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CM-Selectors for pairs of oppositely semicontinuous
multivalued maps with Lp-decomposable values

by
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Abstract. We present a new continuous selection theorem, which unifies in some
sense two well known selection theorems; namely we prove that if F is an H-upper semi-
continuous multivalued map on a separable metric space X, G is a lower semicontinuous
multivalued map on X, both F and G take nonconvex Lp(T,E)-decomposable closed val-
ues, the measure space T with a σ-finite measure µ is nonatomic, 1 ≤ p <∞, Lp(T,E) is
the Bochner–Lebesgue space of functions defined on T with values in a Banach space E,
F (x) ∩G(x) 6= ∅ for all x ∈ X, then there exists a CM -selector for the pair (F,G), i.e. a
continuous selector for G (as in the theorem of H. Antosiewicz and A. Cellina (1975),
A. Bressan (1980), S. Łojasiewicz, Jr. (1982), generalized by A. Fryszkowski (1983),
A. Bressan and G. Colombo (1988)) which is simultaneously an ε-approximate contin-
uous selector for F (as in the theorem of A. Cellina, G. Colombo and A. Fonda (1986),
A. Bressan and G. Colombo (1988)).

Introduction. The purpose of this paper is to present a new joint con-
tinuous selection theorem, which synthesizes, in a sense, two well known
selection theorems. This theorem (Theorem 2.2 of Section 2) states that if
F is an H-upper semicontinuous multifunction on a separable metric space
X, G is a lower semicontinuous multifunction on X, F (x) ∩ G(x) 6= ∅ for
all x ∈ X, G has closed values, both F and G take (possibly nonconvex)
Lp(T,E)-decomposable values, where the measure space T with a σ-finite
measure µ is nonatomic, 1 ≤ p < ∞, Lp(T,E) is the Bochner–Lebesgue
space of functions defined on T with values in a Banach space E, then there
exists a CM -selector for the pair (F,G), i.e. there exists a continuous se-
lector for G (as in the theorem due to H. A. Antosiewicz and A. Cellina
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[AntC, 1975], A. Bressan [Br, 1980] and S. Łojasiewicz, Jr. [Łoj, 1982], gen-
eralized by A. Fryszkowski [Fry, 1983], A. Bressan and G. Colombo [BrC,
1988]), which is simultaneously an ε-approximate continuous selector for F
(as in the theorem of A. Cellina, G. Colombo and A. Fonda [CelCF, 1986],
A. Bressan and G. Colombo [BrC, 1988]). Here, the notion of Lp(T,E)-
decomposability of a set is understood in the well known sense of F. Hiai
and H. Umegaki [HiU, 1977].

In our previous papers [NgJZ1-2], where we introduced the notion of
CM -selectors, we proved a continuous selection theorem, unifying in an
analogous sense two famous continuous selection theorems due to E. A.
Michael [Mi] (1956) and to A. Cellina [Cel] (1969); we proved namely that if
F is an H-upper semicontinuous multifunction on a metric space X, G is a
lower semicontinuous multifunction on X, G takes closed values, both F and
G take convex values in a Banach or complete metric locally convex space Y ,
F (x) ∩G(x) 6= ∅ for all x ∈ X, then the pair (F,G) admits a CM -selector,
i.e. G has a continuous selector (as in Michael’s theorem) which is also an
ε-approximate continuous selector for F (as in Cellina’s theorem). In the
case G(x) ≡ Y the selection theorem of [NgJZ1-2] reduces to the Cellina
approximate continuous selection theorem for F . In the case F (x) ≡ Y it
reduces to the Michael continuous selection theorem for G. In the general
case our theorem can be interpreted as an “intermediate” theorem between
the Michael and Cellina theorems.

It is well known that in theorems of Cellina’s and Michael’s type de-
composability is a good substitute for convexity. Following this idea, we
prove in the present paper a version of the selection theorem [NgJZ1-2],
replacing the convexity condition for the values of F , G with the Lp(T,E)-
decomposability condition, where the measure space T is nonatomic and
σ-finite. All the proofs of the results of Section 2 are collected in Section 3.
The core of the rather long proof of the main selection Theorem 2.2 is The-
orem 2.1, in the proof of which we apply Lemma 2.1. Although the schemes
and methods of our proofs are known (see the above cited papers), they
are applied in a more complicated situation. As a by-product of the proof,
we re-establish (see Corollaries 2.1 and 2.2) the fact that the above men-
tioned theorems: the theorem on continuous selectors for a lower semicontin-
uous multifunction G with L1-decomposable values due to Fryszkowski and
Bressan–Colombo, and the theorem on ε-approximate continuous selectors
for an H-upper semicontinuous multifunction F with L1-decomposable val-
ues due to Cellina–Colombo–Fonda and Bressan–Colombo, are also true in
the case when the measure space is σ-finite, i.e. under weaker assumptions
than in their original formulation (finite measure space).

The notion of CM -selectors and the problem of their existence find mo-
tivation in our recent research [Ng2-3], [NgJZ1-2] on the existence of solu-
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tions of “strongly nonlinear” Hammerstein multivalued equations (inclusions
“with lack of compactness”) and of elliptic boundary value problems with
“strongly nonlinear” multivalued right-hand sides F which satisfy some one-
sided estimates (e.g. the sign condition, generalized sign condition, Hammer-
stein one-sided estimate, etc.). We observed that each one-sided estimate in
the multivalued case generates some pair (F,G), where the multifunction G
is lower semicontinuous (cf. Theorem 2.2 and Theorem 3.1 of [NgJZ1]). The
Lp-decomposable-valued version of the above result appears here as Theo-
rem 2.3, and is a direct consequence of the general selection Theorem 2.2.

Using Theorem 2.3, we have obtained in [NgJZ2] an existence theorem for
both nonlinear (operator and integral) Hammerstein inclusions and elliptic
differential inclusions with H-upper semicontinuous nonlinearities. There,
we also apply the above theorem to get new existence results for periodic
oscillations in a nonlinear control system with “undetermined noise”, for
Clarke’s critical points of nonsmooth energy functionals as well as for solu-
tions of some discontinuous elliptic problems (see references in [Cla], [Dei],
[RW], [ADNZ], [Ng1]).

We have also obtained the existence of so-called “combinative CM -
selectors” for several multivalued maps with convex closed values (see
[NgJZ2]) or Lp-decomposable values (see [NgJZ3]); the result unifies simi-
larly two well known selection theorems: the above theorem on ε-approxi-
mate continuous selectors due to Cellina–Colombo–Fonda and Bressan–
Colombo, and the existence theorem on continuous selectors proved by V. V.
Goncharov and A. A. Tolstonogov in 1991, 1994 (see references in [CelCF],
[BrC], [TolT], [Dei], [Ng1]). We have also proven the existence of so-called
“extremal CMT -selectors”, by means of which two well known selection
theorems can be subsumed within one statement: the above theorem due
to Cellina–Colombo–Fonda and Bressan–Colombo, and the existence theo-
rem on extremal selectors obtained by A. A. Tolstonogov in 1995, 1996, and
A. A. Tolstonogov and D. A. Tolstonogov in 1996 (see references in [CelCF],
[BrC], [TolT], [Ng1]).

Other applications of the existence results for CM -selectors of the
present paper and of our previous ones [NgJZ1-2] are presented in [Ng2],
[NgJZ3]. We hope that all these results will have applications in other prob-
lems of set-valued nonlinear analysis.

1. Some terminology and notation. We give some terminology and
notation following [AubC], [AubF], [Dei], [Kur], [CasV], [RW], [ADNZ],
[Ng1].

Let (X, %) be a metric space. For x ∈ X, M ⊂ X and ε > 0 we denote
by d(x,M) = inf{%(x, y) : y ∈ M} the distance from x to M and by
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Uε(M) = {y ∈ X : d(y,M) < ε} the ε-neighbourhood of M . BX(x, r) (or
simply B(x, r)) is the open ball with centre x and radius r. The distance in
the product X × Y of two metric spaces (X, %X) and (Y, %Y ) is defined as
follows: d((x, y), (x1, y1)) = max{%X(x, x1), %Y (y, y1)}.

We assume that each multifunction considered has nonempty values,
unless stated to the contrary. The graph of a multifunction F : X → 2Y

is the set GrF = {(x, y) ∈ X × Y : y ∈ F (x)}. By F (M) we denote the
image of the set M ⊂ X under the multifunction F ; recall that F (M) =⋃
x∈M F (x).

Let X, Y be metric spaces and let F : X → 2Y be a multifunction. F
is called upper semicontinuous (or usc or Vietoris usc or V-usc) at x0 ∈ X
if for any open set V ⊂ Y such that F (x0) ⊂ V , one can find an open
neighbourhood U ⊂ X of x0 such that F (x) ⊂ V for all x ∈ U . F is called
lower semicontinuous (or lsc or Vietoris lsc or V -lsc) at x0 ∈ X if for any
open set V ⊂ Y such that F (x0)∩V 6= ∅, there exists an open neighbourhood
U ⊂ X of x0 such that F (x)∩V 6= ∅ for all x ∈ U . A multifunction F is upper
semicontinuous (or usc) [resp. lower semicontinuous or lsc] if it is usc [resp.
lsc] at every x ∈ X. We say that F is Hausdorff upper semicontinuous (or
H-usc or ε-δ-usc) at x0 ∈ X if for any ε > 0 one can find a δ > 0 such that
F (B(x0, δ)) ⊂ Uε(F (x0)). F is said to be Hausdorff lower semicontinuous
(or H-lsc or ε-δ-lsc) at x0 ∈ X if for any ε > 0 one can find a δ > 0 such
that F (x0) ⊂ Uε(F (x)) for all x ∈ B(x0, δ). A multifunction F is Hausdorff
upper semicontinuous (or H-usc) [resp. H-lower semicontinuous or H-lsc] if
it is H-usc [resp. H-lsc] at every x ∈ X.

Recall that if F is usc, then F is H-usc; the converse is true if F takes
compact values. If F is H-lsc, then F is lsc; the converse is true if F takes
compact values. Recall that F is lsc at x ∈ X iff for every closed subset C
of Y , and for every sequence (xn)n∈N converging in X to x, the fact that
F (xn) ⊂ C (n ∈ N) implies F (x) ⊂ C. Recall also that if F is lsc, then so is
F , where F (x) is the closure of F (x).

In order to present a new theorem, which unifies in some sense two
famous continuous selection theorems: of E. A. Michael [Mi] and of A. Cellina
[Cel], we introduced in [NgJZ1-2] the following new important notion.

Definition 1.1. Let F,G : X → 2Y be two multifunctions, where X
and Y are metric spaces. Let ε > 0. By a CM -selector or Cellina–Michael
selector for the pair (F,G) we mean a continuous map f : X → Y which
is a selector for G, i.e., f(x) ∈ G(x) (x ∈ X), and simultaneously an ε-
approximate selector (ε-selector for short) for F , i.e., Gr f ⊂ Uε(GrF ).

Remark. If Y is a normed space, then f : X → Y is an ε-selector for
F iff f(x) ∈ F (BX(x, ε)) +BY (0, ε) for all x ∈ X.
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If Y is a metric locally convex space, we denote by clD, convD and
convD the closure, the convex hull and the closed convex hull of a subset D
of Y , respectively.

2. CM-Selectors in the case of Lp-decomposable values. Through-
out Sections 2–3 of this paper (T, T , µ) is always a measure space, where
T is a σ-algebra of subsets of T and µ is a complete σ-finite nonatomic
measure on T .

Let E be a Banach space with norm ‖ · ‖E . Given a function u : T → E,
we sometimes write ‖u‖E to denote the function ‖u(·)‖E : T → R+ if this
causes no misunderstanding.

By Lp = Lp(T,E) = Lp(T, µ,E) (1 ≤ p < ∞) we denote [DunS] the
Bochner–Lebesgue space (Bochner space) of (equivalence classes of) strongly
measurable functions u : T → E with the norm ‖u‖p = (

�
T
‖u(t)‖pE dµ(t))1/p

= (
�
T
‖u‖pE dµ)1/p <∞.

Note that all results of this section are also true for the weighted Bochner
–Lebesgue space Lp(T,E; %) with a weight %, since we have Lp(T,E; %) =
Lp(T, µ̃, E) with dµ̃(t) = %(s)pdµ(t).

A set K ⊂ Lp(T,E) is said to be decomposable (or Lp-decomposable) in
the sense of Hiai–Umegaki [HiU] if uχS + vχT\S ∈ K whenever u, v ∈ K
and S ∈ T , where χD is the characteristic function of a set D. Recall (see
[HiU]) that the closure clK of a decomposable set is also a decomposable
set. If 1 ≤ p <∞ and K is nonempty and closed then K is decomposable if
and only if there exists a measurable multifunction F : T → 2E with closed
nonempty values such that K = {f ∈ Lp(T,E) : f(t) ∈ F (t) µ-a.e. in T}.

The collection of all nonempty decomposable (resp. nonempty decom-
posable and closed) subsets of Lp(T,E) is denoted by Dc(Lp(T,E)) (resp.
by Cl Dc(Lp(T,E)). The smallest decomposable set which contains a set
H ⊂ Lp(T,E) is denoted by decH and called the decomposable hull of H.

The following lemma is the main tool in proving Theorem 2.1.

Lemma 2.1. Assume that X is a separable metric space. Let (cn,k)n,k≥1

be a sequence of nonnegative elements of L1(T,R) and (φn)n≥1 be a sequence
of continuous mappings φn : X → L1(T,R) with nonnegative values (i.e.
φn(x)(t) ≥ 0 for every x ∈ X and a.a. t ∈ T ). Let (hn)n≥1 be a sequence of
continuous functions hn : X → [0, 1] such that {supphn : n ≥ 1} is a locally
finite covering of X. Then for every continuous function λ : X → R+ \ {0}
there exist a continuous function τ : X → R+ and a map Φ : R+×[0, 1]→ T
with the following properties:

(a) Φ(r, α1) ⊂ Φ(r, α2), µ(Φ(r, 0)) = µ(T \ Φ(r, 1)) = 0 for r ≥ 0, 0 ≤
α1 ≤ α2 ≤ 1;
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(b) for all x ∈ X, α ∈ [0, 1] and n, k ≥ 1, if hn(x) = 1 then

(2.1a)
∣∣∣ �
Φ(τ(x),α)

φn(x) dµ− α �
T

φn(x) dµ
∣∣∣ < λ(x),

and if hn(x) = hk(x) = 1 then

(2.1b) �
Φ(τ(x),α)

cn,k dµ = α �
T

cn,k dµ;

(c) the map ψ : X → Lp(T,E) defined by

(2.2) ψ(x) = φ(x)χΦ(β(x),α(x))

is continuous whenever the functions α : X → [0, 1], β : X → R+ and the
map φ : X → Lp(T,E) are continuous.

The following theorem, from which the main Theorem 2.2 of this section
will be derived, is of independent interest.

Theorem 2.1. Assume that X is a separable metric space and 1 ≤ p
< ∞. Let F : X → Dc(Lp(T,E)) be an H-usc multifunction and G : X →
Cl Dc(Lp(T,E)) be a lsc multifunction. If F (x) ∩ G(x) 6= ∅ for all x ∈
X, then for every ε > 0 there exist continuous maps fε : X → Lp(T,E)
and φε : X → Lp(T,R) such that Gr fε ⊂ Uε(GrF ), fε(X) ⊂ decF (X),
‖φε(x)‖p < ε for each x ∈ X, all sets

(2.3) Gε(x) := {u ∈ G(x) : ‖u(t)− fε(x)(t)‖E < φε(x)(t)

µ-a.e. in T} (x ∈ X)

are nonempty , and the multifunction Gε : X → Dc(Lp(T,E)) is lsc.

The following, main theorem in this section states that under appropriate
assumptions for a pair of multifunctions (F,G), of which the former is H-
usc and the latter is lsc, there exists a continuous function which is an
ε-approximate selector for F and a selector for G. For this kind of selector
common for two multifunctions we coined in [NgJZ1] the term CM -selector
(see Definition 1.1).

Theorem 2.2. Assume that X is a separable metric space and 1 ≤ p
< ∞. Let F : X → Dc(Lp(T,E)) be an H-usc multifunction and G : X →
Cl Dc(Lp(T,E)) be a lsc multifunction. If F (x) ∩ G(x) 6= ∅ for all x ∈
X, then for every ε > 0 there exists a CM -selector f for the pair (F,G).
Moreover , if A ⊂ X is a fixed closed set , and f0 : A → Lp(T,E) is a fixed
continuous map such that f0(a) ∈ F (a) ∩ G(a) (a ∈ A), then there exists a
CM -selector f for the pair (F,G) such that f(a) = f0(a) (a ∈ A).

The following Theorem 2.3 is an example of using Theorem 2.2 to prove
the existence of an approximate selector satisfying some additional one-sided
conditions.
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Theorem 2.3. Let F : C → Dc(Lp(T,Rm)) be an H-usc multifunction,
where C is a separable subset of Lq(T,Rm), 1 ≤ p <∞, 1 ≤ q ≤ ∞. Assume
that for every x ∈ C there exists a function w ∈ F (x) such that

(2.4) (w(t), x(t)) ≤ α(x(t), x(t)) + h(t) for a.a. t ∈ T,

where α ∈ R+ \ {0} and h : T → R+ \ {0} is a measurable function. Then
for every ε > 0 there exists a continuous map f : C → Lp(T,Rm) which is
an ε-approximate selector for F such that

(2.5) (f(x)(t), x(t))≤α(x(t), x(t))+h(t) for all x∈C and for a.a. t∈ T.

Moreover , if A ⊂ C is a fixed closed set , f0 : A → Lp(T,Rm) is a fixed
continuous map such that f0(a) ∈ F (a) (a ∈ A) and (f0(a)(t), a(t)) ≤
α(a(t), a(t)) + h(t) for all a ∈ A and for a.a. t ∈ T , then there exists a
continuous ε-approximate selector f for F satisfying (2.5) with f(a) = f0(a)
(a ∈ A).

From Theorem 2.2 we obtain the following known selection theorems as
easy corollaries. These are versions of the Michael and Cellina theorems for
multifunctions with Lp-decomposable values. It is sufficient to take F (x) ≡
Lp(T,E) and G(x) ≡ Lp(T,E), respectively.

Corollary 2.1 (Bressan–Colombo–Fryszkowski theorem). Assume that
X is a separable metric space and 1 ≤ p <∞. Let G : X → Cl Dc(Lp(T,E))
be a lsc multifunction. Then there exists a continuous map g : X → Lp(T,E)
which is a selector for G. Moreover , if A ⊂ X is a fixed closed set and
g0 : A→ Lp(T,E) is a fixed continuous map such that g0(a) ∈ G(a) (a ∈ A),
then there exists a continuous selector g of G such that g(a) = g0(a) (a ∈ A).

Corollary 2.2. Assume that X is a separable metric space and 1 ≤ p
<∞. Let F : X → Dc(Lp(T,E)) be an H-usc multifunction. Then for every
ε > 0 there exists a continuous ε-selector f of F with f(X) ⊂ decF (X).
Moreover , if A ⊂ X is a fixed closed set and f0 : A → Lp(T,E) is a
fixed continuous map such that f0(a) ∈ F (a) (a ∈ A), then there exists a
continuous ε-selector f of F such that f(a) = f0(a) (a ∈ A).

Remark 2.1. The additional condition f(X) ⊂ decF (X) in Corollary
2.2 is a consequence of Theorem 2.1. The first part of Corollary 2.2 is the
selection theorem due to Bressan–Colombo [BrC] and Cellina–Colombo–
Fonda [CelCF]. Further, the existence of an ε-selector f with f(a) = f0(a)
(a ∈ A) as in the second part of Corollary 2.2 is a new fact in comparison
with the theorem of [CelCF], [BrC], and it cannot be deduced directly from
those papers.
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3. Proofs of the results of Section 2. In the calculations below, c
denotes the constant 2p−1 with 1 ≤ p <∞.

We first formulate (without proofs) standard Lemmas 3.1–3.3 (which are
easy adaptations of Propositions 2.1–2.3 of [Fry1]). Then we give the proofs
for Lemma 2.1, Theorem 2.1 (both of which are essential for the proof of
the main Theorem 2.2), Theorem 2.2 and Theorem 2.3.

Recall that by the Kantorovich order-completeness theorem for the space
S(T,R) of all measurable scalar functions [KaA, Corollary 1.6.2] any set K
of nonnegative measurable scalar functions has an essential infimum (which
is equal to the infimum of K with respect to the natural ordering in S(T,R)),
which will be denoted by ψ = essinf{a : a ∈ K}.

Lemma 3.1. Let K ∈ Cl Dc(Lp(T,E)). Then for every real-valued T -
measurable function a0 : T → R such that a0(t) > ψ(t) µ-a.e. in T , where
ψ = essinf{‖u(·)‖E : u ∈ K}, there exists u0 ∈ K such that ‖u0(t)‖E < a0(t)
µ-a.e. in T .

Lemma 3.2. Let X be a metric space and let G : X → Cl Dc(Lp(T,E))
be a lsc multifunction. For all x ∈ X set ψx = essinf{‖u(·)‖E : u ∈ G(x)}.
Then the multifunction P : X → 2Lp(T,R) \ {∅} defined as

(3.1) P (x) = {a ∈ Lp(T,R) : a(t) > ψx(t) µ-a.e. in T}
is lsc.

Lemma 3.3. Let X be a metric space and G : X → Cl Dc(Lp(T,E)) be
a lsc multifunction. Assume that g : X → Lp(T,E) and φ : X → Lp(T,R)
are continuous maps such that for every x ∈ X the set

(3.2) Ĝ(x) = {u ∈ G(x) : ‖u(t)− g(x)(t)‖E < φ(x)(t) µ-a.e. in T}
is nonempty. Then the multifunction Ĝ : X → Dc(Lp(T,E)) is lsc.

Proof of Lemma 2.1. Let λ : X → R+ \ {0} be given. For every x ∈ X
choose an open neighbourhood Ux of x which intersects the supports of
finitely many functions hn and set I(x) = {n ∈ N : Ux ∩ supphn 6= ∅}. By
our choice the set I(x) is finite. For x ∈ X put

(3.3) Vx =
⋂

n∈I(x)

{x′ ∈ Ux : ‖φn(x′)− φn(x)‖1 < λ(x′)/2}.

The family (Vx)x∈X is an open covering of the separable metric space
X, which is paracompact by the Stone Theorem [Kur]. Hence there exists
a sequence (qm)m≥1 of continuous functions qm : X → [0, 1] such that
{supp qm : m ≥ 1} is a locally finite refinement of (Vx)x∈X and the sets
Wm = {x ∈ X : qm(x) = 1}, m ∈ N, cover X. For every m ≥ 1 choose xm
such that Wm ⊂ Vxm . Define the sequence (aj)j≥0 of nonnegative functions
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in L1(T,R) by

(3.4) aj =

{
φn(xm) if j = 2n3m for some n,m ∈ N,
cn,k if j = 3n5k for some n, k ∈ N,
1 otherwise.

Moreover put

τ1(x) =
∑

n,m≥1

hn(x)qm(x)2n3m, τ2(x) =
∑

n,k≥1

hn(x)hk(x)3n5k,(3.5)

τ(x) = τ1(x) + τ2(x).(3.6)

The function τ is continuous, because the summations in τ1(x) and τ2(x)
are locally finite.

Since µ is σ-finite, there is a sequence (Ti)i∈N ⊂ T of disjoint measurable
sets of finite measure such that

⋃
i∈N Ti = T . For i ∈ N define Ti = {A∩Ti :

A ∈ T } and observe that (aj|Ti)j≥0 ⊂ L1(Ti,R). Thus by [BrC, Lemma 1,
p. 73–75] for the sequence (aj)j≥0 (it is important that a0 = 1) there exist
maps Φi : R+ × [0, 1]→ Ti, i ∈ N, with the following properties:

(a′) Φi(r, α1) ⊂ Φi(r, α2), µ(Φi(r, 0)) = µ(T \ Φi(r, 1)) = 0 for r ≥ 0,
0 ≤ α1 ≤ α2 ≤ 1;

(b′) µ(Φi(r1, α1))4 Φi(r2, α2)) ≤ 2|r1 − r2| + |α1 − α2| for r1, r2 ≥ 0,
α1, α2 ∈ [0, 1];

(c′)

(3.7) �
Φi(r,α)

aj dµ = α �
Ti

aj dµ (0 ≤ j ≤ r, α ∈ [0, 1]).

Define the map Φ : R+×[0, 1]→ T to be the union of disjoint measurable
sets:

(3.8) Φ(r, α) =
⋃

i≥1

Φi(r, α).

It is easy to see that Φ satisfies the condition (a) of Lemma 2.1.
To prove (b) it suffices to prove (2.1a), (2.1b). Fix x ∈ X, α ∈ [0, 1] and

n, k ≥ 1. We can find m such that x ∈Wm (and so qm(x) = 1). If hn(x) = 1
then, by (3.4),
∣∣∣ �
Φ(τ(x),α)

φn(x) dµ− α �
T

φn(x) dµ
∣∣∣

≤ �
Φ(τ(x),α)

|φn(x)− φn(xm)| dµ

+
∣∣∣ �
Φ(τ(x),α)

φn(xm) dµ− α �
T

φn(xm) dµ|+ α �
T

|φn(xm)− φn(x)| dµ



144 Hôǹg Thái Nguyêñ et al.

≤ 2‖φn(x)− φn(xm)‖1 +
∣∣∣ �
Φ(τ(x),α)

a2n3m dµ− α �
T

a2n3m dµ
∣∣∣.

But n ∈ I(xm), because x ∈ Wm ⊂ Vxm ⊂ Uxm and hn(x) = 1. Hence, by
(3.3), x ∈ Vxm ⊂ {x′ ∈ Uxm : ‖φn(x′) − φn(xm)‖1 < λ(x′)/2}. Moreover,
τ(x) ≥ τ1(x) ≥ 2n3m (since qm(x) = 1, hn(x) = 1), and consequently, by
(3.7), (3.8) and the Lebesgue Dominated Convergence Theorem [DunS], we
get ∣∣∣ �

Φ(τ(x),α)

a2n3m dµ− α �
T

a2n3m dµ
∣∣∣ = 0.

Hence (2.1a) follows.
If hn(x) = hk(x) = 1, then τ(x) ≥ τ2(x) ≥ 3n5k. Consequently, by (3.4),

(3.7), (3.8) and the Lebesgue Dominated Convergence Theorem, we get

�
Φ(τ(x),α)

cn,k dµ = �
Φ(τ(x),α)

a3n5k dµ = α �
T

a3n5k dµ = α �
T

cn,k dµ

and so we have (2.1b).
For the proof of (c) take arbitrary x0 ∈ X, ε0 > 0, continuous functions

α : X → [0, 1], β : X → R+ and a continuous map φ : X → Lp(T,E). Note
that for x ∈ X the following inequalities hold for the map ψ defined in (2.2)
[for simplicity we write Φ(x) for Φ(β(x), α(x)) and χ(x) for χΦ(x)]:

‖ψ(x)− ψ(x0)‖pp
= ‖φ(x)χ(x)− φ(x0)χ(x0)‖pp
≤ c‖φ(x)χ(x)− φ(x0)χ(x)‖pp + c‖φ(x0)χ(x)− φ(x0)χ(x0)‖pp
= c‖(φ(x)− φ(x0))χ(x)‖pp + c‖φ(x0)|χ(x)− χ(x0)|‖pp
≤ c‖φ(x)− φ(x0)‖pp + c‖φ(x0)χΦ(x)4Φ(x0)‖pp
= c‖φ(x)− φ(x0)‖pp + c

∑

i≥1

�
Φi(x)4Φi(x0)

‖φ(x0)‖pE dµ

(recall that c = 2p−1). By the absolute continuity of the indefinite Lebesgue
integral there exist δ0 > 0 and i0 ∈ N such that

�
A

‖φ(x0)‖pE dµ <
ε0

3ci0
(µ(A) < δ0),

∑

i≥i0+1

�
Ti

‖φ(x0)‖pE dµ <
ε0

3c
.

By the continuity of α, β and φ and by (b′), we can find δ > 0 such that

‖φ(x)−φ(x0)‖pp <
ε0

3c
, µ(Φi(x)4Φi(x0)) < δ0 (x ∈ B(x0, δ), 1 ≤ i ≤ i0).
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Consequently, we get

‖ψ(x)− ψ(x0)‖pp ≤ c‖φ(x)− φ(x0)‖pp + c
∑

1≤i≤i0
�

Φi(x)4Φi(x0)

‖φ(x0)‖pE dµ

+ c
∑

i≥i0+1

�
Ti

‖φ(x0)‖pE dµ

<
ε0

3
+ i0

ε0

3i0
+
ε0

3
= ε0 (x ∈ B(x0, δ)).

Hence ψ is continuous.

Proof of Theorem 2.1. Fix ε > 0. Let ux be an arbitrary element of
F (x) ∩ G(x), x ∈ X. Since F is H-usc, for every x ∈ X there is δ1(x) > 0
such that δ1(x) < ε and F (B(x, δ1(x))) ⊂ Uε/2(F (x)). On the other hand,
G is lsc and has closed decomposable values. Thus, by Lemma 3.2, for every
x ∈ X the multifunction P x : X → 2Lp(T,R) defined by

(3.9) P x(z) = {a ∈ Lp(T,R) :

a(t) ≥ (essinf
u∈G(z)

‖u(·)− ux(·)‖E)(t) µ-a.e. in T}

is lsc with nonempty closed convex values, and clearly 0 ∈ P x(x). Applying
now the famous Michael selection theorem [Mi] to the multifunction P x we
can find a continuous mapping φx : X → Lp(T,R) such that

(3.10a)
φx(x) = 0,

φx(z)(t) ≥ (essinf
u∈G(z)

‖u(·)− ux(·)‖E)(t) µ-a.e. in T .

The continuity of φx implies that for every x ∈ X there is δ2(x) > 0 such
that

(3.10b) ‖φx(z)− φx(x)‖pp = �
T

(φx(z))p dµ <
εp

3c
(z ∈ B(x, δ2(x))).

Define δ(x) = min(δ1(x), δ2(x)), Ux = B(x, δ(x)/3) (x ∈ X).
Since (Ux)x∈X is an open covering of the separable metric space X, and

X is paracompact by the Stone theorem [Kur], we can find a countable
locally finite refinement (Wn)n∈N of (Ux)x∈X and a continuous partition
of unity (pn)n∈N subordinate to (Wn)n∈N. Let (hn)n∈N be a sequence of
continuous functions hn : X → [0, 1] such that hn ≡ 1 on supp pn and
supphn ⊂Wn. For every n ≥ 1 choose xn ∈ X such that Wn ⊂ Uxn . Set

δ(xn) = δn, Uxn = Un, uxn = un, φxn = φn for n ∈ N.

The mappings φn satisfy the following inequalities:
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φn(x)(t) ≥ (essinf
u∈G(x)

‖u(·)− un(·)‖E)(t) µ-a.e. in T ,(3.11a)

pn(x)‖φn(x)‖pp ≤
εp

3c
pn(x) (x ∈ X).(3.11b)

For all n, k ∈ N choose vn,k ∈ F (xk) such that

(3.12) dp(un, vn,k) =
( �
T

‖un − vn,k‖pE dµ
)1/p

< dp(un, F (xk)) +
ε

2

and define wn,k = un − vn,k for n, k ≥ 1. The continuity of φx implies the
continuity of (φx)p in L1(T,R).

By Lemma 2.1 applied to the sequences (‖wn,k(·)‖pE)n,k≥1, (φpn)n≥1,
(hn)n≥1 and to the function

(3.13) x 7→ λ(x) =
εp

6c
∑
n≥1 hn(x)

,

there exist a continuous function τ :X→R+ and a family (Φ(τ, α))τ≥0, α∈[0,1]
of measurable subsets of T satisfying (a), (b), (c). Put α0 ≡ 0 and αn(x) =∑
m≤n pm(x) for n ≥ 1.
Define

(3.14a) χn(x) = χΦ(τ(x),αn(x))\Φ(τ(x),αn−1(x)).

Then, by the condition (a), we have

(3.14b)
∑

n≥1

χn(x)(t) = χΦ(τ(x),1)(t)− χΦ(τ(x),0)(t) = 1

for all x ∈ X and a.a. t ∈ T .
Define maps fε : X → Lp(T,E) and φε : X → Lp(T,R) by

(3.15) fε(x) =
∑

n≥1

unχn(x), φε(x) = η +
∑

n≥1

φn(x)χn(x),

where η ∈ Lp(T,R), η(t) > 0 a.e., ‖η‖pp < εp/(3c) (such a function exists as
µ is σ-finite). Clearly, by Lemma 2.1(c), the maps fε and φε are continuous,
because the above summations are locally finite and the functions τ , αn,
φn are continuous. Moreover, by (3.14a)–(3.14b) clearly we get fε(X) ⊂
decF (X).

We claim that Gr fε ⊂ Uε(GrF ). Indeed, fix x ∈ X and define I(x) =
{n ∈ N : pn(x) 6= 0}. Since I(x) is finite, there exists n ∈ I(x) such that δn =
max{δn : n ∈ I(x)}. But pn(x) 6= 0 means that x ∈ Un. Thus x ∈ ⋂n∈I(x) Un
and hence

⋃
n∈I(x) Un ⊂ B(xn, δn). It follows that %X(x, xn) < δn < ε.

Moreover, we have {xn : n ∈ I(x)} ⊂ B(xn, δn). Therefore un ∈ F (xn) ⊂
F (B(xn, δn)) ⊂ Uε/2(F (xn)) and hence, by (3.12),
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‖wn,n‖p = ‖un − vn,n‖p < dp(un, F (xn)) + ε/2(3.16a)

< ε/2 + ε/2 = ε (n ∈ I(x)).

Let

(3.16b) vn =
∑

n∈I(x)

vn,nχn(x).

Since {vn,n : n ∈ I(x)} ⊂ F (xn) and F (xn) is decomposable, by (3.14a)–
(3.14b) we get vn ∈ F (xn). By our choice of hn and n we obtain

(3.16c) hn(x) = hn(x) = 1 (n ∈ I(x)).

Finally, by Lemma 2.1(b) and (3.16a)–(3.16c),

‖fε(x)− vn‖pp =
∥∥∥
∑

n∈I(x)

(un − vn,n)χn(x)
∥∥∥
p

p
=
∑

n∈I(x)

‖(un − vn,n)χn(x)‖pp

=
∑

n∈I(x)

�
T

‖wn,n‖pEχn(x) dµ

=
∑

n∈I(x)

( �
Φ(τ(x),αn(x))

− �
Φ(τ(x),αn−1(x))

)
‖wn,n‖pE dµ

=
∑

n∈I(x)

(αn(x)− αn−1(x)) �
T

‖wn,n‖pE dµ

=
∑

n∈I(x)

pn(x)‖wn,n‖pp < εp.

Hence ‖fε(x)− vn‖p < ε, and therefore dp(fε(x), F (xn)) < ε.
Now we claim that ‖φε(x)‖p < ε for x ∈ X. Fix x ∈ X. From (3.16c),

(3.11b), (3.13) and Lemma 2.1(b) we have

‖φε(x)‖pp =
∥∥∥η +

∑

n∈I(x)

φn(x)χn(x)
∥∥∥
p

p
≤ c‖η‖pp + c

∥∥∥
∑

n∈I(x)

φn(x)χn(x)
∥∥∥
p

p

< cεp/(3c) + c
∑

n∈I(x)

‖φn(x)χn(x)‖pp

= εp/3 + c
∑

n∈I(x)

�
T

(φn(x)χn(x))p dµ

= εp/3 + c
∑

n∈I(x)

( �
Φ(τ(x),αn(x))

− �
Φ(τ(x),αn−1(x))

)
(φn(x))p dµ

≤ εp/3 + c
∑

n∈I(x)

[
(αn(x)− αn−1(x)) �

T

(φn(x))p dµ+ 2λ(x)
]
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= εp/3 + c
∑

n∈I(x)

(pn(x)‖φn(x)‖pp + 2λ(x))

≤ εp/3 + c
∑

n∈I(x)

(
εp

3c
pn(x) + 2λ(x)

)

≤ εp/3 + εp/3 + 2c
∑

n≥1

hn(x)λ(x)

= εp/3 + εp/3 + εp/3 = εp.

Finally, we claim that Gε (defined in (2.3) in the statement of Theorem
2.1) is lsc with nonempty decomposable values. By Lemma 3.3, it suffices to
show that all the sets Gε(x), x ∈ X, are nonempty. Indeed, let x ∈ X. By
Lemma 3.1 for every n ≥ 1 there is an element vnx ∈ G(x) such that

‖vnx (t)− un(t)‖E < η(t) + (essinf
u∈G(x)

‖u(·)− un(·)‖E)(t) µ-a.e. in T .

Set
vx =

∑

n∈I(x)

vnxχn(x).

By (3.14a)–(3.14b) we get vx ∈ G(x), because G(x) is decomposable. More-
over, by (3.11a),

‖vx(t)− fε(x)(t)‖E =
∑

n∈I(x)

‖vnx (t)− un(t)‖Eχn(x)(t)

<
∑

n∈I(x)

[η(t) + (essinf
u∈G(x)

‖u(·)− un(·)‖E)(t)]χn(x)(t)

≤ η(t) +
∑

n∈I(x)

φn(x)(t)χn(x)(t) = φε(x)(t) µ-a.e. in T ,

i.e. vx ∈ Gε(x).

Proof of Theorem 2.2. Fix ε > 0. By Theorem 2.1 there exist sequences
(fn)n≥1 and (ϕn)n≥1 of continuous maps fn : X → Lp(T,E) and ϕn : X →
Lp(T,R) such that for all x ∈ X:

(1) Gr f1 ⊂ Uε/2(GrF ), ‖ϕ1(x)‖p < ε/2,

G1(x) = {u ∈ G(x) : ‖u(t)− f1(x)(t)‖E < ϕ1(x)(t) µ-a.e. in T} 6= ∅,
(2) Gn(x) = {u ∈ G1(x) : ‖u(t) − fn(x)(t)‖E < ϕn(x)(t) µ-a.e. in T}

6= ∅, n ≥ 2,
(3) ‖fn(x)(t)−fn−1(x)(t)‖E ≤ ϕn(x)(t)+ϕn−1(x)(t) µ-a.e. in T , n ≥ 2,
(4) ‖ϕn(x)‖p < 2−n, n ≥ 2.
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To do this define f1 and ϕ1 by applying Theorem 2.1 with ε/2. Let now
fm, ϕm and Gm be defined so that (1)–(4) hold for m = 1, . . . , n − 1. To
construct fn and ϕn apply again Theorem 2.1 (jointly with Lemma 3.3) with
ε as 2−n for the pair (F̃ , G̃), where F̃ (x) ≡ Lp(T,E) and G̃(x) = Gn−1(x)
for x ∈ X.

By (3) and (4) the sequence (fn)n≥1 is uniformly Cauchy. Therefore it
uniformly converges to some continuous map f : X → Lp(T,E). By (2) and
(4) we have dp(fn(x), G(x)) → 0 and hence f(x) ∈ G1(x) for x ∈ X. Note
that f is a selector of G, because G1(x) ⊂ G(x) = G(x) for x ∈ X.

It remains to show that Gr f ⊂ Uε(GrF ). Indeed, let x ∈ X. Since
(x, f1(x)) ∈ Uε/2(GrF ), we have %X(x, x′) < ε/2 < ε and ‖f1(x) − u′‖p <
ε/2 for some x′ ∈ X and u′ ∈ F (x′). Hence

‖f(x)− u′‖p ≤ ‖f(x)− f1(x)‖p + ‖f1(x)− u′‖p

<
( �
T

‖f(x)− f1(x)‖pE dµ
)1/p

+ ε/2

≤ ‖ϕ1(x)‖p + ε/2 < ε/2 + ε/2 = ε,

because f(x) ∈ G1(x).
Finally, let A and f0 be as in the formulation of Theorem 2.2. Put

G0(x) = {f0(x)} for x ∈ A and G0(x) = G(x) for x 6∈ A. By [Mi] (see
also [AubC]), G0 is lsc just as G. Applying the statement proved above for
the pair (F,G0), we get its CM -selector f , which clearly is a CM -selector
for the pair (F,G) with the additional property f(x) = f0(x) (x ∈ A).

Proof of Theorem 2.3. Define

(3.17) g(u, b) = {v ∈ Rm : (u, v) ≤ α(u, u) + b} (u ∈ Rm, b ∈ R+ \ {0}),
(3.18) G(x) = {y ∈ Lp(T,Rm) :

y(t) ∈ g(x(t), h(t)) µ-a.e. in T} (x ∈ Lq(T,Rm)).

We remark that

int g(u, b) = {v ∈ Rm : (u, v) < α(u, u) + b},(3.19a)

bdry g(u, b) = {v ∈ Rm : (u, v) = α(u, u) + b}.(3.19b)

The multifunction G obviously has closed decomposable values, and so,
by Theorem 2.2, to complete the proof it suffices to show that G is lsc.
We need to prove that for any fixed x0 ∈ Lq(T,Rm), we have y0 ∈ D if
y0 ∈ G(x0), whenever (xn)n≥1 ⊂ X is any sequence converging to x0 and
D is any closed subset of Lp(T,Rm) such that G(xn) ⊂ D for n ≥ 1. Taking
subsequences, without loss of generality we may assume that xn(t)→ x0(t)
µ-a.e. in T . Define the measurable set
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I = {t ∈ T : y0(t) ∈ int g(x0(t), h(t))}.
For t ∈ I denote by i(t) the least n such that y0(t) ∈ int g(xk(t), h(t))
(k ≥ n).

Let P (v, u, b) denote the orthogonal projection of v ∈ Rm on the hy-
perplane bdry g(u, b), where u 6= 0. For t ∈ T \ I denote by j(t) the least
n such that xk(t) 6= 0 and |y0(t) − P (y0(t), xk(t), h(t))| ≤ η(t) (k ≥ n),
where η ∈ Lp(T,R) and η(t) > 0 for every t ∈ T . The above definition
makes sense in view of the following facts (which are direct consequences of
(3.19a), (3.19b)):

(1) if v ∈ int g(u, b) and un → u then v ∈ int g(un, b) for sufficiently
large n;

(2) if v ∈ bdry g(u, β(u)) and un → u, un 6= 0, then P (v, un, β(un))→ v,
where β : R→ R is a continuous function.

Define

yn(t) =





y0(t) if t ∈ I and n ≥ i(t),
0 if t ∈ I and n < i(t),
P (y0(t), xn(t), h(t)) if t ∈ T \ I and n ≥ j(t),
0 if t ∈ T \ I and n < j(t).

It is easy to see that the functions i(·) and j(·) are measurable (we omit the
standard but cumbrous proof of this fact), so yn (n ∈ N) is also a measurable
function. We obviously have yn ∈ G(xn) for n ∈ N and limn→∞ yn(t) = y0(t)
for a.a. t ∈ T . As |yn(t)| ≤ |y0(t)| + η(t) for n ∈ N and for µ-a.a. t ∈ T , it
follows from the Lebesgue Dominated Convergence Theorem that yn → y0

in Lp(T,Rm). Hence, by closedness of D, y0 ∈ D.
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