A condition equivalent to uniform ergodicity

by
Maria Elena Becker (Buenos Aires)

Abstract

Let T be a linear operator on a Banach space X with $\sup _{n}\left\|T^{n} / n^{w}\right\|$ $<\infty$ for some $0 \leq w<1$. We show that the following conditions are equivalent: (i) $n^{-1} \sum_{k=0}^{n-1} T^{k}$ converges uniformly; (ii) $\mathrm{cl}(I-T) X=\left\{z \in X: \lim _{n} \sum_{k=1}^{n} T^{k} z / k\right.$ exists $\}$.

1. Introduction. Let X be a Banach space and let $\mathcal{L}(X)$ denote the Banach algebra of bounded linear operators from X to itself. An operator $T \in \mathcal{L}(X)$ is called uniformly ergodic if the averages

$$
A_{n}(T)=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}
$$

converge in the uniform operator topology.
M. Lin [5] showed that when $\lim _{n \rightarrow \infty}\left\|T^{n} / n\right\|=0, T$ is uniformly ergodic if and only if $(I-T) X$ is closed. From this it is easy to see that a powerbounded T (that is, $\sup _{n}\left\|T^{n}\right\|<\infty$) is uniformly ergodic if and only if $\left\{z \in X: \sup _{n}\left\|\sum_{k=0}^{n} T^{k} z\right\|<\infty\right\}$ is closed.
V. Fonf, M. Lin and A. Rubinov [2] proved that if X is separable and does not contain an isomorphic copy of an infinite-dimensional dual Banach space, then the uniform ergodicity of a power-bounded T is equivalent to

$$
(I-T) X=\left\{z \in X: \sup _{n}\left\|\sum_{k=0}^{n} T^{k} z\right\|<\infty\right\}
$$

In [3], S. Grabiner and J. Zemánek give the following generalization of Lin's theorem. Under the hypothesis of boundedness of $A_{n}(T)$ or convergence to zero of T^{n} / n in some operator topology, they prove that if $(I-T)^{n} X$ is closed for some $n \geq 2\left(n \geq 1\right.$ if T^{n} / n converges to zero in the uniform operator topology) or if $(I-T) X+\operatorname{Ker}(I-T)$ is closed for some $n \geq 1$, then X is the direct sum of the closed subspaces $(I-T) X$ and $\operatorname{Ker}(I-T)$. In this case the sequence $A_{n}(T)$ converges in some operator topology if and only if T^{n} / n converges to zero in the same operator topology.

[^0]Very recently, E. Ed-dari [1] obtained an improvement of a result of T. Yoshimoto [6] about the uniform ergodic theorem with Cesàro means of order α. Ed-dari proved that for every $\alpha>0$ the sequence

$$
M_{n}^{\alpha}(T)=\frac{1}{A_{n}^{\alpha}} \sum_{k=0}^{n} A_{n-k}^{\alpha-1} T^{k}
$$

where $A_{n}^{\alpha}, n=0,1, \ldots$, are the (C, α) coefficients of order α, converges in the uniform operator topology to an operator $E \in \mathcal{L}(X)$ if and only if

$$
\|(\lambda-1) R(\lambda, T)-E\| \rightarrow 0 \quad \text { as } \lambda \rightarrow 1^{+} \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\left\|T^{n}\right\|}{n^{\alpha}}=0
$$

Let $T \in \mathcal{L}(X)$ be such that $\sup _{n}\left\|T^{n} / n^{w}\right\|<\infty$ for some $0 \leq w<1$. We shall denote $\left\{z \in X: \lim _{n \rightarrow \infty} \sum_{k=1}^{n} T^{k} z / k\right.$ exists $\}$ by X_{1}. In this paper we study the relationship between X_{1} and $(I-T) X$, and prove that $X_{1}=$ $\mathrm{cl}(I-T) X$ is equivalent to the uniform ergodicity of T.
2. Results. Throughout this section, T is a linear operator in $\mathcal{L}(X)$ with $\sup _{n}\left\|T^{n} / n^{w}\right\|<\infty$ for some $0 \leq w<1$.

Lemma. $(I-T) X \subset X_{1} \subset \operatorname{cl}(I-T) X$. Therefore X_{1} is closed if and only if $X_{1}=\operatorname{cl}(I-T) X$.

Proof. Let $z \in(I-T) X$. Then $z=(I-T) x$. From

$$
\left\|\sum_{k=n+1}^{n+p} \frac{T^{k} z}{k}\right\|=\left\|\frac{T^{n+1} x}{n+1}-\frac{T^{n+p+1} x}{n+p}-\sum_{k=n+2}^{n+p} \frac{T^{k} x}{k(k-1)}\right\|
$$

and the boundedness of $\left\|T^{n} / n^{w}\right\|$, we see that $\left(\sum_{k=1}^{n} T^{k} z / k\right)_{n}$ is a Cauchy sequence, and thus $z \in X_{1}$.

Now, let $z \in X_{1}$ and $u \in \operatorname{Ker}\left(I-T^{*}\right)$, where T^{*} is the adjoint operator of T. Let z_{0} denote the limit of $\sum_{k=1}^{n} T^{k} z / k$. Then we have

$$
\left\langle u, z_{0}\right\rangle=\lim _{n \rightarrow \infty}\left\langle u, \sum_{k=1}^{n} \frac{T^{k} z}{k}\right\rangle=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k}\langle u, z\rangle .
$$

We conclude that $\langle u, z\rangle=0$. Hence $z \in \operatorname{cl}(I-T) X$ by the Hahn-Banach theorem.

We can now state our result.
Theorem. The following conditions are equivalent:
(i) T is uniformly ergodic.
(ii) X_{1} is closed.

Proof. (i) \Rightarrow (ii) by Lin's theorem [5] and the previous lemma.
(ii) \Rightarrow (i). By the lemma, $X_{1}=\operatorname{cl}(I-T) X$ and therefore X_{1} is invariant under T. Let S be the restriction of T to X_{1}. We define $S_{n}=\sum_{k=1}^{n} S^{k} / k$,
$n \geq 1$. By the principle of uniform boundedness, there exists a constant $K>0$ such that $\sup _{n}\left\|S_{n}\right\| \leq K$. For each positive integer n we define on X_{1} the operator B_{n} by

$$
B_{n}=\frac{1}{a_{n}} S_{n}, \quad \text { where } \quad a_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

Then B_{n} converges to 0 as $n \rightarrow \infty$ in the uniform operator topology.
Put $A_{n}=n^{-1} \sum_{k=1}^{n} S^{k}$. Making use of the partial summation formula of Abel, we obtain

$$
A_{n}=\frac{n+1}{n} S_{n}-\frac{1}{n} \sum_{k=1}^{n} S_{k}
$$

Thus there exists a constant $C>0$ such that $\sup _{n}\left\|A_{n}\right\| \leq C$.
Since $\left\|S^{n}\right\| \leq\left\|T^{n}\right\|$, we also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A_{n} S^{j}-A_{n}\right\|=0 \quad \text { for any } j \geq 0 \tag{1}
\end{equation*}
$$

Now, for any given $\varepsilon>0$, choose an integer k so large that $\left\|B_{k}\right\|<\varepsilon$. By (1) we may find an N such that $\left\|A_{n} S^{j}-A_{n}\right\|<\varepsilon$ holds for $n \geq N$ and $j=1, \ldots, k$. As B_{k} is a convex combination of $S^{j}, 1 \leq j \leq k$, for $n \geq N$ we therefore obtain $\left\|A_{n} B_{k}-A_{n}\right\|<\varepsilon$. Hence

$$
\left\|A_{n}\right\| \leq\left\|A_{n}-A_{n} B_{k}\right\|+\left\|A_{n} B_{k}\right\|<\varepsilon(1+C)
$$

Consequently, S is uniformly ergodic. Fix n such that $\left\|A_{n}\right\|<1$. Then $I-A_{n}$ is invertible, and hence so is $I-S$. Therefore

$$
\operatorname{cl}(I-T) X=X_{1}=(I-S) X_{1} \subset(I-T) X
$$

Thus, $(I-T) X$ is closed and we may apply Lin's theorem [5] again to conclude that T is uniformly ergodic. This completes the proof of the theorem.

Remark 1. For T power-bounded, the uniform ergodicity of S in the proof of the theorem follows from Krengel [4, p. 88].

REMARK 2. Inspecting the above proofs we see that for an operator T which satisfies $\lim _{n \rightarrow \infty}\left\|T^{n} / n\right\|=0$, we just used the condition $\sup _{n}\left\|T^{n} / n^{w}\right\|$ $<\infty$ to prove $(I-T) X \subset X_{1}$. Therefore the theorem is also valid for an operator $T \in \mathcal{L}(X)$ satisfying $(I-T) X \subset X_{1}$ together with $\lim _{n \rightarrow \infty}\left\|T^{n} / n\right\|=0$.

References

[1] E. Ed-dari, On the (C, α) uniform ergodic theorem, Studia Math. 156 (2003), 3-13.
[2] V. Fonf, M. Lin and A. Rubinov, On the uniform ergodic theorem in Banach spaces that do not contain duals, ibid. 121 (1996), 67-85.
[3] S. Grabiner and J. Zemánek, Ascent, descent and ergodic properties of linear operators, J. Operator Theory 48 (2002), 69-81.
[4] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[5] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
[6] T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998), 525-543.

Departamento de Matemática
Fac. Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria Pab I
1428 Buenos Aires, Argentina
E-mail: mbecker@dm.uba.ar

Received April 10, 2003
Revised version December 21, 2004

[^0]: 2000 Mathematics Subject Classification: Primary 47A35.

