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Compactness conditions for elementary operators

by

Matej Brešar (Maribor) and Yuri V. Turovskii (Baku)

Abstract. Various topics concerning compact elementary operators on Banach al-
gebras are studied: their ranges, their coefficients, and the structure of algebras having
nontrivial compact elementary operators. In the first part of the paper we consider sep-
arately elementary operators of certain simple types. In the second part we obtain our
main results which deal with general elementary operators.

1. Introduction. Let A be an algebra. If A does not have an identity
element, then we denote by A1 the algebra obtained from A by adjoining
the identity element (if A has an identity element, then we set A1 = A).
Given a ∈ A1, we define the multiplication operators La, Ra : A → A by
La(x) = ax and Ra(x) = xa. An operator E from an algebra A into itself
is called an elementary operator on A if there exist ai, bi ∈ A1 such that
E =

∑n
i=1 Lai

Rbi
. The elements ai, bi will be called the coefficients of E.

In our recent paper [9] compact derivations on Banach algebras were con-
sidered. The present paper continues this line of investigations. Our main
purpose is to study elementary operators on Banach algebras that are simul-
taneously compact operators. Occasionally we will also consider elementary
operators on general algebras that have a finite rank.

In the first sections 2–6 we deal with elements a, b ∈ A such that some
of the operators La, Ra, LaRa, La − Rb are compact or of finite rank. We
shall see that these conditions have an impact on the algebraic nature of
the algebra in question, so that these local properties (concerning a single
element a) determine the global structure of A. A typical conclusion is that
A contains a central idempotent e such that the ideal eA is finite-dimensional
(i.e. Le has finite rank). The results from these sections have rather short
proofs and they vary from elementary observations to somewhat deeper
statements (Theorem 3.2, for example).
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After the first “warm-up” sections we proceed to study general elemen-
tary operators (Sections 7–10). Section 7 is devoted to an auxiliary algebraic
result which is used as a crucial technical tool in subsequent sections. Sec-
tion 8 is closely connected to the theory of radicals in Banach algebras
developed in [25]. This theory enables us to obtain some information about
the range of a compact elementary operator; for instance, it turns out that
the spectrum of every element in the range is finite or countable. In Section 9
we show that the existence of a nonzero compact elementary operator on a
semisimple Banach algebra A yields a nice structural property of A: it has a
nonzero socle. Section 10 is concerned with the question whether the coeffi-
cients of a compact elementary operator must be compact elements (a is said
to be a compact element if LaRa is a compact operator). This question has
been studied before (see e.g. [13, 19, 24, 26]). However, we shall use a rather
different approach, based on the (purely algebraic) concept of the extended
centroid of a prime algebra. The theorem that we obtain generalizes and
unifies two results from the literature, the theorem by Fong and Sourour on
B(X) [13] and the theorem by Mathieu on C∗-algebras [19].

Throughout the paper we will combine analytic and algebraic tools and
techniques. Although the main goal of the paper is the study of compactness
conditions, in several results we treat algebras over arbitrary fields. Most of
the results are later used in the analytic setting, but they might also be of
some interest in their own right.

2. Completely finite rank elements. We begin with an introductory
algebraic section. We shall gather together several elementary assertions,
some of which are perhaps already known. Anyhow, the proofs are short.

We assume throughout this section that A is an algebra over a field F .
We shall say that a ∈ A is a completely finite rank element if both La and
Ra are finite rank operators. In other words, both the right ideal aA and
the left ideal Aa are finite-dimensional. The set of all completely finite rank
elements of A will be denoted by Acf . It is clear that Acf is an ideal of A.

Lemma 2.1. Acf is the sum of all finite-dimensional ideals of A. In

particular , every element in Acf generates a finite-dimensional ideal in A.

Proof. If a lies in some finite-dimensional ideal J of A, then aA∪Aa ⊂ J
and so a ∈ Acf . Therefore it suffices to show that every a ∈ Acf generates a
finite-dimensional ideal of A. Since La is of finite rank, there exists a finite
basis {b1, . . . , bn} of aA. Clearly Rb1 , . . . , Rbn

have finite ranks, and so

I = Fa + La(A) + Ra(A) +
n∑

i=1

Rbi
(A)

is finite-dimensional. Note that I is the ideal of A generated by a.
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By a minimal ideal of an algebra A we mean of course a nonzero ideal
J of A such that 0 ⊂ K ⊂ J , where K is an ideal of A, implies K = 0
or K = J , and by a minimal central idempotent in A we mean a nonzero
central idempotent e in A such that ef = f , where f is a central idempotent
in A, implies f = 0 or f = e. As usual, by Mn(B) we denote the algebra of
n × n matrices over the algebra B.

Lemma 2.2. Let J be a nonnilpotent finite-dimensional ideal of A.

(i) If J is minimal , then there is a minimal central idempotent e in A
such that J = eA ∼= Mn(D) for some positive integer n and some

finite-dimensional division algebra D.

(ii) If F is a perfect field , then there exists a nonzero idempotent u ∈ J
and a finite-dimensional nilpotent ideal N of A such that ux−xu is

in N for all x ∈ A.

Proof. We set N = rad(J ), the (Jacobson) radical of the algebra J .
Since N = J ∩ rad(A), N is an ideal of A. Moreover, as the radical of a
finite-dimensional algebra, N is nilpotent.

Suppose that J is a minimal ideal. Since N ⊂ J and J is nonnilpotent,
we have N = 0. That is, J is a semisimple algebra. By the Wedderburn
structure theorem J in particular contains an identity element e, so that
J = eA and e is a central idempotent in A. This implies that every ideal
of the algebra J is also an ideal of A. Therefore J is a simple algebra,
and so, again by the Wedderburn theorem, it is isomorphic to Mn(D) for
some positive integer n and a finite-dimensional division algebra D. If f is
a central idempotent in A such that ef = f , then 0 ⊂ fA ⊂ eA = I and so
fA = 0 or fA = eA, which implies f = 0 or f = e. Thus (i) is proved.

To prove (ii), we first apply, using the assumption that F is perfect,
the Wedderburn principal theorem (see e.g. [20, Theorem 2.5.37]) to deduce
that J = B ⊕ N (the vector space direct sum), where B is a subalgebra
of J isomorphic to J /N . Since J is nonnilpotent, B 6= 0. Thus B is a
finite-dimensional semisimple algebra and so in particular it has an identity
element u 6= 0. For any y ∈ J we have y − uy, y − yu ∈ N . If x ∈ A is
arbitrary then ux, xu ∈ J , whence ux − uxu, xu − uxu ∈ N and therefore
ux − xu = (ux − uxu) − (xu − uxu) ∈ N .

We shall say that an algebra A is finitely semiprime if A has no nonzero
finite-dimensional nilpotent ideals. Besides semiprime algebras this class of
algebras for instance also includes amenable Banach algebras (see e.g. [15]).
Clearly every finite-dimensional minimal ideal I of a finitely semiprime al-
gebra A is of the form J = eA ∼= Mn(D).

Corollary 2.3. Let A be a finitely semiprime algebra with Acf 6= 0.
Then Acf is the direct sum of its finite-dimensional minimal ideals. Accord-
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ingly , A = Acf if and only if A ∼=
⊕

α Mnα(Dα) where nα is a positive

integer and Dα is a finite-dimensional division algebra.

Proof. Let a ∈ Acf and let J be the ideal of A generated by a. By Lemma
2.1, J is finite-dimensional. Since rad(J ) is a finite-dimensional nilpotent
ideal of A it follows that J is semisimple. Using the Wedderburn theorem
and arguing similarly to the proof of Lemma 2.2 we see that J = fA for
some central idempotent f in A, and J = J1 ⊕ · · · ⊕ Jn where each Jk

is an ideal of A and a finite-dimensional simple algebra. Clearly, Jk is a
finite-dimensional minimal ideal of A. This shows that Acf is the sum of
its finite-dimensional minimal ideals. We still have to show that this sum
is direct. It is clear that I1 ∩ I2 = 0 for any different finite-dimensional
minimal ideals I1 and I2. Accordingly, if I1 = e1A and I2 = e2A where
e1, e2 are central idempotents, then e1e2 = 0, and so e1I2 = 0. From this we
infer that a finite-dimensional minimal ideal I = eA has trivial intersection
with the sum of all finite-dimensional minimal ideals different from I.

The last assertion may be viewed as a slight extension of the classical
Wedderburn structure theorem. We remark that if A is a normed algebra,
then the sum in Corollary 2.3 is a topological direct sum.

3. Completely continuous elements. Until further notice we assume
that A is a complex Banach algebra. Let a ∈ A. We denote by σ(a) the
spectrum of a, and by r(a) its spectral radius. If A does not have an identity
element, then σ(a) is taken with respect to A1. As above, by rad(A) we
denote the Jacobson radical of A.

We say that a is a completely continuous element if both La and Ra are
compact operators. The set Acc of all completely continuous elements in A
is clearly a closed ideal of A, and Acf ⊂ Acc.

One of motivations for studying completely continuous elements is their
connection to compact derivations. If a ∈ Acc then ad a = La − Ra is a
compact derivation. Conversely, if D is a compact derivation, then we see
from the formulas LD(a) = [D, La] and RD(a) = [D, Ra] that the range of
D lies in Acc. This observation was used in our recent paper [9] studying
compact derivations, and from the arguments in that paper one can extract
some conclusion about completely continuous elements. Theorem 3.2 below,
however, is considerably more general. We remark that in particular it yields
more refined information concerning compact derivations than given in [9,
Theorem 2.1].

Suppose that a ∈ Acc is such that r(a) > 0, i. e. a is not quasinilpotent.
Pick a nonzero λ ∈ σ(a). Since La is a compact operator, λ is an isolated
point in σ(a). Therefore there exists a nonzero spectral idempotent p ∈ A1

of a corresponding to λ, given by
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(3.1) p =
1

2πi

\
Γ

(µ − a)−1 dµ,

where Γ is an appropriate contour in the complex plane.

Lemma 3.1. Let a ∈ Acc and let 0 6= λ ∈ σ(a). If p is a spectral idem-

potent of a corresponding to λ, then p ∈ Acf . Moreover , p lies in the ideal

of A generated by a.

Proof. Since L(µ−a)−1 = (µ − La)
−1 for all µ from the resolvent set

of a, Lp is a spectral projection of La corresponding to λ. Similarly, Rp is
a spectral projection of Ra corresponding to λ. From the classical theory of
compact operators applied to compact operators La and Ra it follows that
Lp and Rp are of finite rank, i.e. p ∈ A1

cf , and (La − λ)Lp is a quasinilpo-
tent operator on A1. Since (La − λ)Lp is of finite rank, (La − λ)Lp is a
nilpotent operator on A1, whence there exists a positive integer n such that
(ap − λp)n = 0. From this we readily infer that λnp, and hence also p, lies
in the ideal of A generated by a (in particular, p ∈ A).

Theorem 3.2. Let A be a Banach algebra and suppose there exists a ∈
Acc \ rad(A). Then there exist a nonzero idempotent u ∈ Acf and a finite-

dimensional nilpotent ideal N of A such that ux − xu ∈ N for all x ∈ A.

Moreover , u lies in the ideal of A generated by a.

Proof. Let I be the ideal of A generated by a. If r(a) = 0 then, since a /∈
rad(A), there exists a′ ∈ aA ⊂ I with r(a′) > 0. Therefore we may assume
without loss of generality that r(a) > 0. Now we may use Lemma 3.1 which
in particular tells us that there exists a nonzero idempotent p ∈ Acf ∩I. Let
J be the ideal of A generated by p. Note that J is finite-dimensional by
Lemma 2.1, it is not nilpotent since it contains p, and J ⊂ I. Now Lemma
2.2 (ii) yields the desired conclusion.

Corollary 3.3. Let A be a Banach algebra such that Acc \ rad(A) 6= 0.
Then Acf \ rad(A) 6= 0, i.e. A has a nonzero finite-dimensional ideal which

is not contained in rad(A).

The existence of an element in Acc\rad(A) in general does not guarantee
that Acf contains nonzero central idempotents (just take the algebra of all
n × n complex matrices that have nonzero entries only in the first row).

Corollary 3.4. Let A be a finitely semiprime Banach algebra and sup-

pose there exists a ∈ Acc\rad(A). Then there is a nonzero central idempotent

u ∈ Acf . Moreover , u lies in the ideal of A generated by a.

Our last result in this section will also be derived from Lemma 3.1. Let
us point out that Acf ⊂ Acc are closed ideals of A (here, Acf denotes the
closure of Acf).
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Corollary 3.5. For any Banach algebra A, Acc/Acf is a radical Ba-

nach algebra. Accordingly , if A/Acf is semisimple, then Acf = Acc.

Proof. We have to show that Acc/Acf consists of quasinilpotents. Sup-
pose this is not true, that is, there is a ∈ Acc such that σ(a + Acf) 6= {0}.
Pick 0 6= λ ∈ σ(a+Acf), and let f be the spectral idempotent of a+Acf cor-
responding to λ. Of course, λ also belongs to σ(a). Denote by p the spectral
idempotent of a corresponding to λ. Let ϕ : A1 → A1/Acf be the quotient
map. Since ϕ is a unital epimorphism, we have ϕ((µ−a)−1) = (µ−ϕ(a))−1

for all µ from the resolvent set of a. Applying ϕ to both sides of (3.1) we see
that ϕ(p) = f , i.e., f = p + Acf . However, p ∈ Acf by Lemma 3.1, so that
f = 0—a contradiction.

Since Acc/Acf is a closed ideal of A/Acf , the semisimplicity of A/Acf of
course implies Acf = Acc.

4. Left (right) completely continuous elements. We say that a∈A
is a left (resp. right) completely continuous element of A if La (resp. Ra) is a
compact operator on A. The set of all left (resp. right) completely continuous
elements of A will be denoted by Alcc (resp. Arcc). It is clear that Alcc and
Arcc are closed ideals of A, and Acc = Alcc ∩ Arcc. Further, by Alcf (resp.
Arcf) we denote the set of all elements a ∈ A such that La (resp. Ra) is of
finite rank. Clearly Alcf and Arcf are ideals of A and Acf = Alcf ∩Arcf . Note
also that Alcf (resp. Arcf) is the sum of all right (resp. left) finite-dimensional
ideals of A.

To avoid a tedious repetition we shall formulate the results in this section
only for left completely continuous elements; of course, analogous results can
be proved for right completely continuous elements.

Some of the arguments from the previous section still work in the present
context. For example, an analogue of Lemma 3.1 is true: If p is a spectral
idempotent of a ∈ Alcc corresponding to a nonzero λ ∈ σ(a), then p ∈ Alcf .
This can be used to prove an analogue of Corollary 3.5, i.e. Alcc/Alcf is a
radical Banach algebra. On the other hand, this shows the existence of a
nonzero element p in Alcf . But there is another, simpler way to establish
that Alcf 6= {0}, which we will now show.

We say that a nonzero b ∈ A is a left eigenvector of a ∈ A corresponding
to an eigenvalue λ ∈ C if (a − λ)b = 0. Note that every a ∈ Alcc with
r(a) > 0 has nonzero eigenvalues.

Lemma 4.1. Let A be a Banach algebra, and let a ∈ Alcc. If b is a

left eigenvector of a corresponding to a nonzero eigenvalue, then b ∈ Alcf .

Moreover , if A is semiprime, then b ∈ Acf .

Proof. Let (a − λ)b = 0 with a nonzero λ ∈ C. Then (La − λ)(bA) = 0.
Since La is compact, the eigenspace ker(La −λ) is finite-dimensional and so
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bA must also be finite-dimensional, that is, b ∈ Alcf . If A is semiprime, then
Smyth’s lemma [23] tells us that dim(Ab) < ∞ as well, so that b ∈ Acf .

Is is easy to find an example of a (nonsemiprime) algebra A containing an
idempotent e such that, say, dim(eA) < ∞ but dim(Ae) = ∞. This justifies
the assumption that A is semiprime in the last assertion. If, however, we
impose the stronger assumption on a that a ∈ Acc, then the semiprimeness
is redundant. Namely, as above we have dim(bA) < ∞, while for the proof of
dim(Ab) < ∞ we can make use of dual operators: noting that (R∗

a−λ)R∗
b = 0

with R∗
a compact, it follows by the same argument as above that R∗

b , and
hence also Rb, is of finite rank.

Corollary 4.2. Let A be a Banach algebra such that Alcc\rad(A) 6= 0.
Then Alcf 6= 0. Moreover , if A is semiprime, then Acf contains a nonzero

central idempotent.

Proof. As in the proof of Theorem 3.2 we see that there is a ∈ Alcc

with r(a) > 0. Hence a has a nonzero eigenvalue, and by Lemma 4.1 every
corresponding eigenvector lies in Alcf . If A is semiprime, then it lies in Acf ,
and then Corollary 2.3 and Lemma 2.2(i) yield the desired conclusion.

Prime algebras clearly do not contain central idempotents different from
0 and 1. The conclusion is therefore more definite in this case.

Corollary 4.3. Let A be a prime Banach algebra. If Alcc \rad(A) 6= 0,
then dim(A) < ∞.

5. Compact elements. We say that a ∈ A is a compact element if
LaRa is a compact operator. The set Ac of all compact elements in A is
only a closed multiplicative semigroup in A in general.

Finally, we say that a is a finite rank element if LaRa is a finite rank
operator. The set of all finite rank elements in A will be denoted by Af . Of
course, Af ⊂ Ac.

Our intention is to establish results on compact elements that are anal-
ogous to those from the previous sections. However, all the necessary work
has basically already been done before, so we will just refer to the litera-
ture and the present section will be very short. The lemma below follows
immediately from a slightly more general result of [21, Lemma 3].

Lemma 5.1 ([21]). Let A be a Banach algebra. If Ac \ rad(A) 6= 0, then

Af contains a nonzero idempotent. In particular , Af \ rad (A) 6= 0.

In the case when A is a semiprime Banach algebra, Af coincides with
soc(A), the socle of A. For semisimple algebras this was proved a long time
ago [1] and somewhat more recently it was extended to the semiprime case
[10]. Moreover, algebraic versions of this result were obtained even more
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recently [7, 14] (more details about [7] are given in Section 9). Recall that
the socle of a semiprime algebra A is equal to the sum of all minimal left
(resp. right) ideals each of which is necessarily of the form Ae (resp. eA)
where e is a minimal idempotent in A, i.e. an idempotent such that eAe is
a division algebra. In the case when A is a Banach algebra we necessarily
have eAe = Ce. If A has no nonzero minimal left (or equivalently, right)
ideals then we define soc(A) = 0.

Corollary 5.2. Let A be a semiprime Banach algebra. Then Ac \
rad(A) 6= 0 if and only if soc(A) 6= 0.

6. Compact generalized derivations. Following [6] we say that a
linear map ∆ : A → A is a generalized derivation if there exists a derivation
D on A such that ∆(xy) = ∆(x)y + xD(y) for all x, y ∈ A. Besides deriva-
tions, the other basic examples are inner generalized derivations, that is,
maps of the form ∆ = La −Rb for some a, b ∈ A (in this case the associated
derivation is D = ad b).

In Section 3 we mentioned that completely continuous elements natu-
rally appear when studying compact derivations. Similarly the “one-sided”
completely continuous elements appear when studying compact generalized
derivations. If ∆ is a compact generalized derivation, then we see from
RD(a) = [∆, Ra] that D(a) ∈ Arcc for every a ∈ A. The next result therefore
follows from (the “right” version of) Corollary 4.2.

Corollary 6.1. Let ∆ be a compact generalized derivation on a Banach

algebra A. Suppose that the associated derivation D does not map A into

rad(A). Then Arcf 6= 0; moreover , if A is semiprime, then Acf contains a

nonzero central idempotent.

If ∆ = La−Rb is an inner generalized derivation, then Corollary 6.1 says
that if ∆ is compact and b does not lie in the center modulo the Jacobson
radical, then Arcf 6= 0. Of course, similarly one can prove that if ∆ is compact
and a does not lie in the center modulo the Jacobson radical, then Alcf 6= 0.

In the semisimple case the above result gets a simple form.

Corollary 6.2. Let A be a semisimple Banach algebra. If there exists

a nonzero compact generalized derivation on A, then Acf contains a nonzero

central idempotent.

Proof. If the associated derivation D is not zero, then we may use Corol-
lary 6.1. So we may assume that D = 0. Note that then ∆La = L∆(a) for
every a ∈ A, and so the result follows from Corollary 4.2.

Corollary 6.2 was obtained for ordinary derivations in [9, Corollary 2.6].
There exists a commutative prime radical Banach algebra A such that

Alcc = A (see [11]). Thus, every La (= Ra), a ∈ A, is compact and
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quasinilpotent. Since A is prime, Alcf = Acf = 0, and therefore, because
of commutativity of A, even Af = 0. In light of this example, the next
proposition seems to be of some interest.

Proposition 6.3. Let A be a Banach algebra. If there exists a compact

inner generalized derivation on A which is not quasinilpotent , then Af 6= 0.

Proof. Let ∆ = La − Rb be compact and nonquasinilpotent. Pick a
nonzero λ ∈ σ(∆). Then X = ker(∆ − λ) is a finite-dimensional space
which is invariant under La. Therefore there exists a nonzero element x ∈ X
such that ax = µx for some µ ∈ C, which in turn implies xb = (µ − λ)x.
Accordingly,

∆LxRx = λLxRx.

Take a spectral projection P of ∆ such that 1 − P has finite rank and
r(∆P ) < |λ|. Then

(∆P )PLxRx = λPLxRx,

whence PLxRx = 0 and LxRx = (1 − P )LxRx is of finite rank.

7. On operator near-ideals. This section is entirely algebraic. By
A we denote an algebra over an arbitrary field. Let U be a subspace of
the algebra of linear operators on A. We shall say that U is an operator

near-ideal on A if EU, UE ∈ U for every U ∈ U and every elementary
operator E on A. Basic examples of operator near-ideals are of course ideals
of the algebra of linear operators on A (or bounded linear operators in the
case when A is a Banach algebra). Further, we shall say that a ∈ A is a
U-element if the elementary operator LaRa belongs to U . For example, if U
is the space of all finite rank operators on an algebra A, then by the very
definition a is a U -element if and only if a ∈ Af . Similarly, if U is the space
of all compact operators on a Banach algebra A, then a is a U -element if
and only if a ∈ Ac.

We shall say that an elementary operator E has length n if E =∑n
i=1 Lai

Rbi
for some ai, bi∈A1 and E cannot be represented as

∑k
i=1 Lci

Rdi

for some k < n and ci, di ∈ A1. We also define that the operator 0 has
length 0.

Lemma 7.1. Let A be an arbitrary algebra and let U be an operator near-

ideal on A. If U contains a nonzero elementary operator , then A contains

a nonzero U-element.

Proof. Let E =
∑n

i=1 Lai
Rbi

be a nonzero elementary operator of length
n ≥ 1 belonging to U . We proceed by induction on n.

Let n = 1, i.e. E = La1
Rb1 ∈ U and E 6= 0. Therefore there exists t ∈ A

such that a = a1tb1 = La1
Rb1(t) 6= 0. Note that LaRa = ELtb1Ra1t belongs

to U and so the assertion is proved in this case.
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We may now assume that n > 1 and that the assertion is true whenever
U contains a nonzero elementary operator of length < n. Pick y ∈ A and
define F = ERbny − Rybn

E ∈ U . Note that

F =

n−1∑

i=1

Lai
Rbnybi−biybn

and so the length of F is < n. In view of the induction assumption we may
therefore assume without loss of generality that F = 0. That is,

n−1∑

i=1

Lai
Rbnybi

=

n−1∑

i=1

Lai
Rbiybn

for every y ∈ A. Accordingly,

LE(x)Rbn
(y) = E(x)ybn =

n∑

i=1

aixbiybn =
n∑

i=1

Lai
Rbiybn

(x)

=

n∑

i=1

Lai
Rbnybi

(x) =

n∑

i=1

aixbnybi = ELxbn
(y)

for all x, y ∈ A, that is,
LE(x)Rbn

= ELxbn

for all x ∈ A. Thus U contains elementary operators LE(x)Rbn
, x ∈ A,

of length ≤ 1. If for some x ∈ A the length of LE(x)Rbn
is 1 then the

result follows from the induction assumption. Therefore we may assume
that LE(x)Rbn

= 0 for all x ∈ A. In fact, the same argument shows that
we may assume that for every j, 1 ≤ j ≤ n, we have LE(x)Rbj

= 0 for all
x ∈ A. Consequently, LE(x)Rajxbj

= 0 and hence also LE(x)RE(x) = 0 for
all x ∈ A. In particular, E(x) is a U -element. By assumption E(x) 6= 0 for
some x ∈ A and so the desired conclusion holds true in this case as well.

8. On the range of a compact elementary operator. We are now
ready to tackle general elementary operators that are compact. In this sec-
tion we are interested in the range of such an operator. First we have to recall
some notions and results from the theory of radicals of Banach algebras.

A hereditary topological radical on the class of all Banach algebras is a
map A 7→ Ar which assigns to each Banach algebra A its closed ideal Ar so
that the following conditions are satisfied:

(r) (A/Ar)r = 0.
(rr) Jr = J ∩ Ar for every closed ideal J of A.

(rrr) f(Ar) ⊂ Br for every continuous epimorphism f : A → B.

The following definitions are taken from [25]. A Banach algebra A is
called hypocompact if a nonzero quotient of A by an arbitrary closed ideal
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always contains a nonzero compact element, and is called scattered if the
spectrum of every element a ∈ A is finite or countable. A closed ideal J of A
is called hypocompact (resp. scattered) if J is hypocompact (resp. scattered)
as a Banach algebra. The next result, which is of crucial importance for our
results in this section, follows from [25, Theorems 4 and 6] (see also [22]).

Theorem 8.1 ([25]). For every Banach algebra A there exist the largest

hypocompact ideal Ahc and the largest scattered ideal Asc, and Ahc ⊂ Asc.

The maps A 7→ Ahc and A 7→ Asc are hereditary topological radicals.

Let us add a few elementary remarks.

Lemma 8.2. If A is a Banach algebra then Ac ⊂ Ahc.

Proof. Let a ∈ Ac and let I be the closed ideal of A generated by a. If
J is a proper closed ideal of I, then a /∈ J and so a + J 6= 0. But a + J
is a compact element of I/J . This shows that I is hypocompact, and so
a ∈ I ⊂ Ahc.

Therefore Ahc contains the closed ideal of A generated by Ac. In general
Ahc does not coincide with this ideal.

So we now know that, for every Banach algebra A, we have

(8.1) Af ⊂ Ac ⊂ Ahc ⊂ Asc.

If A is semiprime, and in particular if it is semisimple, then Af = soc(A)
(cf. Section 5).

Lemma 8.3. If A is a semisimple Banach algebra, then Asc 6= 0 if and

only if soc(A) 6= 0.

Proof. In view of (8.1) we only have to prove the “only if” part. So
let Asc 6= 0. As an ideal of a semisimple algebra, Asc is also semisimple.
Therefore soc(Asc) 6= 0 by Barnes’ theorem [4, Theorem 2.2]. This means
that there exists a minimal idempotent e of Asc. Note that

eAsce ⊂ eAe = e(Ae)e ⊂ eAsce,

whence eAe = eAsce = Ce, i.e. e is a minimal idempotent of A. Therefore
soc(A) 6= 0.

Having Lemma 7.1 in hand it is now easy to connect the theory just
sketched with compact elementary operators.

Theorem 8.4. If E is a compact elementary operator on a Banach al-

gebra A, then the range of E lies in Ahc. Accordingly , σ(E(y)x) is finite or

countable for all x, y ∈ A1.

Proof. Elementary operators clearly leave each ideal invariant. In par-
ticular, Ahc is invariant under E. Let E′ be the operator on A/Ahc in-
duced by E. Obviously, E′ is also a compact elementary operator. If E′
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were nonzero then A/Ahc would contain a nonzero compact element by
Lemma 7.1. However, in view of the property (r) and Lemma 8.2 this is
impossible. Therefore E′ = 0, that is, E maps A into Ahc. By Theorem 8.1
the range of E lies also in Asc. Taking A1 instead of A and repeating the
argument, we infer that the range of E lies in A1

sc. Hence σ(E(y)x) is finite
or countable for every x, y ∈ A1.

Corollary 8.5. If
∑n

i=1Lai
Rbi

is a compact operator , then σ(
∑n

i=1aibi)
is finite or countable.

9. On algebras having compact elementary operators. Let A be
a semiprime algebra over a field F . The sum of all minimal left ideals eA,
where e is a minimal idempotent in A such that the division algebra eAe is
finite-dimensional over F , is called the lower socle of A and will be denoted
by soc(A) (in the Banach algebra case we of course have soc(A) = soc(A)).
This concept was introduced and studied in the recent paper [7]. It is easy
to see that soc(A) is an ideal of A (contained of course in soc(A)). The
important result for us is [7, Theorem 3.3] stating that soc(A) = Af . So in
particular Af is an ideal of A (this is not clear from the definition). We can
now easily prove the following theorem that gives an additional insight into
the topic considered in [7, Section 4].

Theorem 9.1. Let A be a semiprime algebra. If there exists a nonzero

finite rank elementary operator on A, then soc(A) 6= 0.

Proof. Using Lemma 7.1 with U being the space of all finite rank op-
erators on A we see that A contains a nonzero U -element, that is to say,
soc(A) = Af 6= 0.

In a similar fashion we obtain an analytic version of Theorem 9.1.

Theorem 9.2. Let A be a semisimple Banach algebra. If there exists a

nonzero compact elementary operator on A, then soc(A) 6= 0.

Proof. We now apply Lemma 7.1 for the case where U is the space of
compact linear operators on A. Hence it follows that A has a nonzero com-
pact element, and so Corollary 5.2 gives soc(A) 6= 0.

Note that Theorem 9.2 also follows from Theorem 8.1, Lemma 8.3 and
Theorem 8.4.

There are no nonzero compact elementary operators on the Calkin alge-
bra of operators on a separable Hilbert space. This result was conjectured in
[13] and proved in [2] (and later also in [16] and [19]). The following corollary
is its generalization.
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Corollary 9.3. Let A be a simple unital Banach algebra. If there ex-

ists a nonzero compact elementary operator on A, then A ∼= Mn(C) for

some n ≥ 1.

Proof. By Theorem 9.2 we have soc(A) 6= 0. Since A is simple and unital
it follows that 1 ∈ soc(A) = Af . Thus A = L1R1(A) is finite-dimensional,
and hence A ∼= Mn(C).

We shall say that a Banach algebra is bicompact if LaRb is a compact
operator for all a, b ∈ A. This is of course a generalization of the concept of
a compact Banach algebra [1].

Proposition 9.4. Let A be a topologically simple Banach algebra. If

there exists a nonzero compact elementary operator on A, then A is a bi-

compact algebra.

Proof. By Lemma 7.1, A contains a nonzero compact element a. Note
that LxayRzaw = LxRw(LaRa)LyRz is compact for all x, y, z, w ∈ A. Con-
sequently, LuRv is compact for all u, v from the ideal of A generated by a.
Since this ideal is dense in A, it follows that A is a bicompact algebra.

If we add to Proposition 9.4 the further assumption that A is semisimple,
then it follows from Theorem 9.2 that A is equal to the closure of soc(A);
note that this conclusion is stronger than the one given in the proposition.
However, it is not known whether a topologically simple Banach algebra is
automatically semisimple, i.e. whether there exists a topologically simple
radical Banach algebra.

10. On the coefficients of a compact elementary operator. If
the algebra A is not prime then LaRb can be zero although both a and b
are nonzero. Therefore it does not seem to be easy to get some interesting
information about the coefficients of an elementary operator in nonprime
algebras. We shall therefore confine ourselves to prime algebras.

Lemma 7.1 will be indirectly used also in this section (via Theorem
9.2). But we also need other tools; a disadvantage of the approach based
on this lemma is that we lose track of the coefficients of an elementary
operator in question. We shall now present an alternative approach based
on an algebraic result by Erickson, Martindale and Osborn [12, Theorem
3.1] (see also generalizations in [5, Theorem 2.3.3] and [8, Theorem 1.2])
which is stated (in an equivalent form) below as Theorem 10.1. This result
involves the concept of the extended centroid of a prime algebra and we
refer the reader to the book [5] for an account of this theory. Let us just
mention here that the extended centroid of a prime algebra A over a field F
is a certain field containing F (and in fact also containing the center of A).
In the case when the extended centroid coincides with F we say that A
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is centrally closed over F . By a centrally closed prime Banach algebra we
shall of course mean a prime Banach algebra that is centrally closed over C.
For example, primitive Banach algebras are centrally closed prime Banach
algebras (this follows easily from [5, Corollary 4.1.2]). On the other hand,
commutative prime algebras (i.e. commutative domains) of dimension more
than 1 over a field F are not centrally closed over F and for such algebras
the conclusion of the next theorem clearly does not hold.

Theorem 10.1 ([12]). Let A be a centrally closed prime algebra over a

field F . If b1, b2, . . . , bn ∈ A1 are such that b1 does not lie in the linear span

of b2, . . . , bn, then there exists an elementary operator E on A such that

E(b1) 6= 0 and E(b2) = · · · = E(bn) = 0.

Let us record a simple corollary to this theorem which indicates both
the similarities and differences between the present approach and the one
based on Lemma 7.1.

Corollary 10.2. Let A be a centrally closed prime algebra over a field

F and let E =
∑n

i=1 Lai
Rbi

be an elementary operator on A such that b1

does not lie in the linear span of b2, . . . , bn. If E belongs to an operator

near-ideal U on A, then there is a nonzero b ∈ A such that La1
Rb ∈ U .

Proof. By Theorem 10.1 there is an elementary operator G=
∑m

j=1Lcj
Rdj

such that G(b1) = b 6= 0 and G(bi) = 0, i = 2, . . . , n. Note that

La1
Rb =

m∑

j=1

Rdj
ERcj

∈ U .

We now return to the analytic setting. Let us first recall a theorem by
Vala [26] which says that if A = B(X), the algebra of all bounded linear
operators on a Banach space X, then for any a, b ∈ A the operator LaRb is
compact on A if and only if a and b are compact operators on X.

Lemma 10.3. Let A be a primitive Banach algebra with soc(A) 6= 0 and

let π be the regular representation of A1 on the Banach space X = Ae where

e is a minimal idempotent of A. Further , let E =
∑n

i=1 Lai
Rbi

be a compact

elementary operator on A and assume that b1 does not lie in the linear span

of b2, . . . , bn. Then π(a1) is a compact operator on X. Moreover , if π−1 is

continuous then a1 is a compact element.

Proof. Corollary 10.2 tells us that La1
Rb is compact for some b 6= 0.

Since A is a prime algebra, eAbAe 6= 0. Moreover, since eAe = Ce we
have esbte = e for some s, t ∈ A. Therefore La1

Re = Rte(La1
Rb)Res is a

compact operator. Its restriction to Ae = X is then also compact, meaning
that π(a1) (defined by π(a1)xe = a1xe) is a compact operator on X. By
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Vala’s theorem, Lπ(a1)Rπ(a1) is a compact operator on B(X). Therefore the

operator La1
Ra1

= π−1Lπ(a1)Rπ(a1)π is also compact provided that π−1 is
continuous.

In certain classes of algebras, π−1 is automatically continuous. For ex-
ample, this is true in the so-called ultraprime algebras introduced by Ma-
thieu [17]: a normed algebra A is said to be ultraprime if there exists a
constant kA > 0 such that ‖LaRb‖ ≥ kA‖a‖ ‖b‖ for all a, b ∈ A. If A is
ultraprime, then so is A1 [17, Proposition 3.7]. Since

‖π(a)‖ ‖e‖ ≥ ‖π(a)‖ sup
‖x‖=1

‖xe‖

≥ sup
‖x‖=1

‖π(a)xe‖ = sup
‖x‖=1

‖axe‖ = ‖LaRe‖

it follows that in an ultraprime algebra A we have ‖π(a)‖ ≥ kA1‖a‖ for
every a ∈ A1, so that π−1 is continuous. The class of ultraprime normed
algebras contains prime C∗-algebras [18, Proposition 2.3], B(X) where X is
any normed space (one can check this easily and, moreover, kB(X ) = 1), and

prime group algebras l1(G) where G is a discrete group [27]. Further, ideals
of ultraprime normed algebras are again ultraprime [17, Proposition 3.6]. On
the other hand, quotients of ultraprime algebras by their closed ideals may
not be ultraprime, and there exist primitive Banach algebras with nonzero
socle that are not ultraprime [3].

A subset M of a Banach algebra A is called a bicompact subset of A if
LaRb is a compact operator for all a, b ∈ M. For example, Vala’s theorem
shows that the set of compact operators on a Banach space X is a bicompact
subset of B(X). The next result generalizes this.

Corollary 10.4. If A is a semisimple ultraprime Banach algebra, then

Ac is a bicompact subset and a closed ideal of A.

Proof. We may assume that Ac 6= 0. Thus LaRa is a compact operator
for some nonzero a ∈ A, and so soc(A) 6= 0 by Theorem 9.2. A prime algebra
with nonzero socle is primitive since the minimal left ideal Ae is a faithful
simple left A-module for every minimal idempotent e. Let π be as in Lemma
10.3. The lemma in particular implies that π(a) is a compact operator if
a ∈ Ac. So, if a, b ∈ Ac, then π(a) and π(b) are compact operators, and
hence Lπ(a)Rπ(b) is compact by Vala’s theorem. Since π−1 is continuous, it
follows (as in the proof of Lemma 10.3) that LaRb is compact on A. Thus Ac

is a bicompact subset of A. It is clearly a closed set, and in order to prove
that it is an ideal we only have to show that it is closed under addition.
Now, if a, b ∈ Ac, then

La+bRa+b = LaRa + LaRb + LbRa + LbRb
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is, as a sum of four compact operators (by what we just showed), a compact
operator itself. Therefore a + b ∈ Ac.

The following is the main result of this section.

Theorem 10.5. Let A be a semisimple ultraprime Banach algebra and

let E =
∑n

i=1 Lai
Rbi

be an elementary operator on A such that b1 does not

lie in the linear span of b2, . . . , bn. If E is a compact operator then a1 is a

compact element.

Proof. Ultraprime normed algebras are centrally closed [17, Corollary
4.7]. Our assumption that b1 does not lie in the linear span of b2, . . . , bn

therefore in particular implies that a1 = 0 if E = 0—this follows from
Corollary 10.2 by choosing U = 0. We may therefore assume that E 6= 0. By
Theorem 9.2, A has a nonzero socle. Thererefore Lemma 10.3 implies that
a1 is a compact element.

Theorem 10.5 was known before in two special cases: when A = B(X) [13,
Theorem 2] and when A is a prime C∗-algebra [19, Theorem 3.8]. It would
be interesting to find other classes of prime Banach algebras for which the
conclusion of this theorem holds (or does not hold). Let us point out that
we used the ultraprimeness condition only to guarantee that A is centrally
closed and π−1 is continuous, so under certain technical conditions a more
general result could be stated.

We remark that by making some rather obvious modifications in the
proof of Theorem 10.5 one can prove an analogous statement: If a1 does not
lie in the linear span of a2, . . . , an and E is a compact operator, then b1 is
a compact element. Accordingly, if both sets {a1, . . . , an} and {b1, . . . , bn}
are linearly independent and the operator

∑n
i=1 Lai

Rbi
is compact, then all

elements ai, bi are compact.

Corollary 10.6. Let A be a semisimple ultraprime Banach algebra. If

E is a compact elementary operator on A, then there exist compact elements

a1, . . . , an, b1, . . . , bn ∈ A1 such that E =
∑n

i=1 Lai
Rbi

.

Proof. We may assume that E 6= 0. Therefore E has length n ≥ 1. If E
is represented as E =

∑n
i=1 Lai

Rbi
, then clearly the sets {a1, . . . , an} and

{b1, . . . , bn} are linearly independent. As mentioned above, this implies that
all ai, bi are compact.

A result of this type also appears in [13] (for B(X)) and in [19] (for prime
C∗-algebras), and was also recently proved for general C∗-algebras [24].

Note that Corollaries 10.4 and 10.6 show that every compact elementary
operator on a semisimple ultraprime Banach algebra is a sum of compact
elementary operators of length 1.
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[6] M. Brešar, On the distance of the composition of two derivations to the generalized

derivations, Glasgow Math. J. 33 (1991), 89–93.
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