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The essential spectrum of Toeplitz tuples with
symbols in H∞ + C

by

Jörg Eschmeier (Saarbrücken)

Abstract. Let H2(D) be the Hardy space on a bounded strictly pseudoconvex do-
main D ⊂ Cn with smooth boundary. Using Gelfand theory and a spectral mapping
theorem of Andersson and Sandberg (2003) for Toeplitz tuples with H∞-symbol, we show
that a Toeplitz tuple Tf = (Tf1 , . . . , Tfm) ∈ L(H2(σ))m with symbols fi ∈ H∞+C is Fred-
holm if and only if the Poisson–Szegö extension of f is bounded away from zero near the
boundary of D. Corresponding results are obtained for the case of Bergman spaces. Thus
we extend results of McDonald (1977) and Jewell (1980) to systems of Toeplitz operators.

1. Introduction. Let D ⊂ Cn be a bounded strictly pseudoconvex
domain with smooth boundary. Extending results of McDonald [9] for the
unit ball, Jewell proved in [7] that a Toeplitz operator Tf with symbol in
H∞ + C on the Bergman space or Hardy space over D is Fredholm if and
only if f , or its Poisson–Szegö extension in the case of the Hardy space, is
bounded away from zero near the boundary of D. A basic ingredient of the
proof was the observation that, for every multiplicative linear functional φ
of H∞(D) belonging to the fibre of the maximal ideal space of H∞(D) over
a boundary point λ ∈ ∂D and any function f ∈ H∞(D), the value φ(f)
belongs to the cluster set of f at λ.

In the present note we replace single Fredholm operators Tf by tuples
Tf = (Tf1 , . . . , Tfm) of Toeplitz operators with symbol f ∈ (H∞ + C)m.
If the above cluster value property of H∞(D) were known to be true for
tuples f ∈ H∞(D)m instead of single functions, then the methods from [7]
could be extended in a straightforward way to calculate the essential spec-
trum of the essentially commuting multioperator Tf . However, the cluster
value property for finite tuples in H∞(D) is equivalent to the validity of the
Corona Theorem for H∞(D). This equivalence is well known and follows,
for instance, as a direct application of Theorem 1 from [5].
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In the following we show that, in spite of this difficulty, properties of the
Poisson transform and suitable results from Gelfand theory can be used to
prove the spectral mapping formula

σe(Tf ) =
⋂

(f(U ∩D); U ⊃ ∂D open)

for the essential Taylor spectrum σe(Tf ) of Toeplitz tuples Tf with symbol
f ∈ (H∞ + C)m on Hardy and Bergman spaces over strictly pseudoconvex
domains. Here again, in the Hardy space case, the symbol f has to be
interpreted as the Poisson–Szegö extension of f . Since, for m = 1, our notion
of joint essential spectrum coincides with the usual essential spectrum of a
single bounded linear operator, the above spectral mapping formula reduces
to the cited result of Jewell in this case.

2. Preliminaries. Let D ⊂ Cn be a bounded strictly pseudoconvex
domain with smooth boundary and let H2(D) be the Hardy space on D.
Since the point evaluation at every point of D is continuous on H2(D),
the space H2(D) is an analytic functional Hilbert space and hence it has
a reproducing kernel K : D × D → C. Let σ be the normalized surface
measure on ∂D. We shall identify H2(D) with its image H2(σ) under the
isometry

H2(D)→ L2(σ), f 7→ f∗,

associating with each function f ∈ H2(D) its non-tangential boundary
value f∗. For z ∈ D, consider the function

P (z, ·) =
|K(·, z)∗|2

K(z, z)
∈ L1(σ).

As usual, we call P the Poisson–Szegö kernel and define the Poisson–Szegö
integral of a function f ∈ L∞(σ) by

P[f ] : D → C, z 7→
�

∂D

fP (z, ·) dσ.

The Poisson–Szegö integral reproduces functions in H∞(D). For f ∈ C(∂D)
the Poisson–Szegö integral extends to a function F ∈ C(D) with F |∂D = f
(see [10] or [8] for both properties).

For f ∈ L∞(σ), we define the Toeplitz operator Tf ∈ L(H2(σ)) and the
Hankel operator Hf ∈ L(H2(σ), L2(σ)) with symbol f by

Tf = PMf |H2(σ) and Hf = (1− P )Mf |H2(σ).

Here P : L2(σ) → H2(σ) denotes the orthogonal projection and Mf :
L2(σ) → L2(σ), g 7→ fg, is the operator of multiplication f . For z ∈ D,
let kz = K(·, z)∗/‖K(·, z)∗‖H2(σ) be the normalized reproducing kernel vec-

tor at the point z. The Berezin transform of an operator T ∈ L(H2(σ)) is
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the function

Γ (T ) : D → C, z 7→ 〈Tkz, kz〉.

The Berezin transform of the Toeplitz operator Tf with symbol f ∈ L∞(σ)
coincides with its Poisson–Szegö integral:

Γ (Tf )(z) = 〈Tfkz, kz〉H2(σ) =
�

∂D

fP (z, ·) dσ.

It is well known (see for instance [5, Proposition 6]) that the Berezin trans-
form of a compact operator K ∈ L(H2(σ)) vanishes on the boundary of D
in the sense that

lim
z→∂D

Γ (K)(z) = 0.

For a given subset S ⊂ L∞(σ), the Toeplitz algebra with symbol class S
is the closed subalgebra of L(H2(σ)) defined by

T (S) = alg {Tf ; f ∈ S}.

Important choices for S are the set of all bounded analytic functions (or
better their boundary values), which will be denoted by H∞ = H∞(σ) in
what follows, and the class C = C(∂D) consisting of all complex-valued con-
tinuous functions on ∂D. A result of Aytuna and Chollet [2], generalizing a
corresponding observation of Rudin for the unit ball, shows that H∞+C =
H∞(σ) + C(∂D) ⊂ L∞(σ) is a closed subalgebra. It is known (see for in-
stance [4]) that the Toeplitz algebra T (H∞+C) contains the set K(H2(σ))
of all compact operators and that the map

τ : H∞ + C → T (H∞ + C)/K(H2(σ)), f 7→ Tf +K(H2(σ)),

is an isometric isomorphism of Banach algebras. In particular, Toeplitz
tuples Tf = (Tf1 , . . . , Tfm) with symbols fi ∈ H∞ + C essentially commute
in the sense that the commutators

[Tfi , Tfj ] = TfiTfj − TfjTfi (1 ≤ i, j ≤ m)

are compact.

The Koszul complex (cf. [6, Section 2.2])

K•(T,H) : 0→ Λ0(H)
δ0T−→ Λ1(H)

δ1T−→ · · ·
δm−1
T−−−→ Λm(H)→ 0

of an essentially commuting tuple T ∈ L(H)m of bounded operators on a
Hilbert space H is an essential complex of Hilbert spaces in the sense that
δi+1
T ◦δiT is compact for every i. The tuple T is called Fredholm if the Koszul

complex K•(T,H) has an essential homotopy , that is, there are bounded
operators εi : Λi(H)→ Λi−1(H) with

εi+1δiT − δi−1T εi − 1Λi(H) ∈ K(Λi(H))
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for all i. One can show [6, Lemma 2.6.10 and Theorem 10.2.5] that the
tuple T is Fredholm if and only if the Koszul complex K•(LT , C(H)) of the
commuting tuple LT = (LT1 , . . . , LTm) consisting of the left multiplication
operators

LTi : C(H)→ C(H), [A] 7→ [TiA],

on the Calkin algebra C(H) = L(H)/K(H) is exact. The essential spectrum
of an essentially commuting tuple T ∈ L(H)m is defined as

σe(T ) = {z ∈ Cm; K•(z − T,H) is not Fredholm} = σ(LT , C(H)),

where σ(LT , C(H)) denotes the Taylor spectrum [11] of the commuting tuple
LT ∈ L(C(H))m.

3. Main result. To prove the spectral mapping theorem for the essen-
tial spectrum of Toeplitz tuples with symbol in H∞ + C, we need a result
on the asymptotic multiplicativity of the Poisson–Szegö transform.

Lemma 3.1. For f, g ∈ H∞ + C, the Poisson–Szegö transform satisfies

lim
z→∂D

∣∣P[fg](z)− P[f ](z)P[g](z)
∣∣ = 0.

Proof. We need some results on the Berezin transform that are implicitly
contained in [3]. Since every point z ∈ ∂D is a peak point for the Banach
algebra A(D) = {f ∈ C(D); f |D holomorphic}, it follows that A(D) is a
pointed function algebra in the sense of [3, Definition 2.1 and Theorem 2.3].
It is elementary to check that the Hardy space H2(D) is a quasi-free Hilbert
module over A(D) as defined in [3].

For z ∈ D, consider the isometry

Vz : C→ H2(σ), t 7→ tkz.

The mapping Pz = VzV
∗
z is the orthogonal projection onto the one-dimen-

sional subspace of H2(σ) spanned by kz. For given operators S, T in
L(H2(σ)), the estimate

|Γ (ST )(z)− Γ (S)(z)Γ (T )(z)| =
∣∣(V ∗z STVz − V ∗z SPzTVz)(1)

∣∣
=
∣∣V ∗z S[T, Pz]Vz(1)

∣∣ ≤ ‖S‖ ‖[T, Pz]‖
holds for every point z ∈ D. For α ∈ ∂D, the set of all operators T in
L(H2(σ)) with the property that

lim
z→α
‖[T, Pz]‖ = 0

is a C∗-algebra containing the Toeplitz algebra

T (C) = C∗({Tf ; f ∈ A(D)|∂D})
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(see the proof of Theorem 3.2 in [3]). An elementary compactness argument
shows that limz→∂D ‖[T, Pz]‖ = 0 for every operator T ∈ T (C). Therefore

lim
z→∂D

∣∣Γ (ST )(z)− Γ (S)(z)Γ (T )(z)
∣∣ = 0

for any pair of operators S ∈ L(H2(σ)), T ∈ T (C). Since for g ∈ C
and f ∈ L∞(σ), the semicommutator Tfg − TfTg = PMfHg is compact
[12, Theorem 4.2.17], it follows that

|P[fg](z)− P[f ](z)P[g](z)|
≤
∣∣Γ (Tfg − TfTg)(z)

∣∣+
∣∣Γ (TfTg)(z)− Γ (Tf )(z)Γ (Tg)(z)

∣∣
tends to zero as z → ∂D. Using in addition the fact that P[fg] = P[f ]P[g]
for f, g ∈ H∞, one easily deduces the assertion.

We begin by proving one half of our spectral mapping theorem in a
particular situation. For simplicity, we use the notation

F = P[f ] = (P[f1], . . . ,P[fm])

for the Poisson–Szegö transform of a tuple f = (f1, . . . , fm) ∈ L∞(σ)m.

Lemma 3.2. For given g ∈ (H∞)r, h ∈ Cs and f = (g, h), the following
spectral inclusion holds:⋂

(F (U ∩D); U ⊃ ∂D open) ⊂ σe(Tf ).

Proof. Suppose that Tf is Fredholm. It suffices to show that F = P[f ] is
bounded away from zero close to the boundary of D. Since Tf is Fredholm,
the row multiplication

H2(σ)m
Tf−→ H2(σ)

with m = r + s has finite-codimensional range. The orthogonal projec-
tion Q ∈ L(H2(σ)) to the kernel of the operator TfT

∗
f has finite rank and

TfT
∗
f +Q is bounded below. Hence there is a constant c > 0 with

TfT
∗
f +Q ≥ c1H2(σ).

Since the Berezin transform Γ (Q)(z) tends to zero as z approaches the
boundary of D, there is an open neighbourhood U of ∂D such that

m∑
i=1

Γ (TfiT
∗
fi

)(z) = Γ (TfT
∗
f ) ≥ c/2

for all z ∈ U ∩D. An elementary calculation [5, Lemma 7] yields

Γ (TgiT
∗
gi) = |Gi|2 (i = 1, . . . , r)

on D. Since ThiT
∗
hi
− T|hi|2 is compact and since by Lemma 3.1,

P[|hi|2](z)− |P[hi](z)|2
z→∂D−−−−→ 0,
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it follows that

Γ (ThiT
∗
hi

)(z)− |Hi(z)|2
z→∂D−−−−→ 0 (i = 1, . . . , s).

Summarizing we obtain
m∑
i=1

|Fi(z)|2 − Γ (TfT
∗
f )(z) =

s∑
i=1

(
|Hi(z)|2 − Γ (ThiT

∗
hi

)(z)
)
→ 0

as z approaches the boundary of D. Thus the assertion follows.

To prepare the proof of the opposite inclusion, we recall some results from
Gelfand theory. Consider a unital algebra homomorphism Φ :M→ L(X)
from a unital commutative Banach algebraM into the algebra of all bound-
ed operators on a Banach space X. A spectral system on B = Φ(M) is a
rule σ that assigns to each finite tuple a ∈ Br a compact subset σ(a) ⊂ Cr
which is contained in the joint spectrum

σB(a) =
{
z ∈ Cr; 1 /∈

r∑
i=1

(zi − ai)B
}

of a in B and which is compatible with projections in the sense that

p(σ(a, b)) = σ(a) and q(σ(a, b)) = σ(b)

for a ∈ Br and b ∈ Bs, where p and q are the projections of Cr+s onto its
first r and last s coordinates.

For a given set M , let us denote by c(M) the set of all finite tuples
of elements in M . Standard results going back to J. L. Taylor (see, e.g.,
[6, Proposition 2.6.1]) show that, for a spectral system σ as above, the set

∆Φ,σ = {λ ∈ ∆M; f̂(λ) ∈ σ(Φ(f)) for all f ∈ c(M)}
is the unique closed subset of the maximal ideal space ∆M of M with
f̂(∆Φ,σ) = σ(Φ(f)) for all f ∈ c(M). Here Φ(f) = (Φ(f1), . . . , Φ(fr)) and the

Gelfand transforms f̂ = (f̂1, . . . , f̂r) are formed componentwise for f ∈Mr.
Let Φ0 :M0 → L(X) be the restriction of Φ to a unital closed subalgebra

M0 ⊂ M, and let σ0 denote the spectral system on B0 = Φ(M0) obtained
by restricting σ. An elementary exercise, using the uniqueness property of
∆Φ0,σ0 , shows that the restriction map

r : ∆Φ,σ → ∆Φ0,σ0 , λ 7→ λ|M0,

is well defined, surjective and continuous (relative to the Gelfand topologies).
As before, let H2(σ) be the Hardy space on a bounded strictly pseudo-

convex domain D ⊂ Cn with smooth boundary. We apply the above remarks
to the Banach algebrasM0 = H∞,M = H∞+C and the algebra homomor-
phism Φ : M → L(C(H2(σ))), f 7→ LTf , mapping f ∈ M to the operator

LTf of left multiplication with Tf on the Calkin algebra C(H2(σ)). Let σ be
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the spectral system on B = Φ(M) associating with each tuple a ∈ Br its
Taylor spectrum as a commuting tuple of bounded operators on C(H2(σ)).
We write σ0 for the restriction of σ to B0 = Φ(M0).

Recall that, for a tuple f ∈ c(L∞(σ)), we write F = P[f ] for its Poisson–
Szegö transform. As usual we shall identify functions f ∈ H∞(σ) with their
Poisson–Szegö transforms F = P[f ] ∈ H∞(D). It was shown by Andersson
and Sandberg [1, Theorem 1.2] that the spectral mapping formula

σ(Φ(f)) = σe(Tf ) =
⋂

(f(U ∩D); U ⊃ ∂D open)

holds for every tuple f ∈ c(H∞). Let π = (π1, . . . , πn) be the tuple of
coordinate functions. Using Theorem 1 in [5] we obtain

f̂(λ) ∈
⋂

(f(U ∩D); U open neighbourhood of π̂(λ))

for f ∈ c(H∞) and every functional λ ∈ ∆Φ0,σ0 .

Proposition 3.3. For g ∈ (H∞)r, h ∈ Cs and f = (g, h), the following
spectral inclusion formula holds:

σe(Tf ) ⊂
⋂

(F (U ∩D); U ⊃ ∂D open).

Proof. Suppose that 0 ∈ σe(Tf ). It suffices to show that 0 is contained
in the intersection on the right. By the remarks preceding the proposition
there is a functional λ ∈ ∆Φ,σ with 0 = f̂(λ) = (ĝ(λ), ĥ(λ)). Since λ|C ∈ ∆C ,
there is a point z0 ∈ ∂D with

λ(φ) = φ(z0) (φ ∈ C).

In particular, it follows that limz→z0 H(z) = h(z0) = 0. The above-cited
results from [1] and [5] imply that

0 = ĝ(λ) ∈
⋂

(g(U ∩D); U open neighbourhood of z0).

Hence there is a sequence (zk)k≥1 in D with limk→∞ zk = z0 and

lim
k→∞

(g(zk), H(zk)) = 0.

This observation completes the proof.

Our next aim is to show that Lemma 3.2 and Proposition 3.3 remain
true for arbitrary symbols f ∈ (H∞ + C)m.

Theorem 3.4. For f ∈ (H∞ + C)m,

σe(Tf ) =
⋂

(F (U ∩D); U ⊃ ∂D open).

Proof. Let f = g + h ∈ (H∞ + C)m be given with g ∈ (H∞)m and
h ∈ Cm. Using a particular case of the analytic spectral mapping theorem
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for the Taylor spectrum, we obtain

σe(Tf ) = σe(Tg + Th) = σ(LTg + LTh)

= {z + w; (z, w) ∈ σ(LTg , LTh)} = {z + w; (z, w) ∈ σe(Tg, Th)}.

If (z, w) ∈ σe(Tg, Th), then by Proposition 3.3 there is a sequence (uk) in D
converging to some point u ∈ ∂D such that

(z, w) = lim
k→∞

(G,H)(uk).

But then

z + w = lim
k→∞

(G+H)(uk) = lim
k→∞

F (uk).

Hence σe(Tf ) is contained in the intersection on the right-hand side.

Conversely, if ξ is a point in the intersection on the right-hand side, then
there is a sequence (uk) in D converging to a point u ∈ ∂D such that

ξ = lim
k→∞

F (uk) = lim
k→∞

(G(uk) +H(uk)).

But then w = limk→∞H(uk) = h(u) exists and hence also z = limk→∞G(uk)
exists. By Lemma 3.2 we know that (z, w) ∈ σe(Tg, Th). Hence ξ = z + w
belongs to σe(Tf ) as was to be shown.

For a tuple T = (T1, . . . , Tn) ∈ L(H)n of operators on a Hilbert space H,
the right essential spectrum σre(T ) is usually defined as the set of all points
z ∈ Cn for which the range of the row multiplication

Hn (z1−T1,...,zn−Tn)−−−−−−−−−−−→ H

is not finite codimensional, or equivalently, the row multiplication

C(H)n
(z1−LT1

,...,zn−LTn )−−−−−−−−−−−−−→ C(H)

is not onto (see e.g. Lemma 2.6.10 in [6] for the equivalence). Hence the
right essential spectrum σre(T ) of T coincides with the right spectrum
σr(LT , C(H)) of the multiplication tuple LT on the Calkin algebra. Since
Lemma 3.2 remains true with σe(Tf ) replaced by σre(Tf ) (see the proof of
the lemma) and since the analytic spectral mapping formula used in the
proof of Theorem 3.4 also holds for the right Taylor spectrum [6, Corol-
lary 2.6.8], we obtain the following consequence.

Corollary 3.5. For f ∈ (H∞ + C)m,

σe(Tf ) = σre(Tf ) =
⋂

(F (U ∩D); U ⊃ ∂D open).

Our main result (Theorem 3.4) can also be proved for Toeplitz tuples
Tf ∈ L(L2

a(D))m with symbol f ∈ (H∞(D) + C(D)|D)m on the Bergman
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space L2
a(D) = {f ∈ O(D); ‖f‖2 =

	
D |f |

2 dλ < ∞} formed with respect
to the volume measure λ on a strictly pseudoconvex domain D ⊂ Cn with
smooth boundary. It suffices to replace the spectral mapping formula of An-
dersson and Sandberg [1] for Toeplitz tuples with H∞-symbol by the corre-
sponding spectral mapping formula for the Bergman space (Theorem 8.2.6
in [6]) and to replace the Poisson–Szegö transform by the Poisson–Bergman
transform. All properties needed for the Poisson–Bergman integral can be
found in [8]. We only state the corresponding result in the Bergman case.

Theorem 3.6. Let D ⊂ Cn be a bounded strictly pseudoconvex domain
with smooth boundary. Then for f ∈ (H∞(D) +C(D))m, the essential spec-
trum of the Toeplitz tuple Tf ∈ L(L2

a(D))m on the Bergman space L2
a(D) is

given by

σe(Tf ) = σre(Tf ) =
⋂

(f(U ∩D); U ⊃ ∂D open).

The reader should observe that, since the Poisson–Bergman transform
of a continuous function h ∈ C(D)m extends to a continuous function
H ∈ C(D)m with H|∂D = h|∂D, the intersection on the right-hand
side does not change when f is replaced by its Poisson–Bergman trans-
form F .
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