X) is the natural uniformity given
by the group (G(X), SOT) applied to (1.1).

Observe that T 7→ (Tx |Ty) defines a ΦG(X)-uniformly continuous map
G(X)→ R for each x, y ∈ X. Indeed, this map is obtained by composing the
ΦG(X)-‖ · ‖X⊕2X uniformly continuous map G(X)→ X⊕2 X, T 7→ (Tx, Ty),
and the map (Tx, Ty) 7→ (Tx |Ty), which is ‖ · ‖X⊕2X-uniformly continuous
as ‖ · ‖ ∼ | · |. To check that T 7→ (Tx, Ty) is uniformly continuous, first
consider a standard entourage

E = {(x1, y1, x2, y2) ∈ X⊕2 X×X⊕2 X : ‖(x1, y1)− (x2, y2)‖X⊕2X < ε}

for some ε > 0. The preimage of this is

{(R,S) ∈ G(X)× G(X) : ‖(Rx,Ry)− (Sx, Sy)‖X⊕2X < ε}
⊃ {(R,S) ∈ G(X)× G(X) : ‖Tx− Sx‖, ‖Ty − Sy‖ < ε/2}
= {(R,S) ∈ G(X)× G(X) : ‖x− T−1Sx‖, ‖y − T−1Sy‖ < ε/2}.

Hence it suffices to pick V = {R ∈ G(X) : ‖x − Rx‖, ‖y − Ry‖ < ε/2} in
(1.1) to find an entourage of ΦG(X) in the preimage of E. We deduce that
T 7→ (Tx, Ty) is ΦG(X)-uniformly continuous.
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According to the assumptions there is F ∈ UCB(G(X))∗ with ‖F‖ = 1
such that F (f(·g)) = F (f(·)) for f ∈ UCB(G(X)) and g ∈ G(X). For each
x, y ∈ X we put

[x | y] = F ({(g(x) | g(y))}g∈G(X)).

This definition is sensible, since g 7→ (g(x) | g(y)) defines an element in
UCB(G(X)) for each x, y ∈ X. We claim that [· | ·] defines an inner product
on X such that |||x||| ·=

√
[x |x] is equivalent to ‖ · ‖. Indeed, first note

that [· | ·] : (X, ‖ · ‖) ⊕2 (X, ‖ · ‖) → R is defined and bounded, since (· | ·) :
(X, ‖ · ‖)⊕2 (X, ‖ · ‖)→ R is bounded and ‖F‖ = 1. By using the bilinearity
of (· | ·) and the linearity of F we see that [· | ·] is bilinear. Let C ≥ 1 be such
that C−2‖ · ‖2 ≤ | · |2 ≤ C2‖ · ‖2. Since F is positive and norm-1, we get

C−2‖x‖2 = inf
g
C−2‖g(x)‖2 ≤ F ({(g(x) | g(x))}g∈G(X))

≤ sup
g
C2‖g(x)‖ = C2‖x‖,

where x ∈ X and the supremum and infimum are taken over G(X). This
means that [· | ·] is an inner product on X such that ||| · ||| is equivalent
to ‖ · ‖.

Observe that

[h(x) |h(y)]=F ({(gh(x) | gh(y))}g∈G(X))=F ({(g(x) | g(y))}g∈G(X))=[x | y]

for each h ∈ G(X). The maximality of the norm of (X, ‖ · ‖) implies that
G(X,‖·‖) = G(X,|||·|||). The proof is completed by a standard argument using
the fact that (X, ||| · |||) is transitive.

Suppose that X is a Banach space with two equivalent norms ‖ · ‖
and ||| · ||| such that the group G generated by G(X,‖·‖) ∪ G(X,|||·|||) is oper-
ator norm bounded. Then there is one more equivalent norm |||| · |||| on X
given by ||||x|||| = supg∈G ‖g(x)‖ and this is G-invariant. Consequently, if
the norms ‖ · ‖ and ||| · ||| are additionally maximal (resp. convex-transitive),
then G(X,‖·‖) = G(X,|||·|||) (resp. ‖ · ‖ = c||| · ||| for some constant c > 0).

The argument employed in the proof of [5, Lemma 2] can be modified
to obtain the following dichotomy regarding the existence of invariant inner
products.

Theorem 2.2. Let X be a Banach space and C ≥ 1. Suppose that for
each n ∈ N and T1, . . . , Tn ∈ G(X) there exists an inner product (· | ·)∗ :
X × X → R invariant under the rotations T1, . . . , Tn such that C−2‖x‖2 ≤
(x|x)∗ ≤ C2‖x‖2 for each x ∈ X. Then there is already an inner product
(· | ·)X : X×X→ R which is invariant under G(X) and satisfies C−2‖x‖2 ≤
(x |x)X ≤ C2‖x‖2 for x ∈ X.

Proof. We may assume without loss of generality that G(X) is not finitely
generated. Let N be the net of finitely generated subgroups of G(X) ordered
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by inclusion. By the assumptions we may assign to each γ ∈ N an inner
product (· | ·)γ : X×X→ R invariant under γ and satisfying

C−1‖x‖2 ≤ (x |x)γ ≤ C‖x‖2 for x ∈ X.

Observe that the sets {γ ∈ N : δ ⊂ γ}, where δ ∈ N , form a filter base of
a filter F on N . Let us extend F to an ultrafilter U on N . Note that U is
non-principal, since for each η ∈ N there is δ ∈ N with η ( δ such that
η /∈ {γ ∈ N : δ ⊂ γ} ∈ U .

Define B : X×X→ RN by setting B(x, y) = {(x | y)γ}γ∈N for x, y ∈ X.
We will consider RN equipped with the usual pointwise linear structure.
Then B becomes a symmetric and bilinear map. Moreover, B(x, x) ≥ 0
pointwise for x ∈ X. Put ~B : X×X→ R, ~B(x, y) = limU B(x, y) for x, y ∈ X.
Indeed, the above limit exists and is finite for all x, y ∈ X, since

(x|y)γ ≤
√

(x |x)γ(y|y)γ ≤ C2‖x‖ ‖y‖ for all γ ∈ N , x, y ∈ X.

Moreover, similarly we get C−2‖x‖2 ≤ ~B(x, x) ≤ C2‖x‖2 for all x ∈ X. It
follows that ~B is an inner product on X.

Observe that for all T ∈ G(X) and x, y ∈ X we have

{γ ∈ N : (Tx |Ty)γ = (x|y)γ} ⊃ {γ ∈ N : T ∈ γ} ∈ F ⊂ U .

Hence ~B(Tx, Ty) = ~B(x, y) for T ∈ G(X) and x, y ∈ X. Consequently, ~B is
the required inner product.

It is not known if an almost transitive Banach space isomorphic to a
Hilbert space is in fact isometric to a Hilbert space (see [4]). The following
consequence of Theorem 2.2 provides a partial answer to this problem.

Corollary 2.3. Let X be a maximally normed Banach space, H a
Hilbert space and C ≥ 1. Suppose that for any n ∈ N and T1, . . . , Tn ∈ G(X)
there exists an isomorphism φ : X→ H such that max(‖φ‖, ‖φ−1‖) ≤ C and
‖φ(x)‖ = ‖φ(Tix)‖ for all x ∈ X and i ∈ {1, . . . , n}. Then X is already
isometric to H.

Proof. By putting (x | y)∗ = (φ(x) |φ(y))H for each T1, . . . , Tn we ob-
tain the assumptions of Theorem 2.2. Let (· | ·)X : X × X → R be the re-
sulting inner product. Then X endowed with the norm |||x||| ·=

√
(x |x)X

is transitive being a Hilbert space. Since X is maximally normed, we get
G(X,‖·‖) = G(X,|||·|||). Thus X is transitive. It follows that ‖ · ‖ = c||| · ||| for
some c > 0, and hence X is a Hilbert space.

Theorem 2.4. Let (X, ‖ · ‖) be a Banach space, (H, (· | ·)H) an inner
product space, G ⊂ G(X) a subgroup satisfying (∗), and S : X → H an iso-
morphism. Then there exists an inner product (· | ·)X on X such that
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(1) ‖S−1‖−2‖x‖2 ≤ (x |x)X ≤ ‖S‖2‖x‖2 for x ∈ X.
(2) (Tx |Ty)X = (x | y)X for x, y ∈ X and T ∈ GSOT ⊂ L(X).

Proof. It suffices to find (· | ·)X which satisfies conclusions (1) and (2)
for merely T ∈ G. Indeed, given T ∈ GSOT and x, y ∈ X there is a sequence
(Tn) ⊂ G such that Tn(x)→ T (x) and Tn(y)→ T (y) as n→∞. This yields

(T (x) |T (y))X − (x | y)X = lim
n→∞

((Tn(x) |Tn(y))X − (x | y)X) = 0

by using the G-invariance and the ‖ · ‖-continuity of (· | ·)X.
LetM be the set of all pairs (E,G) where E ⊂ X is a finite-codimensional

subspace and G ⊂ G is a finitely generated subgroup such that T (E) = E
for T ∈ G.

From the definition of G we know that
⋃

(E,G)∈MG = G and
⋂

(E,G)∈ME

= {0}. We equip M with the partial order ≤ defined as follows: (E1, G1) ≤
(E2, G2) if E1 ⊃ E2 and G1 ⊂ G2. So, (M,≤) is a directed set.

Suppose that Y ⊂ H is a subspace of a Hilbert space and H/Y is the
corresponding quotient space. Then there exists a natural inner product on
H/Y, namely

(x̂Y | ŷY)H/Y = (x− PYx | y − PYy)H, x, y ∈ H,

where x̂Y = x+Y, ŷY = y+Y and PY : X→ Y is the orthogonal projection
onto Y.

Given (E,G) ∈ M we find that T (E) = E for T ∈ G and hence the
mapping T̂E : X/E → X/E given by T̂E(x̂E) = T (x+ E) defines a rotation
on X/E for T ∈ G. Indeed, ‖x̂E‖X/E = dist(x,E) and dist(T (x), E) =
dist(x,E), as T (E) = E. Now, since X/E is finite-dimensional, the rotation
group GX/E is compact in the operator norm topology.

For each (E,G) ∈M we define a map ŜE : X/E → H/S(E) by ŜE(x̂E) =
S(x+ E). It is easy to see that

(2.1)
‖S−1‖−2‖x̂E‖2X/E ≤ (ŜE(x̂E)|ŜE(x̂E))H/S(E),

(ŜE(x̂E) | ŜE(ŷE))H/S(E) ≤ ‖S‖2‖x̂E‖X/E‖ŷE‖X/E
for x, y ∈ X. Consider RM with the pointwise linear structure. Define a map
B : X×X→ RM by

B(x, y)(E,G) =
�

GX/E

(ŜE(τ x̂E) | ŜE(τ ŷE))H/S(E) dτ.

Above
	
GX/E

is the invariant Haar integral over the compact group GX/E .
The invariance of the integral yields B(Tx, Ty)(E,G) = B(x, y)(E,G) for
x, y ∈ X, (E,G) ∈ M and T ∈ G. By using (2.1) and the basic properties
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of the integral we obtain

(2.2)
‖S−1‖−2‖x̂E‖2X/E ≤ B(x, x)(E,G),

B(x, y)(E,G) ≤ ‖S‖2‖x̂E‖X/E‖ŷE‖X/E
for x, y ∈ X and (E,G) ∈M.

The family {{γ ∈ M : γ ≥ η}}η∈M is a filter base on M. Let U be a
non-principal ultrafilter extending {{γ ∈ M : γ ≥ η}}η∈M. Put (x | y)X =
limU B(x, y) for x, y ∈ X. It is easy to see that (· | ·)X is a bilinear mapping.

According to (2.2) we obtain (x | y)X ≤ ‖S‖2‖x‖X‖y‖X. Next, we aim
to verify that ‖S−1‖−2‖x‖2X ≤ (x |x)X. Towards this, we will check that
sup(E,G)∈M ‖x̂E‖X/E = ‖x‖X. Fix x ∈ SX. Assume to the contrary that
sup(E,G)∈M ‖x̂E‖X/E = c < 1. Note that X is reflexive, being isomorphic
to H. Thus the ball x+ cBX is weakly compact. Putting

{{y ∈ E : ‖x− y‖ ≤ C}}(E,G)∈M

defines a net of non-empty closed convex subsets of x + cBX. This net has
a cluster point z ∈ x+ cBX according to the weak compactness of x+ cBX.
This means that z ∈

⋂
(E,G)∈ME, which provides a contradiction, since

z 6= 0. Consequently, (2.2) yields

‖S−1‖−2 ‖x‖2X = ‖S−1‖−2 lim
U
‖x̂E‖2X/E ≤ lim

U
B(x, x) = (x |x)X.

Finally, we claim that (Tx |Ty)X = (x | y)X for x, y ∈ X and T ∈ G.
Indeed, pick T ∈ G and x, y ∈ X. Then

{(E,G) ∈M : B(T (x), T (y))(E,G) = B(x, y)(E,G)}
⊃ {(E,G) ∈M : T ∈ G} ∈ U ,

so that limU (B(Tx, Ty)−B(x, y)) = 0.

Corollary 2.5. Let X be a maximally normed space X isomorphic to
a Hilbert space. Suppose that there is a subgroup G ⊂ G(X) which satisfies
(∗) and G(X) ⊂ GSOT. Then X is isometrically a Hilbert space.

In Theorem 2.4 the isomorphism S was exploited in order to give bounds
for the resulting inner product (· | ·)X. In [5] a different approach was taken: the
analogous construction was suitably normalized by using a special point x0.
By suitably combining the arguments in [5] and in the proof of Theorem 2.4
we obtain the following result.

Theorem 2.6. Let X be a Banach space transitive with respect to a
subgroup G ⊂ G(X) which satisfies (∗). Then X is isometric to a Hilbert
space.
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Theorem 1.2 is an immediate consequence of the following result. This
result implies that X must in particular be almost transitive, and we note
that there exists an alternative route to this fact, since spaces both convex-
transitive and superreflexive are additionally almost transitive (see e.g. [8]).

Theorem 2.7. Let X be a Banach space isomorphic to a Hilbert space
and suppose G ⊂ G(X) is a subgroup which satisfies (∗) and GF ⊂ G. Then X
is convex-transitive with respect to GSOT ⊂ L(X) if and only if X is isometric
to a Hilbert space.

Proof. First note that a Hilbert space is transitive, in particular convex-
transitive, and that GF ⊂ G(H) is SOT-dense in G(H), so that the “if”
direction is clear.

Since X is isomorphic to a Hilbert space, we may apply Theorem 2.4 to
obtain a GSOT-invariant inner product (· | ·)X on X such that |||x|||2 = (x |x)X
defines a norm equivalent with ‖ ·‖X. Clearly ||| · ||| is GSOT-invariant as well.
By rescaling |||·||| we may assume without loss of generality that ‖·‖X ≤ |||·|||
and supy∈S(X,|||·|||)

‖y‖X = 1. Put C = {x ∈ X : |||x||| ≤ 1}.
Fix x ∈ S(X,‖·‖X) and ε > 0. Let y ∈ S(X,|||·|||) be such that ‖y‖X >

1−ε/2. Since (X, ‖·‖X) is convex-transitive with respect to GSOT, we see that
(1− ε/2)x ∈ conv‖·‖X({T (y) : T ∈ GSOT}). Since the norms ||| · ||| and ‖ · ‖X
are equivalent we deduce that there is a convex combination

∑
anTn(y) ∈

conv({T (y) : T ∈ GF }) such that |||(1 − ε/2)x −
∑
anTn(y)||| < ε/2. By

noting that |||
∑
anTn(y)||| ≤

∑
an|||Tn(y)||| we obtain sup

T∈GSOT |||T (y)||| ≥

|||x|||− ε. Hence |||y||| ≥ |||x|||− ε by using the GSOT-invariance of ||| · |||. Since
ε was arbitrary and |||x||| ≥ 1, we deduce that |||x||| = 1, and it follows that
‖ · ‖X = ||| · |||.

Finally, we will take a different approach and characterize the Hilbert
spaces in terms of the subgroup of rotations that fix a given 1-dimensional
subspace, rather than a finite-codimensional subspace.

Proposition 2.8. Let X be an almost transitive Banach space. Suppose
that there exists z0 ∈ SX such that for any ε > 0 and x, y ∈ SX with
dist(x, [z0]) = dist(y, [z0]) = 1, there is T ∈ G(X) with ‖T (z0)− z0‖ < ε and
‖T (x)− y‖ < ε. Then X is isometric to an inner product space.

Proof. It is well-known (see e.g. Corollary 2.42 and Diagram I in [3,
p. 22], or Proposition 9.6.1 and discussion in [13]) that almost transitive
finite-dimensional spaces are isometric to Hilbert spaces. Hence we may con-
centrate on the case dim(X) ≥ 3. Let A,B ⊂ X be 2-dimensional subspaces
such that z0 ∈ A. Recall the classical result that a Banach space is isometric
to a Hilbert space if and only if any couple of 2-dimensional subspaces are
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mutually isometric (see [2]). Thus, in order to establish the claim, it suffices
to verify that the subspaces A and B are isometric.

Fix 0 < ε < 1, x ∈ SX ∩ A such that dist(x, [z0]) = 1 and w ∈ SX ∩ B.
Let f ∈ SX∗ be such that f(w) = 1.

Since X is almost transitive, there is T1 ∈ G(X) such that ‖T1(w)−z0‖ <
ε/4. Define a linear operator S : X→ X by S(v) = T1(v) + f(v)(z0− T1(w))
for v ∈ X and note that S(w) = z0. Observe that S is an isomorphism, since
‖T1 − S1‖ < ε/4. Pick y ∈ SX ∩ S(B) such that dist(y, [z0]) = 1. According
to the assumptions there is T2 ∈ G(X) such that

max(‖T2(z0)− z0‖, ‖T2(y)− x‖) < ε/4.

Let g, h ∈ 2BX∗ be such that g(z0) = h(y) = 1, y ∈ Ker(g) and z0 ∈ Ker(h).
Define a linear operator U : X→ X by

U(v) = T2(v) + g(v)(z0 − T2(z0)) + h(v)(x− T2(y)) for v ∈ X.

Note that U(z0) = z0 and U(y) = x. Moreover, ‖T2 − U‖ < ε, so that U is
an isomorphism. Observe that U ◦ S maps B linearly onto A. We conclude
that A and B are almost isometric, since ε was arbitrary. Hence, being
finite-dimensional spaces, A and B are isometric.
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