Commutators in Banach *-algebras

by
Bertram Yood (Eugene, OR)

Abstract

The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where $A=B\left(\ell_{2}\right)$, the algebra of all bounded linear operators on ℓ_{2}.

1. Introduction. We present a study of commutators, elements of the form $[x, y]=x y-y x$ in Banach and Banach *-algebras. Commutators have been examined carefully in the case of $B(X)$, the algebra of all bounded linear operators on a Hilbert space X. We cite the book by Putnam [11], where further references can be found.

Let A be a Banach *-algebra with a continuous involution. Our results also apply to any Banach algebra if the conclusions involving the involution are ignored. Throughout we let E denote a closed linear subspace in A. We let \mathfrak{C} denote the set of all commutators in A, and let $\mathfrak{Z}(E)$ denote the center of A modulo E, the set of all $a \in A$ such that $[a, x] \in E$ for all $x \in A$. In Herstein's book [9, p. 5], this notion was studied for ring theory under the notation $T(E)$. He showed [9, Lemma 1.4] that $T(E)$ is both a subring and a Lie ideal if E is a Lie ideal.

Suppose that A has an identity and that $E \not \supset \mathfrak{C}$. We show that the complement of $\mathfrak{Z}(E)$ contains a set Σ where $x^{*} \in \Sigma$ and $x^{n} \in \Sigma$ for all positive integers n whenever $x \in \Sigma$. This implies that the set $\mathfrak{D}(E)$ of all $[a, b] \in \mathfrak{C}$ such that $\left[a^{k}, b^{r}\right] \notin E$ for all positive integers k and r, is dense in \mathfrak{C}. We apply this when $\mathfrak{A}=B\left(\ell_{2}\right)$, the algebra of all bounded linear operators on ℓ_{2}. As shown in [3], \mathfrak{C} is dense in \mathfrak{A}. Let $E \neq \mathfrak{A}$. Then $\mathfrak{D}(E)$ is dense in \mathfrak{A} as well as in \mathfrak{C}. If $E=\mathfrak{K}\left(\ell_{2}\right)$, the algebra of all compact linear operators on ℓ_{2}, and $[a, b] \in \mathfrak{D}(E)$, then also every a^{k} and b^{r} lies in \mathfrak{C}.

In Section 3 we study relations between the center \mathfrak{Z} of A, \mathfrak{C} and the centralizer $\Gamma(\mathfrak{C})$ of \mathfrak{C}, the set of $a \in A$ with $[a, x]=0$ for all $x \in \mathfrak{C}$. If A is

[^0]Key words and phrases: Banach *-algebra, commutator.
semi-prime, then $\Gamma(\mathfrak{C})=\mathfrak{Z}$. Also, if \mathfrak{Z} is semi-simple, then $\mathfrak{Z} \cap \mathfrak{C}=(0)$ and $\Gamma(\mathfrak{C})$ is commutative.

In Section 4 we treat the case where E is a closed two-sided ideal in A. Particular attention is given to the case where E is a modular primitive ideal. These results are applied to the case $\mathfrak{A}=B\left(\ell_{2}\right)$. We make use of the remarkable result in [3] that here \mathfrak{C} is dense in \mathfrak{A}. We show that \mathfrak{C} contains a set Γ, dense in $B\left(\ell_{2}\right)$, such that $a^{n} \in \Gamma$ for all positive integers n whenever $a \in \Gamma$ and each $a \in \Gamma$ fails to be compact. Not only is \mathfrak{C} dense in $B\left(\ell_{2}\right)$, but the subalgebra of $B\left(\ell_{2}\right)$ generated by \mathfrak{C} is all of $B\left(\ell_{2}\right)$.
2. On the center modulo E. We retain the notation of the introduction. We make use of a notion of Herstein, that of the hypercenter of a ring [10]. For a ring R its hypercenter \mathfrak{H} is the set of $w \in R$ such that, for each $x \in R$, there is a positive integer $n=n(x, w)$ with $\left[w, x^{n}\right]=0$. For a Banach algebra A, we study a variant of this notion, the hypercenter $\mathfrak{H}(E)$ modulo E. By $\mathfrak{H}(E)$ we mean the set of $a \in A$ such that, for each $x \in A$, there is a positive integer $n=n(x, a)$ with $\left[a, x^{n}\right] \in E$.

We will make frequent use of the following fact. Let $p(t)=\sum_{j=0}^{n} a_{j} t^{j}$ be a polynomial in the real variable t with coefficients in A. If $p(t) \in E$ for an infinite subset of the reals, then every a_{j} is in E.

Lemma 2.1. $\mathfrak{H}(E)$ is the set of all $a \in A$ for which there is a positive integer $r=r(a)$ such that $\left[a, x^{r}\right] \in E$ for all $a \in A$.

Proof. Let $a \in \mathfrak{H}(E)$. For each positive integer n, let $F_{n}=\{x \in A$: $\left.\left[a, x^{n}\right] \in E\right\}$. Then A is the union of the closed sets F_{n} so that at least one of them, say F_{r}, contains a non-empty open set Ω. Let $b \in \Omega$ and y be any element of A. There is some $\varepsilon>0$ such that $\left[a,(b+t y)^{r}\right] \in E$ for all real t, $0 \leq t \leq \varepsilon$. Hence $\left[a, y^{r}\right]$ is in E.

Lemma 2.2. For a positive integer n, either $\left[a, x^{n}\right] \in E$ for all $x \in A$ or the set G_{n} of $x \in A$ with both $\left[a, x^{n}\right] \notin E$ and $\left[a, x^{* n}\right] \notin E$ is a dense open set in A.

Proof. Clearly G_{n} is open. Suppose that G_{n} is not dense in A. Then there is a non-empty open set Ω in A such that, for each $x \in \Omega$, either $\left[a, x^{n}\right] \in E$ or $\left[a, x^{* n}\right] \in E$. Let $b \in \Omega$ and $y \in A$. There is some $\varepsilon>0$ so that $b+t y \in \Omega$ for all real $t, 0 \leq t \leq \varepsilon$. For each such t, either $\left[a,(b+t y)^{n}\right] \in E$ or $\left[a,(b+t y)^{* n}\right] \in E$. At least one of these possibilities holds for infinitely many values of t. Thus either $\left[a, y^{n}\right] \in E$ or $\left[a, y^{* n}\right] \in E$. Then A is the union of two closed sets, $F_{1}=\left\{y \in A: y^{n} \in E\right\}$ and $F_{2}=\left\{y \in A: y^{* n} \in E\right\}$. At least one of the sets F_{1}, F_{2} must contain a non-empty open subset Γ of A. Say, $F_{1} \supset \Gamma$. Let $w \in \Gamma$ and $y \in A$. There is an interval of reals of positive
length with $\left[a,(w+t y)^{n}\right] \in E$ for each such real t. Hence $\left[a, y^{n}\right] \in E$ for all $y \in A$. Likewise, if $F_{2} \supset \Gamma$, then $\left[a, y^{* n}\right] \in E$ for all $y \in A$.

Theorem 2.3. Either $a \in \mathfrak{H}(E)$ or the set $S(a, E)$, of $x \in A$ such that both $\left[a, x^{n}\right] \notin E$ and $\left[a, x^{* n}\right] \notin E$ for all positive integers n, is dense in A.

Proof. If $S(a, E)$ is dense, then $a \notin \mathfrak{H}(E)$ by Lemma 2.1. Suppose that $a \notin \mathfrak{H}(E)$. Then, by Lemma 2.1, for each positive integer n there is some $x \in A$ where $\left[a, x^{n}\right] \notin E$. By Lemma 2.2, each of the sets G_{n} of that lemma is dense and open. By the Baire category theorem, their intersection $\bigcap G_{n}=S(a, E)$ is dense in A.

Notation. We will continue to use $S(a, E)$ to denote the set of $x \in A$ such that both $\left[a, x^{n}\right] \notin E$ and $\left[a, x^{* n}\right] \notin E$ for all positive integers n.

We treat the case $E=(0)$. Let \mathfrak{Z} denote the center of A.
Theorem 2.4. Let A be a semi-prime Banach algebra and $E=(0)$. Either $a \in \mathfrak{Z}$ or $S(a, E)$ is dense in A.

Proof. Suppose $S(a, E)$ is not dense in A. Then by Theorem 2.3, a is in the hypercenter \mathfrak{H} of A. Herstein [10, Theorem 2] has shown that if a ring R has no nil ideals, then $\mathfrak{H}=\mathfrak{Z}$. For a Banach algebra A, Dixon [6] showed that the condition for A to have no nil ideals is equivalent to A being semi-prime.

For the notion of a left or right approximate identity, see [7, p. 2].
Theorem 2.5. Suppose that A has a left or a right approximate identity $\left\{e_{\lambda}\right\}$. Then $\mathfrak{H}(E)=\mathfrak{Z}(E)$ so that either $a \in \mathfrak{Z}(E)$ or $S(a, E)$ is dense in A.

Proof. Clearly $\mathfrak{Z}(E) \subset \mathfrak{H}(E)$. Let $a \in \mathfrak{H}(E)$. By Lemma 2.1, there is a fixed positive integer n such that $\left[a, x^{n}\right] \in E$ for all $x \in A$. We show this holds for $n=1$ so that $a \in \mathfrak{Z}(E)$.

Suppose that $n>1$ and $\left[a, x^{n}\right] \in E$ for all $x \in A$. Then $\left[a,\left(x+t e_{\lambda}\right)^{n}\right] \in E$ for each given $x \in A$, each e_{λ} and all real values of t. The coefficient of t in the polynomial $\left[a,\left(x+t e_{\lambda}\right)^{n}\right]$ lies in E, so that

$$
\left[a, \sum_{j=0}^{n-1} x^{j} e_{\lambda} x^{n-1-j}\right] \in E
$$

Taking the limit on e_{λ}, we see that $\left[a, x^{n-1}\right] \in E$ for all $x \in A$. Continuing in this way, we see that $a \in \mathfrak{Z}(E)$.

Theorem 2.5 need not hold if A has no approximate identity. For example, take any A such that, for some positive integer $n, x^{n}=0$ for all $x \in A$. However, when $E=(0)$, we have seen in Theorem 2.4 that the conclusion holds for every semi-prime A. We do not know if this is the case for all E, but we show that such is the case if A has a dense socle.

Theorem 2.6. Let A be a semi-prime Banach algebra with a dense socle Σ. Then $\mathfrak{H}(E)=\mathfrak{Z}(E)$ for all E.

Proof. Let $a \in \mathfrak{H}(E)$. By Lemma 2.1, there is a positive integer n so that $\left[a, x^{n}\right] \in E$ for all $x \in A$. We show that the validity of this statement for some $n \geq 2$ implies its validity for $n=1$.

Let $A p$, where $p^{2}=p$, be a minimal left ideal in A. Note that $[a, p] \in E$ as $p=p^{n}$. We have

$$
t^{-1}\left[a,(p+t y)^{n}-p\right] \in E
$$

for all real values of $t \neq 0$ and any $y \in A$. Also

$$
(p+t y)^{n}=p+t[y p+(n-2) p y p+p y]+\cdots
$$

where we have omitted all terms in the expansion of $(p+t y)^{n}$ involving higher powers of t. Therefore, if we let $t \rightarrow 0$, we see that

$$
[a, y p+(n-2) p y p+p y] \in E
$$

However, $p y p=\lambda p$ for a scalar λ so that $[a, y p+p y] \in E$ for all $y \in A$. Replace y by $y p$ to see that $[a, y p+p y p] \in E$ or $[a, y p] \in E$ for all $y \in A$. Therefore $[a, w] \in E$ for all $w \in \Sigma$. As Σ is dense in A, we have $a \in \mathcal{Z}(E)$.

Note that E contains the set \mathfrak{C} of all commutators if and only if $[x, y] \in E$ for all $x, y \in A$ or, equivalently, $\mathfrak{Z}(E)=A$. Thus if $E \not \supset \mathfrak{C}$, then $\mathfrak{Z}(E)$ is a proper closed linear subspace of A, so that its complement is dense in A. We denote that complement by $\mathfrak{R}(E)$.

Proposition 2.7. $\mathfrak{R}(E)$ is an open subset of A, any two elements of which are connected by one or two line segments in $\mathfrak{R}(E)$.

Proof. We assume that $\mathfrak{R}(E)$ is not empty. For $a \in A, a \in \mathfrak{R}(E)$ if and only if $[a, b] \notin E$ for some $b \in A$. Let $a, b \in A$ with $[a, b] \notin E$ so that a and b lie in $\mathfrak{R}(E)$. For any scalars λ and μ where $\lambda \neq 0$, we have $[\lambda a+\mu b, b] \notin E$. Thus the line segment from a to b lies in $\mathfrak{R}(E)$.

Let $v, w \in \mathfrak{R}(E)$. We show that there is $y \in A$ with $[v, y] \notin E$ and $[w, y] \notin E$. For suppose otherwise. Let $F_{1}=\{x \in A:[v, x] \in E\}$ and $F_{2}=\{x \in A:[w, x] \in E\}$. Then A is the union of the closed sets F_{1} and F_{2} so that at least one of them, say F_{1}, contains a non-empty open subset. Arguing as in the proof of Lemma 2.2 , we see that $[v, x] \in E$ for all $x \in A$, so that $v \notin \mathfrak{R}(E)$.

Now let $y \in A$ with $[v, y] \notin E$ and $[w, y] \notin E$. The line segments joining v to y and y to w lie in $\mathfrak{R}(E)$.

We say that a subset S of A is power-closed if $x^{n} \in S$ for all positive integers n whenever $x \in S$.

Theorem 2.8. Suppose that A has an identity e and that $E \not \supset \mathfrak{C}$. Then $\mathfrak{R}(E)$ contains a dense power-closed ${ }^{*}$-subset of A.

Proof. Let S_{1} be the set of all $x \in A$ for which both $x^{n} \in \mathfrak{R}(E)$ and $x^{* n} \in \mathfrak{R}(E)$ for all positive integers n. We show S_{1} to be dense in A. Suppose otherwise. Then there exists a non-empty open set G where, for each $x \in G$, either there is a positive integer n with $x^{n} \in \mathfrak{Z}(E)$ or a positive integer m with $x^{* m} \in \mathfrak{Z}(E)$. For positive integers p and q, let

$$
W_{p, q}=\left\{x \in A: x^{p} \notin \mathfrak{Z}(E) \text { and } x^{* q} \notin \mathfrak{Z}(E)\right\}
$$

If every $W_{p, q}$ was dense in A, then so also would be their intersection by the Baire category theorem. But this would contradict the existence of G. Then we have the existence of a non-empty open set Ω in the complement of $W_{r, s}$, say. Let $a \in \Omega$ and $y \in A$. For some $\varepsilon>0$ either $(a+t y)^{r} \in \mathfrak{Z}(E)$ or $\left(a+t y^{*}\right)^{s} \in \mathfrak{Z}(E)$ for each $t, 0 \leq t \leq \varepsilon$. Arguing as in the proof of Lemma 2.2, we see that there is a positive integer n so that $y^{n} \in \mathfrak{Z}(E)$ for all $y \in A$.

We employ notation used in [13, p. 204]. Let B_{r} denote the sum of those terms in the expansion of $(a+b)^{n}$ for which the sum of the exponents of the b^{i} factors is r. Thus $B_{0}=a^{n}$ and $B_{1}=\sum_{k=0}^{n-1} a^{k} b a^{n-1-k}$. For any a and b in A and any real value of t, we see that $(a+t b)^{n}=\sum_{r=0}^{n} B_{r} t^{r}$ lies in $\mathfrak{Z}(E)$. Therefore each B_{r} is in $\mathfrak{Z}(E)$ and hence $\left[B_{0}, B_{1}\right] \in E$. We use this for $a=e+t x$ and $b=y$ to see, as in [13, p. 208], that

$$
\left[t^{-1}\left\{(e+t x)^{n}-e\right\}, \sum_{j=0}^{n-1}(e+t x)^{j} y(e+t x)^{n-1-j}\right] \in E
$$

for every real $t \neq 0$. We let $t \rightarrow 0$ to see that $[x, y] \in E$ for all $x, y \in A$. This contradicts $E \not \supset \mathfrak{C}$ so that S_{1} is dense in A.

We let $\mathfrak{D}(E)$ be the set of all $[a, b] \in \mathfrak{C}$ where $\left[a^{k}, b^{r}\right] \notin E$ for all positive integers k and r.

Theorem 2.9. Suppose that A has an identity and that $E \not \supset \mathfrak{C}$. Then $\mathfrak{D}(E)$ is dense in \mathfrak{C}.

Proof. By Theorem 2.5 the set $S(w, E)$ is dense in A for each $w \notin \mathfrak{Z}(E)$. Recall that $S(w, E)$ is the intersection of countably many open dense subsets of A. We employ the set S_{1} of Theorem 2.8.

Let $[a, b] \in \mathfrak{C}$. Fix attention on the positive integer n. There is $a_{n} \in S_{1}$ where $\left\|a-a_{n}\right\|<n^{-1}$. As S_{1} is power-closed, we have $a_{n}^{k} \in S_{1}$ for each positive integer k, so that $S\left(a_{n}^{k}, E\right)$ is a dense ${ }^{*}$-subset of A. By the Baire category theorem, the set $Q_{n}=\bigcap_{k} S\left(a_{n}^{k}, E\right)$ is dense in A. By its definition, every $S\left(a_{n}^{k}, E\right)$ is power-closed. Therefore, so is Q_{n}. We select $b_{n} \in Q_{n}$ with $\left\|b-b_{n}\right\|<n^{-1}$. Then $\left[a_{n}^{k}, b_{n}^{r}\right] \notin E$ for all positive integers k and r. Also $\left[a_{n}, b_{n}\right] \rightarrow[a, b]$.

Corollary 2.10. Let \mathfrak{A} be the algebra of all bounded linear operators on ℓ_{2}. Let E be a proper closed linear subspace of \mathfrak{A}. Then $\mathfrak{D}(E)$ is dense in \mathfrak{A}.

Proof. In [3, Corollary 5.2] it is pointed out that \mathfrak{C} is dense in \mathfrak{A}. Therefore $E \not \supset \mathfrak{C}$. We apply Theorem 2.9 to see that $\mathfrak{D}(E)$ is dense in \mathfrak{A} as well as in \mathfrak{C}.
3. Sets related to the center \mathfrak{Z}. We examine the sets $\mathfrak{Z}, \mathfrak{Z}(\mathfrak{Z})=$ $\{a \in A:[a, A] \subset \mathfrak{Z}\}$ and $\Gamma(\mathfrak{C})$, the centralizer of \mathfrak{C}, i.e., the set of $x \in A$ such that $[x, y]=0$ for all $y \in \mathfrak{C}$.

First we show that properties of \mathfrak{Z} alone can affect the nature of $\mathfrak{Z}(\mathfrak{Z})$, $\Gamma(\mathfrak{C})$ and \mathfrak{C}.

THEOREM 3.1. If \mathfrak{Z} is a semi-prime algebra, then $\mathfrak{Z}(\mathfrak{Z})=\mathfrak{Z}$.
Proof. Let $a \in \mathfrak{Z}(\mathfrak{Z})$. Since $[a,[a, x]]=0$ for all $x \in A$, arguments in $[9$, p. 4] show that $[a, x][a, y]=0$ for all $x, y \in A$. Let $z \in \mathfrak{Z}$. Then $z[a, x]=$ $[a, x z]=[a, x] z$ for all $x, y \in A$. Hence $[a, A]$ is an ideal in \mathfrak{Z} with $u v=0$ for all $u, v \in[a, A]$ so that $[a, A]^{2}=(0)$. As \mathfrak{Z} is semi-prime, we have $[a, A]=(0)$ or $a \in \mathfrak{Z}$.

Let J denote the radical of A and $r(x)$ the spectral radius of $x \in A$.
Lemma 3.2. Let $x, y \in A$. If $[x, y] \in \mathfrak{Z}$, then $[x, y] \in J$.
Proof. Since x permutes with $[x, y]$, by the Kleinecke-Shirokov theorem $[1$, p. 91] , we have $r([x, y])=0$. Let $v \in A$. As v also permutes with $[x, y]$ we have, by [12, Theorem 1.4.1],

$$
r([x, y] v) \leq r([x, y]) r(v)=0
$$

Therefore $[x, y] v$ is quasi-regular for each $v \in A$, so that $[x, y] \in J$.
Theorem 3.3. No non-zero idempotent lies in $\mathfrak{C} \cap \mathfrak{Z}$. If \mathfrak{Z} is semi-simple, then $\mathfrak{C} \cap \mathfrak{Z}=(0)$.

Proof. Let p be a non-zero idempotent. Since $p \notin J$, we see by Lemma 3.2 that $p \notin \mathfrak{C} \cap \mathfrak{Z}$. If \mathfrak{Z} is semi-simple, then $\mathfrak{C} \cap \mathfrak{Z}=(0)$ by Lemma 3.2.

This is an extension of the classical result [11, p. 2] that the identity in a Banach algebra cannot be a commutator. We note also that if A is semi-simple, then so is \mathfrak{Z}. For, let x_{0} be in the radical of \mathfrak{Z} and $y \in A$. By [12, Theorem 1.4.1], $r\left(x_{0} y\right) \leq r\left(x_{0}\right) r(y)=0$. Thus $x_{0} y$ is quasi-regular for each $y \in A$, so that $x_{0} \in J$.

Corollary 3.4. If \mathfrak{Z} is semi-prime, then $\Gamma(\mathfrak{Z})$ is commutative.
Proof. Let $a, b \in \Gamma(\mathfrak{C})$. By the Jacobi identity $[a,[b, x]]+[b,[x, a]]+$ $[x,[a, b]]=0$ for all $x \in A$. Hence $[x,[a, b]]=0$ for all $x \in A$, so that
$[a, b] \in \mathfrak{Z}$. As \mathfrak{Z} is semi-simple, $[a, b]=0$ by Theorem 3.3. Thus $\Gamma(\mathfrak{C})$ is commutative.

Theorem 3.5. $\Gamma(\mathfrak{C}) \supset \mathfrak{Z}(\mathfrak{Z})$. If $J \subset \mathfrak{Z}$, then $\Gamma(\mathfrak{C})=\mathfrak{Z}(\mathfrak{Z})$.
Proof. Let $a \in \mathfrak{Z}(\mathfrak{Z})$. By the Jacobi identity $[a,[x, y]]+[x,[y, a]]+[y,[a, x]]$ $=0$ for all $x, y \in A$. But as $[y, a] \in \mathcal{Z}$ and $[a, x] \in \mathcal{Z}$, we see that $[a,[x, y]]=0$ for all $x, y \in A$, or $a \in \Gamma(\mathfrak{C})$.

Next let $a \in \Gamma(\mathfrak{C})$. Then $[a,[a, x]]=0$ for all $x \in A$. Arguments of Herstein $[9$, p. 4] show that $[a, x] A[a, x]=(0)$ for all $x \in A$. Then $[a, x] \in$ $J \subset \mathfrak{Z}$.

There are interesting examples of A where $J \neq(0)$ is the set of $x \in A$ where $x A=A x=(0)$. Of course, in that case $J \subset \mathfrak{Z}$. The prototype of such instances is an example of C. Feldman [12, p. 297]. That example is commutative. More elaborate examples, where $J \neq(0), J \subset \mathfrak{Z}$, which are not commutative, are given in [14]; the Feldman example is a special case.

Theorem 3.6. If A is a semi-prime algebra, then $\mathfrak{Z}(\mathfrak{Z})=\Gamma(\mathfrak{C})=\mathfrak{Z}$.
Proof. This is valid for any algebra, not just a Banach algebra. By $[9$, Lemma 1.5, p. 11] we see that $\Gamma(\mathfrak{C})=\mathfrak{Z}$. By [15, Theorem 3.1], we have $\mathfrak{Z}(\mathfrak{Z})=\mathfrak{Z}$.
4. On the center modulo an ideal. All ideals considered here are two-sided unless otherwise specified. Henceforth K will denote a closed ideal in A, and π will denote the natural homomorphism of A onto A / K. We recall the notation $\mathfrak{Z}(K)$ and its complement $\mathfrak{R}(K)$ of Section 2. We examine properties of $\mathfrak{R}(K)$, motivated by the example of $A=B\left(\ell_{2}\right)$, the algebra of all bounded linear operators on ℓ_{2}. Let K be the subset of its compact operators. It follows from [3] that $\mathfrak{R}(K)$ is the set of all elements of \mathfrak{C} which are not compact.

Theorem 4.1. Suppose that A / K is semi-simple and $a \in A$. Either $[a, A] \subset K$, or the set of $x \in A$ such that $\left[a, x^{n}\right] \notin K$ and $\left[a, x^{* n}\right] \notin K$ for all positive integers n is dense in A.

Proof. An equivalent statement is that $\mathfrak{R}(K)$ is the set of all $a \in A$ with the stated properties. First, note that $\pi(\mathfrak{H}(K))$ is the hypercenter $\mathfrak{H}^{\text {\# }}$ of A / K. As A / K is semi-simple, $\mathfrak{H}^{\#}$ is the center $\mathfrak{Z}^{\#}$ of A / K by [10, Lemma 2]. Now $\pi^{-1}\left(\mathfrak{Z}^{\#}\right)=\{y \in A:[y, A] \subset K\}=\mathfrak{Z}(K)$. Thus

$$
\mathfrak{Z}(K) \subset \mathfrak{H}(K) \subset \pi^{-1}\left(\mathfrak{Z}^{\#}\right)=\mathfrak{Z}(K) .
$$

Therefore $\mathfrak{Z}(K)=\mathfrak{H}(K)$. We now apply Theorem 2.3 to see that if $a \notin \mathfrak{Z}(K)$, then a has the required properties. -

Theorem 4.2. Suppose that A / K is semi-simple. If $a \in \mathfrak{Z}(K) \cap \mathfrak{C}$, then $a \in K$.

Proof. In other words, if $a \in \mathfrak{C}$ is not in K, then $a \in \mathfrak{R}(K)$. Note that $\pi(a)$ is a commutator lying in the center $\mathfrak{Z}^{\#}$ of A / K (see the preceding proof). Since A / K is semi-simple, $\pi(a)=0$ by Theorem 3.3.

If the ideal $K \neq A$ of Theorem 4.2 is modular and j is an identity for A modulo K, then, by Theorem $4.2, j \notin \mathfrak{C}$ since $j \in \mathfrak{Z}(K)$ and $j \notin K$.

Henceforth, let P denote a modular primitive ideal where j is an identity for A modulo P.

Lemma 4.3. $\mathfrak{Z}(P)$ is the set of elements in A of the form $\lambda j+y$ where λ is a scalar and $y \in P$. Also, $A=\mathfrak{Z}(P)$ if and only if $P \supset \mathfrak{C}$.

Proof. Let π be the canonical homomorphism of A onto $A / P . A / P$ is a primitive algebra with $\pi(j)$ as its identity. By [12, Corollary 2.4.5], the center $\mathfrak{Z}^{\#}$ of A / P is the set of scalar multiples of its identity $\pi(j)$. As in the proof of Theorem $4.1, \mathfrak{Z}(P)=\pi^{-1}\left(\mathfrak{Z}^{\#}\right)$ so that $\mathfrak{Z}(P)$ is the set of elements $\lambda j+y$ where λ is a scalar and $y \in P$.

Suppose $A=\mathfrak{Z}(P)$. By Theorem 4.2, we have $P \supset \mathfrak{C}$. Conversely, suppose that $P \supset \mathfrak{C}$, so that $[\pi(x), \pi(y)]=0$ for all $x, y \in A$. Thus A / P is commutative and is the set of all $\lambda \pi(j)$ elements. Then $\mathfrak{Z}(P)=A$ by the description above of $\mathfrak{Z}(P)$.

Thus, if $P \not \supset \mathfrak{C}$ then $\mathfrak{R}(P)$ is the set of elements not of the form $\lambda j+y$, $\lambda \neq 0, y \in P$ and where $\lambda j+y \notin P$.

Theorem 4.4. Suppose that P is a modular maximal ideal in A and that $P \not \supset \mathfrak{C}$. Then any $a \in A$ is of the form $x+y$ where x is in the subalgebra Q generated by \mathfrak{C}, and $y \in P$.

Proof. Let Γ_{0} be the subalgebra of A / P generated by its commutators. Here A / P is a simple algebra which, as $P \not \supset \mathfrak{C}$, is not commutative. By a corollary of Herstein [9, p. 6], we have $\Gamma_{0}=A / P$. Now Γ_{0} is the set of all $[\pi(x), \pi(y)], x, y \in A$, where π is the natural homomorphism of A onto A / P. Then any $a \in A$ is of the form $x+y, x \in Q$ and $y \in P$.

Henceforth, we confine attention to the algebra of all bounded linear operators on ℓ_{2}, which we denote by \mathfrak{A}. Let \mathfrak{K} denote the subset of all compact operators.

Corollary 4.5. The subalgebra of \mathfrak{A} generated by \mathfrak{C} is all of \mathfrak{A}.
Proof. Here \mathfrak{K} is a modular maximal ideal in \mathfrak{A}. Also, $\mathfrak{C} \supset \mathfrak{K}$ as shown in [2]. We apply Theorem 4.4.

THEOREM 4.6. In \mathfrak{A}, $\mathfrak{C}=\mathfrak{K} \cup \mathfrak{R}(\mathfrak{K})$.
Proof. Let I denote the identity of \mathfrak{A}. By Lemma 4.3, $\mathfrak{R}(\mathfrak{K})$ is the set of elements of \mathfrak{A} not of the form $\lambda I+T$ where λ is a scalar and $T \in \mathfrak{K}$. Then
$\mathfrak{R}(\mathfrak{K}) \cup \mathfrak{K}$ is the set of those elements not of the form $\lambda I+T$ where $\lambda \neq 0$ and $T \in \mathfrak{K}$. This, however, is \mathfrak{C}, as shown in [3].

TheOrem 4.7. $\mathfrak{R}(\mathfrak{K})$ and hence \mathfrak{C} contains a power-closed ${ }^{*}$-subset dense in \mathfrak{A}.

Proof. By Theorem 2.8, $\mathfrak{R}(\mathfrak{K})$ possesses such a dense subset. By Theorem 4.6, $\mathfrak{R}(\mathfrak{K}) \subset \mathfrak{C}$.

THEOREM 4.8. The subset of \mathfrak{C}, consisting of all $[T, U]$ with $\left[T^{k}, U^{r}\right]$ $\notin \mathfrak{K}$ for all positive integers k and r, is dense in \mathfrak{A}. Every T^{k} and U^{r} lies in \mathfrak{C}.

Proof. By Corollary 2.10, the subset in question is dense in \mathfrak{C} and therefore dense in \mathfrak{A}. By Theorem 4.6, every T^{k} and U^{r} is in \mathfrak{C} as $T^{k}, U^{r} \notin \mathfrak{Z}(\mathfrak{K})$.

Theorem 4.9. \mathfrak{C} is a connected subset of \mathfrak{A}, any two elements of which are connected by one or two line segments lying entirely in \mathfrak{C}.

Proof. By Theorem 4.6, we have $\mathfrak{C}=\mathfrak{K} \cup \mathfrak{R}(\mathfrak{K})$. Any two elements of \mathfrak{K} are connected by a line segment in \mathfrak{K}. By Proposition 2.7, any two elements of $\mathfrak{R}(\mathfrak{K})$ are connected in $\mathfrak{R}(\mathfrak{K})$ by one or two line segments. Now let $T \in \mathfrak{K}$ and $U \in \mathfrak{R}(\mathfrak{K})$. We claim that $\alpha T+\beta U \in \mathfrak{C}$ for any scalars α and β. For otherwise, by [3], there exists a scalar $\gamma \neq 0$ and $W \in \mathfrak{K}$ so that $\alpha T+\beta U=$ $\gamma I+W$. Then $\beta U=\gamma I+(W-\alpha T)$ where $W-\alpha T \in \mathfrak{K}$. This is impossible as $U \in \mathfrak{C}$.

Theorem 4.10. \mathfrak{K} and (0) are the only closed Lie ideals of \mathfrak{K}.
Proof. \mathfrak{K} is a primitive Banach algebra with a dense socle \mathfrak{G}. The center \mathfrak{Z} of \mathfrak{K} is (0). By [5, Theorem 6.1], any closed Lie ideal \mathfrak{L} of \mathfrak{K} must contain $[T, U]$ for all $T \in \mathfrak{G}$ and $U \in \mathfrak{K}$. Thus \mathfrak{L} contains all commutators of \mathfrak{K}. Then, as shown in [2], $\mathfrak{L}=\mathfrak{K}$.

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
[2] A. Brown, P. R. Halmos and C. Pearcy, Commutators of operators on Hilbert spaces, Canad. J. Math. 17 (1965), 695-708.
[3] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. 82 (1965), 112-127.
[4] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Operators on Banach Spaces, Dekker, New York, 1974.
[5] P. Civin and B. Yood, Lie and Jordan structures in Banach algebras, Pacific J. Math. 15 (1965), 775-797.
[6] P. C. Dixon, Semiprime Banach algebras, J. London Math. Soc. 6 (1973), 676-678.
[7] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, Berlin, 1979.
[8] I. N. Herstein, Noncommutative Rings, Carus Math. Monogr. 15, Math. Assoc. Amer., 1968.
[9] —, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
[10] -, On the hypercenter of the ring, J. Algebra 36 (1975), 151-157.
[11] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, New York, 1967.
[12] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
[13] B. Yood, Commutativity theorems for Banach algebras, Michigan Math. J. 37 (1990), 203-210.
[14] -, Banach algebras which are not Wedderburnian, Proc. Amer. Math. Soc. 118 (1993), 1125-1130.
[15] -, Dense subsets of Banach *-algebras, Illinois J. Math. 43 (1999), 403-409.
Department of Mathematics
University of Oregon
Eugene, OR 97403, U.S.A.
E-mail: ross@math.uoregon.edu

[^0]: 2000 Mathematics Subject Classification: 46H05, 46H10, 46K05, 47B47.

