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On (C, 1) summability for Vilenkin-like systems

by

G. Gát (Nýıregyháza)

Abstract. We give a common generalization of the Walsh system, Vilenkin system,
the character system of the group of 2-adic (m-adic) integers, the product system of nor-
malized coordinate functions for continuous irreducible unitary representations of the co-
ordinate groups of noncommutative Vilenkin groups, the UDMD product systems (defined
by F. Schipp) and some other systems. We prove that for integrable functions σnf → f
(n → ∞) a.e., where σnf is the nth (C, 1) mean of f . (For the character system of the
group of m-adic integers, this proves a more than 20 years old conjecture of M. H. Taible-
son [24, p. 114].) Define the maximal operator σ∗f := supn |σnf |. We prove that σ∗ is of
type (p, p) for all 1 < p ≤ ∞ and of weak type (1, 1). Moreover, ‖σ∗f‖1 ≤ c‖f‖H , where
H is the Hardy space.

Introduction and examples. Denote by N the set of natural numbers
and by P the set of positive integers. Let m := (mk : k ∈ N) be a sequence of
positive integers such that mk ≥ 2 for k ∈ N, and let Gmk be a set of cardi-
nality mk. Suppose that each (coordinate) set has the discrete topology and
the measure µk which maps every singleton of Gmk to 1/mk (µk(Gmk) = 1)
for k ∈ N. Let Gm be the compact set formed by the complete direct product
of Gmk equipped with the product topology and product measure (µ). Thus
each x ∈ Gm is a sequence x := (x0, x1, . . .), where xk ∈ Gmk , k ∈ N. Then
Gm is called a Vilenkin space. It is a compact totally disconnected space,
with normalized regular Borel measure µ. The Vilenkin space Gm is said to
be bounded if the generating system m is bounded.

Throughout this paper we assume the boundedness of Gm; moreover, c, cp
denote absolute constants, the latter can depend (only) on p.
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A neighborhood base of Gm can be given as follows:

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}
for x ∈ Gm, n ∈ P. Then

I := {In(x) : n ∈ N, x ∈ Gm}
is the set of intervals on Gm.

Denote by Lp(Gm) the usual Lebesgue spaces (with norms ‖ · ‖p) (1 ≤
p ≤ ∞), by An the σ-algebra generated by the sets In(x) (x ∈ Gm) and by
En the conditional expectation operator with respect to An (n ∈ N).

The maximal Hardy space H1(Gm) is defined by means of the maximal
function f∗ := supn |Enf | (f ∈ L1(Gm)): f is said to be in H1(Gm) if
f∗ ∈ L1(Gm). Then H1(Gm) is a Banach space with the norm

‖f‖H1 := ‖f∗‖1.
This definition is suitable if the sequence m is bounded. In this case H1(Gm)
has an atomic structure (for the dyadic case (mk = 2, k ∈ N) see [21, p. 104]
and for the general case see [22, p. 92]). A function g ∈ L∞(Gm) is an atom
if either g = 1 or supp g ⊂ In(x),

�
In(x) g dµ = 0, and ‖g‖∞ ≤ 1/µ(In(x))

for some x ∈ Gm, n ∈ N. By definition, f ∈ H(Gm) iff f =
∑∞
i=0 λigi, where∑∞

i=0 |λi| <∞, λi ∈ C and gi is an atom (i ∈ N). Then H(Gm) is a Banach
space with the norm

‖f‖H := inf
∞∑

i=0

|λi|,

where the infimum is taken over all decompositions f =
∑∞
i=0 λigi as above.

If the sequence m is bounded (in this paper this is supposed), then H(Gm) =
H1(Gm), moreover, the two norms are equivalent. (If the sequence m is not
bounded, then the situation changes [22].)

We say that an operator T : L1 → L0 (where L0(Gm) is the space
of measurable functions on the Vilenkin space Gm) is of type (p, p) (for
1 ≤ p ≤ ∞) if ‖Tf‖p ≤ cp‖f‖p for all f ∈ Lp(Gm) and the constant cp
depends only on p; T is of type (H,L) if ‖Tf‖1 ≤ c‖f‖H for all f ∈ H(Gm);
and T is of weak type (1, 1) if µ(|Tf | > λ) ≤ c‖f‖1/λ for all f ∈ L1(Gm)
and λ > 0.

Let M0 := 1 and Mk+1 := mkMk for k ∈ N be the so-called generalized
powers. Then every n ∈ N can be uniquely expressed as n =

∑∞
k=0 nkMk,

0 ≤ nk < mk, nk ∈ N. The sequence (n0, n1, . . .) is called the expansion of n
with respect to m. We often use the following notations. Let |n| := max{k ∈
N : nk 6= 0} (that is, M|n| ≤ n < M|n|+1) and n(k) =

∑∞
j=k njMj . Next

we introduce on Gm an orthonormal system which we call a Vilenkin-like
system.
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Complex-valued functions rnk : Gm → C which we call generalized Rade-
macher functions have the following properties:

(i) rnk is Ak+1-measurable (i.e. rnk (x) depends only on x0, . . . , xk (x ∈
Gm)), r0

k = 1 for all k, n ∈ N.
(ii) If Mk is a divisor of n and l and if n(k+1) = l(k+1) (k, l, n ∈ N), then

Ek(rnk r
l
k) =

{
1 if nk = lk,
0 if nk 6= lk

(z is the complex conjugate of z).
(iii) If Mk+1 is a divisor of n (that is, n = nk+1Mk+1 +nk+2Mk+2 + . . .+

n|n|M|n|), then
mk−1∑

j=0

|rjMk+n
k (x)|2 = mk

for all x ∈ Gm.
(iv) There exists a δ > 1 for which ‖rnk‖∞ ≤

√
mk/δ.

Define a Vilenkin-like system ψ = (ψn : n ∈ N) as follows:

ψn :=
∞∏

k=0

rn
(k)

k , n ∈ N.

(Since r0
k = 1, we have ψn =

∏|n|
k=0 r

n(k)

k .)

Example A (the Vilenkin and Walsh systems). Let Gmk := Zmk be the
mkth (2 ≤ mk ∈ N) discrete cyclic group (k ∈ N). That is, Zmk can be
represented by the set {0, 1, . . . ,mk− 1}, where the group operation is mod
mk addition and every subset is open. The group operation (+) on Gm is
coordinatewise addition. Gm is called a Vilenkin group. The Vilenkin group
for which mk = 2 for all k ∈ N is the Walsh–Paley group. In this case let
rnk (x) := (exp(2πıxk/mk))nk , where ı :=

√
−1, x ∈ Gm. The system ψ :=

(ψn : n ∈ N) is the Vilenkin system, where ψn :=
∏∞
k=0 r

n(k)

k =
∏∞
k=0 r

nkMk

k .
For the Vilenkin group with mk = 2 for all k ∈ N, we get the Walsh–Paley
system. Since |rnk | = 1, (iii) and (iv) are trivial and so are (i) and (ii). For
more on the Vilenkin and Walsh systems and groups see e.g. [21, 1].

Example B (the group of 2-adic (m-adic) integers). Let Gmk :=
{0, 1, . . . ,mk − 1} for all k ∈ N. Define on Gm the following (commuta-
tive) addition: Let x, y ∈ Gm. Then x+y = z ∈ Gm is defined in a recursive
way. First, x0 +y0 = t0m0 +z0, where (of course) z0 ∈ {0, 1, . . . ,m0−1} and
t0 ∈ N. Suppose that z0, . . . , zk and t0, . . . , tk have been defined. Then write
xk+1 + yk+1 + tk = tk+1mk+1 + zk+1, where zk+1 ∈ {0, 1, . . . ,mk+1−1} and
tk+1 ∈ N. Then Gm is called the group of m-adic integers (if mk = 2 for all
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k ∈ N, then these are the 2-adic integers). In this case let

rnk (x) :=
(

exp
(

2πı
(
xk
mk

+
xk−1

mkmk−1
+ . . .+

x0

mkmk−1 . . .m0

)))nk
.

Let ψn :=
∏∞
k=0 r

n(k)

k =
∏∞
k=0 r

nkMk

k . Then the system ψ := (ψn : n ∈ N)
is the character system of the group of m-adic (2-adic if mk = 2 for each
k ∈ N) integers. Since |rnk | = 1, (i), (iii) and (iv) are trivial. (ii) is also easy
to see and well known [22, p. 91]. For more on the group of m-adic integers
see e.g. [9, 15, 24].

Example C (noncommutative Vilenkin groups). Let σ be an equivalence
class of continuous irreducible unitary representations of a compact group G.
Denote by Σ the set of all such σ. Then Σ is called the dual object of G.
The dimension of a representation U (σ), σ ∈ Σ, is denoted by dσ and we let

u
(σ)
i,j (x) := 〈U (σ)

x ξi, ξj〉, i, j ∈ {1, . . . , dσ},
be the coordinate functions for U (σ), where ξ1, . . . , ξdσ is an orthonormal ba-
sis in the representation space of U (σ). (For the notations see [9, Vol. 2, p. 3].)
According to the Weyl–Peter theorem (see e.g. [9, Vol. 2, p. 24]), the system
of functions

√
dσu

(σ)
i,j , σ ∈ Σ, i, j ∈ {1, . . . , dσ}, is an orthonormal basis for

L2(G). If G is a finite group, then Σ is also finite. If Σ := {σ1, . . . , σs}, then
|G| = d2

σ1
+ . . .+ d2

σs .
Let Gmk be a finite group of order mk, k ∈ N. Let {rsMk

k : 0 ≤ s < mk}
be the set of all normalized coordinate functions of the group Gmk and
suppose that r0

k ≡ 1. Thus for every 0 ≤ s < mk there exists a σ ∈ Σk and
i, j ∈ {1, . . . , dσ} such that

rsMk

k =
√
dσu

(σ)
i,j (x) (x ∈ Gmk).

Set rnk := rnkMk

k . Let ψ be the product system of rjk, namely

ψn(x) :=
∞∏

k=0

rn
(k)

k (xk) (x ∈ Gm),

where n is of the form n =
∑∞
k=0 nkMk and x = (x0, x1, . . .). We remark that

if Gmk is the discrete cyclic group of order mk, k ∈ N, then Gm coincides
with the Vilenkin group, and ψ is the Vilenkin system with respect to the
corresponding order [8, 21, 26, 1]. In [8] it is proved that the system ψ has
the properties (i)–(iii). Moreover, (iv) is satisfied because mk = |Gmk | =
d2
σk,1

+ . . . + d2
σk,sk

, where {σk,i : i = 1, . . . , ks} = Σk (the dual object of

Gmk) and dσk,i is the dimension of σk,i. We have ‖rjk‖∞ ≤
√
d, where d is

one of dσk,i and since d is a divisor of mk [9, Vol. 2, p. 44], [8] and at least
one of dσk,i is 1, it follows that d <

√
mk. Since m is bounded, we conclude
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that there exists a δ > 1 (possibly depending on the sequence m) such that
(iv) holds for all n, k ∈ N. For more on this system and noncommutative
Vilenkin groups see [8, 6].

Example D (a system in number theory). Let

rnk (x) := exp
(

2πı
∞∑

j=k

nj
Mj+1

k∑

i=0

xiMi

)

for k, n ∈ N and x ∈ Gm. Let ψn :=
∏∞
k=0 r

n(k)

k , n ∈ N.
Then ψ := (ψn : n ∈ N) is a Vilenkin-like system (introduced in [7])

which is a useful tool in the approximation theory of limit periodic, almost
even arithmetical functions [7]. (i) is trivial and since |rnk | = 1, so are (iii)
and (iv). It is easy to prove (ii) (see [7]). This system (on Vilenkin groups)
was a new tool for investigating limit periodic arithmetical functions. For
their definition see also the book of Mauclaire [11, p. 25].

Example E (UDMD product systems). The notion of UDMD product
system was introduced by F. Schipp [20, p. 88] on the Walsh–Paley group.
Let αk : Gm → C satisfy |αk| = 1 and be Ak-measurable. Let rnk (x) :=
(−1)xknkαk(x). Then (i) is trivial and since |rnk | = 1, so are (iii) and (iv).
The proof of (ii) is simple. Let ψn :=

∏∞
k=0 r

n(k)

k =
∏∞
k=0 r

nkMk

k (n ∈ N).
The system ψ := (ψn : n ∈ N) is called an UDMD product system. For more
on such systems see [19, 20].

Example F ( universal contractive projections). The notion of universal
contractive projection system (UCP) was introduced by F. Schipp [18] as
follows. Let φn : Gm → C (n ∈ N) be measurable functions with |φn| = 1
(n ∈ N) and φ0 = 1. Let f ∈ L1(Gm) and Pn(s)f := φn(s)Es(fφn(s)) for
n, s ∈ N. Suppose that Pn(s) = Pn(s)Pn(s+j) = Pn(s+j)Pn(s) for all j ∈ N. Also
suppose that if n(s) and k(t) are incomparable, that is, if there are no j ∈ N
such that n(s+j) = k(t) or k(t+j) = n(s), then Pn(s)Pk(t) = Pk(t)Pn(s) = 0.

We prove that the system (φn : n ∈ N) is also a Vilenkin-like system. Let
rn

(k)

k := φn(k)φn(k+1) for k, n ∈ N. Since |φn| = 1, (iii) and (iv) hold. Next, we
prove that rn

(k)

k isAk+1-measurable. Since Pn(s)(φn(s)) = φn(s)Es(φn(s)φn(s))
= φn(s) we have

φn(s+1)Es+1(φn(s)φn(s+1)) = Pn(s+1)(φn(s)) = Pn(s+1)(Pn(s)(φn(s)))

= Pn(s)(φn(s)) = φn(s) .

Consequently, Es+1(φn(s)φn(s+1)) = φn(s)φn(s+1) , i.e. rn
(s)

s is As+1-measur-
able. Since

φn = φn(0) = φn(0)φn(1)φn(1) =
∞∏

k=0

φn(k)φn(k+1) =
∞∏

k=0

rn
(k)

k = ψn,
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to prove that (φn : n ∈ N) = (ψn : n ∈ N) is a Vilenkin-like system we only
need to verify (ii). We have |rn(k)

k | = 1, thus it remains to prove

Ek(rn
(k+1)+jMk

k rn
(k+1)+lMk

k ) = 0

for j, l ∈ {0, 1, . . . ,mk − 1} and j 6= l. Since for all f ∈ L1(Gm) we have
Pn(k+1)+jMk

Pn(k+1)+lMk
f = 0, we can apply this for f = φn(k+1)+lMk

. Thus,

φn(k+1)+jMk
Ek(φn(k+1)+jMk

φn(k+1)+lMk
Ek(φn(k+1)+lMk

φn(k+1)+lMk
)) = 0.

It follows that

0 = Ek(φn(k+1)+jMk
φn(k+1)+lMk

) = Ek(rn
(k+1)+jMk

k rn
(k+1)+lMk

k ).

It is simple to prove that the partial sums of the Fourier series with respect
to the system ψ = φ are Snf =

∑∞
k=0

∑nk−1
j=0 Pn(k+1)+jMk

f (cf. [18]).

Some more preliminaries. For f ∈ L1(Gm) we define the Fourier coeffi-
cients and partial sums by

f̂(k) := �
Gm

fψk dµ (k ∈ N),

Snf :=
n−1∑

k=0

f̂(k)ψk (n ∈ P, S0f := 0).

The Dirichlet kernels are given by

Dn(y, x) :=
n−1∑

k=0

ψk(y)ψk(x) (n ∈ P, D0 := 0).

It is clear that
Snf(y) = �

Gm

f(x)Dn(y, x) dµ(x).

Denote by

σnf =
1
n

n−1∑

k=0

Skf (n ∈ P, σ0f := 0)

the Fejér (or (C, 1)) means of the Fourier series, and by

Kn :=
1
n

n−1∑

k=0

Dk (n ∈ P, K0 := 0)

the Fejér kernels. Then

σnf(y) = �
Gm

f(x)Kn(y, x) dµ(x) (y ∈ Gm, n ∈ P).
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Results and proofs

Proposition 1. Every Vilenkin-like system ψ is orthonormal.

Proof. Let n 6= k (n, k ∈ N). Set s := max(j ∈ N : nj 6= kj). We can
suppose that n > k. This implies that |n| ≥ s. Then

E0(ψnψk) = E0

(
Es

(s−1∏

i=0

(rn
(i)

i rk
(i)

i )rn
(s)

s rk
(s)

s

∞∏

i=s+1

|rn(i)

i |2
))

= E0

(s−1∏

i=0

(rn
(i)

i rk
(i)

i )Es
(
rn

(s)

s rk
(s)

s Es+1

( ∞∏

i=s+1

|rn(i)

i |2
)))

.

Since

Es+1

( ∞∏

i=s+1

|rn(i)

i |2
)

= Es+1

(
E|n|

( |n|∏

i=s+1

|rn(i)

i |2
))

= Es+1

( |n|−1∏

i=s+1

|rn(i)

i |2E|n|(|rn
(|n|)
|n| |2)

)

= Es+1

( |n|−1∏

i=s+1

|rn(i)

i |2
)

= . . . = Es+1(|rn(s+1)

s+1 |2) = 1

and Es(rn
(s)

s rk
(s)

s ) = 0 (property (ii)), we have E0(ψnψk) = 0. On the other
hand, for n = k,

E0(|ψn|2) = E0

( |n|∏

i=0

|rn(i)

i |2
)

= E0

(|n|−1∏

i=0

|rn(i)

i |2E|n|(|rn
(|n|)

|n| |2)
)

= E0

(|n|−1∏

i=0

|rn(i)

i |2
)

= . . . = E0(|rn(0)

0 |2) = 1.

Note that this proof of Proposition 1 was based directly on properties (i)
and (ii).

The Dirichlet kernels play a prominent role in the convergence of Fourier
series. The following two lemmas will be useful in this regard.

Lemma 2. Let Mn+1 | k, y ∈ In(x) (n, k ∈ N, x, y ∈ Gm). Then

mn−1∑

j=0

rk+jMn
n (y)rk+jMn

n (x) =
{

0 if y 6∈ In+1(x),
mn if y ∈ In+1(x).
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Proof. By properties (ii), (iii) we have

1
mn

mn−1∑

xn=0

∣∣∣
mn−1∑

j=0

rk+jMn
n (y)rk+jMn

n (x)
∣∣∣
2

=
mn−1∑

j,l=0

rk+jMn
n (y)rk+lMn

n (y)
1
mn

mn−1∑

xn=0

rk+jMn
n (x)rk+lMn

n (x)

=
mn−1∑

j=0

|rk+jMn
n (y)|2 = mn.

Let y ∈ In+1(x). Then by the An+1-measurability of rsn (n, s ∈ N), (i) and
(iii) we get

1
mn

∣∣∣
mn−1∑

j=0

rk+jMn
n (y)rk+jMn

n (x)
∣∣∣
2

=
1
mn

∣∣∣
mn−1∑

j=0

|rk+jMn
n (y)|2

∣∣∣
2

=
1
mn

m2
n = mn.

Consequently, for y ∈ In(x) we have

1
mn

mn−1∑

xn=0, xn 6=yn

∣∣∣
mn−1∑

j=0

rk+jMn
n (y)rk+jMn

n (x)
∣∣∣
2

= 0.

Lemma 3.

DMn(y, x) =
{
Mn if y ∈ In(x),
0 if y 6∈ In(x).

Proof. Suppose that y 6∈ In(x). Then y ∈ Ia(x) \ Ia+1(x) for some a ∈
{0, 1, . . . , n− 1}. Lemma 2 gives

mi−1∑

ki=0

rk
(i)

i (y)rk
(i)

i (x) =
{
mi for i = 0, 1, . . . , a− 1,
0 for i = a.

It follows that

DMn(y, x) =
mn−1−1∑

kn−1=0

. . .

m0−1∑

k0=0

n−1∏

i=0

rk
(i)

i (y)rk
(i)

i (x)

=
mn−1−1∑

kn−1=0

rk
(n−1)

n−1 (y)rk
(n−1)

n−1 (x) . . .
m1−1∑

k1=0

rk
(1)

1 (y)rk
(1)

1 (x)
m0−1∑

k0=0

rk
(0)

0 (y)rk
(0)

0 (x)

=
mn−1−1∑

kn−1=0

rk
(n−1)

n−1 (y)rk
(n−1)

n−1 (x) . . .
ma−1∑

ka=0

rk
(a)

a (y)rk
(a)

a (x)Ma = 0.

On the other hand, this expansion of DMn also shows that DMn(x, y) = Mn

for y ∈ In(x).
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Lemma 4 (Calderón–Zygmund decomposition [23, p. 752]). Let f ∈
L1(Gm), λ > ‖f‖1. Then there exists an absolute constant c > 0 (which may
depend only on supmn), a decomposition f =

∑∞
j=0 fj , and disjoint intervals

Ij := Ikj (u
j) for which supp fj ⊆ Ij ,

�
Ij
fj dµ = 0,

�
Ij
|fj | dµ ≤ cλµ(Ij)

(uj ∈ Gm, kj , j ∈ P), and

‖f0‖∞ ≤ cλ, ‖f0‖1 ≤ c‖f‖1, µ(F ) ≤ c‖f‖1/λ,
where F =

⋃
j∈P I

j .

Define the maximal operator S∗f := supn∈N |SMnf |.
Proposition 5. The operator S∗ is of type (p, p) for all 1 < p ≤ ∞ and

of weak type (1, 1).

Proof. The proof is based on standard techniques of the theory of Vilen-
kin and Walsh systems. Lemma 3 gives

‖S∗f‖∞ =
∥∥∥ sup
n∈N

∣∣∣ �
Gm

f(x)DMn(y, x) dµ(x)
∣∣∣
∥∥∥
∞

≤ ‖f‖∞
∥∥∥ sup
n∈N

∣∣∣ �
Gm

|DMn(y, x)| dµ(x)
∣∣∣
∥∥∥
∞

= ‖f‖∞.

That is, S∗ is of type (∞,∞). In order to prove the weak (1, 1) type we
apply Lemma 4. We can suppose λ > ‖f‖1. Since S∗ is sublinear, we have

µ(S∗f > 2cλ) ≤ µ(S∗f0 > cλ) + µ
(
S∗
( ∞∑

i=1

fi

)
> cλ

)

≤ µ(F ) + µ
(
y ∈ Gm : y 6∈ F, S∗

( ∞∑

i=1

fi

)
(y) > cλ

)

≤ c‖f‖1/λ+
c

λ
�

Gm\F
S∗
( ∞∑

i=1

fi

)
dµ

≤ c‖f‖1/λ+
c

λ

∞∑

i=1

�
Gm\F

S∗fi dµ

≤ c‖f‖1/λ+
c

λ

∞∑

i=1

�
Gm\Iki (ui)

sup
n∈N

∣∣∣ �
Iki (u

i)

fi(x)DMn(y, x) dµ(x)
∣∣∣dµ(y)

=: c‖f‖1/λ+
c

λ

∞∑

i=1

Bi.

We prove that Bi = 0 for i ∈ P. If n < ki, then DMn(y, x) is Aki-measurable
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(with respect to both x and y), thus

�
Iki (u

i)

fi(x)DMn(y, x) dµ(x) = DMn(y, ui) �
Iki (u

i)

fi(x)dµ(x) = 0 (i ∈ P).

If n ≥ ki, then x ∈ Iki(u
i) and y ∈ Gm \ Iki(ui) give that y 6∈ Iki(x).

Consequently, y 6∈ In(x) and by Lemma 3 we have DMn(y, x) = 0. That is,
Bi = 0 for i ∈ P. Hence, µ(S∗f > cλ) ≤ c‖f‖1/λ. That is, the sublinear
operator S∗ is both of type (∞,∞) and of weak type (1, 1). The interpolation
theorem of Marcinkiewicz [21, p. 479] shows that S∗ is of type (p, p) for all
1 < p ≤ ∞.

Set Pn := {∑n−1
k=0 bkψk : b0, . . . , bn−1 ∈ C} (n ∈ P) be the set of poly-

nomials of degree less than n, and P :=
⋃∞
n=1 Pn the set of all polynomials

(with respect to the system ψ). Then P is dense in C(Gm) (the set of
functions continuous on Gm). This can be proved in the following way. Let
f ∈ C(Gm), and ε > 0. Since Gm is compact, f is uniformly continuous on
Gm. Thus, there exists n ∈ N such that |f(x)− f(y)| < ε for all y ∈ In(x).
In view of Lemma 3 we can define the following polynomial:

P (y) := Mn �
In(y)

f(x) dµ(x) = �
Gm

f(y)DMn(y, x) dµ(x) = SMnf(y).

Then
|P (y)− f(y)| ≤Mn �

In(y)

|f(x)− f(y)| dµ(x) < ε

for all y ∈ Gm. Moreover, we prove that P is dense in Lp(Gm) (1 ≤ p <∞).
Let G ⊂ Gm be an open set. For all x ∈ G set n = n(x) := min(k ∈ N :
Ik(x) ⊂ G). Then G =

⋃
x∈G In(x). (It can be supposed that there are no

x1, x2 ∈ G for which In1(x1) ⊃ In2(x2) (the latter can be omitted).) This
union consists of disjoint intervals (since for any intervals I, J ∈ I we have
I ∩ J = ∅ or I ⊂ J or I ⊃ J). Consequently, for each ε > 0 we have a
finite number of disjoint intervals In1(x1), . . . , Ink(xk) the union of which is
a subset of G and the difference of the measure of G and the sum of their
measures is less than ε. Lemma 3 shows that the characteristic function
of an interval is a polynomial. The set of step functions (finite (complex)
linear combinations of characteristic functions of measurable sets) is dense in
Lp(Gm) (1 ≤ p <∞). The Haar measure µ is regular. Thus, the set of finite
(complex) linear combinations of characteristic functions of open sets is also
dense in Lp(Gm). By the above, this proves that the set of polynomials is
dense in Lp(Gm) (1 ≤ p <∞).

Then by the usual density argument (see e.g. [21, p. 81]) we have

Proposition 6. SMnf → f a.e. for each f ∈ L1(Gm).
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For the whole sequence of partial sums of Fourier series, the situation
changes. For Vilenkin systems (also on unbounded Gm groups) it is known
(see e.g. [16]) that f ∈ Lp(Gm) (1 < p < ∞) implies that Snf → f in the
Lp norm, and on bounded Vilenkin groups Snf → f almost everywhere (see
e.g. [17]). On the other hand, this is not the case on nonabelian Vilenkin
groups. In [8, 6] it is proved that there exists a nonabelian Vilenkin group
(even a bounded one) such that there exists p > 1 for which there exists an
f ∈ Lp(Gm) such that Snf converges to f neither in norm nor a.e. That is,
the theorem of Carleson does not hold for all Vilenkin-like systems. From
this point of view it seems to be more interesting that the (C, 1) means of
an integrable function converge a.e. to the function.

Set

Da,b(y, x) :=
a+b−1∑

k=a

ψk(y)ψk(x) (x, y ∈ Gm, a ∈ N, b ∈ P, Da,0 := 0)

and

ψk,n :=
∞∏

s=n

rk
(s)

s , ψk,n,l :=
l∏

s=n

rk
(s)

s .

Lemma 7. Let Mn | k, that is, k = knMn + . . .+ k|k|M|k|. Then

Dk,Mn(y, x) =
{

0 if y 6∈ In(x),
ψk,n(y)ψk,n(x)Mn if y ∈ In(x).

Proof. We have

Dk,Mn(y, x) =
Mn−1∑

j=0

ψk+j(y)ψk+j(x)

= ψk,n(y)ψk,n(x)
Mn−1∑

j=0

n−1∏

s=0

rk+j(s)
s (y)rk+j(s)

s (x).

To complete the proof, proceed as in the proof of Lemma 3, with the use of
Lemma 2.

Next, we give a formula for the Dirichlet kernels.

Proposition 8. Let x, y ∈ Gm, n ∈ N. Then

Dn(y, x)

=
∞∑

s=0

ψn,s+1(y)ψn,s+1(x)DMs(y, x)
ns−1∑

j=0

rn
(s+1)+jMs
s (y)rn

(s+1)+jMs
s (x).
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Proof. Apply Lemma 7 and the equality

Dn(y, x) =
∞∑

s=0

ns−1∑

j=0

Dn(s+1)+jMs,Ms
(y, x).

Let n, t ∈ N and y ∈ It(x) \ It+1(x). Then by Proposition 8,

Dn(y, x) =
t−1∑

s=0

Ms

t−1∏

k=s+1

|rn(k)

k (x)|2ψn,t(y)ψn,t(x)
ns−1∑

j=0

|rn(s+1)+jMs
s (x)|2(1)

+Mtψn,t+1(y)ψn,t+1(x)
nt−1∑

j=0

rn
(t+1)+jMt

t (y)rn
(t+1)+jMt

t (x)

(recall that the empty sum is zero, e.g.
∑ns−1
j=0 |rn

(s+1)+jMs
s (x)|2 = 0 for

ns = 0). By (1) and (iv) it follows (y ∈ It(x) \ It+1(x)) that

|Dn(y, x)| ≤
t−1∑

s=0

Ms

|n|∏

k=s+1

(mk/δ)ns(ms/δ)(2)

+Mt

|n|∏

k=t+1

(mk/δ)nt(mt/δ)

≤ c
t∑

s=0

M|n|
δ|n|−s

≤ cn 1
δ|n|−t

.

Denote by Ka,b :=
∑a+b−1
k=a Dk the sum of Dirichlet kernels (a ∈ N, b ∈ P).

Using (2) we prove

Lemma 9. Let s, n, t ∈ N, s ≤ t ≤ |n| and y ∈ It(x) \ It+1(x). Then

|Kn(s+1)+jMs,Ms
(y, x)| ≤ cδt−|n|MsM|n| (j ∈ {0, 1, . . . ,ms − 2}).

Proof. By (2) we have

|Kn(s+1)+jMs,Ms
(y, x)| ≤

n(s+1)+(j+1)Ms−1∑

k=n(s+1)+jMs

|Dk(y, x)|

≤ c
n(s+1)+(j+1)Ms−1∑

k=n(s+1)+jMs

k
1

δ|k|−t
.

If s+ 1 ≤ |n|, or s = |n| and j > 0, then |k| = |n| and

|Kn(s+1)+jMs,Ms
(y, x)| ≤ cMsM|n|δ

t−|n|.

It remains to discuss the case s = |n| and j = 0. Without loss of generality
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we can suppose δ < 2. Hence

M|n|−1∑

k=0

kδt−|k| ≤
|n|−1∑

a=0

Ma+1−1∑

k=Ma

cMaδ
t−a = cδt

|n|−1∑

a=0

M2
aδ
−a ≤ cδtM2

|n|δ
−|n|.

That is,

|Kn(s+1)+jMs,Ms
(y, x)| ≤ c

n(s+1)+(j+1)Ms−1∑

k=n(s+1)+jMs

k
1

δ|k|−t

≤ cδt
M|n|−1∑

k=0

kδt−|k| ≤ cδtM2
|n|δ
−|n|.

What can be said for t < s ≤ |n|, y ∈ It(x) \ It+1(x)?

Lemma 10. Let s, n, t ∈ N, t < s ≤ |n| and j ∈ {0, 1, . . . ,ms−2}. Then

�
It(y)\It+1(y)

|Kn(s+1)+jMs,Ms
(y, x)|2 dµ(x) ≤ cδt−|n|MtMsM|n|.

Proof. By (1),

Kn(s+1)+jMs,Ms
(y, x) =

n(s+1)+(j+1)Ms−1∑

k=n(s+1)+jMs

t−1∑

i=0

Mi|ψk,i+1,t−1(x)|2

× ψk,t(y)ψk,t(x)
ki−1∑

l=0

|rk(i+1)+lMi

i (y)|2

+
n(s+1)+(j+1)Ms−1∑

k=n(s+1)+jMs

Mtψk,t+1(y)ψk,t+1(x)

×
kt−1∑

l=0

rk
(t+1)+lMt
t (y)rk

(t+1)+lMt
t (x)

=: A1(y, x) + A2(y, x).

We start with a bound for
�
It(y) |A2(y, x)|2 dµ(x). It follows from (iv) that

(3)
∣∣∣
kt−1∑

l=0

rk
(t+1)+lMt
t (y)rk

(t+1)+lMt
t (x)

∣∣∣ ≤ ktmt/δ ≤ c.

If k, l ∈ [n(s+1) + jMs, n
(s+1) + (j + 1)Ms), then s > t gives that (v ∈ Gm

is arbitrary)
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(4) �
It+1(v)

ψk,t+1(x)ψl,t+1(x) dµ(x)

=
1

Mt+1
Et+1(ψk,t+1ψl,t+1)(v) =

{
1/Mt+1 if k(t+1) = l(t+1),
0 otherwise

(as in Lemma 1). Let u(z) ∈ It(y), z = 0, 1, . . . ,mt − 1, with u(z)
t = z. Then

�
It(y)

|A2(y, x)|2 dµ(x)

=
mt−1∑

z=0

�
It+1(u(z))

M2
t

∑

k,l∈[n(s+1)+jMs,n(s+1)+(j+1)Ms)

ψk,t+1(y)ψl,t+1(y)ψk,t+1(x)ψl,t+1(x)

×
kt−1∑

i=0

rk
(t+1)+iMt
t (y)rk

(t+1)+iMt
t (x)

lt−1∑

a=0

rl
(t+1)+aMt
t (y)rl

(t+1)+aMt
t (x) dµ(x).

This, (3), (4) and the At+1-measurability of rkt (t, k ∈ N) imply that

�
It(y)

|A2(y, x)|2 dµ(x)

≤ cM2
t

mt−1∑

ut=0

1
Mt+1

sup
k∈N, |k|=|n|≥t

‖ψk,t+1‖2∞
∑

k,l∈[n(s+1)+jMs,n
(s+1)+(j+1)Ms)

k(t+1)=l(t+1)

1

≤ cM2
t

1
Mt+1

· M|n|
Mt

δt−|n|MsMt = cMtMsM|n|δ
t−|n|.

On the other hand, since rkb is At-measurable for b < t, we have

�
It(y)

|A1(y, x)|2 dµ(x)

=
∑

k,l∈[n(s+1)+jMs,n(s+1)+(j+1)Ms)

( �
It(y)

ψk,t(x)ψl,t(x) dµ(x)
)
ψk,t(y)ψl,t(y)

×
t−1∑

i=0

Mi|ψk,i+1,t−1(y)|2
ki−1∑

j=0

|rk
(i+1)+jMi

i (y)|2
t−1∑

a=0

Ma|ψl,a+1,t−1(y)|2

×
la−1∑

b=0

|rl(a+1)+bMa
a (y)|2.

As above, in (4),

�
It(y)

ψk,t(x)ψl,t(x) dµ(x) =
{

1/Mt if k(t) = l(t),
0 otherwise.
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Hence
t−1∑

i=0

Mi|ψk,i+1,t−1(y)|2
ki−1∑

l=0

|rk(i+1)+lMi
i (y)|2

≤ c
t−1∑

i=0

Mi|ψk,i+1,t−1(y)|2 ≤ c
t−1∑

i=0

Mi
Mt

Mi
δi−t ≤ cMt.

Thus,

�
It(y)

|A1(y, x)|2 dµ(x)

≤
∑

k,l∈[n(s+1)+jMs,n
(s+1)+(j+1)Ms)

k(t)=l(t)

1
Mt

sup
k∈N, |k|=|n|≥t

‖ψk,t‖2∞M2
t

≤ cMtMs
1
Mt

M2
t

M|n|
Mt

δt−|n| = cMtMsM|n|δ
t−|n|.

Since It(y) \ It+1(y) ⊂ It(y), we have

�
It(y)\It+1(y)

|Kn(s+1)+jMs,Ms
(y, x)|2 dµ(x) ≤ cδt−|n|MtMsM|n|.

Using Lemmas 9 and 10 we prove the following proposition on the Fejér
kernels which is the base of the weak (1, 1) and (H,L1) type of the maximal
operator σ∗f := supn∈P |σnf |.

Propositon 11. Let y ∈ Gm, k ∈ N. Then

�
Gm\Ik(y)

sup
n≥Mk

|Kn(y, x)| dµ(x) ≤ c.

Proof. Since

nKn =
|n|∑

s=0

ns−1∑

j=0

Kn(s+1)+jMs,Ms
,

we have

�
Gm\Ik(y)

sup
n≥Mk

|Kn(y, x)| dµ(x)

≤
∞∑

A=k

�
Gm\Ik(y)

sup
n:|n|=A

|Kn(y, x)| dµ(x)

≤ c
∞∑

A=k

k−1∑

t=0

�
It(y)\It+1(y)

1
MA

sup
n:|n|=A

∣∣∣
A∑

s=0

ns−1∑

j=0

Kn(s+1)+jMs,Ms
(y, x)

∣∣∣ dµ(x)
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≤ c
∞∑

A=k

k−1∑

t=0

t∑

s=0

ms−2∑

j=0

�
It(y)\It+1(y)

1
MA

sup
n:|n|=A

|Kn(s+1)+jMs,Ms
(y, x)| dµ(x)

+ c
∞∑

A=k

k−1∑

t=0

A∑

s=t+1

ms−2∑

j=0

�
It(y)\It+1(y)

1
MA

sup
n:|n|=A

|Kn(s+1)+jMs,Ms
(y, x)| dµ(x)

=: B1 +B2.

From Lemma 9 it follows that

B1 ≤ c
∞∑

A=k

k−1∑

t=0

t∑

s=0

ms−2∑

j=0

1
Mt

1
MA

MsMAδ
t−A ≤ c.

By the Cauchy–Bunyakovskĭı inequality and Lemma 10 we have (1X denotes
the characteristic function of the set X)

B2 = c

∞∑

A=k

k−1∑

t=0

A∑

s=t+1

ms−2∑

j=0

1
MA

�
Gm

1It(y)\It+1(y)(x)

× sup
n:|n|=A

|Kn(s+1)+jMs,Ms
(y, x)| dµ(x)

≤ c
∞∑

A=k

k−1∑

t=0

A∑

s=t+1

ms−2∑

j=0

1
MA

(µ(It(y) \ It+1(y)))1/2

×
√

�
It(y)\It+1(y)

sup
n:|n|=A

|Kn(s+1)+jMs,Ms
(y, x)|2 dµ(x)

≤ c
∞∑

A=k

k−1∑

t=0

A∑

s=t+1

ms−2∑

j=0

1
MA

√
1
Mt

×
√√√√ �
It(y)\It+1(y)

∑

ni=0,1,...,mi−1
i=s+1,s+2,...,A

|Kn(s+1)+jMs,Ms
(y, x)|2 dµ(x)

≤ c
∞∑

A=k

k−1∑

t=0

A∑

s=t+1

ms−2∑

j=0

1
MA

√
1
Mt

√
MA

Ms
MtMsMAδt−A

= c
∞∑

A=k

k−1∑

t=0

A∑

s=t+1

δ(t−A)/2 ≤ c
∞∑

A=k

k−1∑

t=0

(A− t)δ(t−A)/2 ≤ c.

Proposition 11 gives the following.
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Theorem 12.

�
Gm

|Kn(y, x)| dµ(x) ≤ c (n ∈ P, y ∈ Gm).

Proof. Let MA ≤ n < MA+1. By Lemma 7 and Proposition 8 we have

|Dn(y, x)| ≤ c
|n|∑

s=0

‖ψn,s+1‖2∞Ms ≤ c
|n|∑

s=0

M|n|
Ms

δs−|n|Ms ≤ cM|n| ≤ cn.

Thus, |Kn| ≤ cn for each n ∈ P. Proposition 11 now gives

�
Gm

|Kn(y, x)| dµ(x) ≤ �
IA(y)

|Kn(y, x)| dµ(x)

+ �
Gm\IA(y)

sup
n≥MA

|Kn(y, x)| dµ(x)

≤ cµ(IA(y))n+ c ≤ c.
Corollary 3. σnf → f in the Lp(Gm)-norm for each f ∈ Lp(Gm)

(1 ≤ p <∞).

Proof. It is sufficient to prove that the operators σn are uniformly of
type (p, p) when 1 ≤ p ≤ ∞, since the convergence σnf → f is valid for
each polynomial f ∈ P and we can apply the theorem of Banach–Steinhaus.
From the Marcinkiewicz interpolation theorem [21, p. 479], it is sufficient to
prove that the operators σn are uniformly of type (1, 1) and (∞,∞). These
properties (by a standard argument) are straightforward consequences of
Theorem 12.

Theorem 14. The operator σ∗ is of weak type (1, 1) and of type (p, p)
for all 1 < p ≤ ∞.

Proof. Theorem 12 gives the (∞,∞) type. We prove that σ∗ is of weak
type (1, 1). We can suppose λ > ‖f‖1. Apply the notations of Lemma 4.
By property (i) it follows that ψi is Akj -measurable for i < Mkj , thus
f̂j(i) = 0 (i ∈ N, j ∈ P). Consequently, σ∗fj = supn≥Mkj

|σnfj |. Applying
the sublinearity of σ∗, Proposition 11 and the Fubini theorem, we get

µ(σ∗f > 2cλ) ≤ µ(σ∗f0 > cλ) + µ(F )

+ µ
({
y ∈ Gm \ F : σ∗

( ∞∑

j=1

fj

)
(y) > cλ

})

≤ c‖f‖1/λ+
c

λ
�

Gm\F
σ∗
( ∞∑

j=1

fj

)
dµ
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≤ c‖f‖1/λ+
c

λ

∞∑

j=1

�
Gm\Ikj (uj)

σ∗fj dµ

≤ c‖f‖1/λ+
c

λ

∞∑

j=1

�
Gm\Ikj (uj)

sup
n≥Mkj

|σnfj | dµ

≤ c‖f‖1/λ+
c

λ

∞∑

j=1

�
Ikj (uj)

|fj(x)| �
Gm\Ikj (uj)

sup
n≥Mkj

|Kn(y, x)| dµ(y) dµ(x)

≤ c‖f‖1/λ+
c

λ

∞∑

j=1

‖fj‖1 ≤ c‖f‖1/λ+
c

λ

∞∑

j=1

�
Ikj (uj)

∞∑

k=1

|fk| dµ

≤ c‖f‖1/λ+
c

λ
�
Gm

∞∑

k=1

|fk| dµ ≤ c‖f‖1/λ+
c

λ
�
Gm

|f − f0| dµ

≤ c‖f‖1/λ.
(We have Gm \ Ikj (u) = Gm \ Ikj (x) since x ∈ Ikj (u).) That is, the operator
σ∗ is of weak type (1, 1) and since it is of type (∞,∞), the Marcinkiewicz
interpolation lemma [21, p. 479] completes the proof.

Theorem 14 and the usual density argument (see e.g. [21, p. 81]) give
the next result.

Theorem 15. σnf → f a.e. for each f ∈ L1(Gm).

Theorem 16. The operator σ∗ is of type (H,L).

Proof. Let g be an atom, supp g ⊆ Ik(u) =: Ig, ‖g‖∞ ≤ Mk for some
k ∈ N, u ∈ Gm. Then

‖σ∗g‖1 ≤ �
Ig

σ∗g dµ+ �
Gm\Ig

σ∗gdµ =: I1 + I2.

As σ∗ is of type (2, 2), we have

I1 ≤ c‖σ∗g‖2(µ(Ig))1/2 ≤ c‖g‖2(µ(Ig))1/2 ≤ c.
Proposition 11 (as in the proof of Theorem 14) gives I2 ≤ c‖g‖1 ≤ c. By a
standard argument (see e.g. [22, p. 95]) ‖σ∗g‖1 ≤ c implies the (H,L) type
of σ∗.

Applications and Remarks. Example A. Fine [3] proved that every
Walsh–Fourier series (in the Walsh case mj = 2 for all j ∈ N) is a.e. (C,α)
summable for α > 0. His argument is an adaptation of the older trigono-
metric analogue due to Marcinkiewicz [10]. Schipp [15] gave a simpler proof
for the case α = 1, i.e. σnf → f a.e. (f ∈ L1(Gm)). He proved that σ∗ is
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of weak type (1, 1). That σ∗ is of type (L1,H1) was discovered by Fujii [4].
The a.e. convergence of the (C, 1) means of integrable functions with respect
to the p-series fields (which is a Vilenkin group with mk = p for all k ∈ N)
is due to Taibleson [25]. Later, this result was generalized to the so-called
bounded Vilenkin groups with respect to the Vilenkin system by Pál and
Simon [12].

Example B. The theorem of Schipp and Fujii for the character system of
the group of 2-adic integers was proved by the author [5, p. 89]. Theorem 15
proves the more than 20 years old conjecture of M. H. Taibleson.

Example C. Theorems 14, 15 and 16 (in this case) were proved by the
author [6]. Theorem 12 and Corollary 13 can be found in [8].

Example D. The results in this paper preceding Lemma 7 with respect
to this system can be found in [7].

Example E. Theorem 12 and Corollary 13 can be found in [19]. Schipp
also proved the a.e. convergence of the Fourier series of functions in L2 [17].

Example F. Schipp [18] proved the a.e. convergence of the Fourier series
of functions in L2. The (C, 1) or Fejér means have not been investigated yet.

Acknowledgements. The author thanks the referees for their help.
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