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Abstract. We define homogeneous classes of x-dependent anisotropic symbols
Ṡmγ,δ(A) in the framework determined by an expansive dilation A, thus extending the
existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander–
Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs
of their boundedness on Lebesgue and Hardy spaces by making use of the well-established
Calderón–Zygmund theory on spaces of homogeneous type. We then show that x-depen-
dent symbols in Ṡ0

1,1(A) yield Calderón–Zygmund kernels, yet their L2 boundedness fails.

Finally, we prove boundedness results for the class Ṡm1,1(A) on weighted anisotropic Besov
and Triebel–Lizorkin spaces extending isotropic results of Grafakos and Torres [Michigan
Math. J. 46 (1999)].

1. Introduction: definitions, examples, notation. Multiplier oper-
ators, and more generally pseudodifferential operators, continue to attract
attention due to their wide applications in the study of partial differential
equations and signal analysis. Several classes of isotropic pseudodifferential
symbols attached to such operators, in both linear and multilinear setting,
are nowadays well understood. Among them we highlight the prominent role
played by the classical Hörmander–Mikhlin multipliers [16], [21], their space
dependent counterparts—the Coifman–Meyer symbols [8], or more generally
the so-called classical classes of symbols Smγ,δ or their homogeneous counter-
parts Ṡmγ,δ.

We start by recalling the definition of the isotropic classes of homoge-
neous symbols Ṡmγ,δ; see for example the work of Grafakos and Torres [15].
We say that a symbol σ belongs to the class Ṡmγ,δ if

(1.1) |∂αx ∂
β
ξ σ(x, ξ)| ≤ Cαβ|ξ|m+δ|α|−γ|β|
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42 Á. Bényi and M. Bownik

for all multi-indices α, β, all ξ ∈ Rn, and some positive constants Cαβ. In
particular, if the symbol σ is x-independent, we refer to it as a multiplier.
A multiplier σ(ξ) belongs to the class Ṡmγ,0, or simply Ṡmγ , if

(1.2) |∂βξ σ(ξ)| ≤ Cβ|ξ|m−γ|β|

for all multi-indices β, all ξ ∈ Rn, and some positive constants Cβ. The non-
homogeneous version of these classes is obtained by replacing the quantity
|ξ| with 1 + |ξ|. For the remainder of this paper, the absence of the dot will
refer to the nonhomogeneous version of a given class of symbols.

In the early 1970s Rivière extended the theory of singular integrals to
operators with kernels that satisfy a homogeneity given by a one-parameter
group of transformations. His work [22] anticipated future developments
surrounding what is nowadays known as the Calderón–Zygmund theory on
spaces of homogeneous type. Some of the motivation for the study of such
spaces and operators acting on them comes from partial differential equa-
tions where several differential operators, such as the heat operator, satisfy
an anisotropic homogeneity. Of particular interest was therefore the study
of the boundedness properties of homogeneous multiplier operators; see, for
example, [22], and the works of Madych and Rivière [20] and Seeger [23].
In the context of operators with x-dependent nonhomogeneous anisotropic
symbols, several boundedness results are known, for instance, from the works
of Garello [13], Lascar [18], Leopold [19], and Yamazaki [29, 30]. As we will
indicate below, the setting used by the latter authors involves diagonal dila-
tions. However, the study of pseudodifferential operators with x-dependent
anisotropic symbols associated with more general expansive dilations has
not been previously explored.

In this paper we introduce and investigate the appropriate notion of
anisotropic class of multipliers Ṡmγ (A), and more generally of anisotropic
class of symbols Ṡmγ,δ(A), associated to an expansive matrix A. We search
for a definition analogous to the isotropic one stated above. We need to
set up first some of the standard notation, which we borrow from Bownik’s
monograph [3]; see also [4], [6]. Given an expansive matrix A, that is, a
matrix all of whose eigenvalues λ satisfy |λ| > 1, we can first define a
canonical quasi-norm ρA associated to it. Specifically, if we let P be some
nondegenerate n× n matrix, and | · | the standard norm of Rn, there exists
an ellipsoid ∆ = {x ∈ Rn : |Px| < 1} such that |∆| = 1 and ∆ ⊂ r∆ ⊂ A∆
for some r > 1. Then we can define a family of dilated balls around the
origin Bk = Ak∆, k ∈ Z, that satisfy

Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk,

where b = |detA|. The step homogeneous quasi-norm induced by A is defined



Anisotropic pseudodifferential symbols 43

by
ρ(x) = bj for x ∈ Bj+1 \Bj , and ρ(0) = 0.

It is straightforward to verify that ρ satisfies a triangle inequality up to a
constant and the homogeneity condition ρ(Ax) = bρ(x), x ∈ Rn. It is known
that any two homogeneous quasi-norms associated to a dilation A are equiv-
alent; therefore, we can talk about a canonical quasi-norm associated to A,
which we denote by ρA. Moreover, endowed with the quasi-norm ρA and the
Lebesgue measure, Rn becomes a space of homogeneous type. Similarly we
shall consider a family of dilated balls B∗k, k ∈ Z, and a canonical quasi-norm
ρA∗ associated with the transposed dilation A∗.

Definition 1.1. We say that a bounded symbol σ(x, ξ) belongs to the
homogeneous anisotropic class Ṡmγ,δ(A) if it satisfies the estimates

(1.3) |∂αx ∂
β
ξ [σ(A−k1 ·, (A∗)k2 ·)](Ak1x, (A∗)−k2ξ)| ≤ Cα,βρA∗(ξ)m

for all multi-indices α, β and (x, ξ) ∈ Rn × (Rn \ {0}). Here, k1, k2 ∈ Z are
given by

(1.4) k1 = bkδc, k2 = bkγc,
where k ∈ Z is such that ρA∗(ξ) ∼ |detA|k.

The derivatives above should be interpreted as

∂αx ∂
β
ξ σ̃(Ak1x, (A∗)−k2ξ),

where
σ̃(x, ξ) = σ(A−k1x, (A∗)k2ξ),

and k1, k2 ∈ Z are as in the previous definition.
The notation ∼ has the following interpretation: we pick k to be the

unique integer such that the frequency variable ξ belongs to the annulus
B∗k+1 \B∗k. We would like to point out that, for a general expansive matrix
A, we need to require estimates that hold uniformly after rescaling to scale
zero. This is intuitively clear, due to the definition of the quasi-norm induced
by the adjoint matrix. As we shall soon see, however, this apparently small
detail will translate into certain technical difficulties in our proofs.

When our symbol is x-independent, we will again refer to it as multi-
plier and simply write Ṡmγ (A) for the corresponding class. At a first glance,
Definition 1.1 might seem rather obscure. Nevertheless, it is not hard to see
that in the isotropic case, that is, when A = 2In (In is the n × n identity
matrix), Definition 1.1 yields the isotropic class Ṡmγ,δ. Indeed, in this case
we have ρA∗(ξ) = |ξ|n and we simply need to observe that our uniform es-
timates (1.3) are those in (1.1) written for |ξ| ∼ 2k. That is, the isotropic
class Ṡmγ,δ coincides with Ṡ

m/n
γ,δ (2In). Note that the rescaling of parameter

m by a factor of 1/n is an artifact of our definition of a quasi-norm. To be
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consistent with the isotropic definition of this class of symbols, one must
require that the quasi-norm associated to A∗ satisfies the homogeneity con-
dition ρA∗(A∗ξ) = |detA|1/nρA∗(ξ) instead. When A = 2In this leads to the
quasi-norm ρA∗(ξ) = |ξ| and the Definition 1.1 yields the isotropic class Ṡmγ,δ.

More generally, suppose that the dilation A is diagonal,

A =


λa1 0 . . . 0
0 λa2 . . . 0
...

...
. . .

...
0 0 . . . λan

 ,

where λ > 1, a1, . . . , an > 0 and a1 + · · ·+ an = na. Consider

ρA(x1, . . . , xn) = (|x1|2/a1 + · · ·+ |xn|2/an)a/2.

It is easy to check that ρA is a quasi-norm associated with the dilation A.
In particular, we have the homogeneity condition

ρA(Ax) = ρA(λa1x1, . . . , λ
anxn) = λaρA(x) = |detA|1/nρA(x).

Alternatively, we could have chosen

ρA(x1, . . . , xn) = max
1≤j≤n

|xj |a/aj .

Pick now ξ ∈ B∗k+1 \B∗k for some k ∈ Z, that is, ρA∗(ξ) ∼ λak. Then

|∂αx ∂
β
ξ [σ(A−k1 ·, (A∗)k2 ·)](Ak1x, (A∗)−k2ξ)|

= λ−k1
Pn
j=1 ajαj+k2

Pn
j=1 ajβj |∂αx ∂

β
ξ σ(x, ξ)|.

Therefore, using (1.4), we see that estimates (1.3) take the more familiar
form

(1.5) |∂αx ∂
β
ξ σ(x, ξ)| . Cα,β[ρA∗(ξ)]m+δ‖α‖−γ‖β‖,

where we denoted

‖α‖ =
1
a

n∑
j=1

ajαj , ‖β‖ =
1
a

n∑
j=1

ajβj .

Estimates (1.5) define the so-called homogeneous class Ṡma;γ,δ; the corre-
sponding nonhomogeneous version of this class, Sma;γ,δ, was previously in-
vestigated in [13, 18, 19, 29, 30]. Our definition has the following advantage:
for a general matrix A, say one that has some nontrivial Jordan blocks, the
action of A on Rn could be rather complex, and the diagonal version em-
ployed by these authors does not capture the anisotropy of all directions.
We also recover the nonhomogeneous class introduced by these authors with
a straightforward adaptation of the previous definition. At least in the di-
agonal case, this definition is powerful enough to recover known proper-
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ties of boundedness, symbolic calculus and microlocal analysis of classical
Hörmander classes of symbols; see again [13, 18, 19, 29, 30] and the ref-
erences therein. The relevant boundedness properties of certain nonhomo-
geneous classes of symbols associated to a general expansive matrix A are
investigated in our complementary work [1]. The anisotropic nonhomoge-
neous class of symbols is simply the smoothed out version at ξ = 0 of the
homogeneous one.

Definition 1.2. We say that a bounded symbol σ(x, ξ) belongs to the
nonhomogeneous anisotropic class Smγ,δ(A) if it satisfies the estimates

(1.6) |∂αx ∂
β
ξ [σ(A−k1 ·, (A∗)k2 ·)](Ak1x, (A∗)−k2ξ)| ≤ Cα,β(1 + ρA∗(ξ))m

for all multi-indices α, β and (x, ξ) ∈ Rn×Rn. Here, k1, k2 ∈ Z are given by
(1.4), where k ∈ N is such that 1 + ρA∗(ξ) ∼ |detA|k.

Associated to any symbol σ(x, ξ) we have a pseudodifferential operator

(1.7) (σ(x,D)f)(x) =
�

Rn
σ(x, ξ)f̂(ξ)eix·ξ dξ;

here, f̂ = Ff denotes the Fourier transform of f . When the symbol is x-
independent, we simply write σ(D) and refer to it as a multiplier operator.
Because of the ξ = 0 singularity of the symbol, it is natural to consider the
operator σ(x,D) initially defined on the subspace S0(Rn) of the space of
Schwartz functions S(Rn), consisting of all functions whose Fourier trans-
form vanishes to infinite order at zero. Moreover, we can show that for any
σ ∈ Ṡmγ,δ(A), σ(x,D) maps S0 continuously to S. We postpone the proof of
this fact, which requires some additional notation specific to the anisotropic
setting, until Section 4; see Lemma 4.9. It is also well known that S is dense
in Lp, 1 ≤ p < ∞, and S ∩Hp is dense in Hp, 0 < p ≤ 1; a similar state-
ment holds for S0. For the appropriate definitions of these spaces and further
properties, we refer again to the monograph [3].

The remainder of this paper will be concerned with homogeneous multi-
pliers or pseudodifferential symbols, therefore allowing for a singularity at
ξ = 0; we reiterate that the definition we provided is appropriate for any
expansive matrix, not just for a diagonal one. We investigate the relevant
properties of certain homogeneous classes of multipliers or symbols in this
anisotropic setting, with the main goal of extending the classical isotropic
results.

Our paper is organized as follows. In Sections 2 and 3 we revisit the
anisotropic Mikhlin and Hörmander multipliers, and provide alternative
proofs of their boundedness on Lebesgue and Hardy spaces. Our approach is
simpler than the one in [22], mainly because we can appeal now to the well
established Calderón–Zygmund theory on spaces of homogeneous type. In
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particular, the continuity results for these multipliers follow immediately
once we show that their Schwartz kernels satisfy anisotropic Calderón–
Zygmund estimates. In Section 4, we prove that pseudodifferential operators
with symbols in Ṡ0

1,1(A) have anisotropic Calderón–Zygmund kernels. Then,
by making use of wavelet techniques, we show that operators with symbols
in the exotic classes Ṡm1,1(A) are bounded on weighted anisotropic Besov and
Triebel–Lizorkin spaces. This extends the corresponding isotropic results of
Grafakos and Torres [15].

2. Anisotropic Mikhlin multipliers. In analogy with its isotropic
counterpart, we will define the anisotropic Mikhlin class Ṡ0

1(A). A multiplier
σ ∈ Ṡ0

1(A) satisfies

(2.1) |∂βξ [σ((A∗)k·)]((A∗)−kξ)| ≤ Cβ

for all multi-indices β, all ξ ∈ Rn \ {0}, and k ∈ Z such that ρA∗(ξ) ∼ bk =
|detA|k. In particular, (2.1) implies that σ is a bounded function. Note that
in the isotropic case A = 2In, the condition (2.1) takes the familiar form

|∂βξ σ(ξ)| ≤ Cβ|ξ|−|β| for all β.

Example 2.1. Consider the following simple partial differential equation
in the variable function u(x1, x2) on R2:

P (∂)u = Q(∂)f,

where f(x1, x2) is some given Schwartz function on R2, and

P (∂) = ∂6
x1

+ ∂2
x2

+ ∂6
x2
, Q(∂) = ∂6

x1
+ ∂6

x2
.

By taking the Fourier transform on both sides of this equation, we obtain

(ξ61 + ξ22 + ξ62)û = (ξ61 + ξ62)f̂ ,

which gives (by taking the inverse Fourier transform)

u = F−1(σf̂).

Here,

σ(ξ1, ξ2) =
ξ61 + ξ62

ξ61 + ξ22 + ξ62

is a typical example of homogeneous multiplier to which the anisotropic
setting seems to be more appropriate than the isotropic one. This is despite
the fact that σ does not have any obvious scaling property.

Indeed, a straightforward exercise verifies that σ ∈ Ṡ0
1(A), where

A =
(√

2 0
0 2

√
2

)
.
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More precisely, we can check that estimates (1.5) hold with a1 = 1/2,
a2 = 3/2, a = 1, n = 2, i.e.,

|∂α1
ξ1
∂α2
ξ2
σ(ξ1, ξ2)| . ρA∗(ξ1, ξ2)−‖(α1,α2)‖,

where
ρA∗(ξ1, ξ2) = max

i=1,2
(|ξ1|2, |ξ2|2/3).

For example,

|∂ξ1σ(ξ1, ξ2)| = 6|ξ1|5|ξ2|2

(ξ61 + ξ22 + ξ62)2
. min

i=1,2
(|ξ1|−1, |ξ2|−1/3) . ρA∗(ξ1, ξ2)−‖(1,0)‖.

Let us briefly indicate how the estimate above was obtained. If ρA∗(ξ1, ξ2) =
|ξ1|2, i.e., |ξ1|3 ≥ |ξ2|, then

|ξ1|5|ξ2|2

(ξ61 + ξ22 + ξ62)2
≤ |ξ1|

6|ξ2|2|ξ1|−1

|ξ1|12
≤
(
|ξ2|
|ξ1|3

)2

|ξ1|−1 ≤ |ξ1|−1.

If ρA∗(ξ1, ξ2) = |ξ2|2/3, i.e., |ξ1|3 ≤ |ξ2|, then

|ξ1|5|ξ2|2

(ξ61 + ξ22 + ξ62)2
≤ |ξ2|

5/3|ξ2|2

|ξ2|4
≤ |ξ2|−1/3.

Similar estimates hold for all multi-indices |α| ≤ 2. The results of Sections 2
and 3 will show that the Lp boundedness of the given function f is propa-
gated to the solution u.

Consider then a multiplier operator σ(D) with anisotropic Mikhlin sym-
bol σ(ξ), initially defined on S0. The main result of this section is the fol-
lowing.

Theorem 2.2. If σ ∈ Ṡ0
1(A), then σ(D) extends as a bounded operator

(i) σ(D) : Lp → Lp, p > 1,
(ii) σ(D) : L1 → L1,∞,

(iii) σ(D) : Hp → Hp, 0 < p ≤ 1,
(iv) σ(D) : Hp → Lp, 0 < p ≤ 1.

In particular, in the isotropic case A = 2In, we recover the well known
result about the Mikhlin class that if σ ∈ Ṡ0

1 , then σ(D) is a bounded
operator on all spaces Lp, p > 1.

Our proof will follow the classical approach. We refine the nice argument
in Grafakos’ book [14, Chapter 5], and show first that σ(D) is a Calderón–
Zygmund operator with respect to the dilation A and the canonical quasi-
norm ρA.

Proposition 2.3. Suppose that σ ∈ Ṡ0
1(A). Then K = F−1σ is a

Calderón–Zygmund kernel, that is,

(2.2) |∂α[K(Ak·)](A−kx)| ≤ Cα/ρA(x)
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for some Cα > 0, all multi-indices α, and all x ∈ Rn \{0} such that ρA(x) ∼
|detA|k = bk.

With this fact in hand, the proof of our theorem is immediate.

Proof of Theorem 2.2. Parts (i) and (ii) follow from the general Cal-
derón–Zygmund theory on spaces of homogeneous type as explained, for
example, in Stein’s book [24, Chapter 1]. This is due to the fact that condi-
tion (2.2) implies the Hörmander condition (3.2); see Proposition 3.3.

Part (iii) is implied by [3, Theorem 9.8]. We only need to note that the
multiplier operator is a Calderón–Zygmund singular integral of convolution
type,

σ(D)f = K ∗ f,
which is L2 bounded, because K ∈ L∞. Moreover, as a convolution operator,
σ(D) preserves vanishing moments, i.e., (σ(D))∗(xα) = 0 for all α. Finally,
part (iv) is a consequence of [3, Theorem 9.9].

To prove the proposition we will need the following elementary lemma
(see [3, 4, 6]).

Lemma 2.4. Suppose A is an expansive matrix, and λ− and λ+ are any
positive real numbers such that 1 < λ− < minλ∈σ(A) |λ| and maxλ∈σ(A) |λ| <
λ+ < b = |detA|. Then there exists c > 0 such that

(1/c)(λ−)j |x| ≤ |Ajx| ≤ c(λ+)j |x| for j ≥ 0,(2.3)

(1/c)(λ+)j |x| ≤ |Ajx| ≤ c(λ−)j |x| for j ≤ 0.(2.4)

Furthermore, if A is diagonalizable over C, then we may take λ− =
minλ∈σ(A) |λ| and λ+ = maxλ∈σ(A) |λ|.

We are ready to prove our proposition.

Proof of Proposition 2.3. We start by considering the Littlewood–Paley
decomposition ∑

j∈Z
ϕ((A∗)jξ) = 1, ξ 6= 0,

where ϕ is a C∞ function compactly supported away from the origin. Define

σj(ξ) = σ(ξ)ϕ((A∗)jξ),

and note that σj(ξ) 6= 0 if and only ρA∗(ξ) ∼ b−j . Clearly
∑

j∈Z σj(ξ)
converges boundedly to σ(ξ) for ξ 6= 0; see, for example, Frazier, Jawerth
and Weiss’ monograph [12]. If we let

Kj(x) =
�

Rn
σj(ξ)eix·ξ dξ,

then
∑

j∈ZKj converges to K in S ′.
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Claim 1. For all multi-indices α and for all x ∈ Rn such that ρA(x) ∼ 1,
we have

(2.5)
∑
j∈Z
|∂αKj(x)| ≤ Cα

for some positive constant Cα.

Notice again that we continue with our paradigm of “rescaling to scale
zero”. It turns out that it suffices to have the estimate (2.5) on the kernel K,
since, as we will see later, we can perform a “rescaling back to scale k”
argument and thus obtain estimate (2.2).

Let us first prove Claim 1. We denote by DAkf(·) = f(Ak·) the dilation
by Ak for all k ∈ Z of some function f . We can write

Kj = F−1σj = F−1(DA∗jD(A∗)−jσj) = b−jDA−jF−1(D(A∗)−jσj).

Let
fj = D(A∗)−jσj and gj = F−1fj .

It is easy to check that {fj}j∈Z is a subset of the normal class

NR = {φ ∈ C∞ : supp(φ) ⊂ {ξ : R−1 < |ξ| < R}, ‖∂αφ‖L∞ ≤ cα},
where R, cα > 0 is some fixed collection of parameters depending only on ϕ.
Consequently, {gj}j∈Z is a subset of

M = {Φ ∈ C∞ : ‖Φ‖m = sup
|α|≤m

(1 + |x|)m|∂αΦ(x)| ≤ cm},

where (cm)m∈N is some fixed sequence depending on R and cα.
Therefore, we have

(2.6) K =
∑
j∈Z

Kj =
∑
j∈Z

b−jDA−j (gj),

where {gj}j∈Z ⊂ M. Recall that we are trying to achieve the scale zero
estimate (2.5) of K. We fix s ∈ N and try to find summable estimates on
|∂αDA−j (gj)(x)|, |α| = s, for ρA(x) ∼ 1. We distinguish two cases.

Case 1: “Estimates of flat functions”: j ≥ 0. We use the chain rule and
the fact that ‖gj‖s ≤ cs to conclude that

|∂αDA−j (gj)(x)| ≤ Cs‖A−j‖s sup
|β|=s

|∂βgj(A−jx)| ≤ Cs‖A−j‖s.

Clearly, the series
∑

j≥0 b
−j‖A−j‖s converges as a geometric series with ratio

strictly less than 1.

Case 2: “Decay estimates at infinity”: j < 0. We use again the chain
rule and Lemma 2.4. For some convenient N ∈ N (to be chosen later), we
can write

|∂αDA−j (gj)(x)| ≤ CN,s‖A−j‖s|A−jx|−N ≤ CN,sλ−js+ λjN− .



50 Á. Bényi and M. Bownik

Note that the second inequality implicitly assumes that we work at scale
zero, that is, ρA(x) ∼ 1. We have also used the fact that gj ∈M. If we now
recall that 1 < λ− < λ+ < b, we can choose N such that

b−1λ−s+ λN− < 1,

which guarantees the convergence of the geometric series
∑

j<0 b
−jλ−js+ λjN− .

Hence, by combining the two summable estimates, we conclude that the
scale-zero estimate (2.5) holds:∑

j∈Z
|∂αKj(x)| ≤ Cs, |α| = s.

In order to finish the proof, we only need to prove the following

Claim 2. If K satisfies (2.5), then it also satisfies (2.2).

We use a rather natural rescaling argument. For a fixed k ∈ Z and x ∈ Rn

such that ρA(x) ∼ bk, we need to estimate

∂α[K(Ak·)](A−kx) = ∂α(DAkK)(A−kx).

Note that

DAkK =
∑
j∈Z

b−jDAk−j (gj) = b−k
∑
j∈Z

b−jDA−j (g̃j),

where g̃j = gj+k ∈ M. Consequently, since ρA(A−kx) ∼ 1 (i.e., we are
back at scale zero!), we can repeat the same argument following (2.6) and
conclude that

|∂α[K(Ak·)](A−kx)| ≤ Cαb−k . Cα/ρA(x).

This shows (2.2) and the proof is complete.

3. Anisotropic Hörmander multipliers. In this section we revisit
the class of anisotropic Hörmander multipliers introduced by Rivière [22].
We show that in the setting of expansive dilations this class corresponds
to anisotropic convolution-type Calderón–Zygmund operators. As a conse-
quence, we obtain a proof of Lp boundedness of anisotropic Hörmander
multipliers alternative to the original approach of Rivière.

Definition 3.1. Let σ be a bounded function on Rn \ {0}. We say that
σ is an anisotropic Hörmander multiplier of order M (associated to the
matrix A) if it is M -times differentiable and there exists Cα > 0 such that

(3.1)
�

B∗1\B∗0

|∂αξ (σ(A∗k·))(ξ)|2 dξ ≤ Cα

for all multi-indices α with |α| ≤M , and for all k ∈ Z.



Anisotropic pseudodifferential symbols 51

Note that in the isotropic case A = 2In, the condition (3.1) takes the
more familiar form

sup
k∈Z

2k(−n+2|α|)
�

2k<|ξ|<2k+1

|∂αξ σ(ξ)|2dξ ≤ Cα for all |α| ≤M.

We remark immediately that any Mikhlin multiplier is a Hörmander multi-
plier. Indeed, if σ ∈ Ṡ0

1(A), then
�

B∗1\B∗0

|∂α(σ(A∗k·))(ξ)|2 dξ =
�

B∗k+1\B
∗
k

|∂α(σ(A∗k·))((A∗)−kξ)|2b−k dξ

≤
�

B∗k+1\B
∗
k

Cαb
−k dξ ≤ Cα.

The constant Cα is of course the one appearing in the estimates (2.1) that
define the class Ṡ0

1(A).
Conversely, suppose that σ is a Hörmander multiplier of sufficiently large

order M . Then, by the Sobolev embedding theorem, ∂β(σ(A∗k·))(ξ) are
bounded on B∗1 \B∗0 for |β| < M − n/2. Thus, σ satisfies Mikhlin estimates
(2.1) up to that order. Hence, one could easily deduce an analogue of Theo-
rem 2.2 for Hörmander multipliers with sufficiently large order M . Instead,
we will show the following more concrete result generalizing the isotropic
Hörmander Multiplier Theorem (see [14, Theorem 5.2.7]), which can also be
deduced from [22, Theorem II.1.2].

Theorem 3.2. If σ is an anisotropic Hörmander multiplier of order
bn/2c+ 1, then σ(D) extends as a bounded operator:

(i) σ(D) : Lp → Lp, p > 1,
(ii) σ(D) : L1 → L1,∞.

We follow the strategy outlined in the previous section. The Calderón–
Zygmund theory for spaces of homogeneous type immediately yields Theo-
rem 3.2, once we prove that σ(D) has a Calderón–Zygmund kernel.

Proposition 3.3. Let σ be an anisotropic Hörmander multiplier of or-
der bn/2c+ 1. Then K = F−1σ satisfies the anisotropic Hörmander condi-
tion

(3.2) sup
y 6=0

�

ρA(x)≥2cρA(y)

|K(x− y)−K(x)| dx ≤ C

for some constants c > 1 and C > 0.

Proof. We start by observing that the annulus B∗1 \B∗0 can be replaced
by any other annulus B∗i+1 \B∗i in Definition 3.1. Indeed,



52 Á. Bényi and M. Bownik

(3.3)
�

B∗i+1\B∗i

|∂α(σ(A∗k·))(ξ)|2 dξ = bi
�

B∗1\B∗0

|∂α(σ(A∗k·))(A∗iξ)|2 dξ

≤ Cbi‖(A∗)−i‖|α|
∑
|β|=|α|

�

B∗1\B∗0

|∂β(σ((A∗)k+i·))(ξ)|2 dξ

≤ Cbi‖(A∗)−i‖|α|
∑
|β|=|α|

Cβ.

With the notation in the proof of Proposition 2.3, we have

σj(ξ) = σ(ξ)ϕ(A∗jξ),

so that σj(ξ) 6= 0 if and only if ρA∗(ξ) ∼ bj = |detA|j . Let

Kj = b−jDA−jF−1(D(A∗)−jσj).

By the product rule and the fact that supp ϕ̂ ⊂ B∗R \B∗−R for some R ∈ N,
we have

(3.4)
�

Rn
|∂αD(A∗)−jσj(ξ)|2 dξ .

�

B∗R\B
∗
−R

|∂αD(A∗)−jσ(ξ)|2 dξ

=
R−1∑
i=−R

�

B∗i+1\B∗i

|∂αD(A∗)−jσ(ξ)|2 dξ .
∑
|β|=|α|

Cβ

for |α| ≤ M := bn/2c + 1, where in the last step we have used (3.3). From
(3.4) we infer that

�

Rn
|F−1(D(A∗)−jσj)(x)(1 + |x|)M |2 dx ≤ CM ,

which is equivalent to

(3.5)
�

Rn
|bjKj(Ajx)(1 + |x|)M |2 dx ≤ CM .

Fix now 0 < ε < M − n/2. From the Cauchy–Schwarz inequality and (3.5)
we see that, for all j ∈ Z, we have

(3.6)
�

Rn
|Kj(x)|(1 + |A−jx|)ε dx = bj

�

Rn
|Kj(Ajx)|(1 + |x|)ε dx

≤
( �

Rn
|bjKj(Ajx)(1 + |x|)M |2 dx

)1/2( �

Rn
(1 + |x|)2ε−2M dx

)1/2
≤ Cε.

Likewise, the estimate
�

Rn
|ξβ∂α(D(A∗)−jσj(ξ))|2 dξ ≤ Cα,β
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yields
bj

�

Rn
|∂β(DAjKj)(x)(1 + |x|)M |2 dx ≤ CM,β,

and a similar argument to the one proving (3.6) yields the following general
estimates on the derivatives of the localized kernels:

(3.7) bj
�

Rn
|∂β(DAjKj)(x)|(1 + |x|)ε dx ≤ Cβ,ε

for all j ∈ Z and all multi-indices β. Using the estimates above, we see that∑
j∈ZKj(x) converges to some function K(x) for all x 6= 0; this being the

case, the function K(x) coincides with the distribution F−1σ for x 6= 0.
Indeed, since for j ≥ 0 we have |Kj(x)| ≤ Cb−j , we immediately conclude
that

∑
j≥0Kj(x) is convergent. On the other hand, (3.6) implies that for

any δ > 0 we have �

|x|≥δ

∑
j<0

|Kj(x)| dx <∞,

and this implies that the function
∑

j<0Kj(x) is finite almost everywhere
away from the origin.

To prove now that K satisfies the anisotropic Hörmander condition (3.2),
it is sufficient to show that for all y 6= 0, we have∑

j∈Z

�

ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx ≤ C.

For a fixed y 6= 0, let k ∈ Z (fixed) be such that ρA(y) ∼ bk. We will break
down our summation into two sums, over j > k and over j ≤ k.

By appropriately choosing c > 1 (this choice being determined by the
triangle inequality satisfied by the quasi-norm ρA) and using again (3.6), we
can write

(3.8)
∑
j>k

�

ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx

≤
∑
j>k

�

ρA(x)≥ρA(y)

2|Kj(x)| dx

= 2
∑
j>k

�

ρA(x)≥ρA(y)

|Kj(x)|(1 + ρA(A−jx))ε

(1 + ρA(A−jx))ε
dx

≤ Cε
∑
j>k

sup
x:ρA(x)≥ρA(y)

(1 + ρA(A−jx))−ε

≤ Cε
∑
j>k

(1 + ρA(A−jy))−ε ≤ Cε
∑
j>k

b(j−k)ε . 1.
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To estimate the sum over j ≤ k, we will use the Mean Value Theorem and
estimate (3.7). We have

(3.9)
�

ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx

= bj
�

ρA(x)≥2cbk−j

|DAjKj(x−A−jy)−DAjKj(x)| dx

≤ bj |A−jy|
�

ρA(x)≥2cbk−j

1�

0

|∇DAjKj(x− θA−jy)| dx dθ

≤ bj |A−jy|
1�

0

�

ρA(x)≥2cbk−j

|∇DAjKj(x− θA−jy)|(1 + |x− θA−jy|)ε

(1 + |x− θA−jy|)ε
dx dθ

≤ C1,ε
|A−jy|

(1 + |A−jy|)−ε
.

Summing over j ≤ k and taking ε < 1, we conclude that

(3.10)
∑
j≤k

�

ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx . C1,ε

∑
j≤k

b(j−k)(1−ε) . 1.

By combining (3.8) and (3.10), we obtain (3.2).

4. The class Ṡ0
1,1(A). It is well known [24, p. 267] that in contrast

with the isotropic Mikhlin class of multipliers Ṡ0
1 , the isotropic class of

x-dependent symbols σ(x, ξ) ∈ Ṡ0
1,0 does not yield Lp-bounded pseudo-

differential operators

(σ(x,D)f)(x) =
�

Rn
σ(x, ξ)f̂(ξ)eix·ξ dξ.

Recall that a symbol σ ∈ Ṡ0
1,0(A) satisfies

|∂αx ∂
β
ξ [σ(·, A∗k·)](x, (A∗)−kξ)| ≤ Cα,β

for all (x, ξ) ∈ Rn × Rn \ {0} and k ∈ Z such that ρA∗(ξ) ∼ bk. The Lp-
unboundedness is propagated to the more general anisotropic class Ṡ0

1,0(A).
In fact, for each expansive matrix A, one can construct an appropriate sym-
bol σ for which σ(x,D) is unbounded; our examples are simple extensions
of the isotropic ones appearing, for example, in [15].

Example 4.1. Assuming that ϕ is a smooth bump supported away from
the origin consider a sequence (mj(x))j∈Z of smooth functions defined on
Rn such that

(4.1) ‖∂α[mj(A−j ·)]‖∞ ≤ Cα for all α.
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Then a straightforward calculation using Definition 1.1 shows that the sym-
bol

(4.2) σ(x, ξ) =
∑
j∈Z

mj(x)ϕ((A∗)−jξ)

belongs to the class Ṡ0
1,1(A). Indeed, recall that σ ∈ Ṡ0

1,1(A) if

(4.3) |∂αx ∂
β
ξ [σ(A−k·, A∗k·)](Akx, (A∗)−kξ)| ≤ Cα,β

for all (x, ξ) ∈ Rn × Rn \ {0} and k ∈ Z such that ρA∗(ξ) ∼ bk. The latter
constraint reduces the series (4.2) to a finite sum over |j − k| ≤ R, where R
depends on the size of suppϕ. Then (4.3) follows by the chain rule.

Example 4.2. Assume that ϕ is as in Example 2 and let (vj)j∈Z be a
bounded sequence in Rn. Define the symbol

σ1(x, ξ) =
∑
j∈Z

eix·(A
∗)jvjϕ((A∗)−jξ).

Since the functions mj(x) = eix·(A
∗)jvj satisfy (4.1) we see that σ1 ∈ Ṡ0

1,1(A).
A similar argument shows that the symbol

σ0(x, ξ) =
∞∑
j=0

eix·(A
∗)jvjϕ((A∗)−jξ)

is in the nonhomogeneous class S0
1,1(A). However, one can show that the

operator σ0(x,D) is unbounded on L2 (see [1]). Thus, the L2-boundedness
of operators with symbols in Ṡ0

1,1(A) also fails in general.

4.1. Calderón–Zygmund estimates. A natural approach for prov-
ing continuity results of pseudodifferential operators, when applicable, is
via their singular integral realization. It turns out that the anisotropic ho-
mogeneous forbidden symbols σ ∈ Ṡ0

1,1(A) enjoy a remarkable property:
the Schwartz kernels associated to σ(x,D) satisfy Calderón–Zygmund esti-
mates. The isotropic analogue of this fact is due to Coifman and Meyer [9].
Combined with the failure of L2 bounds, this shows that, in general, this
class yields unbounded operators on all Lp spaces.

The x-dependence of the symbol σ(x, ξ) implies that the operator σ(x,D)
is of non-convolution type. For f ∈ S, we can write

(σ(x,D)f)(x) =
�

Rn
K̃(x, y)f(y) dy,

where K̃(x, y) = K(x, x− y), and (in the distribution sense)

K(x, z) =
�

Rn
σ(x, ξ)eiz·ξ dξ = F−1

2 σ(x, z).
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Theorem 4.3. If σ ∈ Ṡ0
1,1(A), then the corresponding kernel K satisfies

the Calderón–Zygmund estimates

(4.4) |∂αx ∂βz [K(Ak·, Ak·)](A−kx,A−kz)| ≤ Cα,β/ρA(z)

for z ∈ Rn and k ∈ Z such that ρA(z) ∼ bk, for all multi-indices α, β, and
some constants Cα,β > 0.

As an immediate corollary, the Schwartz kernel K̃ satisfies the symmetric
Calderón–Zygmund condition

|∂αx ∂βy [K̃(Ak·, Ak·)](A−kx,A−ky)| ≤ Cα,β/ρA(x− y)

for x, y ∈ Rn and k ∈ Z such that ρA(x− y) ∼ bk.
Proof of Theorem 4.3. Our proof is a fine tune-up of the one given for

Proposition 2.3. We start again by considering the Littlewood–Paley decom-
position ∑

j∈Z
ϕ((A∗)jξ) = 1, ξ 6= 0,

where ϕ is a C∞ function compactly supported away from the origin. Define
the symbols

σj(x, ξ) = σ(x, ξ)ϕ((A∗)jξ),

and note that σj(x, ξ) 6= 0 if and only ρA∗(ξ) ∼ b−j . Clearly
∑

j∈Z σj(x, ξ)
converges boundedly to σ(x, ξ) for ξ 6= 0. Let

Kj(x, z) =
�

Rn
σj(x, ξ)eiz·ξ dξ.

We have the following

Claim 1. For all multi-indices α, β and for all z ∈ Rn such that
ρA(z) ∼ 1, we have

(4.5)
∑
j∈Z
|∂αx ∂βzKj(x, z)| ≤ Cα,β

for some positive constant Cα,β.

The proof of Claim 1 follows a familiar path. For a function of two
variables f(x, y), we denote by DA,Bf(·, ·) = f(A·, B·) the dilation by A in
the first variable and by B in the second one. Thus, we can write

Kj = b−jDA−j ,A−jF−1
2 (DAj ,(A∗)−jσj).

Let
fj = DAj ,(A∗)−jσj and gj = F−1

2 fj .

Then

(4.6) Kj = b−jDA−j ,A−jgj .
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It is easy to check that {fj}j∈Z is a subset of the normal class NR consisting
of functions φ ∈ C∞(Rn × Rn) such that

supp(φ) ⊂ Rn × {ξ : R−1 < |ξ| < R} and |∂αx ∂
β
ξ φ(x, ξ)| ≤ cα,β, ∀x, ξ,

where R, cα,β > 0 is some fixed collection of parameters depending only
on ϕ. Consequently, {gj}j∈Z is a subset of M which consists of functions
Φ ∈ C∞(Rn × Rn) such that

‖Φ‖m,α = sup
|β|≤m

sup
z∈Rn

(1 + |z|)m|∂αx ∂βz Φ(x, z)| ≤ cm,α,

where (cm,α) is some fixed sequence depending on R and the constants cα,β.
Our goal is to achieve estimates (4.5). Based on the equality (4.6), if

we fix s1 = |α|, s2 = |β| ∈ N, it suffices to prove summable estimates on
|∂αx ∂

β
zDA−j ,A−jgj(x, z)| for ρA(z) ∼ 1. We split our analysis into two cases.

Case 1: “Estimates of flat functions”: j ≥ 0. We use the chain rule and
the fact that ‖gj‖s,α ≤ cs,α to conclude that

|∂αx ∂βz gj(A−j ·, A−j ·)(x, z)|
≤ Cs1,s2‖A−j‖s1‖A−j‖s2 sup

|α1|=s1
sup
|α2|=s2

|∂α1
x ∂α2

z gj(A−jx,A−jz)|

≤ Cs1,s2‖A−j‖s1+s2 .

Clearly, the series
∑

j≥0 b
−j‖A−j‖s1+s2 converges as a geometric series with

ratio strictly less than 1.

Case 2: “Decay estimates at infinity”: j < 0. We use again the chain
rule, Lemma 2.4, and the fact that gj ∈ M to write, for some sufficiently
large N ,

|∂αx ∂βz gj(A−j ·, A−j ·)(x, z)| ≤ CN,s1,s2‖A−j‖s1+s2 |A−jz|−N

≤ CN,s1,s2λ
−j(s1+s2)
+ λjN− .

Note that the second inequality implicitly assumes that we work at scale
zero, that is, ρA(z) ∼ 1. Recall also that 1 < λ− < λ+ < b. Therefore,
we can choose N such that b−1λ−s1−s2+ λN− < 1, which again guarantees the
convergence of the series

∑
j<0 b

−jλ
−j(s1+s2)
+ λjN− .

Hence, both cases yield summable estimates and we conclude that∑
j∈Z
|∂αx ∂βzKj(x, z)| ≤ Cs1,s2 , |α| = s1, |β| = s2.

This, in turn, clearly implies the zero-scale estimates

(4.7) |∂αx ∂βzK(x, z)| ≤ Cα,β
for all multi-indices α, β and all pairs (x, z) such that ρA(z) ∼ 1.
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Finally, we now use the standard rescaling argument to prove the follow-
ing claim.

Claim 2. If K satisfies (4.7), then it also satisfies (4.4).

If ρA(z) ∼ bk for some k ∈ Z fixed, we need to estimate

∂αx ∂
β
z [K(Ak·, Ak·)](A−kx,A−kz) = ∂α(DAk,AkK)(A−kx,A−kz).

Note that

DAk,AkK =
∑
j∈Z

b−jDAk−j ,Ak−j (gj) = b−k
∑
j∈Z

b−jDA−j ,A−j (g̃j),

where g̃j = gj+k ∈ M. Consequently, since ρA(A−kz) ∼ 1 (that is, we are
back at scale zero), bkDAk,AkK satisfies (4.7). Thus,

bk|∂αx ∂βz [K(Ak·, Ak·)](A−kx,A−kz)| ≤ Cα,β.

The proof is complete.

4.2. Anisotropic homogeneous Triebel–Lizorkin and Besov
spaces. The study of pseudodifferential operators with exotic isotropic
symbols Ṡ0

1,1 has received much attention. For example, using wavelet tech-
niques, Torres [25, 26] and Grafakos–Torres [15] have studied the properties
of this class of symbols on general spaces of smooth functions. These works
suggest that the right setting for studying the boundedness of pseudodiffer-
ential operators with symbols in the forbidden class Ṡ0

1,1(A) is provided by
the anisotropic homogeneous Triebel–Lizorkin spaces Ḟα,q

p = Ḟα,q
p (Rn, A, µ)

or Besov spaces Ḃα,q
p = Ḃα,q

p (Rn, A, µ). Before stating our result, we recall
the definitions and the molecular characterizations of these spaces. For an
extensive treatment of these spaces, the reader is referred to [4, 5, 6]; see
also [2].

Definition 4.4. Let µ be a ρA-doubling measure on Rn, i.e., there exists
β = β(µ) > 0 such that

(4.8) µ(x+Bk+1) ≤ |detA|βµ(x+Bk) for all x ∈ Rn, k ∈ Z.

The smallest such β is called the doubling constant of µ.
For α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, we define the anisotropic Triebel–

Lizorkin space Ḟα,q
p = Ḟα,q

p (Rn, A, µ) as the collection of all f ∈ S ′/P such
that

(4.9) ‖f‖Ḟα,qp =
∥∥∥(∑

j∈Z
(|detA|jα|f ∗ ϕj |)q

)1/q∥∥∥
Lp(µ)

<∞,
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where ϕj(x) = |detA|jϕ(Ajx) and ϕ ∈ S(Rn) satisfies

supp ϕ̂ := {ξ ∈ Rn : ϕ̂(ξ) 6= 0} ⊂ [−π, π]n \ {0},(4.10)

sup
j∈Z
|ϕ̂((A∗)jξ)| > 0 for all ξ ∈ Rn \ {0}.(4.11)

Likewise, we define the anisotropic Besov space Ḃα,q
p = Ḃα,q

p (Rn, A, µ) as
the collection of all f ∈ S ′/P such that

(4.12) ‖f‖Ḃα,qp =
(∑
j∈Z

(|detA|jα‖f ∗ ϕj‖Lp(µ))
q
)1/q

<∞.

Recall that S ′/P can be identified with the space of all continuous func-
tionals on S0. In [4, 5, 6] it is proved that the inclusion maps Ḟα,q

p ↪→ S ′/P,
Ḃα,q
p ↪→ S ′/P are continuous, and therefore these spaces are quasi-Banach.

Moreover, the definitions of anisotropic Ḟα,q
p and Ḃα,q

p spaces are indepen-
dent of ϕ. Let Q be the collection of all dilated cubes

Q = {A−j([0, 1]n + k) : j ∈ Z, k ∈ Zn}
adapted to the action of the dilation A. For Q = Qj,k = A−j([0, 1]n + k)
define scale(Q) = −j and its “lower-left” corner xQ = A−jk. If ϕ is a
function on Rn, we define its wavelet system as

(4.13) ϕQ(x) = |Q|1/2ϕ(Ajx− k), Q = A−j([0, 1]n + k) ∈ Q.
Obviously, if A = 2In we obtain the usual collection of dyadic cubes.

Definition 4.5. The discrete Triebel–Lizorkin sequence space ḟα,qp (A,µ)
is defined as the collection of all complex-valued sequences s = {sQ}Q∈Q
such that

(4.14) ‖s‖ḟα,qp
=
∥∥∥( ∑

Q∈Q
(|Q|−α|sQ|χ̃Q)q

)1/q∥∥∥
Lp(µ)

<∞,

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the di-
lated cube Q. Likewise, the discrete Besov sequence space ḃα,qp = ḃα,qp (A,µ)
is the collection of all complex-valued sequences s = {sQ}Q∈Q such that

‖s‖ḃα,qp =
(∑
j∈Z

∥∥∥ ∑
Q∈Q, scale(Q)=j

|Q|−α|sQ|χ̃Q
∥∥∥q
Lp(µ)

)1/q
<∞.

We will also need a definition of anisotropic molecules introduced in
[4, 6] generalizing isotropic molecules of Frazier and Jawerth [11, 12]. These
molecules come in two flavors depending on whether they are used in the
analysis or synthesis transforms.

Definition 4.6. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling
measure with doubling constant β ≥ 1. Let 0 < ζ− ≤ 1/n ≤ ζ+ < 1 be the
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parameters measuring the eccentricity of the dilation A:

ζ+ :=
lnλ+

ln |detA|
, ζ− :=

lnλ−
ln |detA|

,

where λ− and λ+ are any positive real numbers such that

1 < λ− < min
λ∈σ(A)

|λ| ≤ max
λ∈σ(A)

|λ| < λ+ < |detA|.

Let

(4.15)
J =

{
βmax(1, 1/p, 1/q) for Ḟα,q

p spaces,
β/p+ max(0, 1− 1/p) for Ḃα,q

p spaces,

N = max(b(J − α− 1)/ζ−c,−1).

We say that ΨQ(x) is a smooth synthesis molecule for Ḟα,q
p (or Ḃα,q

p ) sup-
ported near Q ∈ Q with scale(Q) = −j and j ∈ Z if there exist M > J such
that

|∂γ [ΨQ(A−j ·)](x)| ≤ |detA|j/2

(1 + ρA(x−AjxQ))M
for |γ| ≤ bα/ζ−c+ 1,(4.16)

|ΨQ(x)| ≤ |detA|j/2

(1 + ρA(Aj(x− xQ)))max(M,(M−α)ζ+/ζ−)
,(4.17)

�
xγΨQ(x) dx = 0 for |γ| ≤ N.(4.18)

We say that ΦQ(x) is a smooth analysis molecule for Ḟα,q
p (or Ḃα,q

p ) supported
near Q ∈ Q with scale(Q) = −j and j ∈ Z if there exists M > J such that

|∂γ [ΦQ(A−j ·)](x)| ≤ |detA|j/2

(1 + ρA(x−AjxQ))M
for |γ| ≤ N + 1,(4.19)

|ΦQ(x)| ≤ |detA|j/2

(1 + ρA(Aj(x− xQ)))max(M,1+αζ+/ζ−+M−J)
,(4.20)

�
xγΦQ(x) dx = 0 for |γ| ≤ bα/ζ−c.(4.21)

We say that {ΦQ}Q∈Q is a family of smooth synthesis [analysis] molecules if
each ΦQ is a smooth synthesis [analysis] molecule supported near Q.

We emphasize that in the context of smooth molecules, ΨQ and ΦQ are
understood as some functions indexed by Q ∈ Q which are not necessar-
ily given by (4.13). Nevertheless, if ϕ ∈ S has sufficiently many vanishing
moments, then the wavelet system {ϕQ}Q is a family of smooth molecules
(both for synthesis and analysis).

The following result about smooth molecular analysis and synthesis
transforms was established in the setting of anisotropic Ḃα,q

p spaces [4, Theo-
rems 5.5 and 5.7] and anisotropic Ḟα,q

p spaces [5, Theorem 5.4]. Theorem 4.7
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is simply a generalization of the corresponding isotropic results of Frazier
and Jawerth [10, 11].

Theorem 4.7. Suppose that A is an expansive matrix, α ∈ R, 0 < p, q
≤ ∞, and µ is a ρA-doubling measure. Then there exists a constant C > 0
such that:

(i) If {ΨQ}Q is a family of smooth synthesis molecules for Ḟα,q
p (Rn, A, µ),

then∥∥∥ ∑
Q∈Q

sQΨQ

∥∥∥
Ḟα,qp
≤ C‖s‖ḟα,qp

for all s = {sQ}Q ∈ ḟα,qp (A,µ).

(ii) If {ΦQ}Q is a family of smooth analysis molecules for Ḟα,q
p (Rn, A, µ),

then

‖{〈f, ΦQ〉}Q‖ḟα,qp
≤ C‖f‖Ḟα,qp for all f ∈ Ḟα,q

p (Rn, A, µ).

Furthermore, the same result holds for Besov spaces Ḃα,q
p .

4.3. Boundedness on anisotropic Ḟα,q
p and Ḃα,q

p spaces. Finally,
we are ready to prove our anisotropic boundedness result extending the
isotropic result of Grafakos and Torres [15].

Theorem 4.8. Let σ ∈ Ṡm1,1(A), 0 < p, q <∞, and

(4.22) (σ(x,D))∗(xγ) = 0 for |γ| ≤ N = max(b(J − α− 1)/ζ−c,−1).

(Note that if α > J − 1, then (4.22) is trivially satisfied.) Then the pseudo-
differential operator σ(x,D) (a priori defined on S0) extends as a bounded
operator:

(i) σ(x,D) : Ḟα+m,q
p (Rn, A, µ)→ Ḟα,q

p (Rn, A, µ),
(ii) σ(x,D) : Ḃα+m,q

p (Rn, A, µ)→ Ḃα,q
p (Rn, A, µ).

In the statement of the theorem, we need to specify how T ∗ acts on
polynomials, where T = σ(x,D). Using Lemma 4.9 below and a formal
duality relation 〈T ∗(xγ), f〉 = 〈T (f), xγ〉, the condition (4.22) means that
〈σ(x,D)(f), xγ〉 = 0 for all f ∈ S0 and |γ| ≤ N . To prove Theorem 4.8, we
carefully adapt the argument in [15] to the anisotropic setting. It is sufficient
to prove that σ(x,D) maps a wavelet system {ϕQ}Q into a family of smooth
molecules {ΨQ}Q (modulo some scalar rescaling). As we shall see shortly,
this can be achieved by some relatively easy computations. We need the
following technical lemma.

Lemma 4.9. Let σ∈ Ṡmγ,δ(A). Then σ(x,D) maps S0 continuously into S.

Proof. The homogeneous anisotropic symbol estimate (1.3) combined
with the chain rule and Lemma 2.4 implies that
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|∂αx ∂
β
ξ σ(x, ξ)| ≤ C|α|,|β|ρA∗(ξ)m ·

{
(λ+)kδ|α|(λ−)−kγ|β| if k ≥ 0,
(λ−)kδ|α|(λ+)−kγ|β| if k < 0,

for all multi-indices α, β, and ξ ∈ Rn \ {0}, where k ∈ Z is such that
ρA∗(ξ) ∼ bk. Thus, we can rewrite the above as

|∂αx ∂
β
ξ σ(x, ξ)| ≤ C|α|,|β| ·

{
ρA∗(ξ)m+ζ+δ|α|−ζ−γ|β| if ρA∗(ξ) ≥ 1,
ρA∗(ξ)m+ζ−δ|α|−ζ+γ|β| if ρA∗(ξ) < 1.

Applying [3, Lemma 3.2] now yields polynomial growth/decay estimates as
ξ → 0 and ξ →∞,

|∂αx ∂
β
ξ σ(x, ξ)| ≤ C|α|,|β| ·

{
|ξ|(m+ζ+δ|α|−ζ−γ|β|)/ζ± if |ξ| ≥ 1,
|ξ|(m+ζ−δ|α|−ζ+γ|β|)/ζ∓ if |ξ| < 1.

Here ζ± means ζ+ or ζ− if the exponent is negative or positive, respectively,
and similarly for ζ∓. However, for the rest of the argument it is unimportant
what the exact exponents are. That is, we shall only use the fact that

(4.23) |∂αx ∂
β
ξ σ(x, ξ)| ≤ Cα,β min(1, |ξ|−d1) max(1, |ξ|d2)

for some exponents d1 = d1(α, β) > 0 and d2 = d2(α, β) > 0 depending
on the multi-indices α and β. In fact, the rest of the proof follows directly
the standard argument as in [15, Lemma 2.1]. One should emphasize here
that we must impose a stronger topology on S0 than the induced topology
of a closed subspace of the Schwartz class S.

Indeed, let f ∈ S0 and N ∈ N. Let ∆ξ be the Laplacian in the ξ variable.
Using the identity

(I −∆ξ)N (eix·ξ) = (1 + |x|2)Neix·ξ

and the bound (4.23), integration by parts yields

(σ(x,D)f)(x) =
�
eix·ξ

(I −∆ξ)N

(1 + |x|2)N
(σ(x, ξ)f̂(ξ)) dξ.

This formula works since f ∈ S0 and thus f̂ and all of its partial derivatives
vanish to infinite order at the origin. Moreover, differentiation under the
integral is allowed, resulting in

(∂αxσ(x,D)f)(x) =
�
(I −∆ξ)N

(
∂αx

(
eix·ξ

(1 + |x|2)N
σ(x, ξ)

)
f̂(ξ)

)
dξ

for any multi-index α. Applying the product rule, the bound (4.23), and the
fact that f ∈ S0 yields

|(∂αxσ(x,D)f)(x)| ≤ C ‖f‖M
(1 + |x|2)N−|α|

for sufficiently large M . Here,

‖f‖M = sup
|β|≤M

sup
ξ∈Rn

|∂β f̂(ξ)|(|ξ|M + |ξ|−M ) <∞
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are seminorms defining the topology of the locally convex space S0. Since α
and N are arbitrary, the above shows that σ(x,D) : S0 → S is continuous.

Proof of Theorem 4.8. Let ϕ ∈ S be such that

(4.24) supp ϕ̂ ⊂ [−π, π]n \ {0},∑
j∈Z
|ϕ̂((A∗)jξ)|2 = 1 for all ξ 6= 0.

Hence, ϕ is a Parseval wavelet for L2(Rn). By the combination of [7, Lem-
ma 2.12] with [6, Lemma 2.8] we have

f =
∑
Q∈Q
〈f, ϕQ〉ϕQ for any f ∈ S0,

with the unconditional convergence in S. Therefore, by Lemma 4.9 the action
of the pseudodifferential operator σ(x,D) can be expressed as

(4.25) σ(x,D)f =
∑
Q∈Q
〈f, ϕQ〉σ(x,D)ϕQ for f ∈ S0.

Assume for the moment that there exists a constant C > 0 such that

(4.26) σ(x,D)ϕQ = C|Q|−mΨQ for all Q ∈ Q
where {ΨQ}Q is a family of smooth synthesis molecules for Ḟα,q

p or Ḃα,q
p .

Then, by Theorem 4.7(i), the analysis transform f 7→ {〈f, ϕQ〉}Q is bounded
as a map Ḟα+m,q

p → ḟα+m,q
p . Clearly, the multiplication map {sQ}Q 7→

{|Q|−msQ}Q is an isometry ḟα+m,q
p → ḟα,qp . Thus, by (4.25), (4.26), and

Theorem 4.7(ii) we have ‖σ(x,D)f‖Ḟα,qp ≤ ‖f‖Ḟα+m,q
p

for all f ∈ S0. Since

S0 is a dense subspace of Ḟα,q
p if p, q <∞, this yields the required conclusion.

The same argument works for Ḃα,q
p spaces.

Thus, it remains to establish (4.26) by computing the action of σ(x,D) on
a fixed wavelet ϕQ associated to a dilated cube Q = Qj,k. For x ∈ Rn, x 6= 0,
let x̃ = Ajx−k, and b = |detA|. We have the following sequence of equalities:

(σ(x,D)ϕQ)(x) =
�
σ(x, ξ)ϕ̂Q(ξ)eix·ξ dξ

=
�
σ(x, ξ)b−j/2ϕ̂((A∗)−jξ)e−ik·(A

∗)−jξeix·ξ dξ

=
�
σ(x,A∗jξ)bj/2ϕ̂(ξ)e−ik·ξeix·A

∗jξ dξ

= bj/2
�
σ(A−j(x̃+ k), A∗jξ)ϕ̂(ξ)eix̃·ξ dξ.

Therefore,

(4.27) (σ(x,D)ϕQ)(x) = bj/2(σQ(x,D)ϕ)(Ajx− k),

where we denote

(σQ(x,D)f)(x) =
�
σ(A−j(x+ k), A∗jξ)f̂(ξ)eix·ξ dξ.
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For a fixed multi-index γ, we can write

(4.28) (∂γσQ(x,D)ϕ)(x)

=
�
eix·ξϕ̂(ξ)

∑
δ≤γ

Cδ(iξ)δ∂γ−δx [σ(A−j(· + k), A∗j ·)](x, ξ) dξ.

Now fix β. An integration by parts in (4.28) then gives

(4.29) (∂γσQ(x,D)ϕ)(x) =
∑
δ≤γ

Cδ
�
eix·ξ|x|−|β|

·
∑

|β1|+|β2|=|β|

∂γ−δx ∂β1

ξ [σ(A−j(·+ k), A∗j ·)](x, ξ)∂β2

ξ ((iξ)δϕ̂(ξ)) dξ.

By the support assumption (4.24), the above integral runs only over ξ ∈ Rn

with ρA∗(ξ) ∼ 1. Let ξ = (A∗)−jξ′ and x = Ajx′. Then ρA∗(ξ′) ∼ bj , and
since σ ∈ Ṡm1,1(A), we have

|∂γ−δx ∂β1

ξ [σ(A−j ·, A∗j ·)](Ajx′, (A∗)−jξ′)| ≤ Cβ1,γ,δb
jm.

Therefore, by taking absolute values on both sides of (4.29) and using the
triangle inequality, we get

|(∂γσQ(x,D)ϕ)(x)| ≤ Cβ,γ |x|−|β|bjm.
Since the multi-index β is arbitrary, by the quasi-norm estimate

(1 + ρA(x))ζ− ≤ C(1 + |x|) for all x ∈ Rn,

we can obtain the anisotropic version of the above estimate,

(4.30) |(∂γσQ(x,D)ϕ)(x)| ≤ CM,P (1 + ρA(x))−Mbjm for |γ| ≤ P,
where M,P >0 are some fixed integers. More precisely, we let P =bα/ζ−c+1
and M > max(J, (J − α)ζ+/ζ−).

Recall now that Q = A−j((0, 1]n + k) and define

(4.31) ΨQ(x) = (CM,P )−1bj/2−jm(σQ(x,D)ϕ)(Ajx− k),

so that by (4.27),
σ(x,D)(ϕQ) = CM,P |Q|−mΨQ.

It remains to verify that ΨQ is a molecule. By (4.30), (4.31), and

ΨQ(A−j ·) = (CM,P )−1bj/2−jm(σQ(x,D)ϕ)(· − k)

we have

|∂γ [ΨQ(A−j ·)](x)| ≤ bj/2(1 + ρA(x−AjxQ))−M for |γ| ≤ P.
By our choice of M , this simultaneously yields (4.16) and (4.17). Finally, the
condition (4.18) is a direct consequence of the vanishing moment hypothesis
(4.22). Thus, we conclude that ΨQ is a smooth synthesis molecule, which
finishes the proof.
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