A condition equivalent to uniform ergodicity

by

MARIA ELENA BECKER (Buenos Aires)

Abstract. Let T be a linear operator on a Banach space X with $\sup_n ||T^n/n^w|| < \infty$ for some $0 \le w < 1$. We show that the following conditions are equivalent: (i) $n^{-1} \sum_{k=0}^{n-1} T^k$ converges uniformly; (ii) $\operatorname{cl}(I-T)X = \{z \in X : \lim_n \sum_{k=1}^n T^k z / k \text{ exists}\}.$

1. Introduction. Let X be a Banach space and let $\mathcal{L}(X)$ denote the Banach algebra of bounded linear operators from X to itself. An operator $T \in \mathcal{L}(X)$ is called *uniformly ergodic* if the averages

$$A_n(T) = \frac{1}{n} \sum_{k=0}^{n-1} T^k$$

converge in the uniform operator topology.

M. Lin [5] showed that when $\lim_{n\to\infty} ||T^n/n|| = 0$, T is uniformly ergodic if and only if (I - T)X is closed. From this it is easy to see that a powerbounded T (that is, $\sup_n ||T^n|| < \infty$) is uniformly ergodic if and only if $\{z \in X : \sup_n ||\sum_{k=0}^n T^k z|| < \infty\}$ is closed.

V. Fonf, M. Lin and A. Rubinov [2] proved that if X is separable and does not contain an isomorphic copy of an infinite-dimensional dual Banach space, then the uniform ergodicity of a power-bounded T is equivalent to

$$(I-T)X = \Big\{z \in X : \sup_{n} \Big\|\sum_{k=0}^{n} T^{k}z\Big\| < \infty\Big\}.$$

In [3], S. Grabiner and J. Zemánek give the following generalization of Lin's theorem. Under the hypothesis of boundedness of $A_n(T)$ or convergence to zero of T^n/n in some operator topology, they prove that if $(I-T)^n X$ is closed for some $n \ge 2$ ($n \ge 1$ if T^n/n converges to zero in the uniform operator topology) or if (I - T)X + Ker(I - T) is closed for some $n \ge 1$, then X is the direct sum of the closed subspaces (I - T)X and Ker(I - T). In this case the sequence $A_n(T)$ converges in some operator topology if and only if T^n/n converges to zero in the same operator topology.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A35.

M. E. Becker

Very recently, E. Ed-dari [1] obtained an improvement of a result of T. Yoshimoto [6] about the uniform ergodic theorem with Cesàro means of order α . Ed-dari proved that for every $\alpha > 0$ the sequence

$$M_n^{\alpha}(T) = \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} T^k,$$

where A_n^{α} , $n = 0, 1, \ldots$, are the (C, α) coefficients of order α , converges in the uniform operator topology to an operator $E \in \mathcal{L}(X)$ if and only if

$$\|(\lambda - 1)R(\lambda, T) - E\| \to 0 \text{ as } \lambda \to 1^+ \text{ and } \lim_{n \to \infty} \frac{\|T^n\|}{n^{\alpha}} = 0.$$

Let $T \in \mathcal{L}(X)$ be such that $\sup_n ||T^n/n^w|| < \infty$ for some $0 \le w < 1$. We shall denote $\{z \in X : \lim_{n \to \infty} \sum_{k=1}^n T^k z/k \text{ exists}\}$ by X_1 . In this paper we study the relationship between X_1 and (I - T)X, and prove that $X_1 = \operatorname{cl}(I - T)X$ is equivalent to the uniform ergodicity of T.

2. Results. Throughout this section, T is a linear operator in $\mathcal{L}(X)$ with $\sup_n ||T^n/n^w|| < \infty$ for some $0 \le w < 1$.

LEMMA. $(I - T)X \subset X_1 \subset \operatorname{cl} (I - T)X$. Therefore X_1 is closed if and only if $X_1 = \operatorname{cl} (I - T)X$.

Proof. Let $z \in (I - T)X$. Then z = (I - T)x. From

$$\left\|\sum_{k=n+1}^{n+p} \frac{T^{k}z}{k}\right\| = \left\|\frac{T^{n+1}x}{n+1} - \frac{T^{n+p+1}x}{n+p} - \sum_{k=n+2}^{n+p} \frac{T^{k}x}{k(k-1)}\right\|$$

and the boundedness of $||T^n/n^w||$, we see that $(\sum_{k=1}^n T^k z/k)_n$ is a Cauchy sequence, and thus $z \in X_1$.

Now, let $z \in X_1$ and $u \in \text{Ker}(I - T^*)$, where T^* is the adjoint operator of T. Let z_0 denote the limit of $\sum_{k=1}^{n} T^k z/k$. Then we have

$$\langle u, z_0 \rangle = \lim_{n \to \infty} \left\langle u, \sum_{k=1}^n \frac{T^k z}{k} \right\rangle = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k} \left\langle u, z \right\rangle.$$

We conclude that $\langle u,z\rangle=0.$ Hence $z\in {\rm cl\,}(I-T)X$ by the Hahn–Banach theorem. \blacksquare

We can now state our result.

THEOREM. The following conditions are equivalent:

(i) T is uniformly ergodic.

(ii) X_1 is closed.

Proof. (i) \Rightarrow (ii) by Lin's theorem [5] and the previous lemma.

(ii) \Rightarrow (i). By the lemma, $X_1 = \operatorname{cl}(I - T)X$ and therefore X_1 is invariant under T. Let S be the restriction of T to X_1 . We define $S_n = \sum_{k=1}^n S^k/k$, $n \geq 1$. By the principle of uniform boundedness, there exists a constant K > 0 such that $\sup_n ||S_n|| \leq K$. For each positive integer n we define on X_1 the operator B_n by

$$B_n = \frac{1}{a_n} S_n$$
, where $a_n = \sum_{k=1}^n \frac{1}{k}$.

Then B_n converges to 0 as $n \to \infty$ in the uniform operator topology.

Put $A_n = n^{-1} \sum_{k=1}^n S^k$. Making use of the partial summation formula of Abel, we obtain

$$A_n = \frac{n+1}{n} S_n - \frac{1}{n} \sum_{k=1}^n S_k.$$

Thus there exists a constant C > 0 such that $\sup_n ||A_n|| \le C$.

Since $||S^n|| \le ||T^n||$, we also have

(1)
$$\lim_{n \to \infty} \|A_n S^j - A_n\| = 0 \quad \text{for any } j \ge 0.$$

Now, for any given $\varepsilon > 0$, choose an integer k so large that $||B_k|| < \varepsilon$. By (1) we may find an N such that $||A_n S^j - A_n|| < \varepsilon$ holds for $n \ge N$ and $j = 1, \ldots, k$. As B_k is a convex combination of S^j , $1 \le j \le k$, for $n \ge N$ we therefore obtain $||A_n B_k - A_n|| < \varepsilon$. Hence

 $||A_n|| \le ||A_n - A_n B_k|| + ||A_n B_k|| < \varepsilon(1+C).$

Consequently, S is uniformly ergodic. Fix n such that $||A_n|| < 1$. Then $I - A_n$ is invertible, and hence so is I - S. Therefore

$$cl(I - T)X = X_1 = (I - S)X_1 \subset (I - T)X.$$

Thus, (I - T)X is closed and we may apply Lin's theorem [5] again to conclude that T is uniformly ergodic. This completes the proof of the theorem.

REMARK 1. For T power-bounded, the uniform ergodicity of S in the proof of the theorem follows from Krengel [4, p. 88].

REMARK 2. Inspecting the above proofs we see that for an operator Twhich satisfies $\lim_{n\to\infty} ||T^n/n|| = 0$, we just used the condition $\sup_n ||T^n/n^w|| < \infty$ to prove $(I-T)X \subset X_1$. Therefore the theorem is also valid for an operator $T \in \mathcal{L}(X)$ satisfying $(I-T)X \subset X_1$ together with $\lim_{n\to\infty} ||T^n/n|| = 0$.

References

- [1] E. Ed-dari, On the (C, α) uniform ergodic theorem, Studia Math. 156 (2003), 3–13.
- [2] V. Fonf, M. Lin and A. Rubinov, On the uniform ergodic theorem in Banach spaces that do not contain duals, ibid. 121 (1996), 67–85.
- [3] S. Grabiner and J. Zemánek, Ascent, descent and ergodic properties of linear operators, J. Operator Theory 48 (2002), 69–81.

M. E. Becker

- [4] U. Krengel, *Ergodic Theorems*, de Gruyter, Berlin, 1985.
- [5] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340.
- T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998), 525-543.

Departamento de Matemática Fac. Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria Pab I 1428 Buenos Aires, Argentina E-mail: mbecker@dm.uba.ar

> Received April 10, 2003 Revised version December 21, 2004 (5181)

218