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Mixed Ap-A∞ estimates with one supremum

by

Andrei K. Lerner (Ramat Gan) and Kabe Moen (Tuscaloosa, AL)

Abstract. We establish several mixed Ap-A∞ bounds for Calderón–Zygmund oper-
ators that only involve one supremum. We address both cases when the A∞ part of the
constant is measured using the exponential-logarithmic definition and using the Fujii–
Wilson definition. In particular, we answer a question of the first author and provide an
answer, up to a logarithmic factor, to a conjecture of Hytönen and Lacey. Moreover, we
give an example to show that our bounds with the logarithmic factors can be arbitrarily
smaller than the previously known bounds (both with one supremum and two suprema).

1. Introduction. Hytönen’s [9] recent solution of the A2 conjecture
states that any Calderón–Zygmund operator satisfies the following bound
on weighted Lebesgue spaces:

(1) ‖T‖Lp(w) . [w]
max(1,1/(p−1))
Ap

.

Recently inequality (1) has seen several improvements. These come in the
form of the so-called “mixed estimates”. The idea behind the mixed esti-
mates is that one only needs the full strength of the Ap constant for part
of the estimates, while the other part only requires something weaker. The
smaller quantities come in the form of Ar constants for large r or A∞ con-
stants. Below we will attempt to describe these results.

First we require some terminology. A weight will be a nonnegative locally
integrable function. Given a weight w, exponent 1 < p < ∞, and cube Q,
define the precursor to the Ap constant as

Ap(w,Q) =
( �

Q

w
)( �

Q

w−1/(p−1)
)p−1

=
w(Q)σ(Q)p−1

|Q|p

where σ = w−1/(p−1). When p = 1 we define the limiting quantity as

A1(w,Q) =
( �

Q

w
)(

inf
Q
w
)−1

= lim
p→1

Ap(w,Q).
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For p =∞ we will consider two constants. The first is defined as a limit of
the Ap(w,Q) constants:

Aexp
∞ (w,Q) =

( �

Q

w
)

exp
( �
Q

logw−1
)

= lim
p→∞

Ap(w,Q).

For the second constant let

A∞(w,Q) =
1

w(Q)

�

Q

M(wχQ)

where M is the Hardy–Littlewood maximal operator (see Section 2). By
Jensen’s inequality we see that the quantities Ap(w,Q) decrease as p in-
creases. Define the following constants:

[w]Ap = sup
Q
Ap(w,Q),

[w]Aexp
∞ = sup

Q
Aexp
∞ (w,Q),

[w]A∞ = sup
Q
A∞(w,Q).

We write w ∈ Ap if [w]Ap <∞ and w ∈ A∞ if [w]Aexp
∞ <∞ or [w]A∞ <∞.

The constant [w]Aexp
∞ was defined by Hruščev [8]. The constant [w]A∞ was

defined by Fujii [7] and Wilson [23, 24], who also showed that both constants
define the class A∞. Hytönen and Pérez [11] proved the quantitative upper
bound

(2) [w]A∞ . [w]Aexp
∞

and provided examples to show that [w]Aexp
∞ can be exponentially larger than

[w]A∞ (see also Beznosova and Reznikov [2]). While inequality (2) holds, it
is not clear what the relationship is between Aexp

∞ (w,Q) and A∞(w,Q) for
a fixed cube Q. Hereafter we will refer to constants that contain a quan-
tity depending on Aexp

∞ (w,Q) as exponential A∞ constants and constants
depending on A∞(w,Q) as simply A∞ constants.

Let us now define the mixed type constants. Given 1 ≤ p <∞ and real
numbers α, β define the mixed constants:

[w](Ap)α(Ar)β = sup
Q
Ap(w,Q)αAr(w,Q)β, 1 ≤ r ≤ ∞,

and the exponential mixed constants:

[w](Ap)α(Aexp
∞ )β = sup

Q
Ap(w,Q)αAexp

∞ (w,Q)β.

Inequalities involving constants of the form

[w](Ap)α(Ar)β , [w](Ap)α(A∞)β , or [w](Ap)α(Aexp
∞ )β
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will be said to be one supremum estimates, whereas estimates containing
products of separate constants such as

[w]αAp [w]βA∞ or [w]αAp [w]β
Aexp
∞

will be referred to as two suprema estimates.
The pioneer work on mixed constants involving A∞ was done by Hytönen

and Pérez [11]. For the Hardy–Littlewood maximal operator they were able
to prove two estimates. The first is a one supremum estimate containing the
exponential mixed constant.

Theorem A ([11]). If 1 < p <∞ and w ∈ Ap then

(3) ‖M‖Lp(w) . [σ](Ap′ )1/p
′
(Aexp
∞ )1/p .

Second, they prove the following two suprema estimate.

Theorem B ([11]). If 1 < p <∞ and w ∈ Ap then

(4) ‖M‖Lp(w) . [σ]
1/p′

Ap′
[σ]

1/p
A∞

= ([w]Ap [σ]A∞)1/p.

Both of the inequalities (3) and (4) improve Buckley’s [3] well known
bound

‖M‖Lp(w) . [σ]Ap′ = [w]
1/(p−1)
Ap

.

A natural question is whether inequality (4) can be replaced by a one supre-
mum estimate. In this vein we have our first result. To state it we define the
function

Φ(t) = 1 + log(t).

Theorem 1.1. Suppose 1 < p <∞ and w ∈ Ap. Then

(5) ‖M‖Lp(w) . Φ([σ]Ap′ )
1/p[σ](Ap′ )1/p

′
(A∞)1/p .

We do not know whether or not the logarithmic factor in (5) is necessary,
that is, we do not know how to remove the logarithmic factor or find an
example showing it is necessary.

For Calderón–Zygmund operators much less is known about one supre-
mum estimates. Hytönen and Pérez proved a two suprema estimate when
p = 2 which was later extended to 1 < p <∞, first for the Hilbert transform
by Lacey [13], and then for general Calderón–Zygmund operators by Lacey
and Hytönen [10].

Theorem C ([10, 11, 13]). If 1 < p < ∞, T is Calderón–Zygmund
operator, and w ∈ Ap, then

(6) ‖T‖Lp(w) . [w]
1/p
Ap

([w]
1/p′

A∞
+ [σ]

1/p
A∞

).

Meanwhile, the first author examined weighted estimates with one supre-
mum, where the smaller part was an Ar constant from [17].
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Theorem D ([16, 17]). If 1 < p, r < ∞, T is a Calderón–Zygmund
operator, and w ∈ Ap, then

(7) ‖T‖Lp(w) . [w](Ap)1/(p−1)(Ar)1−1/(p−1) + [σ](Ap′ )1/(p
′−1)(Ar)1−1/(p′−1) .

Notice that the right hand side of (1) can be written as

[w]
max(1,1/(p−1))
Ap

' [w]Ap + [σ]Ap′ .

With this in mind it is easy to see that inequalities (6) and (7) both improve
(1), while explicit examples show that the right hand sides of (6) and (7)
are incomparable. We emphasize that the bounds (6) and (7) differ twofold:
the latter has one supremum constants and the smaller part of the mixed
constant is an Ar measurement for 1 < r < ∞. Explicit examination of
the proof of (7) in [17] shows that one cannot take r = ∞ because of a
factor of 2r involved in the calculations. The first author went on to ask if it
was possible to take r =∞ in inequality (7). Our first result for Calderón–
Zygmund operators is a positive answer to this question.

Theorem 1.2. If 1 < p < ∞ and T is a Calderón–Zygmund operator
then

(8) ‖T‖Lp(w) . [w](Ap)1/(p−1)(Aexp
∞ )1−1/(p−1) .

The astute reader will notice that taking r =∞ in inequality (7) should
yield the sum of two constants, whereas inequality (8) only has one constant.
However they are equivalent since for these particular exponents,

[w](Ap)1/(p−1)(Aexp
∞ )1−1/(p−1) = [σ](Ap′ )1/(p

′−1)(Aexp
∞ )1−1/(p′−1) .

Hytönen and Lacey [10] went on to conjecture that one should be able to
replace the right hand side of (6) with an estimate containing one supremum
constants.

Conjecture 1.3 ([10]). If 1 < p < ∞, T is a Calderón–Zygmund op-
erator, and w ∈ Ap then

(9) ‖T‖Lp(w) . [w](Ap)1/p(A∞)1/p
′ + [σ](Ap′ )1/p

′
(A∞)1/p .

We are able to give a partial answer to Conjecture 1.3 and the corre-
sponding version containing the exponential A∞. However, our estimates
contain an extra logarithmic factor. In this vein, our first result is an esti-
mate containing the exponential mixed constants.

Theorem 1.4. Under the same hypothesis as in Theorem 1.2 we have

‖T‖Lp,∞(w) . Φ([w]Ap)
1/p[w](Ap)1/p(Aexp

∞ )1/p
′ .

and

‖T‖Lp(w) . Φ([w]Ap)
1/p[w](Ap)1/p(Aexp

∞ )1/p
′ + Φ([σ]Ap′ )

1/p′ [σ](Ap)1/p′ (Aexp
∞ )1/p .
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For the mixed A∞ constants we obtain a slightly worse power on the
logarithmic factor.

Theorem 1.5. Under the same hypothesis as in Theorem 1.2 we have

‖T‖Lp,∞(w) . Φ([w]Ap)[w](Ap)1/p(A∞)1/p
′ .

and

‖T‖Lp(w) . Φ([w]Ap)([w](Ap)1/p(A∞)1/p
′ + [σ](Ap′ )1/p

′
(A∞)1/p).

Again we do not know if the logarithmic factors in Theorems 1.4 or 1.5
are necessary.

Finally we end with one last estimate that, while having two suprema,
is an improvement over several known results. In [19] the first author and
Ombrosi conjecture that the bound

(10) ‖T‖Lp(w) . [w]Aq

should hold for 1 < q < p < ∞ and w ∈ Aq (( Ap). Inequality (10) was
proven by Duoandikoetxea [6] by means of extrapolation. We improve this
bound by using the weak-type bound of Hytönen and Lacey [10],

(11) ‖T‖Lp,∞(w) . [w]
1/p
Ap

[w]
1/p′

A∞
.

Theorem 1.6. If 1 ≤ q < p < ∞, T is a Calderón–Zygmund operator,
and w ∈ Aq then

‖T‖Lp(w) . [w]
1/p
Aq

[w]
1/p′

A∞
.

Theorem 1.6 also improves the following A1 result from [11]:

‖T‖Lp(w) . [w]
1/p
A1

[w]
1/p′

A∞
.

We believe that Theorem 1.6 should hold for constants with one supremum,

for example, with [w]
1/p
Aq

[w]
1/p′

A∞
replaced by

[w](Aq)1/p(Aexp
∞ )1/p

′ or [w](Aq)1/p(A∞)1/p
′ .

Our methods do not yield this result.

The organization of the paper is as follows. In Section 2 we introduce
the necessary material on Calderón–Zygmund operators, dyadic grids, sparse
families of cubes, and testing conditions. In Section 3 we present the proof of
Theorem 1.1. Section 4 contains the proofs of our main results for Calderón–
Zygmund operators, Theorems 1.2, 1.4, 1.5, and 1.6. We end the manuscript
with some further examples, observations, and questions in Section 5.

2. Preliminaries. Given a measurable set E ⊆ Rn, |E| will denote
the Lebesgue measure of E. We will simultaneously view weights as func-
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tions and measures, for example, w(E) will denote the weighted measure
of E: w(E) =

	
E w. The average of a function on a cube Q will be de-

noted �

Q

f =
1

|Q|

�

Q

f.

Finally, we will use the notation A . B to indicate that there is a constant c,
independent of the important parameters, such that A ≤ cB. We will write
A ' B when A . B and B . A. All further notation will be standard or
defined as needed.

2.1. The main operators. The Hardy–Littlewood maximal operator is
given by

Mf(x) = sup
Q3x

�

Q

|f |.

We will also need the following variant, known as the geometric maximal
operator :

M0f(x) = sup
Q3x

exp
( �
Q

log |f |
)
.

Geometric maximal operators have long been studied (see [5] and the refer-
ences therein). For our purpose we will use the fact that

M0 : Lp(Rn)→ Lp(Rn), 0 < p <∞
(for a proof see [11]).

A Calderón–Zygmund operator is an L2(Rn) bounded operator associ-
ated to a kernel K for functions with compact support by the equality

Tf(x) =
�

Rn
K(x, y)f(y) dy, x /∈ supp f,

where K satisfies the standard size and smoothness estimates:

(a) |K(x, y)| . |x− y|−n for x 6= y,
(b) |K(x + h, y) −K(x, y)| + |K(x, y + h) −K(x, y)| . |h|δ|x− y|−n−δ

for some δ ∈ (0, 1] when |x− y| ≥ 2|h|.
One may also define the maximally truncated version:

T?f(x) = sup
ε>0

∣∣∣ �

|x−y|>ε

K(x, y)f(y) dy
∣∣∣.

We will use common notation for the operator norms:

‖S‖Lp(w) = sup
‖f‖Lp(w)=1

‖Sf‖Lp(w)

and
‖S‖Lp,∞(w) = sup

‖f‖Lp(w)=1
‖Sf‖Lp,∞(w)
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where S is a sublinear operator. Occasionally we will wish to explicitly state
that the operator acts between two different function spaces, in which case
we will write

‖S‖X→Y = sup
‖f‖X=1

‖Sf‖Y .

For example

‖S‖Lp(σ)→Lp(w) = sup
‖f‖Lp(σ)=1

‖Sf‖Lp(w).

2.2. Dyadic grids and sparse families. A dyadic grid , usually de-
noted D , is a collection of cubes in Rn with the following properties:

(a) the side-length of each cube satisfies `(Q) = 2k for some k ∈ Z;
(b) given Q,P ∈ D , Q ∩ P ∈ {P,Q, ∅};
(c) for a fixed k ∈ Z the set Dk = {Q ∈ D : `(Q) = 2k} forms a partition

of Rn.

Given a dyadic grid, D , we define the dyadic maximal operator as

MDf(x) = sup
Q∈D
Q3x

�

Q

|f(y)| dy.

It is well known (see [11, 16]) that the Hardy–Littlewood maximal operator
is pointwise equivalent to the finite sum of dyadic maximal functions. Specif-
ically, there exists dyadic grids, D1, . . . ,DN and a dimensional constant cn
such that

(12) Mf(x) ≤ cn
N∑
k=1

MDk
f(x)

(the opposite inequality is trivial). Thus, when obtaining bounds for M it
suffices to work with MD for a general dyadic grid D . Moreover, it is often
useful to change Lebesgue measure to a weighted measure. Specifically, given
a weight w and a dyadic grid D , define the dyadic maximal function with
respect to w by

MD
w f(x) = sup

Q∈D
x∈Q

1

w(Q)

�

Q

|f |w.

The maximal operator MD
w satisfies the Lp(w) bound

‖MD
w ‖Lp(w) ≤ p′

(see [21] for a proof).

Let D be a dyadic grid, Q ⊂ D , and for each Q ∈ D define

Q(Q) = {Q′ ∈ Q : Q′ ⊆ Q} and Q′(Q) = {Q′ ∈ Q : Q′ ( Q}.
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We say a collection S ⊆ D is a sparse family or simply is sparse if∣∣∣ ⋃
Q′∈S′(Q)

Q′
∣∣∣ ≤ 1

2 |Q|, Q ∈ S.

For each Q ∈ S define

EQ = Q \
( ⋃
Q′∈S′(Q)

Q′
)
.

Then {EQ}Q∈S is a pairwise disjoint family that satisfies

1
2 |Q| ≤ |EQ| ≤ |Q|.

Given a sparse family S, we define the sparse operators

MSf =
∑
Q∈S

( �

Q

f
)
· χEQ and TSf =

∑
Q∈S

( �

Q

f
)
· χQ.

The difference between the operators MS and TS is that the characteris-
tic functions in the definition of MS are over the pairwise disjoint family
{EQ}Q∈S . Given a function f that is bounded with compact support, by
analyzing the level sets of MDf one can prove that there exists a sparse
family S = S(f) such that

(13) MDf 'MSf

where the implicit constants depend only on the dimension, but not on S
or f . The equivalence (13) can be traced back to Sawyer’s characteriza-
tion of two-weight inequalities for the Hardy–Littlewood maximal opera-
tor [22].

It turns out that sparse operators dominate Calderón–Zygmund opera-
tors as well. The following theorem was proven by the first author.

Theorem E ([16], [18]). Suppose T is a Calderón–Zygmund operator,
T? is the maximally truncated version and X is any Banach function space
(see [1, Chapter 1]). Then

‖T‖X ≤ cT sup
S
‖TS‖X and ‖T?‖X ≤ cT sup

S
‖TS‖X

where the suprema are over all sparse families of dyadic cubes.

By Theorem E we see that it suffices to work with a general dyadic
grid D and sparse operator TS to prove bounds for Calderón–Zygmund
operators. Moreover, any bound that holds for sparse operators also holds for
maximally truncated Calderón–Zygmund operators, thus, all of our results
are valid for T? as well. To prove bounds for TS we will use two-weight
testing conditions. Given a sparse family S ⊆ D and dyadic cube R ∈ D ,
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recall that

S(R) = {Q ∈ S : Q ⊆ R} and TS(R)f =
∑

Q∈S(R)

( �

Q

f
)
· χQ.

For 1 < p <∞ and a pair (u, σ) of weights define the testing constant

[w, σ]TSp = sup
R∈D

σ(R)−1/p
( �

R

(TS(R)σ)pw dx
)1/p

.

We will also need the dual testing constant, [σ,w]TS
p′

, formed by interchang-

ing w with σ and p with p′. We have the following theorem of Lacey, Sawyer,
and Uriarte-Tuero.

Theorem F ([15]). Suppose 1 < p < ∞, D is a dyadic grid, S is a
sparse subset of D , and (w, σ) is a pair of weights. Then

‖TS( ·σ)‖Lp(σ)→Lp,∞(w) ' [σ,w]TS
p′
,

‖TS( ·σ)‖Lp(σ)→Lp(w) ' [w, σ]TSp + [σ,w]TS
p′
.

Thus to prove Theorems 1.2, 1.4, and 1.5 we simply estimate the con-
stant [σ,w]TS

p′
. The following theorems for sparse operators imply The-

orems 1.2, 1.4, and 1.5.

Theorem 2.1. If 1 < p <∞, S ⊆ D is a sparse family of dyadic cubes,
and w ∈ Ap with σ = w1−p′, then

[σ,w]TS
p′
. [w](Ap)1/(p−1)(Aexp

∞ )1−1/(p−1) .

Theorem 2.2. Under the same hypothesis as in Theorem 2.1 we have

[σ,w]TS
p′
. Φ([w]Ap)

1/p[w](Ap)1/p(Aexp
∞ )1/p

′ .

Theorem 2.3. Under the same hypothesis as in Theorem 2.1 we have

[σ,w]TS
p′
. Φ([w]Ap)[w](Ap)1/p(A∞)1/p

′ .

We note that Theorems 2.1, 2.2, and 2.3 easily imply the corresponding
weak type bounds in 1.2, 1.4, and 1.5 respectively, since

‖T‖Lp,∞(w) = ‖T ( ·σ)‖Lp(σ)→Lp,∞(w) . sup
S⊆D
‖TS( ·σ)‖Lp(σ)→Lp(w).

They also imply the strong type bounds by symmetry. Indeed, by inter-
changing w with σ and p with p′ we see that

[w, σ]TSp . [σ](Ap′ )1/(p
′−1)(Aexp

∞ )1−1/(p′−1) ,

[w, σ]TSp . Φ([σ]Ap′ )
1/p′ [σ](Ap′ )1/p

′
(Aexp
∞ )1/p ,

[w, σ]TSp . Φ([σ]Ap′ )[σ](Ap′ )1/p
′
(A∞)1/p ' Φ([w]Ap)[σ](Ap′ )1/p

′
(A∞)1/p .
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3. Mixed estimates for the Hardy–Littlewood maximal oper-
ator. In this section we prove Theorem 1.1. Our techniques will stron-
gly parallel those for Calderón–Zygmund operators. Define the testing con-
stant

[u, σ]pSp = sup
R

	
RM(χRσ)pw

σ(R)
.

It was shown by the second author [20] that

(14) ‖M‖Lp(w) ' [u, σ]Sp .

Proof of Theorem 1.1. By combining (12)–(14) we see that it suffices to
estimate the quantity

(15)
�

R

MS(χRσ)pw dx =
∑

Q∈S(R)

(
σ(Q)

|Q|

)p
w(EQ)

for a sparse family S ⊆ D . Note that in (15) we have used the disjointness
of the family {EQ}Q∈S . For a ∈ Z define

Qa = {Q ∈ S : 2a−1 < Ap(w,Q) ≤ 2a}.

Then Qa is empty if a > log2[w]Ap or a < −1. Set K = blog2[w]Apc. Then

S(R) =
K⋃

a=−1
Qa,

and the sum in (15) is bounded by

∑
Q∈S(R)

(
σ(Q)

|Q|

)p
w(EQ) ≤

K∑
a=−1

∑
Q∈Qa

w(Q)

|Q|

(
σ(Q)

|Q|

)p
|Q|.(16)

≤
K∑

a=−1
2a
∑
Q∈Qa

σ(Q).

Let Qamax be the collection of maximal cubes in Qa. Then∑
Q∈Qa

σ(Q) =
∑

Q∈Qamax

∑
P∈Qa
P⊆Q

σ(P )

'
∑

Q∈Qamax

∑
P∈Qa
P⊆Q

σ(P )

|P |
|EP |

≤
∑

Q∈Qamax

�

Q

M(χQσ).
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Substituting this back into (16) we arrive at

�

R

MS(χRσ)pw dx .
K∑

a=−1

∑
Q∈Qa

w(Q)

|Q|

(
σ(Q)

|Q|

)p
|Q|

≤
K∑

a=−1
2a
∑
Q∈Qa

σ(Q)

≤
K∑

a=−1
2a

∑
Q∈Qamax

�

Q

M(χQσ) dx

≤
K∑

a=−1

∑
Q∈Qamax

Ap′(σ,Q)p/p
′
A∞(σ,Q)σ(Q)

≤ [σ]p
(Ap′ )

1/p′ (A∞)1/p

K∑
a=−1

∑
Q∈Qamax

σ(Q)

. [σ]p
(Ap′ )

1/p′ (A∞)1/p
(1 +K)σ(R)

' [σ]p
(Ap′ )

1/p′ (A∞)1/p
Φ([σ]Ap′ )σ(R).

4. Mixed bounds for sparse operators. We now prove our main
results for sparse operators, Theorems 2.1, 2.2, and 2.3, which, as mentioned
above, imply Theorems 1.2, 1.4, and 1.5 respectively. In all of the estimates
we aim to bound the testing constant

[σ,w]p
′

TS
p′

= sup
R

	
R(TS(R)w)p

′
σ dx

w(R)
.

We begin with the proof of Theorem 2.1 because it requires different machin-
ery than Theorems 2.2 and 2.3. Specifically, we are able to prove Theorem 2.1
without a corona decomposition, while our proofs of the other results require
this tool.

Proof of Theorem 2.1. It suffices to show, for a dyadic grid D , sparse
subset S, and fixed cube R, that

�

R

( ∑
Q∈S(R)

( �

Q

w
)
χQ

)p′
σ dx . [w]p

′

(Ap)1/(p−1)(Aexp
∞ )1−1/(p−1)w(R).

Multiplying and dividing by the expression defining [w](Ap)1/(p−1)(Aexp
∞ )1−1/(p−1),

we find that the problem reduces to showing

�

R

( ∑
Q∈S(R)

|Q|
σ(Q)

(
exp
( �
Q

logw
))1−1/(p−1)

χQ

)p′
σ . w(R)
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with the implicit constant independent of w. By duality this is equivalent
to showing for ‖g‖Lp(σ) = 1 that

(17)
∑

Q∈S(R)

|Q|
σ(Q)

(
exp
( �
Q

logw
))1−1/(p−1) �

Q

gσ . w(R)1/p
′
.

We work with the sum in (17). By Hölder’s inequality we have∑
Q∈S(R)

|Q|
σ(Q)

(
exp
( �
Q

logw
))1−1/(p−1) �

Q

gσ

≤
( ∑
Q∈S(R)

(
1

σ(Q)

�

Q

gσ

)p(
exp
( �
Q

logw
))1−p′

|Q|
)1/p

×
( ∑
Q∈S(R)

exp
( �
Q

logw
)
|Q|
)1/p′

.

The second factor satisfies( ∑
Q∈S(R)

exp
( �
Q

logw
)
|Q|
)1/p′

.
( ∑
Q∈S(R)

exp
( �
Q

logw
)
|EQ|

)1/p′
≤
( �

R

M0(wχR)
)1/p′

. w(R)1/p
′
.

Meanwhile, observing that(
exp
( �
Q

logw
))1−p′

= exp
( �
Q

log σ
)

we see that the first factor satisfies( ∑
Q∈S(R)

(
1

σ(Q)

�

Q

gσ

)p(
exp
( �
Q

logw
))1−p′

|Q|
)1/p

.
( ∑
Q∈S(R)

exp
( �
Q

log((MD
σ g)pσ)

)
|EQ|

)1/p
.
( �

R

M0((M
D
σ g)pσ)

)1/p
.

Since M0 is bounded on L1(Rn) and MD
σ is bounded on Lp(σ), this concludes

the proof of our theorem.

To prove Theorems 2.2 and 2.3 we will use what by now has become a
standard technique, a decomposition of dyadic operators known as a corona
decomposition. Similar decompositions can be found in [4, 9, 11, 12, 13, 14].
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We provide a detailed proof of our corona decomposition noting that sparse
families of cubes simplify some of the calculations.

In order to state it we need to define a maximal function. Suppose Q
is a family of dyadic cubes and a = {aQ}Q∈Q is a sequence indexed by the
members of Q. Define the maximal function MQa = supQ∈Q |aQ|χQ. We
have the following lemma.

Lemma 4.1 (Corona decomposition). Suppose R is a cube, Q is a col-
lection of sparse cubes contained in R, 1 < p < ∞, ν is a Borel measure
on R, and a = {aQ}Q∈Q is a sequence of positive constants that satisfy the
following:

(a) MQa is finite almost everywhere on R,
(b) there exist constants c, C, r > 0 such that

(18) c ≤ (aQ)r
ν(Q)

|Q|
≤ C, Q ∈ Q.

Then there exists a subcollection of cubes, C ⊆ Q, called the corona decom-
position of Q, such that( �

R

( ∑
Q∈Q

aQ · χQ
)p
dν
)1/p

.
C

c

(∑
Q∈C

(aQ)pν(Q)
)1/p

.

Proof. Let C0 denote the collection of all maximal cubes in Q and define
Ck for k > 1 inductively as follows: Q ∈ Ck if and only if

(1) there exists P ∈ Ck−1 containing Q,
(2) the inequality

(19) aQ > 2 · aP
holds, and

(3) Q is maximal with respect to inclusion in Q.

We note that when k > 1, Ck could possibly be empty. Set C =
⋃
k C

k.
By the maximality of the stopping cubes, given any Q ∈ Q there exists a
smallest P ∈ C such that P ⊇ Q; we denote that P by Π(Q). Notice that
the opposite inequality to (19) must hold for Q and Π(Q), that is,

aQ ≤ 2 · aΠ(Q).

For P ∈ C let

Q(P ) = {Q ∈ Q : Π(Q) = P}.
Given Q ∈ Q(P ) we now fix the ratio between aQ and aP : for b = 0, 1, 2, . . .
and P ∈ C let Qb(P ) be all Q ∈ Q(P ) such that

(20) 2−baP < aQ ≤ 2−b+1aP .
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Then∑
Q∈Q

aQ · χQ =
∑
P∈C

∞∑
b=0

∑
Q∈Qb(P )

aQ · χQ ≤
∞∑
b=0

2−b
∑
P∈C

aP
∑

Q∈Qb(P )

χQ.

For k ≥ 0 define the sets

Ek(P ) =
{
x ∈ R : k <

∑
Q∈Qb(P )

χQ(x) ≤ k + 1
}
,

Ωk(P ) =
{
x ∈ R :

∑
Q∈Qb(P )

χQ(x) > k
}
.

We may further decompose the sum:
∞∑
b=0

2−b
∑
P∈C

aP
∑

Q∈Qb(P )

χQ ≤
∞∑
b=0

2−b
∞∑
k=0

(k + 1)
∑
P∈C

aP · χEk(P )

≤
∞∑
b=0

2−b
∞∑
k=0

(k + 1)
∑
P∈C

aP · χΩk(P ).

By Minkowski’s inequality we have

(21)
( �

R

( ∑
Q∈Q

aQ · χQ
)p
dν
)1/p

≤
∞∑
b=0

2−b
∞∑
k=0

(k + 1)
( �

R

(∑
P∈C

aP · χΩk(P )

)p
dν
)1/p

.

Fix x ∈ {MQa <∞}. Since MQa is finite a.e., there are at most finitely
many stopping cubes that contain x. Let P0 ⊆ · · · ⊆ Pm be the stopping
cubes such that x ∈ Ωk(Pi) ⊆ Pi. By construction, we have

aPi < 2−iaP0 , i = 1, . . . ,m.

For such an x we have(∑
P∈C

aP · χΩk(P )(x)
)p

=
( m∑
i=0

aPi

)p
< 2p(aP0)p ≤ 2p

∑
P∈C

(aP )pχΩk(P )(x).

Thus we may move the power p > 1 inside the innermost sum in (21) to
arrive at the bound

(22)

∞∑
b=0

2−b
∞∑
k=0

(k + 1)
(∑
P∈C

(aP )p ν(Ωk(P ))
)1/p

.

Finally notice that for each k,

Ωk(P ) =
{
x ∈ R :

∑
Q∈Qb(P )

χQ(x) > k
}

=
⋃
j

Qkj
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where each {Qkj }j is a family of disjoint dyadic cubes in Qb(P ). The cubes

{Qkj } are defined as follows. Let {Q0
j}j be the collection of all maximal cubes

in Qb(P ) and define {Qk+1
j }j inductively as those cubes that are maximal

with respect to inclusion in Qb(P ) and contained in some Qkj . By sparsity,

|Ωk(P )| ≤ 2−k|Ω1(P )|.

For each Qkj , by combining (18) and (20), we have

c|Qkj |(21−baP )−r ≤ ν(Qkj ) ≤ C(2−baP )−r|Qkj |,

which implies

ν(Ωk(P )) =
∑
j

ν(Qkj ) ≤ C(2−baP )−r
∑
j

|Qkj | = C(2−baP )−r|Ωk(P )|

≤ 2−kC

(
2−b

|P |
µ(P )

)r
|Ω1(P )| = 2−kC(2−baP )−r

∑
j

|Q1
j |

. 2−k
C

c

∑
j

ν(Q1
j ) ≤ 2−k

C

c
ν(P ).

Substituting this inequality into the sum (22) we are able to sum over k to
arrive at the desired bound.

Proof of Theorem 2.2. For the proof fix a cube R and recall that S(R) =
{Q ∈ S : Q ⊆ R}. We aim to show that( �

R

( ∑
Q∈S(R)

( �

Q

w
)
χQ

)p′
σ
)1/p′

. Φ([w]Ap)
1/p[w](Ap)1/p(Aexp

∞ )1/p
′w(R)1/p

′
.

We first freeze the Ap constant. Given a ∈ Z define

Qa :=
{
Q ∈ S(R) : 2a <

( �

Q

w dx
)( �

Q

σ dx
)p−1

≤ 2a+1
}
,

i.e., Qa is all cubes in S(R) with Ap(w,Q) ' 2a. Notice that Qa is empty
if a > log2[w]Ap or a < −1. As in the proof of Theorem 1.1 set K =
blog2[w]Apc. Then we have∑

Q∈S(R)

( �

Q

w
)
χQ =

K∑
a=−1

∑
Q∈Qa

( �

Q

w
)
χQ.

We now use Lemma 4.1 to perform corona decompositions of the sets Qa
with respect to the measure σ and the sequence aQ =

�
Qw, Q ∈ Qa. There
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exist subcollections Ca of Qa such that( �

R

( ∑
Q∈S(R)

( �

Q

w
)
χQ

)p′
σ
)1/p′

.
K∑

a=−1

( ∑
Q∈Ca

( �

Q

w
)p′
σ(Q)

)1/p′

≤ (K + 1)1/p
( K∑
a=−1

∑
Q∈Ca

( �

Q

w
)p′
σ(Q)

)1/p′
. Φ([w]Ap)

1/p
( ∑
Q∈S(R)

( �

Q

w
)p′
σ(Q)

)1/p′
where in the second linee we have used Hölder’s inequality. We now easily
estimate the remaining sum:∑

Q∈S(R)

( �

Q

w
)p′
σ(Q) ≤ [w]p

′

(Ap)1/p(A
exp
∞ )1/p

′

∑
Q∈S(R)

exp
( �
Q

logw
)
|Q|

. [w]p
′

(Ap)1/p(A
exp
∞ )1/p

′

�

R

M0(wχR)

. [w]p
′

(Ap)1/p(A
exp
∞ )1/p

′w(R).

Sketch of proof of Theorem 2.3. With the same notation and reasoning
as in the proof of Theorem 2.2 we arrive at the estimate( �

R

( ∑
Q∈S(R)

( �

Q

w
)
χQ

)p′
σ
)1/p′

.
K∑

a=−1

( ∑
Q∈Ca

( �

Q

w
)p′
σ(Q)

)1/p′
.

Let Camax be the collection of maximal cubes in Ca. Then

K∑
a=−1

( ∑
Q∈Ca

( �

Q

w
)p′
σ(Q)

)1/p′
≤

K∑
a=−1

(
2ap
′/p
∑
Q∈Ca

w(Q)

|Q|
|Q|
)1/p′

≤
K∑

a=−1

(
2ap
′/p

∑
Q∈Camax

∑
P∈Ca
P⊆Q

w(P )

|P |
|P |
)1/p′

≤
K∑

a=−1

(
2ap
′/p

∑
Q∈Camax

�

Q

M(χQw)
)1/p′

. [w](Ap)1/p(A∞)1/p
′

K∑
a=−1

( ∑
Q∈Camax

w(Q)
)1/p′

. Φ([w]Ap)[w](Ap)1/p(A∞)1/p
′w(R)1/p

′
.

We finish with a short observation that proves Theorem 1.6.



Mixed Ap-A∞ estimates with one supremum 263

Proof of Theorem 1.6. Suppose 1 < q < p < ∞ and let ε = p − q. By
inequality (11) we have

‖T‖Lp+ε,∞(w) . [w]
1/(p+ε)
Ap+ε

[w]
1/(p+ε)′

A∞
≤ [w]

1/(p+ε)
Aq

[w]
1/(p+ε)′

A∞
,

‖T‖Lp−ε,∞(w) . [w]
1/(p−ε)
Ap−ε

[w]
1/(p−ε)′
A∞

= [w]
1/(p−ε)
Aq

‖w‖1/(p−ε)
′

A∞
.

By the Marcinkiewicz interpolation theorem we have

‖T‖Lp(w) . (2/ε)1/p‖T‖θLp−ε,∞(w)‖T‖
1−θ
Lp+ε,∞(w)

where

(23)
1

p
=

θ

p− ε
+

1− θ
p+ ε

.

Using the weak bounds for p− ε and p+ ε we have

‖T‖Lp(w)→Lp(w) . (p−q)−1/p[w]
θ/(p+ε)
Aq

[w]
θ/(p+ε)′

A∞
[w]

(1−θ)/(p−ε)
Aq

[w]
(1−θ)/(p−ε)′
A∞

.

By the relationship defining θ, the powers on [w]Aq are

θ

p− ε
+

1− θ
p+ ε

=
1

p

and the powers on [w]A∞ are

θ

(p− ε)′
+

1− θ
(p+ ε)′

= 1− 1

p
=

1

p′
.

5. Further questions and examples. In this section we observe some
facts about the mixed constants and note that our bounds in Theorem 1.4
can be significantly smaller than both the bounds in Theorems C and 1.2.
First we make some observations about the behavior of the one supremum
constants. If α > 0 then the class of weights satisfying

[w](Ap)α(Aexp
∞ )β <∞, or [w](Ap)α(A∞)β <∞,

is simply Ap, since

max([w]αAp , [w]βA∞) ≤ [w](Ap)α(A∞)β ≤ [w]α+βAp
,

and a similar inequality holds for the exponential constant. For the expo-
nential class we also have monotonic behavior in the constants:

[w](Ap)α(Aexp
∞ )β ≤ [w](Ap)α(Ar)β ≤ [w](Ap)α(As)β , 1 ≤ s ≤ r <∞.

We also have monotonic behavior when the power on the Ap part is 0 <
α ≤ 1 and the power on the Aexp

∞ part is 1− α.

Observation 5.1. Suppose 0 < α ≤ β ≤ 1 and w ∈ Ap. Then

[w](Ap)α(Aexp
∞ )1−α ≤ [w](Ap)β(Aexp

∞ )1−β .

Moreover, for α < β the two quantities can be arbitrarily different.
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Proof. Indeed, for a fixed cube Q,

Ap(w,Q)αAexp
∞ (w,Q)1−α = Ap(w,Q)αAexp

∞ (w,Q)1−βAexp
∞ (w,Q)β−α

≤ Ap(w,Q)βAexp
∞ (w,Q)1−β.

To see that [w](Ap)α(Aexp
∞ )1−α can be arbitrarily smaller than [w](Ap)β(Aexp

∞ )1−β

consider the Ap power weight

wδ(x) = |x|(p−1)(n−δ), 0 < δ < n.

Then for any α > 0,

[w](Ap)α(Aexp
∞ )1−α ' δ−α(p−1),

which shows that the constants can be arbitrarily different as δ → 0+ if
α 6= β.

With this in mind, we may put these estimates into a general framework.
For the maximal function we have the following question.

Question 5.2. If 1 < p <∞, does the estimate

‖M‖Lp(w) . [σ](Ap)1/p(A∞)1/p
′

hold?

The inequality in Question 5.2 is true if the A∞ part of the constant is
replaced by exponential A∞, and Theorem 1.1 shows that it holds up to a
logarithmic factor.

For Calderón–Zygmund operators we see that there is possibly a whole
range of mixed estimates. We have the following questions.

Question 5.3. Suppose 0 ≤ α ≤ 1, 1 < p < ∞ and T is a Calderón–
Zygmund operator. Does either of the estimates

‖T‖Lp,∞(w) . [w](Ap)1/(p−α)(Aexp
∞ )1−1/(p−α) ,

‖T‖Lp(w) . [w](Ap)1/(p−α)(Aexp
∞ )1−1/(p−α) + [σ](Ap′ )1/(p

′−α)(Aexp
∞ )1−1/(p′−α)

hold?

Question 5.4. Suppose 0 ≤ α ≤ 1, 1 < p < ∞ and T is a Calderón–
Zygmund operator. Does either of the estimates

‖T‖Lp,∞(w) . [w](Ap)1/p−α(A∞)1−1/(p−α) ,

‖T‖Lp(w) . [w](Ap)1/(p−α)(A∞)1−1/(p−α) + [σ](Ap′ )1/p
′−α(A∞)1−1/(p′−α)

hold?

Theorem 1.2 implies that the answer to Question 5.3 is ‘yes’ for α = 1,
while Theorems 1.4 and 1.5 show, respectively, that the estimates in Ques-
tions 5.3 and 5.4 hold for α = 0 up to logarithmic factors. Conjecture 1.3
corresponds to an affirmative answer to Question 5.4 for α = 0. Moreover,
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by Observation 5.1 a positive answer to Question 5.3 for α = 0 implies the
corresponding estimates for α > 0.

5.1. Examples. Let us compare the following bounds of ‖T‖Lp(w):

[w]
1/p
Ap

([w]
1/p′

A∞
+ [σ]

1/p
A∞

),(24)

[w](Ap)1/(p−1)(Aexp
∞ )1−1/(p−1) ,(25)

(log(e[w]Ap))
1/p[w](Ap)1/p(Aexp

∞ )1/p
′ + (log(e[σ]Ap′ ))

1/p′ [σ](Ap′ )1/p
′
(Aexp
∞ )1/p .

(26)

The constant (24) is the bound from (6), while the constants (25) and
(26) are the bounds from Theorems 1.2 and 1.4 respectively. The quantity
(25) can be smaller than the quantity (24) when p 6= 2, because it is smaller
than the right hand side of (7), which in turn was shown to be smaller
than (24) in [17]. Below we will give an example to show that (26) can be
arbitrarily smaller than both (24) and (25).

Our example is a modification of the one in [17]. The example in [17]
is a combination of an A1 power weight and an Ap power weight with the
Ap part sufficiently separated from the A1 part. Our example keeps track of
how far apart the Ap part is from the A1 part.

Consider the case p > 2 (for the case p < 2, interchange p and p′). For
0 < δ < 1 and 1/p < α < 1/2, define

wδ(x) =


|x|(p−1)(1−δ) if x ∈ [−1, 1],

|x− (δ−α + 1)|δ−1 if x ∈ [δ−α, δ−α + 2],

1 otherwise.

Now [wδ]Ap & δ−(p−1) by taking Q = [0, 1] and [wδ]A∞ & δ−1 by taking

Q = [δ−α, δ−α + 1]. Therefore,

[wδ]
1/p
Ap

([wδ]
1/p′

A∞
+ [σδ]

1/p
A∞

) & δ−2/p
′
.

On the other hand, since α < 1/2, we see that for small δ the constant

[wδ](Ap)1/(p−1)(Aexp
∞ )1−1/(p−1)

attains it supremum on intervals containing [0, δ−α+1] (the smallest interval
that contains the singularities of both wδ and σδ). Thus

[wδ](Ap)1/(p−1)(Aexp
∞ )1−1/(p−1) ' δ−2(1−α).

The constants [wδ](Ap)1/p(Aexp
∞ )1/p

′ and [σδ](Ap′ )1/p
′
(Aexp
∞ )1/p attain their supre-

mum either on an interval containing [0, δ−α + 1] or on small intervals con-
taining 0 or δ−α + 1. Hence

max
(
[wδ](Ap)1/p(Aexp

∞ )1/p
′ , [σδ](Ap′ )1/p

′
(Aexp
∞ )1/p

)
. δ−max((1+1/p′)(1−α),1).



266 A. K. Lerner and K. Moen

Finally,

log(e[wδ]Ap) ' log(e[σδ]Ap′ ) ' log(eδ−1).

In any case, because 1/p < α < 1/2, we have

max((1 + 1/p′)(1− α), 1) < 2(1− α) < 2/p′.

Letting δ → 0+, we see that (26) can be arbitrarily smaller than both (25)
and (24).
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[12] T. Hytönen, C. Pérez, S. Treil, and A. Volberg, On A2 conjecture and corona de-
composition of weights, preprint, 2011.

[13] M. T. Lacey, An Ap-A∞ inequality for the Hilbert transform, Houston J. Math. 38
(2012), 799–814.

[14] M. T. Lacey, S. Petermichl, and M. C. Reguera, Sharp A2 inequality for Haar shift
operators, Math. Ann. 348 (2010), 127–141.

[15] M. T. Lacey, E. T. Sawyer, and I. Uriarte-Tuero, Two weight inequalities for discrete
positive operators, preprint, 2010.

[16] A. K. Lerner, On an estimate of Calderón–Zygmund operators by dyadic positive
operators, J. Anal. Math., to appear.

[17] A. K. Lerner, Mixed Ap-Ar inequalities for classical singular integrals and Little-
wood–Paley operators, J. Geom. Anal. 23 (2013), 1343–1354.

http://dx.doi.org/10.1090/S0002-9947-1993-1124164-0
http://dx.doi.org/10.5565/PUBLMAT_42198_13
http://dx.doi.org/10.1016/j.jfa.2010.12.015
http://dx.doi.org/10.4007/annals.2012.175.3.9
http://dx.doi.org/10.2140/apde.2013.6.777
http://dx.doi.org/10.1007/s00208-009-0473-y
http://dx.doi.org/10.1007/s12220-011-9290-0


Mixed Ap-A∞ estimates with one supremum 267

[18] A. K. Lerner, A simple proof of the A2 conjecture, Int. Math. Res. Notices 2013,
3159–3170.

[19] A. K. Lerner and S. Ombrosi, An extrapolation theorem with applications to weighted
estimates for singular integrals, J. Funct. Anal. 262 (2012), 4475–4487.

[20] K. Moen, Sharp one-weight and two-weight bounds for maximal operators, Studia
Math. 194 (2009), 163–180.

[21] K. Moen, Sharp weighted bounds without testing or extrapolation, Arch. Math.
(Basel) 99 (2012), 457–466.

[22] E. T. Sawyer, A characterization of a two-weight norm inequality for maximal op-
erators, Studia Math. 75 (1982), 1–11.

[23] J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic
A∞, Duke Math. J. 55 (1987), 19–50.

[24] M. Wilson, Weighted Littlewood–Paley Theory and Exponential-Square Integrability ,
Lecture Notes in Math. 1924, Springer, Berlin, 2008.

Andrei K. Lerner
Department of Mathematics
Bar-Ilan University
52900 Ramat Gan, Israel
E-mail: aklerner@netvision.net.il

Kabe Moen
Department of Mathematics

University of Alabama
Tuscaloosa, AL 35487-0350, U.S.A.

E-mail: kmoen@as.ua.edu

Received February 17, 2013
Revised version October 4, 2013 (7749)

http://dx.doi.org/10.1016/j.jfa.2012.02.025
http://dx.doi.org/10.4064/sm194-2-4
http://dx.doi.org/10.1007/s00013-012-0453-4
http://dx.doi.org/10.1215/S0012-7094-87-05502-5



	1 Introduction
	2 Preliminaries
	2.1 The main operators
	2.2 Dyadic grids and sparse families

	3 Mixed estimates for the Hardy–Littlewood maximal operator
	4 Mixed bounds for sparse operators
	5 Further questions and examples
	5.1 Examples

	References

