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Orbits of linear operators and Banach space geometry

by

Jean-Matthieu Augé (Bordeaux)

Abstract. Let T be a bounded linear operator on a (real or complex) Banach space
X. If (an) is a sequence of non-negative numbers tending to 0, then the set of x ∈ X
such that ‖Tnx‖ ≥ an‖Tn‖ for infinitely many n’s has a complement which is both
σ-porous and Haar-null. We also compute (for some classical Banach space) optimal ex-
ponents q > 0 such that for every non-nilpotent operator T , there exists x ∈ X such
that (‖Tnx‖/‖Tn‖) /∈ `q(N), using techniques which involve the modulus of asymptotic
uniform smoothness of X.

1. Introduction. Let X be a (real or complex) Banach space, and let
T be a bounded linear operator on X. For x ∈ X, let

OT (x) = {Tnx : n ≥ 0}
be the orbit of x under the action of T . The study of orbits is connected with
the famous invariant subset problem which asks if there exists an operator
on X with non-trivial invariant subset. Indeed, T does not have any trivial
invariant subset if and only if for each x 6= 0, OT (x) is dense in X. Such
an operator was constructed by Read [R] in the space `1, but in the Hilbert
space, the problem is still open. If at least one orbit is dense, the operator
is called hypercyclic (and the corresponding vector a hypercyclic vector).
This class of operators has received much attention during the last two
decades (see [BM] for much information on this topic). In this paper, we will,
however, study some more regular orbits. Müller [Mu] showed the following
result, which roughly says that there are many points with large orbits for
many powers.

Theorem 1.1. Let T be a bounded linear operator on X, and let (an)
be a sequence of non-negative numbers such that an → 0. Then the set

{x ∈ X : ‖Tnx‖ ≥ an‖Tn‖ for infinitely many n’s}
is residual in X.
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A quick glance at the proof shows that the powers can be replaced by
a sequence (Tn) of bounded linear operators. It may also be worth empha-
sizing that this is stronger than the uniform boundedness principle. Indeed,
suppose that sup ‖Tn‖ =∞ and find a sequence (nj) such that ‖Tnj‖ → ∞.

Put aj = 1/
√
‖Tnj and apply the above result to Sj = Tnj to deduce that

there is a residual set of points x ∈ X such that ‖Tnjx‖ ≥
√
‖Tnj for in-

finitely many j’s, and in particular sup ‖Tnx‖ =∞. Equivalently, Theorem
1.1 says that the complement of the set in question is of the first category.

Now, there are several other notions of smallness in analysis. In this
paper, we consider two of them: σ-porosity, which is a stronger form of
smallness than being of first category, and Haar-negligibility, which is an
extension of having Lebesgue measure 0 in infinite dimensions (see next sec-
tion for definitions). These two notions are actually not comparable: Preiss
and Tǐser (see [BL, Chapter 6]) showed that any real separable Banach space
of infinite dimension can be decomposed as the disjoint union of two sets,
one of which is σ-porous and the other Haar-null.

In Section 2, we generalize Theorem 1.1 as follows:

Theorem 1.2. Let X be a Banach space (real or complex) and (Tn) be
a sequence of bounded linear operators on X. Let also (an) be a sequence of
non-negative numbers such that an → 0. Then the complement of the set

{x ∈ X : ‖Tnx‖ ≥ an‖Tn‖ for infinitely many n’s}
is σ-porous. If X is separable, then this complement is also Haar-null.

These notions of smallness, together with linear dynamics, have also been
studied (for different problems) in [Bay1] and [BMM]. The example T = B
where B is the unweighted backward shift defined on `1(N) by Be1 = 0
and Bek = ek−1 for k ≥ 2 (where (ek) is the canonical basis of `1) satisfies
‖Tnx‖/‖Tn‖ → 0 for each x, because ‖Tn‖ = 1 and ‖Tnx‖ =

∑∞
k=n+1 |xk|

for x =
∑∞

k=1 xkek. Thus, in general, the condition “an → 0” cannot be
improved.

In Section 3, we study some cases involving compact operators to get
better estimates. We also give some examples to discuss the limitations of
our results. Section 4 contains our main result. As should be clear from what
we said, the underlying theme of this paper is to look for points x ∈ X such
that many powers ‖Tnx‖ are as close as possible to ‖Tn‖. Beauzamy [Be]
showed that given a bounded linear operator T on a Hilbert space H, the set{

x ∈ H :

∞∑
n=1

‖Tnx‖
‖Tn‖

=∞
}

is dense in H (which in some sense says that ‖Tnx‖ is not too far from ‖Tn‖
for many powers). Using an alternative proof, Müller [Mu] showed that for
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each q < 2, the set {
x ∈ H :

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
=∞

}
is dense in H, and also showed a similar statement for operators on Banach
spaces (replacing q < 2 by q < 1). He also exhibited examples showing
that the constants 1 and 2 are optimal for Banach space and Hilbert space
operators. These problems also have connections with some famous plank
theorems of Ball (see [Bal1] and [Bal2]). We recall those results.

Theorem 1.3 (K. Ball, [Bal1]). Let X be a (real or complex) Banach
space and (fn) ⊂ X∗ such that ‖fn‖ = 1 for each n. Let also (αn) ⊂ R+

be such that
∑∞

n=1 αn < 1. Then there is a point x with ‖x‖ = 1 such that
|〈fn, x〉| ≥ αn for each n.

In [Bal2], the condition
∑∞

n=1 αn < 1 is improved to
∑∞

n=1 α
2
n < 1

for complex Hilbert spaces. Now, considering the adjoint of Tn, one can
show that a similar statement holds for sequences of operators (see [MV] for
details). This gives a direct proof of the above results. Anyway, the previous
exponents suggest that for a Banach space X, the quantity

qX = sup

{
q > 0 : for every non-nilpotent and bounded linear operator T ,

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
=∞ for some x ∈ X

}
should depend on the geometry of X. This will be the case and we will in
particular obtain:

Theorem 1.4. q`p = p, qLp = min(p, 2) (1 ≤ p <∞), qc0 =∞.

To unify those results, we will use the modulus of asymptotic uniform
smoothness of X, which is a tool from Banach space geometry that has
been used for several problems of nonlinear functional analysis. We refer the
reader to Section 4 for definitions. Note that a similar discussion, involving
weakly closed sequences and type of the space, can be found in [Bay2] and
[BM, Chapter 10]. Throughout, we shall denote by L(X) the set of bounded
linear operators on a Banach spaceX and byB(x, r) the open ball of center x
and radius r (x ∈ X, r > 0).

2. σ-porosity and Haar-negligibility: proof of Theorem 1.2. Let
us first recall the definitions of σ-porous and Haar-null sets. The notion
of porosity quantifies the fact that a set has empty interior. Porosity was
introduced by E. P. Dolženko [D], and has been studied in detail since then
(see [Z]). It appears for example in the study of differentiability properties
of real-valued convex functions defined on a separable Banach space X.
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Definition 2.1. A Borel subset E of a Banach space X is called porous
if there exists λ ∈ ]0, 1[ such that the following is true: for every x ∈ E and
every ε > 0, there exists a point y ∈ X such that 0 < ‖y − x‖ < ε and
E ∩B(y, λ‖x− y‖) is empty. A countable union of porous sets is said to be
σ-porous.

Haar-null sets were introduced by Christensen [C]. They appear in the
study of differentiability of Lipschitz functions defined on a Banach space.
Note that the definition of Haar-null sets makes sense in any Polish abelian
group G. Here, we restrict ourselves to the Banach space setting.

Definition 2.2. Let X be a separable Banach space. A set E ⊂ X is
said to be Haar-null if there exists a Borel probability measure m on X
such that for every x ∈ X, the translate x+ E has m-measure 0.

With those definitions in mind, we can now start the proof of Theorem
1.2. Let (Tn) ⊂ L(X) and (an) ⊂ R+ be such that an → 0. If infinitely
many Tn’s are 0, then the result is obvious. We may assume, without loss
of generality, that Tn 6= 0 for every n. Let us first prove the assertion about
σ-porosity. We can write the complement in the form

⋃∞
N=1EN with

EN = {x : ∀n ≥ N, ‖Tnx‖ < an‖Tn‖}.
We shall see that for fixed N ≥ 1, EN is porous with the constant λ = 1/4
(but, actually, any fixed λ ∈ ]0, 1[ works, by adjusting the computations in
what follows). Consider now x ∈ EN and ε > 0. Fix n ≥ N and y0 with
‖y0‖ = 1 such that

an ≤
ε

8
and ‖Tny0‖ ≥

‖Tn‖
2

.

We have ∥∥∥∥Tn(x+
ε

2
y0

)∥∥∥∥+

∥∥∥∥Tn(x− ε

2
y0

)∥∥∥∥ ≥ ε‖Tny0‖ ≥ ε

2
‖Tn‖,

so ∥∥∥∥Tn(x+
ε

2
y0

)∥∥∥∥ ≥ ε

4
‖Tn‖ or

∥∥∥∥Tn(x− ε

2
y0

)∥∥∥∥ ≥ ε

4
‖Tn‖.

Replacing possibly y0 by −y0, we can assume that ‖Tn(x+ ε
2y0)‖ ≥

ε
4‖Tn‖.

Put y = x + ε
2y0, so ‖y − x‖ = ε/2 < ε. To conclude, it is enough to show

that
B

(
y,

1

4
‖x− y‖

)
∩ EN = B

(
y,
ε

8

)
∩ EN = ∅.

Let z ∈ B(y, ε/8). We have

‖Tnz‖ ≥ ‖Tny‖ − ‖Tn(z − y)‖ ≥ ε

4
‖Tn‖ −

ε

8
‖Tn‖

≥ ε

8
‖Tn‖ ≥ an‖Tn‖

and z /∈ EN , as announced.
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Let us now prove the second assertion. Considering only the real linear
structure of X, we may assume that X is a real Banach space. Keeping the
same notation as above, it is enough to show that each EN is Haar-null since
a countable union of Haar-null sets is Haar-null. An efficient way to prove
that a Borel subset E ⊂ X is Haar-null is to find a subspace V ⊂ X of finite
dimension such that

for all x ∈ X and almost every v ∈ V, x+ v /∈ E
(here “almost every” refers to the Lebesgue measure on V ). We can find
u ∈ X such that ‖Tnu‖ ≥

√
an‖Tn‖ for infinitely many n’s (by the first part

of the theorem); we will show that V = Ru is the subspace we are looking
for. Fix x ∈ X and put

Λ = {λ ∈ R : x+ λu ∈ EN}.
It remains to check that Λ has Lebesgue measure 0. Let λ ∈ Λ. Then

‖Tn(x+ λu)‖ ≤ an‖Tn‖ (n ≥ N).

Hence, we get ∣∣∣∣|λ| − ‖Tnx‖‖Tnu‖

∣∣∣∣ ≤ an ‖Tn‖‖Tnu‖
(n ≥ N).

Put bn = ‖Tnx‖/‖Tnu‖. The above inequality shows that λ ∈ E+ ∪ E−,
where

E+ =
⋂
n≥N

[
bn − an

‖Tn‖
‖Tnu‖

, bn + an
‖Tn‖
‖Tnu‖

]
,

E− =
⋂
n≥N

[
−bn − an

‖Tn‖
‖Tnu‖

,−bn + an
‖Tn‖
‖Tnu‖

]
.

This implies that the Lebesgue measure of Λ is not greater than

4 inf
n≥N

an
‖Tn‖
‖Tnu‖

,

which is 0, because for infinitely many n’s,

an
‖Tn‖
‖Tnu‖

≤
√
an → 0 (n→∞).

This completes the proof.

Let X be a complex Banach space and T ∈ L(X). Let r(T ) be the
spectral radius of T and rx(T ) be its local spectral radius defined by rx(T ) =
lim ‖Tnx‖1/n. We obtain:

Corollary 2.3. If X is a complex Banach space and T ∈ L(X), then
the complement of the set of x such that rx(T ) = r(T ) is σ-porous, and
Haar-null if X is separable.
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Proof. Apply the above result to an = 1/n and use the spectral radius
formula: lim ‖Tn‖1/n = r(T ).

3. Compact case. In this section, we move away from Haar-negligibility
and σ-porosity and try to improve the condition an → 0. Note that in
contrast to Theorem 1.2, the proof of the next proposition really uses the
powers of the operator T .

Proposition 3.1. Let X be a real or complex Banach space and let
T ∈ L(X) be such that:

(i) T is compact.
(ii) (‖Tn‖) is non-decreasing.

Then, for each ε > 0, there exists x ∈ X with ‖x‖ ≤ 1 such that for infinitely
many n’s, we have

‖Tnx‖ ≥ (1− ε)‖Tn‖.
Furthermore, {

x ∈ X : lim
‖Tnx‖
‖Tn‖

> 0

}
is a dense subset of X.

Proof. There exists (xn) ⊂ X with ‖xn‖ = 1 such that ‖Tnxn‖ ≥
(1−ε/2)‖Tn‖. By the compactness of T , one can extract from (Txn) a norm
convergent subsequence (Txnk

). So, we can find N such that for k ≥ N ,

‖Txnk
− TxN‖ ≤ ε/2.

Put x = xN . For k ≥ N , we get

‖Tnkx‖ ≥ ‖Tnkxnk
‖ − ‖Tnk(x− xnk

)‖
≥ (1− ε/2)‖Tnk‖ − ‖T (x− xnk

)‖ ‖Tnk−1‖
≥ (1− ε/2− ‖T (x− xnk

)‖)‖Tnk‖ as (‖Tn‖) is non-decreasing

≥ (1− ε)‖Tnk‖.
Let us see the density. Take η > 0 and x ∈ X. By the above, we can find

a point x0 with ‖x0‖ ≤ 1 such that for infinitely many n’s,

‖Tnx0‖ ≥
1

2
‖Tn‖.

For those n, we have

‖Tn(x+ ηx0)‖+ ‖Tn(x− ηx0)‖ ≥ 2η‖Tnx0‖ ≥ η‖Tn‖.
Hence

lim
‖Tn(x+ ηx0)‖

‖Tn‖
> 0 or lim

‖Tn(x− ηx0)‖
‖Tn‖

> 0,

and since ‖x− (x± ηx0)‖ ≤ η, we get the density.
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The following two examples show that we cannot remove assumptions
(i) or (ii).

Example 3.2.

(i′) There exists T ∈ L(`p(N)) such that (‖Tn‖) is non-decreasing and
for all x ∈ `p(N),

‖Tnx‖
‖Tn‖

→ 0.

(ii′) There exists a compact operator T ∈ L(`p(N)) such that for every
x ∈ `p(N),

‖Tnx‖
‖Tn‖

→ 0.

Proof. For (i′), it is enough to take T = B where B is the unweighted
backward shift (see introduction). For (ii′), we let T be the weighted back-
ward shift defined on `p(N) with its natural norm and canonical basis (ek)
by

Tx =

∞∑
k=2

wkxkek−1

where (wk) is a sequence decreasing to zero; it is easy to see that T is
compact as a norm limit of finite rank operators. For n ∈ N, we have

Tnx =
∞∑

k=n+1

xkwkwk−1 · · ·wk−n+1ek−n,

which implies

‖Tnx‖p =
∞∑

k=n+1

|xkwkwk−1 · · ·wk−n+1|p ≤
( n+1∏
k=2

wk

)p ∞∑
k=n+1

|xk|p.

Considering ‖Tnen+1‖, we obtain exactly ‖Tn‖p = (
∏n+1
k=2 wk)

p and hence

‖Tnx‖p

‖Tn‖p
≤

∞∑
k=n+1

|xk|p → 0.

If the space X is reflexive, we can slightly improve the previous result.

Proposition 3.3. Let X be a real or complex reflexive Banach space
and suppose T ∈ L(X) satisfies assumptions (i) and (ii) of Proposition 3.1.
Then there exists x ∈ X with ‖x‖ ≤ 1 such that

lim
‖Tnx‖
‖Tn‖

= 1.

Proof. A compact operator always attains its norm on a reflexive space
(although this fact is not strictly necessary here). Write ‖Tn‖ = ‖Tnxn‖
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with (xn) ⊂ BX . From (xn), we can by reflexivity extract a subsequence
(xnk

) which converges weakly to some point x with ‖x‖ ≤ 1. Estimating
‖Tnkx‖ as above, we get

‖Tnkx‖ ≥ (1− ‖T (x− xnk
)‖)‖Tnk‖.

Then we use the (well-known) fact that a compact operator maps weakly
convergent sequences into norm convergent ones. Hence ‖T (x − xnk

)‖ goes
to 0 and

lim
‖Tnx‖
‖Tn‖

≥ 1,

which concludes the proof.

Our last example shows that the reflexivity cannot be omitted.

Example 3.4. There exists a compact operator T on c0 (the space of
sequences converging to zero with the usual norm) such that (‖Tn‖) is non-
decreasing and for each x ∈ c0 with ‖x‖ ≤ 1,

lim
‖Tnx‖
‖Tn‖

< 1.

Proof. We consider this time the operator T on c0 defined by

Tx =
∞∑
k=1

wkxkek−1 + x0e0

where (wn) is a sequence decreasing to zero with w0 = 1. Then T is compact
(same argument as in case (ii′)). From the formulas{

Te0 = e0,

T ek = wkek−1 (k ≥ 1),

we deduce by induction that

Tnx =
( n∑
k=0

Wkxk

)
e0 +

∞∑
k=1

wk+nwk+n−1 · · ·wk+1xk+nek

where we put Wn =
∏n
i=0wi. Since (wn) decreases to 0, (Wn) decreases to

zero faster than any geometric sequence, so W =
∑∞

k=0Wk < ∞. On the
other hand, for ‖x‖ ≤ 1 we have

‖Tnx‖ = max
(∣∣∣ n∑

k=0

Wkxk

∣∣∣, sup
k≥1

wk+nwk+n−1 · · ·wk+1|xk+n|
)

≤
n∑
k=0

Wk,

because 0 ≤ wi ≤ 1. Considering the vector e0 + · · · + en, we get ‖Tn‖ =∑n
k=0Wk, so (‖Tn‖) is indeed non-decreasing. Suppose now that there exists



Orbits of linear operators 29

a point x ∈ c0 with ‖x‖ ≤ 1 such that

lim
‖Tnx‖
‖Tn‖

= 1.

We see that there exists a non-decreasing map ϕ : N→ N such that∣∣∣ ϕ(n)∑
k=0

Wkxk

∣∣∣→W (n→∞).

Let N be an integer such that |xk| ≤ 1/2 for k ≥ N . Then

∣∣∣ ϕ(n)∑
k=0

Wkxk

∣∣∣ ≤ ∞∑
k=0

|xk|Wk ≤
N∑
k=0

Wk +
1

2

∞∑
k=N+1

Wk.

Letting n→∞ in the above inequality yields

W ≤
N∑
k=0

Wk +
1

2

∞∑
k=N+1

Wk < W,

a contradiction.

Remark 3.5. In the last example and in (i′), one can also require that
‖Tn‖ → ∞ (replace T by 2T ).

Finally, the last proposition of this section can be seen as a variation of
the compact case (see the remark after the proof). It will also be useful in
Section 4.

Proposition 3.6. Let X be a real or complex Banach space and T ∈
L(X) be a non-nilpotent operator. Assume there exists a ∈ ]0, 1[ and a sub-
space M of finite codimension such that ‖Tn|M‖ ≤ a‖T

n‖ for infinitely many

n’s. Then {
x ∈ X : lim

‖Tnx‖
‖Tn‖

> 0

}
is a dense subset of X.

Proof. By a previous argument (Proposition 3.1), it is enough to find
only one point to have automatic density. Replacing M by its closure, we
may assume that M is closed in X. Write X = F ⊕M where F is a sub-
space of finite dimension. Let (f1, . . . , fr) be a normalized basis of F , and
(f∗1 , . . . , f

∗
r ) its dual basis (in F ). For 1 ≤ i ≤ r, extend each f∗i to X requir-

ing that the restriction of f∗i to M is 0. If we denote by P the continuous
projection onto F (with respect to the previous decomposition), we easily
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see that f∗i is continuous with ‖f∗i ‖ ≤ ‖f∗i |F ‖ ‖P‖. Set C = supi ‖f∗i ‖ and
choose ar > 0 such that Crar + a < 1. Now, set

A = {n ∈ N : ‖Tn|M‖ ≤ a‖T
n‖},

Ai = {n ∈ A : ‖Tnfi‖ ≥ ar‖Tn‖}.

We will show that A =
⋃r
i=1Ai; since A is infinite by hypothesis, so will be

one of the Ai, and this will give the conclusion.

Suppose on the contrary that there exists n ∈ A \
⋃r
i=1Ai. Fix αr ∈

]Crar + a, 1[ and let x ∈ X with ‖x‖ = 1 be such that ‖Tnx‖ ≥ αr‖Tn‖.
Write x =

∑r
i=1 xifi+u where u ∈M . By construction of the f∗i , xi = f∗i (x),

hence |xi| ≤ C and we get

‖Tnx‖ ≤
r∑
i=1

|xi| ‖Tnfi‖+ ‖Tnu‖

≤ (Crar + a)‖Tn‖ < αr‖Tn‖,

a contradiction.

Remark 3.7. For T ∈ L(X), define

‖T‖µ = inf{‖T|M‖ : M ⊂ X, codimM <∞}.

This quantity measures the degree of non-compactness of T since ‖T‖µ = 0
if and only if T is compact (see [LS] for details). The above result roughly
says that if ‖Tn‖µ is not too large “uniformly” (that is, the same M works
for infinitely many n’s), then we have the same conclusion as in the compact
case.

4. Modulus of asymptotic uniform smoothness and optimal ex-
ponents. Our goal in this section is to compute the value of

qX = sup

{
q > 0 : for every non-nilpotent and bounded linear operator T ,

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
=∞ for some x ∈ X

}
for some classical Banach spaces. From the results of Müller and Beauzamy
quoted in the Introduction, we know that that qX is well-defined (i.e. the set
over which we take the supremum is not empty) and qX ≥ 1. Furthermore,
the known values [Mu] are q`1 = 1 and qH = 2 if H is a Hilbert space. We
will compute qc0 , q`p and qLp(0,1) for 1 ≤ p < ∞. Observe that we actually
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have qX = q′X where

q′X = sup

{
q > 0 : for every non-nilpotent and bounded linear operator T ,

the set

{
x ∈ X :

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
=∞

}
is dense in X

}
.

Indeed, this follows from the following observation which is a simple
consequence of the Baire category theorem.

Proposition 4.1. Let T ∈ L(X) be non-nilpotent, q0 > 0 and assume
that for every q < q0, there exists x0 ∈ X such that

∞∑
n=1

(
‖Tnx0‖
‖Tn‖

)q
=∞.

Then the set

A =

{
x ∈ X : ∀q < q0,

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
=∞

}
is a dense Gδ subset of X.

Proof. Considering a non-decreasing sequence (sk) such that sk < q0 for
each k and sk → q0 as k → ∞, we see that it is enough to show that for

each q < q0, Ã is a dense Gδ subset of X where

Ã =

{
x ∈ X :

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
=∞

}
.

Write Ã =
⋂∞
N=1ΩN , where

ΩN =

{
x ∈ X :

∞∑
n=1

(
‖Tnx‖
‖Tn‖

)q
> N

}
.

Using for example the Fatou lemma, it is easy to see that X \ΩN is a closed
subset of X for each N . By the Baire category theorem, we need to check
that each ΩN is dense in X. Fix ε > 0 and x ∈ X. Replacing x0 by λx0
for some λ > 0, we can assume that ‖x0‖ = ε. Now, there exists a constant
C > 0 such that (x+ y)q ≤ C(xq + yq) for every x, y ≥ 0. From this and the
triangle inequality, we get
∞∑
n=1

(
‖Tn(x− x0)‖
‖Tn‖

)q
+

∞∑
n=1

(
‖Tn(x+ x0)‖
‖Tn‖

)q
≥ 2q

C

∞∑
n=1

(
‖Tnx0‖
‖Tn‖

)q
=∞.

So x−x0 or x+x0 belongs to Ã and since ‖x− (x±x0)‖ = ε, this concludes
the proof.
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Remark 4.2. If q ≥ 1 and X is reflexive, under the assumptions of
Proposition 4.1, the set A is Haar-null. Indeed, it is enough to show that for
each N , X \ΩN is Haar-null, and this follows directly from the theorem of
Matoušková [Ma]: a closed and convex set with empty interior in a reflexive
Banach space is Haar-null.

To compute qX, we introduce the modulus of asymptotic uniform smooth-
ness of X which is a useful tool from Banach space geometry (but probably
not much used in linear dynamics). This quantity has been introduced for
the first time by Milman [Mi] under some different names. We follow here
the more recent terminology which can be found in [JLPS].

Definition 4.3. Let X be a real or complex Banach space. The modulus
of asymptotic uniform smoothness of X is the function ρX(t) defined by

ρX(t) = sup
‖x‖=1

inf
dim(X/Y )<∞

sup
y∈Y, ‖y‖=1

(‖x+ ty‖ − 1) (t ≥ 0).

ρX is a 1-Lipschitz, convex and non-decreasing map such that ρX(0) = 0
and ρX(t) ≤ t for t ≥ 0. We can now state:

Theorem 4.4. Let X be a Banach space and assume that its modulus of
asymptotic uniform smoothness satisfies ρX(2t) = O(ρX(t)) as t → 0. Let
ρ : R+ → R+ be a non-decreasing map such that ρ(t) > 0 whenever t > 0,
and

lim
t→0

ρX(t)

ρ(t)
= 0.

Then there exists a point x ∈ X such that
∞∑
n=1

ρ

(
‖Tnx‖
‖Tn‖

)
=∞.

As a consequence, we obtain the results claimed in the Introduction.
More precisely:

Theorem 4.5. Let T ∈ L(X) (X = `p(N), X = Lp(0, 1) (1 ≤ p < ∞)
or X = c0(N)) be a non-nilpotent operator. Then:

(a) If X = `p, the set{
x ∈ X : ∀q < p,

(
‖Tnx‖
‖Tn‖

)
n

/∈ `q
}

is a dense Gδ subset of X. On the other hand, there exists S ∈ L(X)
(non-nilpotent) such that for each x,

∞∑
n=1

(
‖Snx‖
‖Sn‖

)p
<∞.
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(b) If X = Lp, the set{
x ∈ X : ∀q < min(p, 2),

(
‖Tnx‖
‖Tn‖

)
n

/∈ `q
}

is a dense Gδ subset of X. On the other hand, there exists R ∈ L(X)
(non-nilpotent) such that for each x,

∞∑
n=1

(
‖Rnx‖
‖Rn‖

)min(p,2)

<∞.

(c) If X = c0, the set{
x ∈ X : ∀q > 0,

(
‖Tnx‖
‖Tn‖

)
n

/∈ `q
}

is a dense Gδ subset of X. In particular,

q`p = p, qLp = min(p, 2) (1 ≤ p <∞), qc0 =∞.
Proof. It is known (and easy to see) that ρc0(t) = 0 for 0 ≤ t ≤ 1, and

also for t ≥ 0,

ρ`p(t) = (1 + tp)1/p − 1 ∼ tp

p
(t→ 0).

For Lp = Lp(0, 1), Milman [Mi] obtained the following estimates. For L1,
ρL1(t) = t. For 1 < p < 2,

1

p
tp ≤ ρLp(t) ≤ 2

p
tp (t→ 0).

For 2 < p <∞, there exists a constant Cp > 0 such that

(p− 1)t2 ≤ ρLp(t) ≤ Cpt2 (t→ 0).

For p = 2, ρL2(t) = (1 + t2)1/2 − 1 since L2 and `2 are isometric. Hence
the first statement of (a) and (b), and statement (c), are straightforward
consequences of Theorem 4.4 and Proposition 4.1.

We now turn to the examples. (a) can be found in [Mu]. The job there
is done for p = 2, but the general case is almost the same. We include the
example anyway for the sake of completeness. Let (ei) be the usual canonical
basis of `p and set e1,0 = e1, e1,1 = e2, e2,0 = e3, e2,1 = e4, e2,2 = e5, . . . . In
this way, we can write `p =

⊕∞
k=1Xk where Xk is the (k + 1)-dimensional

`p space with basis ek,0, . . . , ek,k. Then S is defined by S =
⊕∞

k=1 2−kBk
where Bk is the usual backward shift on L(Xk), i.e. Bk(ek,j) = ek,j−1 for

j ≥ 1 and Bkek,0 = 0. For n ≥ 1, Sn(en,n) = 2−n
2
en,0 so ‖Sn‖ ≥ 2−n

2
. Let

xk =
∑k

j=0 αjek,j ∈ Xk. We have

∞∑
n=1

(
‖Snxk‖
‖Sn‖

)p
≤

k∑
n=1

(
2n

2

2nk

( k∑
j=n

|αj |p
)1/p)p

≤
k∑

n=1

1

2n(k−n)
‖xk‖p ≤ 2‖xk‖p.
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It follows that for every x =
∑∞

k=1 xk, we have

∞∑
n=1

(
‖Snx‖
‖Sn‖

)p
≤
∞∑
k=1

∞∑
n=1

(
‖Snxk‖
‖Sn‖

)p
≤
∞∑
k=1

2‖xk‖p <∞.

Now for (b), recall that for every 1 ≤ p < ∞, `p is isomorphic to a
complemented subspace E ⊂ Lp. So write Lp = E ⊕ F where F is a closed
subspace of Lp. If Q : `p → E is an isomorphism, then clearly S0 = QSQ−1

is a bounded operator on E such that for every x ∈ E,

∞∑
n=1

(
‖Sn0 x‖
‖Sn0 ‖

)p
<∞.

Let P be the projection onto E with respect to the decomposition Lp = E⊕F
and put R = S0P , which is bounded on Lp. Then for every n, Rn = Sn0P .
Since P is a projection onto E, we have ‖Rn‖ ≥ ‖Sn0 ‖. Hence

∞∑
n=1

(
‖Rnx‖
‖Rn‖

)p
≤
∞∑
n=1

(
‖Sn0 (Px)‖
‖Sn0 ‖

)p
<∞.

This shows (b) for p ≤ 2. For p ≥ 2, use a similar argument and the fact
that `2 is isomorphic to a complemented subspace of Lp.

It remains to prove Theorem 4.4. Before going into the proof, we will
need the following elementary lemma.

Lemma 4.6. Let f, g be two maps from R+ to R+. Assume that

lim
x→0

f(x)

g(x)
= 0 and lim

x→0
f(x) = 0.

Then there exists a sequence (αi) ⊂ R+ with αi → 0 (as i→∞) such that

∞∑
i=1

f(αi) <∞ and
∞∑
i=1

g(αi) =∞.

Proof. If g(x) 9 0 as x → 0, there exist ε > 0 and (αi) ⊂ R+ with
αi → 0 such that g(αi) ≥ ε for each i ≥ 1. By passing to a subsequence, one
can assume that

∑∞
i=1 f(αi) < ∞ (because f(x) → 0) and since g(αi) ≥ ε

for each i, one also gets
∑∞

i=1 g(αi) =∞.

Now, if g(x)→ 0 as x→ 0, fix (εi) ⊂ R+ with εi > 0 for each i such that∑∞
i=1 εi <∞. Choose, for each i ≥ 1, xi ∈ ]0, 1/i[ such that f(xi) ≤ εig(xi)

and g(xi) ≤ 1/2. Put n1 = 1 and ni+1 = ni + [1/g(xi)] where [x] denotes
the integer part of x. If k is an integer with ni ≤ k ≤ ni+1− 1, put αk = xi.
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Then αk → 0 because xi → 0. We have

∞∑
j=1

f(αj) =

∞∑
i=1

ni+1−1∑
k=ni

f(αk) =

∞∑
i=1

f(xi)(ni+1 − ni)

≤
∞∑
i=1

εig(xi)(ni+1 − ni) ≤
∞∑
i=1

εi <∞.

On the other hand,
∞∑
j=1

g(αj) =
∞∑
i=1

g(xi)(ni+1 − ni)

≥
∞∑
i=1

(1− g(xi)) ≥
∞∑
i=1

1

2
=∞,

and this concludes the proof of the lemma.

We are now ready for the proof of Theorem 4.4. We will combine some
techniques from [Mu] and [L].

Proof of Theorem 4.4. We can make the following assumption:

(∗) for every subspace M of finite codimension, ‖Tn|M‖ >
1
2‖T

n‖ for all

but a finite number of n’s.

Indeed, if this is not true, then by Proposition 3.6, there exists ε > 0, a
point x ∈ X and a non-decreasing sequence (nj) such that for each j,

‖Tnjx‖
‖Tnj‖

≥ ε.

Since ρ(ε) > 0, this obviously implies that
∞∑
n=1

ρ

(
‖Tnx‖
‖Tn‖

)
=∞.

Hence we can suppose that (∗) holds. By Lemma 4.6, there exists a
sequence (α̃i) with α̃i → 0 such that

∞∑
i=1

ρX(α̃i) <∞ and
∞∑
i=1

ρ(α̃i) =∞.

Since ρ is non-decreasing and ρX(2t) = O(ρX(t)), we see that
∞∑
i=1

ρX(αi) <∞ and
∞∑
i=1

ρ

(
αi
2

)
=∞,

where we have put αi = 2α̃i. Now, using again the hypothesis ρX(2t)
= O(ρX(t)), we see that

∑∞
i=1 ρX(2kαi) < ∞ for each k, and thus
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i=1(1 + ρX(2kαi)) converges. From this and the fact that αi → 0, we

can find an increasing sequence (mk) of integers such that

αi ≤ 2−k (i ≥ mk) and
∞∏

i=mk

(1 + ρX(2kαi)) ≤ 2.

Without loss of generality, we may assume that m1 = 1. Let us also fix once
for all a sequence (βi) with βi > 0 such that

∏∞
i=1(1 + βi) converges. Next,

we are going to construct by induction two sequences (nj) and (ui) such
that n1 < n2 < · · · and ‖ui‖ = 1. Further, these sequences will have two
properties; First, for each l ≥ 1 and j ≤ l,

(1)
∥∥∥Tnj

( l∑
i=1

αiui

)∥∥∥ ≥ αj
2
‖Tnj‖.

Secondly, for each k ≥ 1, and mk ≤ l ≤ mk+1 − 1,

(2)
∥∥∥ l∑
i=mk

αiui

∥∥∥ ≤ 21−k
( l∏
i=mk

(1 + βi)
)( l∏

i=mk

(1 + ρX(2kαi))
)
.

Once this is done, by (2) and since
∏∞
i=mk

(1+ρX(2kαi)) ≤ 2, we see that

(
∑l

i=1 αiui)l is Cauchy, and thus converges to some x. By (1), for fixed j,
we get in the limit

‖Tnjx‖ ≥ αj
2
‖Tnj‖,

whence
∞∑
n=1

ρ

(
‖Tnx‖
‖Tn‖

)
≥
∞∑
j=1

ρ

(
‖Tnjx‖
‖Tnj‖

)
≥
∞∑
j=1

ρ

(
αj
2

)
=∞,

and this is the desired conclusion.
Now, we turn to the inductive construction. Set n1 = 1. There exists

u1 ∈ X with ‖u1‖ = 1 and ‖Tu1‖ ≥ α1/2. Let k ≥ 1 and assume the con-
struction has been carried out up to mk ≤ l ≤ mk+1−1. If l+1 = mk+1, then

‖αl+1ul+1‖ ≤ 2−(k+1) ≤ 21−(k+1)(1 + βl+1)(1 + ρX(2k+1αl+1)),

so (2) is automatically satisfied for l + 1. Arguments to get (1) will be de-
tailed later. Suppose now that l + 1 ≤ mk+1 − 1. For convenience until the

end of the proof, we put sl =
∑l

i=mk
αiui and xl =

∑l
i=1 αiui.

We distinguish two cases. Suppose first that ‖sl‖ ≤ 2−k. Then for any
choice of ul+1 such that ‖ul+1‖ = 1,∥∥∥ l+1∑

i=mk

αiui

∥∥∥ ≤ ‖sl‖+ αl+1 ≤ 21−k.

Hence (2) is again always satisfied.
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We now indicate how to get (1). For each j ≤ l, select a linear functional
fj such that ‖fj‖ = 1 and ‖fj(Tnjxl)‖ = ‖Tnjxl‖ and put

M =
l⋂

j=1

ker(fjT
nj ),

which is clearly of finite codimension. Applying (∗), we can find nl+1 > nl
and v ∈M with ‖v‖ = 1 such that

‖Tnl+1v‖ ≥ 1

2
‖Tnl+1‖.

Since

‖Tnl+1(xl + αl+1v)‖+ ‖Tnl+1(xl − αl+1v)‖
≥ 2‖Tnl+1v‖αl+1 ≥ ‖Tnl+1‖αl+1,

there exists ε = ±1 such that

‖Tnl+1(xl + εαl+1v)‖ ≥ αl+1

2
‖Tnl+1‖.

Putting ul+1 = εv, we have proved (1) for j = l + 1. For j ≤ l, we obtain

‖Tnj (xl + αl+1ul+1)‖ ≥ ‖fjTnj (xl + αl+1ul+1)‖ = ‖fjTnjxl‖ = ‖Tnjxl‖

≥ αj
2
‖Tnj‖,

where the last inequality follows from the induction hypothesis of (1).

Suppose now that ‖sl‖ ≥ 2−k. From the definition of the modulus of
asymptotic smoothness, we can find a subspace Y ⊂ X of finite codimension
such that for all y ∈ Y with ‖y‖ = 1,

(3)

∥∥∥∥ sl
‖sl‖

+ 2kαl+1y

∥∥∥∥ ≤ (1 + βl+1)(1 + ρX(2kαl+1)).

This time, we set

M =

l⋂
j=1

ker(fjT
nj ) ∩ Y

where the fj are constructed exactly as in the previous case. We also con-
struct in the same way nl+1 and ul+1 ∈M with ‖ul+1‖ = 1 so that (1) holds
for l + 1. Now (3) with y = ul+1 ∈M ⊂ Y yields

(4)
∥∥sl + 2k‖sl‖αl+1ul+1

∥∥ ≤ ‖sl‖(1 + βl+1)(1 + ρX(2kαl+1)).

The condition ‖sl‖ ≥ 2−k implies that sl + αl+1ul+1 lies on the segment
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joining sl to sl + 2k‖sl‖αl+1ul+1. Hence, from (4) we get∥∥∥ l+1∑
i=mk

αiui

∥∥∥ = ‖sl + αl+1ul+1‖ ≤ ‖sl‖(1 + βl+1)(1 + ρX(2kαl+1))

≤ 21−k
( l+1∏
i=mk

(1 + βi)
)( l+1∏

i=mk

(1 + ρX(2kαi))
)
,

where the last inequality follows from the induction hypothesis. We see that
(2) is satisfied for l + 1, and this ends the construction.

Remark 4.7. Lindenstrauss [L] showed the following result: if (xi) ⊂ X
is such that

∑∞
i=1 εixi diverges for every choice of signs (εi) ⊂ {−1, 1}, then∑∞

i=1 ρX(‖xi‖) = ∞ where ρX is the usual modulus of smoothness defined
for t ≥ 0 by

ρX(t) =
1

2
sup

‖x‖=‖y‖=1
(‖x+ ty‖+ ‖x− ty‖ − 2).

Remark 4.8. We do not know if the assumption ρX(2t) = O(ρX(t)) is
really necessary, although it seems to us that a “bad” Orlicz space may not
have this property.
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