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Sparse recovery with pre-Gaussian random matrices
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Simon Foucart (Paris) and Ming-Jun Lai (Athens, GA)

Abstract. For an m×N underdetermined system of linear equations with indepen-
dent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved
that the s-sparse solutions of the system can be found by `1-minimization under the op-
timal condition m ≥ cs ln(eN/s). The main ingredient of the proof is a variation of a
classical Restricted Isometry Property, where the inner norm becomes the `1-norm and
the outer norm depends on probability distributions.

1. Introduction. The field of Compressed Sensing, which has gener-
ated a wealth of research activity in recent years, asks for some concrete
protocols that make it possible to reconstruct sparse vectors x ∈ RN from
the mere knowledge of measurement vectors y = Ax ∈ Rm with m � N .
In other words, one seeks m × N measurement matrices A and recovery
algorithms that enable one to find the sparsest solutions of the underdeter-
mined linear system Ax = y. The groundbreaking works of Donoho [D] and
of Candès and Tao [CT] successfully tackled these questions. The problem of
choosing suitable matrices was settled using probabilistic arguments, with
the conclusion that most matrices chosen at random allow for an efficient
reconstruction of sparse vectors. The reconstruction in question consists in
solving the computationally tractable convex optimization problem

(P1) minimize
z∈RN

‖z‖1 subject to Az = y,

in place of the impractical combinatorial problem

(P0) minimize
z∈RN

‖z‖0 subject to Az = y.

Here ‖z‖1 =
∑N

j=1 |zj | stands for the usual `1-norm of a vector z ∈ RN ,
while ‖z‖0 represents its sparsity, i.e., the number of nonzero components.
The vector z is called k-sparse if ‖z‖0 ≤ k. A much favored tool in the study
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of the equivalence between (P0) and (P1) was introduced by Candès and
Tao in [CT]. It is said that a matrix A ∈ Rm×N has the kth order Restricted
Isometry Property if there is a constant 0 ≤ δ < 1 such that

(1.1) (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all k-sparse x ∈ RN .

The smallest such constant, denoted by δk, is called the kth order Restricted
Isometry Constant of A. There are many conditions on the δk’s that guar-
antee the recovery of all s-sparse vectors x ∈ RN as solutions of (P1) with
y = Ax. The arguably most natural ones are only in terms of δ2s. For in-
stance, Candès established the sufficient condition δ2s <

√
2 − 1 ≈ 0.4142

in [C]. This was later improved in [FL, CWX] to arrive at the sufficient con-
dition δ2s < 3/(4+

√
6) ≈ 0.4652 in [F]. Regardless of the sufficient condition

called upon, the crucial point is that it is met with overwhelming probability
for certain random matrices whose number m of rows scales like the spar-
sity s times a power of the log factor ln(eN/s), with N denoting the number
of columns. An important example for practical applications is the case of
partial Fourier matrices, where m ≥ cs ln4(N) rows of an N × N Fourier
matrix are drawn uniformly at random (see [RV]). For Gaussian random
matrices, i.e., matrices whose entries are independent copies of a zero-mean
Gaussian random variable, the number of measurements can be reduced to
m ≥ cs ln(eN/s) (see [CT]). This bound cannot be reduced further if one
searches for stable sparse recovery algorithms, as shown by considerations
about Gelfand widths (see e.g. [FPRU]). Sparse recovery by `1-minimization,
deduced from the Restricted Isometry Property (1.1), is also possible with
m ≥ cs ln(eN/s) when considering random matrices satisfying a concentra-
tion inequality (see [BDDW] for a simple proof) or sub-Gaussian random
matrices (see [MPT]). For pre-Gaussian random matrices, sparse recovery
by `1-minimization was established in [ALPT] under the stronger condition
m ≥ cs ln2(eN/s). This was again deduced from the Restricted Isometry
Property (1.1). The latter actually necessitates such a strong condition on
the number of measurements in the pre-Gaussian setting (see [ALPT]).

This paper aims to show that sparse recovery using pre-Gaussian random
matrices is still possible under the optimal condition on the number of mea-
surements. Indeed, we show in Theorem 6.1 that, given an m × N matrix
populated by independent pre-Gaussian random variables obeying simple
moment conditions, it is overwhelmingly probable that every s-sparse vec-
tor is recovered by `1-minimization, provided m ≥ cs ln(eN/s). Note that
we are following the terminology of [BK] in calling a random variable pre-
Gaussian when it has a subexponential tail decay. This meaning is made
precise in Definition 2.1, where an alternative view in terms of the moment
growth E(|ξ|2k) ≤ (2k)! θ2k is given. For instance, the Laplace random vari-
ables η, whose probability density functions are exp(−|t|/λ)/(2λ) for λ > 0,
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are pre-Gaussian since E(|η|r) = Γ (r + 1)λr for all r > 0. Pre-Gaussian
random variables are also often called ψ1 random variables because they are
characterized by the finiteness of their Orlicz norm

‖ξ‖ψ1 := inf{t > 0 : E exp(|ξ|/t) ≤ 2}.
The arguments of this paper rely on a variation of the classical Restricted

Isometry Property (1.1). Its formulation involves the quantity

�x�ν :=
∞�

−∞
· · ·

∞�

−∞

∣∣∣ N∑
j=1

tjxj

∣∣∣ dν1(t1) · · · dνN (tN ), x ∈ RN ,

relative to a vector ν of centered probability measures. It is easy to verify
that such an expression, appearing e.g. in [BMMP, GlM, Pa], defines a norm
on RN provided the first absolute moment of each νj is finite. A sum of such
norms will replace the outer norm in (1.1), while the inner norm will be
replaced by the `1-norm. Some variations of the classical Restricted Isometry
Property (1.1) are already present in the Compressed Sensing literature—for
Gaussian matrices, the inner norm is the `1-norm in Definition 4.1 of [D];
for adjacency matrices of lossless expanders, both inner and outer norms are
`1-norms in [BGIKS]—but it is the dependency of the outer norm on the
probability distributions that constitutes the novelty of our approach. Thus,
for random matrices whose entries ai,j are distributed according to centered
probability measures νi,j , we set

(1.2) �x� :=
m∑
i=1

�x�νi , νi := [νi,1, . . . , νi,N ].

If the entries ai,j were independent standard centered Gaussian random vari-
ables, for instance, an explicit computation would give �x� = m

√
2/π ‖x‖2,

and we would retrieve Definition 4.1 of [D]. We are interested in the Modified
Restricted Isometry Constant δ�·�

k defined as the smallest constant δ ≥ 0
such that

(1.3) (1− δ)�x� ≤ ‖Ax‖1 ≤ (1 + δ)�x� for all k-sparse x ∈ RN .

In Section 4, we prove that this Modified Restricted Isometry Constant can
be made sufficiently small. This is deduced from the concentration inequal-
ity, relative to the norm (1.2), that we establish in Section 3. In Section 5,
we then show that a Modified Restricted Isometry Property such as (1.3)
implies sparse recovery by `1-minimization so long as the norm � ·� is com-
parable to the Euclidean norm. In Section 6, we finally combine the previous
results to arrive at our main theorem. As a prelude to all this, we collect in
Section 2 some auxiliary results needed in our arguments. Note that we chose
to deal only with recovery of exactly sparse vectors from perfect measure-
ments for the sake of clarity. However, in the spirit of Compressed Sensing,
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one needs to control the error between a nearly sparse vector and a vector
recovered from slightly flawed measurements. A reader familiar with Com-
pressed Sensing could easily perform the appropriate modifications in order
to establish such a result here.

2. Preliminary results. We start with the definition of pre-Gaussian
random variables.

Definition 2.1. A random variable ξ is pre-Gaussian if one of the fol-
lowing equivalent conditions holds:

1. E(ξ) = 0 and there exist constants b > 0 and c > 0 such that

P(|ξ| > t) ≤ b exp(−ct) for all t > 0,

2. E(ξ) = 0 and there exists a constant θ > 0 such that

θ(ξ) := sup
k≥1

[
E|ξ|2k

(2k)!

]1/2k

≤ θ.

The justification of the equivalence is found in Theorems 3.1 and 3.2 of
[BK, pp. 21–23]. In fact, Theorem 3.2 is stated with θ(ξ) replaced by

θ′(ξ) := sup
k≥1

[
E|ξ|k

k!

]1/k

,

but the two statements are similar in view of the inequalities

θ(ξ) ≤ θ′(ξ) ≤ 2θ(ξ).

The lower inequality is clear, while the upper inequality is a simple conse-
quence of E(|ξ|k) ≤ E(|ξ|2k)1/2. The quantity θ(ξ) turns out to be of more
convenient usage, because of the following result (see Theorem 3.6 of [BK,
p. 61]).

Proposition 2.2. If ξ1, . . . , ξn are independent pre-Gaussian random
variables, then

θ2(x1ξ1 + · · ·+ xnξn) ≤ x2
1θ

2(ξ1) + · · ·+ x2
nθ

2(ξn).

The next result claims that the norm � · �ν is comparable to the Eu-
clidean norm.

Proposition 2.3. Suppose that ξ1, . . . , ξN are independent zero-mean
random variables satisfying

E(|ξj |) ≥ µ and E(ξ2j ) ≤ σ2 for all j = 1, . . . , N.

Then, with ν1, . . . , νN denoting the centered probability measures associated
to ξ1, . . . , ξN ,

µ√
8
‖x‖2 ≤ �x�ν ≤ σ‖x‖2 for all x ∈ RN .
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Proof. Let us observe first that

�x�ν = E
∣∣∣ N∑
j=1

xjξj

∣∣∣.
For the upper estimate, the independence of the ξj ’s easily yields

E
∣∣∣ N∑
j=1

xjξj

∣∣∣ ≤ (E
( N∑
j=1

xjξj

)2)1/2
=
( N∑
j=1

x2
jE(ξj)2

)1/2
≤ σ‖x‖2.

As for the lower estimate, we use the symmetrization procedure (see Lemma
6.3 of [LT]) to write

(2.1) E
∣∣∣ N∑
j=1

xjξj

∣∣∣ ≥ 1
2
E
∣∣∣ N∑
j=1

εjxjξj

∣∣∣ =
1
2
EξEε

∣∣∣ N∑
j=1

εjxjξj

∣∣∣,
where (ε1, . . . , εN ) is a Rademacher sequence independent of (ξ1, . . . , ξN ).
Next, using Khinchin’s inequality with optimal constants due to Haagerup
[H], we have

Eε

∣∣∣ N∑
j=1

εjxjξj

∣∣∣ ≥ 1√
2

( N∑
j=1

x2
j ξ

2
j

)1/2
=
‖x‖2√

2

( N∑
j=1

x2
j

‖x‖22
ξ2j

)1/2

.

Then, using the concavity of the function t 7→ t1/2, we derive

(2.2) Eε

∣∣∣ N∑
j=1

εjxjξj

∣∣∣ ≥ ‖x‖2√
2

N∑
j=1

x2
j

‖x‖22
|ξj |.

The desired estimate follows from (2.1), (2.2), and E(|ξj |) ≥ µ.

Finally, we state Bernstein’s inequality as in Lemma 2.2.11 of [vdVW]
for easy reference.

Theorem 2.4. Let Y1, . . . , Ym be independent zero-mean random vari-
ables for which there exist positive constants M,v1, . . . , vm such that

E(|Yi|k) ≤
k!
2
Mk−2vi for all integers k ≥ 2.

Then, for all t > 0,

P(|Y1 + · · ·+ Ym| > t) ≤ 2 exp
(
− t2

2(v1 + · · ·+ vm + tM)

)
.

3. Subexponential tail decay. In order to establish the Modified Re-
stricted Isometry Property (1.3) for all sparse vectors, we consider first in-
dividual vectors x ∈ RN and we bound the tail probability

P
(∣∣‖Ax‖1 − �x�

∣∣ > ε�x�
)
.
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Theorem 3.1. Suppose the entries of a matrix A ∈ Rm×N are indepen-
dent pre-Gaussian random variables satisfying

E(|ai,j |) ≥ µ and E(|ai,j |2k) ≤ (2k)!θ2k, k ≥ 1.

If �·� denotes the norm defined in (1.2) for the centered probability measures
νi,j associated to the entries ai,j, then

(3.1) P
(∣∣‖Ax‖1 − �x�

∣∣ > ε�x�
)
≤ 2 exp(−κε2m)

for any x ∈ RN and any ε ∈ (0, 1), where the constant κ depends only on
θ/µ.

Proof. Setting Yi := |(Ax)i| − �x�νi , we observe that Y1, . . . , Ym are
independent zero-mean random variables, and

‖Ax‖1 − �x� =
m∑
i=1

Yi.

Then, since θ(ai,j) ≤ θ, Proposition 2.2 yields

θ((Ax)i) = θ
( N∑
j=1

xjai,j

)
≤ θ‖x‖2, hence θ′((Ax)i) ≤ 2θ‖x‖2.

For an integer k ≥ 2, it follows from the inequality |Yi| ≤ max{|(Ax)i|,
�x�νi} that

E(|Yi|k) ≤ max{E(|(Ax)i|k),�x�kνi} ≤ max{k!(θ′((Ax)i))k,�x�kνi}

≤ max
{
k!
2

2k/2(θ′((Ax)i))k,
k!
2

�x�kνi

}
≤ k!

2
max{

√
8 θ‖x‖2,�x�νi}k.

Since Proposition 2.3 implies µ‖x‖2/
√

8 ≤ �x�νi ≤
√

2 θ‖x‖2, we can apply
Bernstein’s inequality with

M = max{
√

8 θ‖x‖2,
√

2 θ‖x‖2} =
√

8 θ‖x‖2, vi = M2,

t = ε�x� ≥ εmµ‖x‖2/
√

8,

to obtain

P
(∣∣‖Ax‖1 − �x�

∣∣ > εm�x�ν

)
≤ 2 exp

(
− ε2m2µ2�x�2/8

2(8mθ2‖x‖22 + εmµθ‖x‖22)

)
= 2 exp

(
− ε2m

16(8(θ/µ)2 + ε(θ/µ))

)
.

Since ε ≤ 1, the result follows with κ := 1/(128(θ/µ)2 + 16(θ/µ)).
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Remark 3.2. The advantage of taking the `1-norm rather than the `2-
norm as the inner norm in the Modified Restricted Isometry Property (1.3)
is apparent at this point. If we used the `2-norm, we would consider the
random variable Yi = (Ax)2i − E((Ax)2i ), and we would try to bound the
kth moment of (Ax)2i by k!Mk for some M > 0 in order to apply Bernstein’s
inequality. However, we would not be able to obtain more than E((Ax)2ki ) ≤
(2k)!(θ(Ax)i)2k ≤ (2k)!(θ‖x‖2)2k.

Remark 3.3. The methods and results of Sections 2 and 3 are standard
in the geometry of Banach spaces (see e.g. [GiM]). They have been spelled
out with the Compressed Sensing reader in mind.

4. Modified Restricted Isometry Property. In this section, we
show how to pass from the concentration inequality (3.1) for individual
vectors to the Modified Restricted Isometry Property (1.3) for all sparse
vectors. In fact, we prove that (1.3) fails with exponentially small probabil-
ity. We essentially follow the ideas of [BDDW], which go back to a general
strategy developed in [FLM]. The details are included for the reader’s con-
venience.

Theorem 4.1. Let A ∈ Rm×N be a random matrix and let � · � be a
norm on RN . Suppose that, for any x ∈ RN and any ε ∈ (0, 1),

(4.1) P
(∣∣‖Ax‖1 − �x�

∣∣ > ε�x�
)
≤ 2 exp(−κε2m).

Then there exist constants c1, c2 > 0 depending only on κ such that, for any
δ ∈ (0, 1),

P
(∣∣‖Ax‖1 − �x�

∣∣ > δ�x� for some s-sparse x ∈ RN
)
≤ 2 exp(−c1δ2m)

provided

m ≥ c2
δ3
s ln
(
eN

s

)
.

Proof. We start by considering a fixed index set S ⊆ {1, . . . , N} of car-
dinality s. Let S denote the unit sphere of the space RS of vectors supported
on S embedded with the norm � · �. According to Lemma 4.10 of [Pi], we
can find a subset U of S such that

min
u∈U

�x− u� ≤ γ :=
δ

3
for all x ∈ S and card(U) ≤

(
1 +

2
γ

)s
.

The concentration inequality (4.1), together with a union bound, gives

P
(∣∣‖Au‖1 − �u�

∣∣ > γ�u� for some u ∈ U
)
≤
(

1 +
2
γ

)s
2 exp(−κγ2m)

≤ 2 exp
(
−κγ2m+

2s
γ

)
= 2 exp

(
−κδ

2m

9
+

6s
δ

)
.
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This means that the matrix A is drawn with high probability in such a way
that

(4.2) (1− γ)�u� ≤ ‖Au‖1 ≤ (1 + γ)�u� for all u ∈ U .

Let δ̃ be the smallest positive constant such that

(4.3) ‖Ax‖1 ≤ (1 + δ̃)�x� for all x ∈ S.

Given x ∈ S, picking u ∈ U with �x− u� ≤ γ, we derive

‖Ax‖1 ≤ ‖Au‖1 + ‖A(x−u)‖1 ≤ 1 + γ+ (1 + δ̃)�x−u� ≤ 1 + γ+ (1 + δ̃)γ.

The minimality of δ̃ implies that

1 + δ̃ ≤ 1 + γ + (1 + δ̃)γ ≤ 1 + 2γ + δ̃/3, so that δ̃ ≤ 3γ = δ.

Substituting into (4.3), we obtain the upper estimate

(4.4) ‖Ax‖1 ≤ (1 + δ)�x� for all x ∈ RS .

Subsequently, for x ∈ S and u ∈ U with �x− u� ≤ γ, we have

‖Ax‖1 ≥ ‖Au‖1 − ‖A(x− u)‖1 ≥ 1− γ − (1 + δ)�x− u�
≥ 1− γ − (1 + δ)γ ≥ 1− 3γ = 1− δ.

Thus, we obtain the lower estimate

(4.5) ‖Ax‖1 ≥ (1− δ)�x� for all x ∈ RS .

Since both upper and lower estimates (4.4) and (4.5) hold as soon as (4.2)
holds, we obtain

P
(∣∣‖Ax‖1 − �x�

∣∣ > δ�x� for some x ∈ RS
)
≤ 2 exp

(
−κδ

2m

9
+

6s
δ

)
.

We now take into account that the set of s-sparse vectors is the union of(
N
s

)
≤ (eN/s)s spaces RS to deduce, using a union bound, that

P
(∣∣‖Ax‖1 − �x�

∣∣ > δ�x� for some s-sparse x ∈ RN
)

≤
(
N

s

)
2 exp

(
−κδ

2m

9
+

6s
δ

)
≤ 2 exp

(
−κδ

2m

9
+

6s
δ

+ s ln
(
eN

s

))
≤ 2 exp

(
−κδ

2m

9
+

7s
δ

ln
(
eN

s

))
.

By imposing, say,

7s
δ

ln
(
eN

s

)
≤ κδ2m

18
, i.e., m ≥ 126

κδ3
s ln
(
eN

s

)
,
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we ensure that

P
(∣∣‖Ax‖1 − �x�

∣∣ > δ�x� for some s-sparse x ∈ RN
)
≤ 2 exp

(
−κδ

2m

18

)
.

This is the desired result with c1 = κ/18 and c2 = 126/κ.

5. Sparse recovery. In this section, we verify that the Modified Re-
stricted Isometry Property (1.3) implies sparse recovery by `1-minimization.

Theorem 5.1. Let � · � be a norm on RN satisfying

c‖x‖2 ≤ �x� ≤ C‖x‖2 for all x ∈ RN .

If a matrix A ∈ Rm×N has a Modified Restricted Isometry Constant

(5.1) δ
�·�
s+t <

√
t/s− C/c√
t/s+ C/c

for some integer t,

then any s-sparse vector x ∈ RN is exactly recovered as a solution of (P1)
with y = Ax.

Proof. As is well known (see e.g. [GN]), it is necessary and sufficient to
establish the null space property in the form

(5.2) ‖vS‖1 < ‖vS‖1
for all v ∈ kerA \ {0} and all S ⊆ {1, . . . , N} with card(S) = s, where S
denotes the complement of S in {1, . . . , N}. Given v ∈ kerA\{0}, we notice
that it is enough to prove the latter for an index set S0 of s largest absolute-
value components of v. We partition the complement of S0 in {1, . . . , N} as
S0 = S1 ∪ S2 ∪ · · · , where

• S1 consists of the indices of the t largest absolute-value components
of v in S0,
• S2 consists of the indices of the next t largest absolute-value compo-

nents of v in S0,

etc. Setting δs+t := δ
�·�
s+t , we obtain from the Modified Restricted Isometry

Property (1.3)

�vS0 + vS1� ≤
1

1− δs+t
‖A(vS0 + vS1)‖1 =

1
1− δs+t

∥∥∥A(−∑
k≥2

vSk

)∥∥∥
1

≤ 1
1− δs+t

∑
k≥2

‖AvSk
‖1 ≤

1 + δs+t
1− δs+t

∑
k≥2

�vSk
�

≤ C 1 + δs+t
1− δs+t

∑
k≥2

‖vSk
‖2.
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For k ≥ 2, the inequalities |vi| ≤ |vj |, i ∈ Sk, j ∈ Sk−1, averaged over j,
raised to the power 2, and summed over i, yield

‖vSk
‖2 ≤

1√
t
‖vSk−1

‖1.

We therefore have

(5.3) �vS0 + vS1� ≤
C√
t

1 + δs+t
1− δs+t

∑
k≥2

‖vSk−1
‖1 ≤

C√
t

1 + δs+t
1− δs+t

‖vS0
‖1.

Next, we observe that

(5.4) ‖vS0‖1 ≤
√
s ‖vS0‖2 ≤

√
s ‖vS0 + vS1‖2 ≤

√
s

c
�vS0 + vS1�.

Combining (5.3) and (5.4), we obtain

‖vS0‖1 ≤
C

c

√
s

t

1 + δs+t
1− δs+t

‖vS0
‖1.

The null space property (5.2) follows when rewriting condition (5.1) in the
form (C

√
s (1 + δs+t))/(c

√
t (1− δs+t)) < 1. The proof is now complete.

6. Main theorem. We finally combine the results of the previous sec-
tions to prove that m × N pre-Gaussian random matrices allow for the
reconstruction of all s-sparse vectors by `1-minimization with overwhelming
probability provided m ≥ cs ln(eN/s). Note that the distributions of the en-
tries of the matrix need not be related, so long as they obey simple moment
conditions, which are automatically fulfilled when the entries are identically
distributed.

Theorem 6.1. Suppose the entries of a matrix A ∈ Rm×N are indepen-
dent pre-Gaussian random variables satisfying

E(|ai,j |) ≥ µ and E(|ai,j |2k) ≤ (2k)!θ2k, k ≥ 1.

Then, with probability at least

1− 2 exp(−C1m),

any s-sparse vector x ∈ RN is exactly recovered as a solution of (P1) with
y = Ax, provided

m ≥ C2s ln(eN/s),

where the constants C1, C2 > 0 depend only on θ/µ.

Proof. Let νi,j denote the centered probability measure associated to
the entry ai,j and let � · � be the norm defined in (1.2). According to
Proposition 2.3, we have

m
µ√
8
‖x‖2 ≤ �x� ≤ m

√
2 θ‖x‖2 for all x ∈ RN .
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Theorem 5.1 then guarantees s-sparse recovery by `1-minimization as soon
as

δ
�·�
s+t <

√
t/s− 4θ/µ√
t/s+ 4θ/µ

for some integer t.

Let us choose an integer t such that 64(θ/µ)2 s < t ≤ (64(θ/µ)2 + 1) s. Since
then √

t/s− 4θ/µ√
t/s+ 4θ/µ

>
8θ/µ− 4θ/µ
8θ/µ+ 4θ/µ

=
1
3
,

s-sparse recovery by `1-minimization is guaranteed as soon as δ�·�
s+t ≤ 1/3.

According to Theorems 3.1 and 4.1 with κ := 1/(128(θ/µ)2 + 16(θ/µ)) and
δ = 1/3, this is guaranteed with probability at least

1− 2 exp
(
−c1m

9

)
, c1 =

κ

18
,

provided

m ≥ 27c2(s+ t) ln
(
eN

s+ t

)
, c2 =

126
κ
.

This holds as soon as

m ≥ 27c2(64(θ/µ)2 + 2)s ln
(
eN

s

)
.

The constants of the theorem are explicitly given by C1 = 1/(20736(θ/µ)2 +
2592(θ/µ)) and C2 = (435456(θ/µ)2 + 54432(θ/µ))(64(θ/µ)2 + 2).
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