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Characterization of normed linear spaces with
generalized Mazur intersection property

by

Yunbai Dong (Wuhan) and Qingjin Cheng (Xiamen)

Abstract. Let A be a compatible collection of bounded subsets in a normed linear
space. We give a characterization of the following generalized Mazur intersection property:
every closed convex set A ∈ A is an intersection of balls.

1. Introduction. In 1933, Mazur [10] first studied the following ball
separation property in a Banach space: every closed convex bounded subset
is an intersection of balls. This property is known as the Mazur intersection
property (MIP).

In 1960, Phelps [11] gave a characterization of finite-dimensional Banach
spaces with the Mazur intersection property. Then Sullivan [14] also gave a
characterization of smooth spaces with the Mazur intersection property. Fi-
nally, Giles, Gregory, and Sims [5] developed Sullivan’s key idea and showed
that a Banach space has the Mazur intersection property if and only if the
set of weak∗ denting points of B(X∗) is norm dense in S(X∗). Then Chen
and Lin [2] also gave a characterization of Banach spaces with the Mazur in-
tersection property via semidenting points. Whitfield and Zizler [16] studied
the following property, called CIP, in Banach spaces: every compact convex
set is an intersection of balls. They showed that if the cone generated by
the extreme points of B(X∗) is τA-dense in X∗ where τA denotes the topol-
ogy of uniform convergence on compact subsets of X, then X has the CIP.
Later on, Sersouri [12] showed that this condition is indeed equivalent to
the CIP. Some other important results on the Mazur intersection property
can be found in [4, 6, 8, 9, 13, 15]. We refer to Granero, Jiménez-Sevilla and
Moreno’s survey [7] for this topic and related matters.

Recently, Chen and Cheng [3] gave analytical characterizations of the
MIP, the CIP and the MIP∗ via a specific class of convex functions and
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their conjugates. Thus they first established connections between the Mazur
intersection property and convex functions.

In this paper, the letter X will always denote a normed space. For any
bounded subset A in X, define

‖f‖A = sup{|f(x)| : x ∈ A}, f ∈ X∗.
Then ‖ · ‖A is a seminorm on X∗. Let coneA = {λh : λ > 0, h ∈ A}. For
a subset B ⊂ X∗, diamAB = supf,g∈B ‖f − g‖A denotes the diameter of B
under the seminorm ‖ · ‖A. A weak∗ slice of B is a set S(B, x, δ) = {f ∈ B :
f(x) > supg∈B g(x)− δ}, where x ∈ X and δ > 0.

Definition 1.1. Let A be a collection of bounded subsets in X.

(1) We say that f ∈ S(X∗) is an A-denting point of B(X∗) if for each
A ∈ A and ε > 0, there exists a weak∗ slice S of B(X∗) such that
f ∈ S and diamA S < ε.

(2) We say that f ∈ S(X∗) is an A-semidenting point of B(X∗) if for
each A ∈ A and ε > 0, there exists a weak∗ slice S of B(X∗) such
that S ⊂ cone{g ∈ X∗ : ‖g − f‖A < ε}.

The notion of A-semidenting point will play an important role in our
main theorem. A similar notion of A-denting point was studied by Chen
and Lin [1], who also introduced the following notion in the study of ball
separation properties.

Definition 1.2. We say that A is a compatible collection of bounded
subsets in X if:

(1) If A ∈ A and C ⊂ A, then C ∈ A.
(2) For each A ∈ A and x ∈ X, we have A+ x ∈ A and A ∪ {x} ∈ A.
(3) For each A ∈ A, the closed absolutely convex hull of A is in A.

We use τA to denote the topology on X∗ generated by {‖ · ‖A : A ∈ A}.
Our purpose in this paper is to give a general characterization for sev-

eral ball separation properties. In fact, for any compatible collection A of
bounded subsets in X, we show that every closed convex set A ∈ A is an
intersection of balls if and only if the cone of A-semidenting points of B(X∗)
is τA-dense in X∗.

2. Main results. We start this section with a lemma on linear func-
tionals due to Phelps, whose proof can be found in [11].

Lemma 2.1 (Phelps). Let f, g ∈ S(X∗). If sup f(g−1(0)∩B(X)) < ε/2,
then either ‖f − g‖ < ε or ‖f + g‖ < ε.

The following theorem is a local characterization ofA-semidenting points,
where A is a compatible family of bounded sets in a Banach space. Our main
theorem is then just a consequence.
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Theorem 2.2. Suppose A is a compatible family of bounded sets in X.
Then f0 ∈ S(X∗) is an A-semidenting point of B(X∗) if and only if for any
A ∈ A and x0 ∈ X, if f0 separates A and x0, then there is a ball B in X
with B ⊃ A and x0 /∈ B.

Proof. ⇒. We may assume that x0 = 0 and inf f0(A) = a > 0. If
‖f − f0‖A < a/2, then for any x ∈ A we have f(x) > 0. Since f0 is an
A-semidenting point of B(X∗), there exists a weak∗ slice S(B(X∗), x1, δ)
(normalized by ‖x1‖ = 1) of B(X∗) such that

S(B(X∗), x1, δ) ⊂ cone{f ∈ X∗ : ‖f − f0‖A < a/2}.
Hence

(2.1) f(x) > 0 for all f ∈ S(B(X∗), x1, δ) and x ∈ A.
Fix x∈A and let f1 ∈ S(X∗) with f1(x) = ‖x‖. If f ∈S(B(X∗), x1, δ/3),

then ((
1− δ

3

)
f − δ

3
f1

)
(x1) ≥

(
1− δ

3

)
f(x1)−

δ

3
(2.2)

>

(
1− δ

3

)(
1− δ

3

)
− δ

3
> 1− δ.

Hence (
1− δ

3

)
f − δ

3
f1 ∈ S(B(X∗), x1, δ).

It follows from (2.1) that((
1− δ

3

)
f − δ

3
f1

)
(x) > 0.

Then (
1− δ

3

)
f(x) >

δ

3
f1(x) =

δ

3
‖x‖ ≥ δ

3
d(0, A).

Hence

f(x) ≥ δd(0, A)

3− δ
.

Now, if f ∈ S(B(X∗), x1, δ/3), then

(2.3) f(nx1 − x) = nf(x1)− f(x) ≤ n− δd(0, A)

3− δ
.

Since A is bounded, there exists a constant M with A ⊂ MB(X). If f ∈
B(X∗) \ S(B(X∗), x1, δ/3), then

f(nx1 − x) = nf(x1)− f(x) ≤ n
(

1− δ

3

)
+ ‖x‖(2.4)

≤ n
(

1− δ

3

)
+M.
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Combining (2.3) with (2.4) gives

‖nx1 − x‖ ≤ max

{
n− δd(0, A)

3− δ
, n

(
1− δ

3

)
+M

}
.

It follows that, for n large enough (clearly, n is independent of x),

‖nx1 − x‖ ≤ n−
δd(0, A)

3− δ
.

Hence

A ⊂ B
(
nx1, n−

δd(0, A)

3− δ

)
.

On the other hand, it is clear that

0 /∈ B
(
nx1, n−

δd(0, A)

3− δ

)
.

⇐. Given ε > 0 and A ∈ A, let K be the closed absolutely convex hull
of A, and Kε = {x ∈ K : f0(x) ≥ ε}. We may assume

(2.5) {x ∈ K : f0(x) ≥ 4ε} 6= ∅,

and hence Kε 6= ∅. (Otherwise, we can choose x0 ∈ X such that |f0(x0)| =
4ε, and let K be the closed absolutely convex hull of A ∪ x0.) Then f0
separates Kε and 0. Hence, there is a ball B(x1, r) in X with B(x1, r) ⊃ Kε

and 0 /∈ B(x1, r).

We consider the weak∗ slice

S

(
B(X∗),

x1
‖x1‖

, 1− r

‖x1‖

)
= {f ∈ B(X∗) : f(x1) > r}.

If f ∈ S(B(X∗), x1/‖x1‖, 1− r/‖x1‖), then

(2.6) f(x) = f(x1)− f(x1 − x) > r − ‖x1 − x‖ ≥ 0

for all x ∈ Kε ⊂ B(x1, r). Hence f−1(0) ∩Kε = ∅. It follows that

sup f0(f
−1(0) ∩K) < 2ε.

Applying Lemma 2.1 in the normed space Y = spanK with K as the unit
ball, we have either ∥∥∥∥ f

‖f‖K
− f0
‖f0‖K

∥∥∥∥
K

<
4ε

‖f0‖K
or ∥∥∥∥ f

‖f‖K
+

f0
‖f0‖K

∥∥∥∥
K

<
4ε

‖f0‖K
.
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However, by (2.5) and (2.6), we have∥∥∥∥ f

‖f‖K
+

f0
‖f0‖K

∥∥∥∥
K

= sup

(
f

‖f‖K
+

f0
‖f0‖K

)
(K)

≥ sup

(
f

‖f‖K
+

f0
‖f0‖K

)
(Kε)

≥ sup

(
f0
‖f0‖K

)
(Kε) = 1 ≥ 4ε

‖f0‖K
.

Therefore ∥∥∥∥ f

‖f‖K
− f0
‖f0‖K

∥∥∥∥
K

<
4ε

‖f0‖K
.

It follows that ∥∥∥∥f0 − ‖f0‖K‖f‖K
f

∥∥∥∥
A

≤
∥∥∥∥f0 − ‖f0‖K‖f‖K

f

∥∥∥∥
K

< 4ε.

Then

S

(
B(X∗),

x1
‖x1‖

, 1− r

‖x1‖

)
⊂ cone{f ∈ X∗ : ‖f − f0‖A < 4ε}.

Hence f0 is an A-semidenting point of B(X∗).

We are now ready to prove the main result of this paper.

Theorem 2.3. Suppose A is a compatible family of bounded sets in X.
Then the following conditions are equivalent:

(1) The cone of A-semidenting points of B(X∗) is τA-dense in X∗.
(2) Any f ∈ S(X∗) is an A-semidenting point of B(X∗).
(3) Every closed convex set A ∈ A is an intersection of balls.

Proof. (1)⇒(3). Suppose that A ∈ A is a closed convex set and x0 /∈ A.
We need to show that there exists a ball B ⊂ X such that A ⊂ B and
x0 /∈ B. We can assume that x0 = 0. By the Hahn–Banach theorem there
exists f ∈ S(X∗) such that inf f(A) > 0. By (1), there exist λ > 0 and
f0 ∈ S(X∗) which is an A-semidenting point of B(X∗) such that

‖f − λf0‖A < inf f(A).

Hence inf f0(A) > 0. It follows from Theorem 2.2 that there exists a ball
B ⊂ X such that A ⊂ B and 0 /∈ B.

(3)⇒(2). Use Theorem 2.2.
(2)⇒(1). Trivial.

3. Remarks. First, we recall the definition of a semidenting point and
the characterization of Banach spaces with the Mazur intersection property
from [2].
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Definition 3.1. We say f ∈ S(X∗) is a semidenting point of B(X∗) if
for every ε > 0 there exists a weak∗ slice S of B(X∗) such that S ⊂ {g ∈ X∗ :
‖g − f‖ < ε}.

Theorem 3.2 (Chen and Lin). Given a Banach space X, the following
conditions are equivalent:

(1) X has the Mazur intersection property.
(2) Any f ∈ S(X∗) is a semidenting point of B(X∗).
(3) The set of semidenting points of B(X∗) is norm dense in S(X∗).

Theorem 2.3 gives a characterization of the ball separation property
described in (3). This property depends on A. For example, when A consists
of all bounded subsets of X, this is just the Mazur intersection property.
When A is the compatible family generated by all compact subsets of X,
this property is just the CIP.

If A consists of all bounded subsets of X, it is clear that τA is the norm
topology, and the following result shows the that A-semidenting points are
precisely the semidenting points. Hence, when A consists of all bounded
subsets of X, Theorem 2.3 is just Theorem 3.2.

Proposition 3.3. If A consists of all bounded subsets of X, then every
A-semidenting point of B(X∗) is a semidenting point of B(X∗) and vice
versa.

Proof. Suppose that f0 is an A-semidenting point of B(X∗). For the
bounded subset B(X∗) and 0 < ε < 1/2, there exists a weak∗ slice

S(B(X∗), x0, δ) ⊂ cone{g ∈ X∗ : ‖g − f0‖ < ε}.

It is clear that we can choose δ ≤ ε and ‖x0‖ = 1.

If f ∈ S(B(X∗), x0, δ), there exist g ∈ X∗ and λ > 0 such that ‖f0 − g‖
< ε and f = λg. Since ‖f0‖ = 1,

(3.1) 1− ε < ‖g‖ < 1 + ε.

Clearly 1− δ ≤ ‖f‖ ≤ 1, and hence

(3.2) 1− ε ≤ 1− δ ≤ ‖λg‖ ≤ 1.

Combining (3.1) with (3.2) gives

1− ε
1 + ε

< λ <
1

1− ε
.

Noting that ε < 1/2, we have

−2ε <
−2ε

1 + ε
< λ− 1 <

ε

1− ε
< 2ε.
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Then

‖f − f0‖ = ‖λg − λf0 + λf0 − f0‖ = λ‖g − f0‖+ |λ− 1|

<
ε

1− ε
+ 2ε < 4ε.

It follows that

S(B(X∗), x0, δ) ⊂ {g ∈ X∗ : ‖g − f0‖ < 4ε}.
Hence f0 is also a semidenting point of B(X∗).

Conversely, suppose f0 is a semidenting point of B(X∗). For every ε > 0,
there exists a weak∗ slice S of B(X∗) such that

S ⊂ {g ∈ X∗ : ‖g − f0‖ < ε}.
Let A be any bounded subset of X. Without loss of generality, we may
assume A ⊂ B(X). Hence ‖g − f0‖A ≤ ‖g − f0‖ for every g ∈ X∗. Now we
have

S ⊂ {g ∈ X∗ : ‖g − f0‖ < ε} ⊂ {g ∈ X∗ : ‖g − f0‖A < ε}
⊂ cone{g ∈ X∗ : ‖g − f0‖A < ε}.

It follows that f0 is also an A-semidenting point of B(X∗).
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