Quasi-constricted linear operators on Banach spaces

by

EDUARD YU. EMEL'YANOV (Novosibirsk and Tübingen) and MANFRED P. H. WOLFF (Tübingen)

Abstract. Let X be a Banach space over \mathbb{C} . The bounded linear operator T on X is called quasi-constricted if the subspace $X_0 := \{x \in X : \lim_{n \to \infty} ||T^n x|| = 0\}$ is closed and has finite codimension. We show that a power bounded linear operator $T \in L(X)$ is quasi-constricted iff it has an attractor A with Hausdorff measure of noncompactness $\chi_{\|\cdot\|_1}(A) < 1$ for some equivalent norm $\|\cdot\|_1$ on X. Moreover, we characterize the essential spectral radius of an arbitrary bounded operator T by quasi-constrictedness of scalar multiples of T. Finally, we prove that every quasi-constricted operator T such that $\overline{\lambda}T$ is mean ergodic for all λ in the peripheral spectrum $\sigma_{\pi}(T)$ of T is constricted and power bounded, and hence has a compact attractor.

1. Introduction. Let $(X, \|\cdot\|)$ be a Banach space over the field \mathbb{C} of complex numbers. We denote the space of all bounded linear operators on X by L(X). Let $T \in L(X)$. A subset $A \subseteq X$ is called an *attractor* for T if $\lim_{n\to\infty} \operatorname{dist}(T^n x, A) = 0$ for each $x \in B_X$, where B_X is the closed unit ball of X and $\operatorname{dist}(y, A)$ denotes the distance $\inf\{\|y-z\|: z \in A\}$ from y to A. We will denote the set of all attractors for T by $\operatorname{Attr}_{\|\cdot\|}(T)$. It was established by many authors (see, for example, [LLY], [Ba], [Si]) that a power bounded operator $T \in L(X)$ has a compact attractor iff there exists a decomposition $X := X_0 \oplus X_r$ of the Banach space X into T-invariant subspaces X_0 and X_r such that $X_0 = \{x \in X : \lim_{n\to\infty} \|T^n x\| = 0\}$ and $\dim(X_r) < \infty$. Operators of this type are called *constricted*.

Here we will study bounded linear operators T on X which satisfy the weaker condition that the subspace $X_0 := \{x \in X : \lim_{n \to \infty} ||T^n x|| = 0\}$ of X is closed and has finite codimension. We call these operators quasiconstricted. Our first main result (Theorem 1) characterizes these operators in the following way: a power bounded $T \in L(X)$ is quasi-constricted iff there exists an attractor for T which has Hausdorff measure of noncompactness $\chi_{\|\cdot\|_1}(A) < 1$ for some equivalent norm $\|\cdot\|_1$ on X. Moreover, we show that for each $\varepsilon > 0$ there exists an ε -T-invariant subspace complementary

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A65; Secondary 47A35, 47A10.

to X_0 . Here a subspace Y is called ε -*T*-invariant if for every $y \in Y$ we have $\operatorname{dist}(Ty, Y) \leq \varepsilon ||Ty||$.

We study the spectrum of a quasi-constricted operator and conclude that for such an operator T, $\lim_{n\to\infty} \operatorname{dist}(T^n x, X_0) = 0$ always implies $x \in X_0$. Moreover, we characterize the essential spectral radius $r_{\mathrm{ess}}(T)$ of an arbitrary bounded operator T by the quasi-constrictedness of scalar multiples of T.

Let T be quasi-constricted. Then T need not be constricted as easy examples show. However, in Theorem 7 we show that if the operators $\overline{\lambda}T$ are mean ergodic for all λ in the peripheral spectrum $\sigma_{\pi}(T)$ of T then T must be power bounded and constricted.

2. Quasi-constricted operators and their attractors

THEOREM 1. Let X be a Banach space and let $T \in L(X)$ be a power bounded operator. Then the following conditions are equivalent:

(i) T is quasi-constricted.

(ii) For every $\varepsilon > 0$ there exists a finite-dimensional ε -T-invariant subspace Y with $X = X_0 \oplus Y$.

(iii) For every finite-dimensional subspace Y with $X = X_0 \oplus Y$ and for every $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that $T^n(Y)$ is ε -T-invariant and $X = X_0 \oplus T^n(Y)$.

(iv) For every $\varepsilon > 0$ there exists an equivalent norm $\|\cdot\|_{\varepsilon}$ on X and $A_{\varepsilon} \in \operatorname{Attr}_{\|\cdot\|_{\varepsilon}}(T)$ such that its Hausdorff measure $\chi_{\|\cdot\|_{\varepsilon}}(A_{\varepsilon}) \leq \varepsilon$.

(v) There exists an equivalent norm $\|\cdot\|_1$ on X and $A \in \operatorname{Attr}_{\|\cdot\|_1}(T)$ such that $\chi_{\|\cdot\|_1}(A) < 1$.

Proof. (i) \Rightarrow (iv). Take some $\varepsilon > 0$ and let P_0 be a projection of X onto X_0 . Let $P := I - P_0$. Define $M := ||P_0|| \sup_{n \in \mathbb{N}} ||T^n||$ and consider the equivalent norm $|| \cdot ||_{\varepsilon}$ on X:

$$\|y\|_{\varepsilon} := \|Py\| + \varepsilon M^{-1} \|P_0y\| \quad (y \in X).$$

Take $y \in X$, $||y||_{\varepsilon} \leq 1$. Then $PT^nPy \in PT^n(B_X) \subseteq MP(B_X)$ for all $n \in \mathbb{N}$. Consequently,

$$\overline{\lim_{n \to \infty}} \operatorname{dist}_{\|\cdot\|_{\varepsilon}}(T^{n}y, MP(B_{X})) \leq \overline{\lim_{n \to \infty}} \|T^{n}y - PT^{n}Py\|_{\varepsilon} \\
= \overline{\lim_{n \to \infty}} \|T^{n}Py - PT^{n}Py\|_{\varepsilon} \\
= \overline{\lim_{n \to \infty}} \|P_{0}T^{n}Py\|_{\varepsilon} = \varepsilon M^{-1} \overline{\lim_{n \to \infty}} \|P_{0}T^{n}Py\| \\
\leq \varepsilon \|Py\| \leq \varepsilon \|y\|_{\varepsilon} \leq \varepsilon.$$

The set $MP(B_X)$ is compact, since $\dim(P(X)) < \infty$. So we deduce that $A_{\varepsilon} := MP(B_X) + \{y \in X : ||y||_{\varepsilon} \le \varepsilon\}$ is an attractor for T that satisfies $\chi_{\|\cdot\|_{\varepsilon}}(A_{\varepsilon}) \le \varepsilon$.

 $(iv) \Rightarrow (v)$. Obvious.

 $(\mathbf{v}) \Rightarrow (\mathbf{i}).$ Without loss of generality we assume that $\|\cdot\|_1$ is the initial norm $\|\cdot\|$ on X. Take a free ultrafilter \mathcal{U} on \mathbb{N} and consider the bounded ultrapower $X_{\mathcal{U}} := \ell^{\infty}(X)/c_{\mathcal{U}}(X)$, where $\ell^{\infty}(X) := \{(x_n) \in X^{\mathbb{N}} : \sup\{\|x_n\| : n \in \mathbb{N}\} < \infty\}$ and $c_{\mathcal{U}}(X) := \{(x_n) \in X^{\mathbb{N}} : \lim_{\mathcal{U}} \|x_n\| = 0\}$. Then $X_{\mathcal{U}}$ is a Banach space with respect to the norm $\|(x_n)\| := \lim_{\mathcal{U}} \|x_n\|$. We will identify X with the subspace in $X_{\mathcal{U}}$ of all equivalence classes of constant sequences. Consider the linear operator $\mathcal{T} : X \to X_{\mathcal{U}}$ defined by $\mathcal{T}x := (\widehat{T^n}x)$ for all $x \in X$ and let $Z := \mathcal{T}(X)$. Take a real $\delta > 0$ such that $(1 + \delta)\alpha < 1$ where $\chi(A) < \alpha < 1$ and let the set $\{a_i\}_{i=1}^p \subseteq X$ satisfy $A \subseteq \bigcup_{i=1}^p B(a_i, \alpha)$.

Take an arbitrary $x = \mathcal{T}y \in B_Z$. Then $\{n : ||T^ny|| < 1 + \delta/2\} \in \mathcal{U}$, and consequently, there exists some $m \in \mathbb{N}$ that satisfies $||T^my|| < 1 + \delta/2$. Since

$$\lim_{n \to \infty} \operatorname{dist} \left(T^n T^m y, \bigcup_{i=1}^p B\left(b_i, (1+\delta/2)\alpha \right) = 0 \right)$$

where $b_i := (1 + \delta/2)a_i$, there exists $i_x \in \overline{1, p}$ such that

$$\{k \in \mathbb{N} : \|T^k y - b_{i_x}\| < (1+\delta)\alpha\} \in \mathcal{U}.$$

So, we have $||x - b_{i_x}|| \le (1 + \delta)\alpha$ in $X_{\mathcal{U}}$. Consequently,

$$B_Z \subseteq \bigcup_{i=1}^p B(b_i, (1+\delta)\alpha)).$$

Now [LT, Lemma 2.c.8] implies that dim $Z < \infty$, since $(1 + \delta)\alpha < 1$.

Since the operator T is power bounded, we may assume without loss of generality that $||T|| \leq 1$. Therefore for each $x \in X$ the (nonnegative) sequence $(||T^n x||)_{n=1}^{\infty}$ is decreasing, and hence converges. Assume that $\lim_{\mathcal{U}} ||T^n x|| = 0$. Since the limit of a sequence according to an ultrafilter is a limit point of the sequence and since the sequence $(||T^n x||)_{n=1}^{\infty}$ converges, it follows that $\lim_{n\to\infty} ||T^n x|| = 0$, which proves that $\ker \mathcal{T} \subseteq X_0 := \{x \in X : \lim_{n\to\infty} ||T^n x|| = 0\}$. The inverse inclusion is trivial. The equality $X_0 = \ker \mathcal{T}$ implies that X_0 is closed and that $\operatorname{codim}(X_0) = \dim Z < \infty$. Consequently, T is quasi-constricted.

 $(iii) \Rightarrow (ii) \Rightarrow (i)$. Obvious.

(i) \Rightarrow (iii). Let $X_{\mathcal{U}}$ and $\mathcal{T} : X \to X_{\mathcal{U}}$ be defined as in part (v) \Rightarrow (i) of the proof. Let Y be an arbitrary algebraic complement of X_0 in X. Obviously, $T^n(Y) \oplus X_0 = X$ for all $n \in \mathbb{N}$.

Now let $\varepsilon > 0$. If the assertion does not hold then for every $n \in \mathbb{N}$ there exists a normalized $y_n \in Y$ such that $\operatorname{dist}(T(T^n y_n), T^n(Y)) \geq \varepsilon ||T^{n+1} y_n||$.

The unit sphere of Y is compact, so $\lim_{\mathcal{U}} y_n = y$ exists. But then

$$\begin{split} \lim_{\mathcal{U}} \operatorname{dist}(T^{n+1}y,T^n(Y)) &= \lim_{\mathcal{U}} \operatorname{dist}(T^{n+1}y_n,T^n(Y)) \\ &\geq \varepsilon \lim_{\mathcal{U}} \|T^{n+1}y_n\| = \varepsilon \lim_{\mathcal{U}} \|T^{n+1}y\| > 0, \end{split}$$

since T is power bounded and since $y \notin X_0 = \ker \mathcal{T}$. We define \widehat{T} on $X_{\mathcal{U}}$ by $\widehat{T(x_n)} = (\widehat{Tx_n})$ and obtain

$$\operatorname{dist}(\widehat{T}\mathcal{T}y,\mathcal{T}(Y)) \geq \lim_{\mathcal{U}} \operatorname{dist}(T^{n+1}y,T^n(Y)) > 0.$$

But $\widehat{TTy} = (\widehat{T^{n+1}y}) = TTy \in \mathcal{T}(X) = \mathcal{T}(Y)$, a contradiction.

Let us give some easy examples of power bounded quasi-constricted operators which are not constricted:

EXAMPLE 1. Let X := C[0,1]. Define $T : X \to X$ by Tf(t) := tf(t). Then $X_0 := \{f \in C[0,1] : \lim_{n\to\infty} ||T^nf|| = 0\} = \{f \in C[0,1] : f(1) = 0\}$ has codimension 1. So, T is quasi-constricted but not constricted, since it has no nontrivial eigenvectors.

EXAMPLE 2 ([EW, p. 217]). Let $X = c_0$ with sup-norm $\|\cdot\|$. Denote by e_k the element of X whose kth coordinate is 1, and all other coordinates are zero. Fix a real $\alpha \geq 0$ and define the operator $S_{\alpha} : X \to X$ by

$$S_{\alpha}(e_k) = \begin{cases} e_1 + \alpha e_2 & \text{if } k = 1, \\ e_{k+1} & \text{else,} \end{cases}$$

and let $T_{\alpha} := (I + S_{\alpha})/2$. It was shown in [EW, Lemma 2.3] that $X_0 = \{x \in X : \lim_{n \to \infty} ||T_{\alpha}^n x|| = 0\} = \{x \in c_0 : x_1 = 0\}$, and consequently, $\operatorname{codim}(X_0) = 1$. So, the operator T_{α} is quasi-constricted. More exactly, T_{α} has an attractor $A_{\alpha} := [-e_1, e_1] + \alpha B_X$ such that $\chi(A_{\alpha}) = \alpha$, and for every $A \in \operatorname{Attr}_{\|\cdot\|}(T_{\alpha})$ we have $\chi(A) \geq \alpha$, since the sequence $T_{\alpha}^n(e_1)$ is increasing and its supremum in ℓ^{∞} is easily determined as $(1, \alpha, \alpha, \ldots)$. This also implies that when $\alpha > 0$ and $\lambda \in \mathbb{C}$, $|\lambda| = 1$, then the operator λT_{α} is mean ergodic if and only if $\lambda \notin \sigma_{\pi}(T_{\alpha}) = \{1\}$. In particular, the operator T_{α} is not constricted for $\alpha > 0$.

Take some real $\beta > 0$ and consider the equivalent norm $\|\cdot\|_{\beta}$ on c_0 defined by the formula

$$||x||_{\beta} := \sup\{|x_1|, \beta ||x - x_1 e_1||\}.$$

It is easy to see that $\chi_{\|\cdot\|_{\beta}}(A) \geq \alpha\beta$ for every $A \in \operatorname{Attr}_{\|\cdot\|_{\beta}}(T_{\alpha})$. In particular, for $\beta = 1/\alpha$ the operator T_{α} has no attractor A satisfying $\chi_{\|\cdot\|_{\beta}}(A) < 1$. It should be noted that the operator T_{α} is a contraction with respect to the norm $\|\cdot\|_{\beta}$ whenever $\beta \leq 1/\alpha$.

EXAMPLE 3. The same example can also be considered on $\ell^2(\mathbb{N})$ where it is an example of a quasi-constricted operator which is neither power

172

bounded nor constricted. As we shall see later on, as a consequence of Theorem 7 quasi-constricted power bounded operators on a Hilbert space are constricted.

EXAMPLE 4. Here we consider a generalization of Example 2. Let $0 \neq S \in L(X)$ be a power bounded operator such that $\operatorname{codim} (\overline{I-S})X < \infty$. Without any restriction we may assume that ||S|| = 1. Take some real $\alpha \in (0, 1)$ and consider the operator $T_{\alpha} := \alpha I + (1 - \alpha)S$. The result from Foguel and Weiss [FW, Lemma 2.1] implies

$$||T_{\alpha}^{n+1} - T_{\alpha}^{n}|| = ||T_{\alpha}^{n}(T_{\alpha} - I)|| = ||(1 - \alpha)T_{\alpha}^{n}(I - S)|| \to 0.$$

Then $\overline{(I-S)X} \subseteq X_0 := \{x \in X : \lim_{n \to \infty} ||T_{\alpha}^n x|| = 0\}$. So, codim $(X_0) \le$ codim $(I-S)X < \infty$. Consequently, T_{α} is quasi-constricted.

3. On the spectrum of quasi-constricted operators. Let T be a quasi-constricted operator. Let $X = X_0 \oplus Y$ where Y is an arbitrary finitedimensional complement of X_0 . Let P be the projection from X onto Y with kernel X_0 and define Q = I - P, U = QTQ, V = QTP, and W = PTP. Since X_0 is invariant under T, we have PTQ = 0, hence T = U + V + W. More precisely, identifying X with $X_0 \times Y$ we obtain the following matrix representation of T:

(1)
$$T = \begin{pmatrix} U & V \\ 0 & W \end{pmatrix}.$$

Then T^n is represented by the matrix

(2)
$$T^{n} = \begin{pmatrix} U^{n} & \sum_{k=0}^{n-1} U^{k} V W^{n-1-k} \\ 0 & W^{n} \end{pmatrix}.$$

Let $\rho(S)$ denote the resolvent set $\mathbb{C} \setminus \sigma(S)$ of the operator S. Then an easy calculation shows that for $\lambda \in \rho(U) \cap \rho(W)$,

$$(\lambda - T)^{-1} = \begin{pmatrix} (\lambda - U)^{-1} & (\lambda - U)^{-1}V(\lambda - W)^{-1} \\ 0 & (\lambda - W)^{-1} \end{pmatrix}.$$

In particular, $\sigma(T) \subset \sigma(U) \cup \sigma(W)$.

The following elementary proposition shows a close connection between the essential spectral radius $r_{ess}(T)$ and the property of being quasi-constricted.

PROPOSITION 2. Let $T \in L(X)$.

- (i) If $r_{ess}(T) < 1$ then T is constricted.
- (ii) If T is quasi-constricted then $r_{ess}(T) \leq 1$.

Proof. (i) Let $r_{\text{ess}}(T) < 1$. Let $\beta = \inf\{|\lambda| : \lambda \in \sigma(T), |\lambda| \ge 1\}, \delta = \sup\{|\lambda| : \lambda \in \sigma(T), |\lambda| < 1\}$, and

$$\gamma = \begin{cases} 1 & \text{if } \beta > 1, \\ (1+\delta)/2 & \text{otherwise.} \end{cases}$$

Then the circle $K := \{z : |z| = \gamma\}$ is in the resolvent set of T and the projection $P = I - (2\pi i)^{-1} \int_K (z - T)^{-1} dz$ maps X onto P(X) which is invariant under T and finite-dimensional because $\sigma(T) \cap \{\lambda : |\lambda| > \delta\}$ consists only of finitely many Riesz points of $\sigma(T)$. Moreover, $\sigma(T|_{P(X)}) \subset \{\lambda : |\lambda| \ge 1\}$. The space (I - P)(X) =: Z is also invariant under T and by construction $r(T|_Z) < 1$ hence $Z = X_0$, and (i) is proved.

(ii) Using the notation of (1) we have $U^n \to 0$ strongly. Therefore, by the Uniform Boundedness Principle, U is power bounded, hence $r(U) \leq 1$. So if $\lambda \in \sigma(T)$ satisfies $|\lambda| > 1$ then $\lambda \in \sigma(W)$, and since the subspace Yon which W acts is finite-dimensional, λ is an isolated point of $\sigma(T)$. Let L be the spectral projection corresponding to the spectral set $\{\lambda\}$ and set Z = L(X). Then Z is T-invariant and $\sigma(T|_Z) = \{\lambda\}$. This in turn yields $Z \cap X_0 = \{0\}$, so dim $(Z) < \infty$ and hence λ is a Riesz point of T. Therefore $r_{\rm ess}(T) \leq 1$.

Now we use this result in order to give a new characterization of the essential spectral radius of an arbitrary bounded operator T on the Banach space X. For $T \in L(X)$ we let

$$\alpha_{c}(T) := \inf\{\alpha \in \mathbb{R}_{+} : \alpha^{-1}T \text{ is constricted}\},\$$
$$\alpha_{q}(T) := \inf\{\alpha \in \mathbb{R}_{+} : \alpha^{-1}T \text{ is quasi-constricted}\}$$

Then our proposition yields the following characterization of the essential spectral radius of the operator T.

COROLLARY 3. Let $T \in L(X)$. Then $\alpha_{\rm c}(T) = \alpha_{\rm q}(T) = r_{\rm ess}(T)$.

Proof. Obviously, $\alpha_q(T) \leq \alpha_c(T)$. To finish the proof we show that:

(I) $r_{\rm ess}(T) \leq \alpha_{\rm q}(T)$, and

(II)
$$\alpha_{\rm c}(T) \leq r_{\rm ess}(T)$$
.

(I) Let $\varepsilon > 0$. Then $T/(\alpha_q(T) + \varepsilon)$ is quasi-constricted, hence its essential spectral radius is less than or equal to 1 by the proposition. This in turn yields $r_{\rm ess}(T) \leq \alpha_q(T) + \varepsilon$ and the assertion follows.

(II) Assume $r_{\text{ess}}(T) < \alpha_{\text{c}}(T)$ and choose $r_{\text{ess}}(T) < \beta < \alpha_{\text{c}}(T)$. Then $r_{\text{ess}}(T/\beta) < 1$. By the proposition T/β is constricted, a contradiction.

Now we turn to another property of quasi-constricted operators which is a corollary of the next proposition about the spectrum of the operator W(see (1)).

PROPOSITION 4. Let T be quasi-constricted and let $X = X_0 \oplus Y$ be an arbitrary decomposition. For W as in the matrix representation (1) above, $\sigma(W) \subset \{\lambda : |\lambda| \ge 1\}.$

Proof. Suppose that the assertion fails. Since Y is finite-dimensional there exists an eigenvalue λ of W of absolute value strictly less than 1. Let e be a corresponding eigenvector. Then by (2) we obtain

$$T^{n}(e) = \lambda^{n}e + \sum_{k=0}^{n-1} \lambda^{n-1-k} U^{k} V e.$$

Now $Ve \in X_0$ implies that for every $\varepsilon > 0$ there exists $n(\varepsilon)$ such that $||U^n Ve|| < \varepsilon$ for all $n \ge n(\varepsilon)$. Moreover, U is power bounded on X_0 by the Uniform Boundedness Principle. So set $M = \sup\{||U^n|| : n \in \mathbb{N}\}$. Set $N = n(\varepsilon)$ and let $p \ge 1$. Then

$$\sum_{k=0}^{N+p-1} \lambda^{N+p-1-k} U^k V e = \sum_{k=0}^{N-1} \lambda^{N+p-1-k} U^k V e + \sum_{k=1}^p \lambda^{p-1-k} U^k V e$$

implies

$$\begin{split} \left\| \sum_{k=0}^{N+p-1} \lambda^{N+p-1-k} U^k V e \right\| \\ &\leq \sum_{k=0}^{N-1} |\lambda|^{N+p-1-k} \| U^k V e \| + \sum_{k=1}^p |\lambda|^{p-1-k} \| U^{N+k} V e \| \\ &\leq |\lambda|^p \frac{M \| V e \|}{1-|\lambda|} + \frac{\varepsilon}{|\lambda|(1-|\lambda|)}, \end{split}$$

which yields $\lim_{n\to\infty} T^n e = 0$, i.e. $e \in X_0$, a contradiction.

COROLLARY 5. Let T be a quasi-constricted operator on the Banach space X and let Z be the quotient space X/X_0 . Then the operator \widetilde{T} induced by T on Z satisfies $\sigma(\widetilde{T}) \subset \{\lambda : |\lambda| \ge 1\}$. Moreover, let X_0^{\perp} denote the polar of X_0 in the dual space X^* . Then X_0^{\perp} is T^* -invariant, isomorphic to the dual space Z^* of Z and $\sigma(T^*|_{X_0^{\perp}}) = \sigma(\widetilde{T})$.

Proof. We use the notation which led to (1). Suppose that the assertion fails. Then there exists an eigenvector \tilde{e} corresponding to an eigenvalue λ of absolute value strictly less than 1. Since $\tilde{e} \neq 0$ there exists $e \in Y$ such that $\tilde{e} = e + X_0$. But then $We = \lambda e$, a contradiction to the proposition above. The remainder is an elementary exercise on polars (see e.g. [Sch2], Chapt. IV, Sect. 1 and 2).

COROLLARY 6. Let T be a quasi-constricted operator on the Banach space X. Then $\lim_{n\to\infty} \operatorname{dist}(T^n x, X_0) = 0$ always implies $x \in X_0$.

Proof. The hypothesis implies $\lim_{n\to\infty} \widetilde{T}^n \widetilde{x} = 0$ where the $\widetilde{}$ denotes the corresponding objects in $Z = X/X_0$ (see the foregoing corollary). Since $\sigma(\widetilde{T}) \subset \{\lambda : |\lambda| \ge 1\}$ and $\dim(Z) < \infty$ we obtain $\widetilde{x} = 0$.

Quasi-constricted operators need not be power bounded (see Example 3). However, it is easy to see that for the result of Corollary 6 to hold the operator T need not be quasi-constricted if it is power bounded. For, X_0 is then obviously closed. Moreover, $\lim_{n\to\infty} \operatorname{dist}(T^n x, X_0) = 0$ implies the existence of a sequence $(y_n)_n$ in X_0 satisfying $\lim_{n\to\infty} ||T^n x - y_n|| = 0$. The inequality

$$||T^{k+n}x|| \le ||T^k|| \cdot ||T^nx - y_n|| + ||T^ky_n||$$

yields $\limsup_k ||T^k x|| \leq M ||T^n x - y_n||$ for fixed *n* since y_n is in X_0 . So $x \in X_0$.

On the other hand, let T be an arbitrary bounded linear operator on the Banach space X such that $X_0 = \{x : \lim_{n \to \infty} T^n x = 0\}$ is closed. Then $\lim_{n\to\infty} \operatorname{dist}(T^n x, X_0) = 0$ does not in general imply $\lim_{n\to\infty} T^n x = 0$ as the following example shows.

EXAMPLE 5. Let H be a separable Hilbert space. Define an operator $T \in L(H)$ as follows:

$$T(e_{i,j}) = \begin{cases} \alpha_i e_{i+1,1} + e_{i,2}, & j = 1, \\ (e_{i,j} + e_{i,j+1})/2, & j > 1, \end{cases}$$

where $\{e_{i,j}\}_{i,j=1}^{\infty}$ is an orthonormal basis of H and

$$\alpha_i = \left(\sum_{l=1}^{i} l^{-1}\right)^{1/3} \left(\sum_{l=1}^{i+1} l^{-1}\right)^{-1/3}$$

for all $i \in \mathbb{N}$. By use of the inequality

$$2^{-2l} \sum_{k=0}^{l} \binom{l}{k}^2 \ge \frac{1}{4l},$$

which holds for each $l \in \mathbb{N}$, we obtain

$$\begin{aligned} \|T^{n+1}(e_{i,1})\| &\geq \left\| \left(\prod_{\xi=i}^{n+i-2} \alpha_{\xi}\right) \sum_{l=1}^{n-1} 2^{-l} \sum_{k=0}^{l} \binom{l}{k} e_{n+i-l-1,2+k} \right\| \\ &\geq \left(\sum_{l=1}^{n-1} 2^{-2l} \sum_{k=0}^{l} \binom{l}{k}^2\right)^{1/2} \prod_{\xi=i}^{n+i-2} \alpha_{\xi} \geq \left(\frac{1}{4} \sum_{l=1}^{n-1} l^{-1}\right)^{1/2} \prod_{\xi=1}^{n-1} \alpha_{\xi} \\ &= \frac{1}{2} \left(\sum_{l=1}^{n-1} l^{-1}\right)^{1/2} \left(\sum_{l=1}^{n} l^{-1}\right)^{-1/3} \\ &\geq \frac{1}{4} \left(\sum_{l=1}^{n} l^{-1}\right)^{1/6} \end{aligned}$$

for all $n \ge 2$ and $i \ge 1$. Since $||T^n x|| \ge |x_{i,1}| \cdot ||T^n(e_{i,1})||$ for $i \in \mathbb{N}$, we have $\lim_{n\to\infty} ||T^n x|| = \infty$ whenever $x_{i,1} \ne 0$ for some $i \in \mathbb{N}$. On the other hand,

it can be shown that

$$(\forall x \in H)[[(\forall i \in \mathbb{N})[x_{i,1} = 0]] \Rightarrow \lim_{n \to \infty} ||T^n x|| = 0].$$

Then $H_0 := \{x \in H : \lim_{n \to \infty} ||T^n x|| = 0\} = \{x \in H : (\forall i \in \mathbb{N}) [x_{i,1} = 0]\}$ is a closed subspace of H. At the same time

$$\lim_{n \to \infty} \operatorname{dist}(T^n x, H_0) = \lim_{n \to \infty} \left(\sum_{p=1}^{\infty} \left(\prod_{i=p}^{p+n-1} \alpha_i \right) |x_{p,1}|^2 \right)^{1/2} = 0$$

for all $x \in H$.

4. When are quasi-constricted operators constricted? Our last result presents a sufficient condition for quasi-constricted operators to be constricted. Let us remark that, for example, a normal quasi-constricted operator on a Hilbert space is always constricted, as is easily seen by use of the spectral measure of the operator.

THEOREM 7. Let X be a Banach space and let $T \in L(X)$ be such that $\overline{\lambda}T$ is mean ergodic for all $\lambda \in \sigma_{\pi}(T)$. Then the following conditions are equivalent:

(i) T is quasi-constricted.

(ii) T is constricted and power bounded.

(iii) T has an attractor A that satisfies $\chi_{\|\cdot\|_1}(A) < 1$ for some equivalent norm $\|\cdot\|_1$ on X.

Proof. Let us recall that whenever the bounded operator T is mean ergodic then $(T^n/n)_n$ converges strongly to 0 (see [Kr], p. 72). Then by the Uniform Boundedness Principle the sequence is uniformly bounded, which yields in turn $r(T) \leq 1$. In fact, for r(T) < 1 the assertion of the theorem is trivial. So without loss of generality we assume r(T) = 1.

(i) \Rightarrow (ii). A unimodular eigenvalue for T is obviously also an eigenvalue for \widetilde{T} on the space Z defined in Corollary 5. Hence there are only finitely many unimodular eigenvalues $\{\lambda_i\}_{i=1}^p$. Let $F_{\lambda_i}(T)$ be the subspace of all eigenvectors corresponding to λ_i . Finally, let E(T) be the linear span of all $F_{\lambda_i}(T)$. Since X_0 is closed and has finite codimension and since $F_{\lambda_i}(T) \cap$ $X_0 = \{0\}$, the space E(T) is finite-dimensional, hence closed, and $E(T) \cap$ $X_0 = \{0\}$. Moreover, each $F_{\lambda_i}(T)$ is the space of fixed vectors of the operator $\overline{\lambda_i}T$.

Now let $G = X_0^{\perp}$. Since T^* is weak*-mean ergodic and G is T^* -invariant and finite-dimensional, $T^*|_G$ is uniformly mean ergodic, which by Corollary 5 implies that G is the span of all eigenspaces corresponding to unimodular eigenvalues of T^* (see e.g. exercise 6 on p. 43 of [Sch1]), or in other terms, that $G = E(T^*)$ (see the preceding paragraph). By Sine's famous ergodic theorem (see [Kr], p. 74), $F_{\lambda_i}(T)$ separates points in $F_{\lambda_i}(T^*)$, hence E(T) separates points in $E(T^*)$, which in turn implies $\dim(E(T)) \ge \dim(G) = \operatorname{codim}(X_0)$. So we obtain $X = X_0 \oplus E(T)$ and (ii) follows.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (i)$ follow from Theorem 1.

COROLLARY 8. Let T be a bounded linear operator on the Banach space X and assume that the semigroup $\{T^n\}_{n=0}^{\infty}$ is weakly almost periodic. The following assertions are equivalent:

(i) T is constricted and power bounded.

(ii) T has a compact attractor.

(iii) T has an attractor A which satisfies $\chi_{\|\cdot\|_1}(A) < 1$ for some equivalent norm $\|\cdot\|_1$.

(iv) T is quasi-constricted.

Proof. One only needs to notice that the semigroup $\{(\lambda T)^n\}_{n=0}^{\infty}$ is weakly almost periodic for all $\lambda \in \mathbb{C}$, $|\lambda| = 1$. Then λT is mean ergodic by the Eberlein theorem [Kr, p. 76] for all $\lambda \in \mathbb{C}$, $|\lambda| = 1$. The corollary follows immediately from Theorem 7.

COROLLARY 9. Let T be a power bounded operator on the Banach space X and assume that X is reflexive. Then T is quasi-constricted if and only if T is constricted.

Proof. The semigroup generated by T is weakly almost periodic since the unit ball of X is weakly compact.

Acknowledgements. We gratefully acknowledge the comments of the referee which enabled us to correct some misprints as well as to make the proof of Theorem 7 more transparent. The proof of the statement in the paragraph preceding Example 5 is also due to him.

The first author is grateful for generous support of the Alexander von Humboldt Foundation during his stay at the University of Tübingen.

References

- [Ba] W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), 179–188.
- [EW] E. Yu. Emel'yanov and M. P. H. Wolff, Mean ergodicity on Banach lattices and Banach spaces, Arch. Math. (Basel) 72 (1999), 214–218.
- [FW] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, Proc. Amer. Math. Soc. 38 (1973), 325–330.
- [Kr] U. Krengel, *Ergodic Theorems*, de Gruyter, Berlin, 1985.
- [LLY] A. Lasota, T. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984), 751–764.
 - [LT] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, Vol. I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.

- [Sch1] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, New York 1974.
- [Sch2] H. H. Schaefer (with M. P. H. Wolff), *Topological Vector Spaces*, 2nd ed., Grad. Texts in Math. 3, Springer, New York, 1999.
 - [Si] R. Sine, Constricted systems, Rocky Mountain J. Math. 21 (1991), 1373–1383.

Sobolev Institute of Mathematics at Novosibirsk Acad. Koptyug pr. 4 630090 Novosibirsk, Russia E-mail: emelanov@math.nsc.ru

Mathematisches Institut der Universität Tübingen A. D. Morgenstelle 2 D-72076 Tübingen, Germany E-mail: manfred.wolff@uni-tuebingen.de

Current address: Mathematisches Institut der Universität Tübingen A. D. Morgenstelle 2 D-72076 Tübingen, Germany

> Received March 20, 2000 Revised version September 22, 2000

(4496)