STUDIA MATHEMATICA 186 (1) (2008)

Commutators in Banach *-algebras

by BERTRAM YOOD (Eugene, OR)

Abstract. The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where $A = B(\ell_2)$, the algebra of all bounded linear operators on ℓ_2 .

1. Introduction. We present a study of commutators, elements of the form [x, y] = xy - yx in Banach and Banach *-algebras. Commutators have been examined carefully in the case of B(X), the algebra of all bounded linear operators on a Hilbert space X. We cite the book by Putnam [11], where further references can be found.

Let A be a Banach *-algebra with a continuous involution. Our results also apply to any Banach algebra if the conclusions involving the involution are ignored. Throughout we let E denote a closed linear subspace in A. We let \mathfrak{C} denote the set of all commutators in A, and let $\mathfrak{Z}(E)$ denote the *center* of A modulo E, the set of all $a \in A$ such that $[a, x] \in E$ for all $x \in A$. In Herstein's book [9, p. 5], this notion was studied for ring theory under the notation T(E). He showed [9, Lemma 1.4] that T(E) is both a subring and a Lie ideal if E is a Lie ideal.

Suppose that A has an identity and that $E \not\supseteq \mathfrak{C}$. We show that the complement of $\mathfrak{Z}(E)$ contains a set Σ where $x^* \in \Sigma$ and $x^n \in \Sigma$ for all positive integers n whenever $x \in \Sigma$. This implies that the set $\mathfrak{D}(E)$ of all $[a,b] \in \mathfrak{C}$ such that $[a^k, b^r] \notin E$ for all positive integers k and r, is dense in \mathfrak{C} . We apply this when $\mathfrak{A} = B(\ell_2)$, the algebra of all bounded linear operators on ℓ_2 . As shown in [3], \mathfrak{C} is dense in \mathfrak{A} . Let $E \neq \mathfrak{A}$. Then $\mathfrak{D}(E)$ is dense in \mathfrak{A} as well as in \mathfrak{C} . If $E = \mathfrak{K}(\ell_2)$, the algebra of all compact linear operators on ℓ_2 , and $[a,b] \in \mathfrak{D}(E)$, then also every a^k and b^r lies in \mathfrak{C} .

In Section 3 we study relations between the center \mathfrak{Z} of A, \mathfrak{C} and the centralizer $\Gamma(\mathfrak{C})$ of \mathfrak{C} , the set of $a \in A$ with [a, x] = 0 for all $x \in \mathfrak{C}$. If A is

²⁰⁰⁰ Mathematics Subject Classification: 46H05, 46H10, 46K05, 47B47.

Key words and phrases: Banach *-algebra, commutator.

semi-prime, then $\Gamma(\mathfrak{C}) = \mathfrak{Z}$. Also, if \mathfrak{Z} is semi-simple, then $\mathfrak{Z} \cap \mathfrak{C} = (0)$ and $\Gamma(\mathfrak{C})$ is commutative.

In Section 4 we treat the case where E is a closed two-sided ideal in A. Particular attention is given to the case where E is a modular primitive ideal. These results are applied to the case $\mathfrak{A} = B(\ell_2)$. We make use of the remarkable result in [3] that here \mathfrak{C} is dense in \mathfrak{A} . We show that \mathfrak{C} contains a set Γ , dense in $B(\ell_2)$, such that $a^n \in \Gamma$ for all positive integers n whenever $a \in \Gamma$ and each $a \in \Gamma$ fails to be compact. Not only is \mathfrak{C} dense in $B(\ell_2)$, but the subalgebra of $B(\ell_2)$ generated by \mathfrak{C} is all of $B(\ell_2)$.

2. On the center modulo E. We retain the notation of the introduction. We make use of a notion of Herstein, that of the hypercenter of a ring [10]. For a ring R its hypercenter \mathfrak{H} is the set of $w \in R$ such that, for each $x \in R$, there is a positive integer n = n(x, w) with $[w, x^n] = 0$. For a Banach algebra A, we study a variant of this notion, the hypercenter $\mathfrak{H}(E)$ modulo E. By $\mathfrak{H}(E)$ we mean the set of $a \in A$ such that, for each $x \in A$, there is a positive integer n = n(x, a) with $[a, x^n] \in E$.

We will make frequent use of the following fact. Let $p(t) = \sum_{j=0}^{n} a_j t^j$ be a polynomial in the real variable t with coefficients in A. If $p(t) \in E$ for an infinite subset of the reals, then every a_j is in E.

LEMMA 2.1. $\mathfrak{H}(E)$ is the set of all $a \in A$ for which there is a positive integer r = r(a) such that $[a, x^r] \in E$ for all $a \in A$.

Proof. Let $a \in \mathfrak{H}(E)$. For each positive integer n, let $F_n = \{x \in A : [a, x^n] \in E\}$. Then A is the union of the closed sets F_n so that at least one of them, say F_r , contains a non-empty open set Ω . Let $b \in \Omega$ and y be any element of A. There is some $\varepsilon > 0$ such that $[a, (b + ty)^r] \in E$ for all real t, $0 \le t \le \varepsilon$. Hence $[a, y^r]$ is in E.

LEMMA 2.2. For a positive integer n, either $[a, x^n] \in E$ for all $x \in A$ or the set G_n of $x \in A$ with both $[a, x^n] \notin E$ and $[a, x^{*n}] \notin E$ is a dense open set in A.

Proof. Clearly G_n is open. Suppose that G_n is not dense in A. Then there is a non-empty open set Ω in A such that, for each $x \in \Omega$, either $[a, x^n] \in E$ or $[a, x^{*n}] \in E$. Let $b \in \Omega$ and $y \in A$. There is some $\varepsilon > 0$ so that $b + ty \in \Omega$ for all real $t, 0 \leq t \leq \varepsilon$. For each such t, either $[a, (b + ty)^n] \in E$ or $[a, (b + ty)^{*n}] \in E$. At least one of these possibilities holds for infinitely many values of t. Thus either $[a, y^n] \in E$ or $[a, y^{*n}] \in E$. Then A is the union of two closed sets, $F_1 = \{y \in A : y^n \in E\}$ and $F_2 = \{y \in A : y^{*n} \in E\}$. At least one of the sets F_1, F_2 must contain a non-empty open subset Γ of A. Say, $F_1 \supset \Gamma$. Let $w \in \Gamma$ and $y \in A$. There is an interval of reals of positive length with $[a, (w + ty)^n] \in E$ for each such real t. Hence $[a, y^n] \in E$ for all $y \in A$. Likewise, if $F_2 \supset \Gamma$, then $[a, y^{*n}] \in E$ for all $y \in A$.

THEOREM 2.3. Either $a \in \mathfrak{H}(E)$ or the set S(a, E), of $x \in A$ such that both $[a, x^n] \notin E$ and $[a, x^{*n}] \notin E$ for all positive integers n, is dense in A.

Proof. If S(a, E) is dense, then $a \notin \mathfrak{H}(E)$ by Lemma 2.1. Suppose that $a \notin \mathfrak{H}(E)$. Then, by Lemma 2.1, for each positive integer n there is some $x \in A$ where $[a, x^n] \notin E$. By Lemma 2.2, each of the sets G_n of that lemma is dense and open. By the Baire category theorem, their intersection $\bigcap G_n = S(a, E)$ is dense in A.

Notation. We will continue to use S(a, E) to denote the set of $x \in A$ such that both $[a, x^n] \notin E$ and $[a, x^{*n}] \notin E$ for all positive integers n.

We treat the case E = (0). Let \mathfrak{Z} denote the center of A.

THEOREM 2.4. Let A be a semi-prime Banach algebra and E = (0). Either $a \in \mathfrak{Z}$ or S(a, E) is dense in A.

Proof. Suppose S(a, E) is not dense in A. Then by Theorem 2.3, a is in the hypercenter \mathfrak{H} of A. Herstein [10, Theorem 2] has shown that if a ring R has no nil ideals, then $\mathfrak{H} = \mathfrak{Z}$. For a Banach algebra A, Dixon [6] showed that the condition for A to have no nil ideals is equivalent to A being semi-prime.

For the notion of a left or right approximate identity, see [7, p. 2].

THEOREM 2.5. Suppose that A has a left or a right approximate identity $\{e_{\lambda}\}$. Then $\mathfrak{H}(E) = \mathfrak{Z}(E)$ so that either $a \in \mathfrak{Z}(E)$ or S(a, E) is dense in A.

Proof. Clearly $\mathfrak{Z}(E) \subset \mathfrak{H}(E)$. Let $a \in \mathfrak{H}(E)$. By Lemma 2.1, there is a fixed positive integer n such that $[a, x^n] \in E$ for all $x \in A$. We show this holds for n = 1 so that $a \in \mathfrak{Z}(E)$.

Suppose that n > 1 and $[a, x^n] \in E$ for all $x \in A$. Then $[a, (x+te_{\lambda})^n] \in E$ for each given $x \in A$, each e_{λ} and all real values of t. The coefficient of t in the polynomial $[a, (x+te_{\lambda})^n]$ lies in E, so that

$$\left[a, \sum_{j=0}^{n-1} x^j e_{\lambda} x^{n-1-j}\right] \in E.$$

Taking the limit on e_{λ} , we see that $[a, x^{n-1}] \in E$ for all $x \in A$. Continuing in this way, we see that $a \in \mathfrak{Z}(E)$.

Theorem 2.5 need not hold if A has no approximate identity. For example, take any A such that, for some positive integer $n, x^n = 0$ for all $x \in A$. However, when E = (0), we have seen in Theorem 2.4 that the conclusion holds for every semi-prime A. We do not know if this is the case for all E, but we show that such is the case if A has a dense socle. THEOREM 2.6. Let A be a semi-prime Banach algebra with a dense socle Σ . Then $\mathfrak{H}(E) = \mathfrak{Z}(E)$ for all E.

Proof. Let $a \in \mathfrak{H}(E)$. By Lemma 2.1, there is a positive integer n so that $[a, x^n] \in E$ for all $x \in A$. We show that the validity of this statement for some $n \geq 2$ implies its validity for n = 1.

Let Ap, where $p^2 = p$, be a minimal left ideal in A. Note that $[a, p] \in E$ as $p = p^n$. We have

$$t^{-1}[a,(p+ty)^n-p] \in E$$

for all real values of $t \neq 0$ and any $y \in A$. Also

$$(p+ty)^n = p + t[yp + (n-2)pyp + py] + \cdots,$$

where we have omitted all terms in the expansion of $(p + ty)^n$ involving higher powers of t. Therefore, if we let $t \to 0$, we see that

$$[a, yp + (n-2)pyp + py] \in E.$$

However, $pyp = \lambda p$ for a scalar λ so that $[a, yp + py] \in E$ for all $y \in A$. Replace y by yp to see that $[a, yp + pyp] \in E$ or $[a, yp] \in E$ for all $y \in A$. Therefore $[a, w] \in E$ for all $w \in \Sigma$. As Σ is dense in A, we have $a \in \mathfrak{Z}(E)$.

Note that E contains the set \mathfrak{C} of all commutators if and only if $[x, y] \in E$ for all $x, y \in A$ or, equivalently, $\mathfrak{Z}(E) = A$. Thus if $E \not\supseteq \mathfrak{C}$, then $\mathfrak{Z}(E)$ is a proper closed linear subspace of A, so that its complement is dense in A. We denote that complement by $\mathfrak{R}(E)$.

PROPOSITION 2.7. $\Re(E)$ is an open subset of A, any two elements of which are connected by one or two line segments in $\Re(E)$.

Proof. We assume that $\mathfrak{R}(E)$ is not empty. For $a \in A$, $a \in \mathfrak{R}(E)$ if and only if $[a, b] \notin E$ for some $b \in A$. Let $a, b \in A$ with $[a, b] \notin E$ so that a and blie in $\mathfrak{R}(E)$. For any scalars λ and μ where $\lambda \neq 0$, we have $[\lambda a + \mu b, b] \notin E$. Thus the line segment from a to b lies in $\mathfrak{R}(E)$.

Let $v, w \in \mathfrak{R}(E)$. We show that there is $y \in A$ with $[v, y] \notin E$ and $[w, y] \notin E$. For suppose otherwise. Let $F_1 = \{x \in A : [v, x] \in E\}$ and $F_2 = \{x \in A : [w, x] \in E\}$. Then A is the union of the closed sets F_1 and F_2 so that at least one of them, say F_1 , contains a non-empty open subset. Arguing as in the proof of Lemma 2.2, we see that $[v, x] \in E$ for all $x \in A$, so that $v \notin \mathfrak{R}(E)$.

Now let $y \in A$ with $[v, y] \notin E$ and $[w, y] \notin E$. The line segments joining v to y and y to w lie in $\Re(E)$.

We say that a subset S of A is *power-closed* if $x^n \in S$ for all positive integers n whenever $x \in S$.

THEOREM 2.8. Suppose that A has an identity e and that $E \not\supseteq \mathfrak{C}$. Then $\mathfrak{R}(E)$ contains a dense power-closed *-subset of A.

Proof. Let S_1 be the set of all $x \in A$ for which both $x^n \in \mathfrak{R}(E)$ and $x^{*n} \in \mathfrak{R}(E)$ for all positive integers n. We show S_1 to be dense in A. Suppose otherwise. Then there exists a non-empty open set G where, for each $x \in G$, either there is a positive integer n with $x^n \in \mathfrak{Z}(E)$ or a positive integer m with $x^{*m} \in \mathfrak{Z}(E)$. For positive integers p and q, let

$$W_{p,q} = \{x \in A : x^p \notin \mathfrak{Z}(E) \text{ and } x^{*q} \notin \mathfrak{Z}(E)\}.$$

If every $W_{p,q}$ was dense in A, then so also would be their intersection by the Baire category theorem. But this would contradict the existence of G. Then we have the existence of a non-empty open set Ω in the complement of $W_{r,s}$, say. Let $a \in \Omega$ and $y \in A$. For some $\varepsilon > 0$ either $(a + ty)^r \in \mathfrak{Z}(E)$ or $(a + ty^*)^s \in \mathfrak{Z}(E)$ for each $t, 0 \leq t \leq \varepsilon$. Arguing as in the proof of Lemma 2.2, we see that there is a positive integer n so that $y^n \in \mathfrak{Z}(E)$ for all $y \in A$.

We employ notation used in [13, p. 204]. Let B_r denote the sum of those terms in the expansion of $(a + b)^n$ for which the sum of the exponents of the b^i factors is r. Thus $B_0 = a^n$ and $B_1 = \sum_{k=0}^{n-1} a^k b a^{n-1-k}$. For any a and b in A and any real value of t, we see that $(a + tb)^n = \sum_{r=0}^n B_r t^r$ lies in $\mathfrak{Z}(E)$. Therefore each B_r is in $\mathfrak{Z}(E)$ and hence $[B_0, B_1] \in E$. We use this for a = e + tx and b = y to see, as in [13, p. 208], that

$$\left[t^{-1}\{(e+tx)^n - e\}, \sum_{j=0}^{n-1} (e+tx)^j y(e+tx)^{n-1-j}\right] \in E$$

for every real $t \neq 0$. We let $t \to 0$ to see that $[x, y] \in E$ for all $x, y \in A$. This contradicts $E \not\supseteq \mathfrak{C}$ so that S_1 is dense in A.

We let $\mathfrak{D}(E)$ be the set of all $[a,b] \in \mathfrak{C}$ where $[a^k,b^r] \notin E$ for all positive integers k and r.

THEOREM 2.9. Suppose that A has an identity and that $E \not\supset \mathfrak{C}$. Then $\mathfrak{D}(E)$ is dense in \mathfrak{C} .

Proof. By Theorem 2.5 the set S(w, E) is dense in A for each $w \notin \mathfrak{Z}(E)$. Recall that S(w, E) is the intersection of countably many open dense subsets of A. We employ the set S_1 of Theorem 2.8.

Let $[a, b] \in \mathfrak{C}$. Fix attention on the positive integer n. There is $a_n \in S_1$ where $||a - a_n|| < n^{-1}$. As S_1 is power-closed, we have $a_n^k \in S_1$ for each positive integer k, so that $S(a_n^k, E)$ is a dense *-subset of A. By the Baire category theorem, the set $Q_n = \bigcap_k S(a_n^k, E)$ is dense in A. By its definition, every $S(a_n^k, E)$ is power-closed. Therefore, so is Q_n . We select $b_n \in Q_n$ with $||b - b_n|| < n^{-1}$. Then $[a_n^k, b_n^r] \notin E$ for all positive integers k and r. Also $[a_n, b_n] \to [a, b]$.

COROLLARY 2.10. Let \mathfrak{A} be the algebra of all bounded linear operators on ℓ_2 . Let E be a proper closed linear subspace of \mathfrak{A} . Then $\mathfrak{D}(E)$ is dense in \mathfrak{A} .

Proof. In [3, Corollary 5.2] it is pointed out that \mathfrak{C} is dense in \mathfrak{A} . Therefore $E \not\supseteq \mathfrak{C}$. We apply Theorem 2.9 to see that $\mathfrak{D}(E)$ is dense in \mathfrak{A} as well as in \mathfrak{C} .

3. Sets related to the center 3. We examine the sets $\mathfrak{Z}, \mathfrak{Z}(\mathfrak{Z}) = \{a \in A : [a, A] \subset \mathfrak{Z}\}$ and $\Gamma(\mathfrak{C})$, the centralizer of \mathfrak{C} , i.e., the set of $x \in A$ such that [x, y] = 0 for all $y \in \mathfrak{C}$.

First we show that properties of \mathfrak{Z} alone can affect the nature of $\mathfrak{Z}(\mathfrak{Z})$, $\Gamma(\mathfrak{C})$ and \mathfrak{C} .

THEOREM 3.1. If \mathfrak{Z} is a semi-prime algebra, then $\mathfrak{Z}(\mathfrak{Z}) = \mathfrak{Z}$.

Proof. Let $a \in \mathfrak{Z}(\mathfrak{Z})$. Since [a, [a, x]] = 0 for all $x \in A$, arguments in [9, p. 4] show that [a, x][a, y] = 0 for all $x, y \in A$. Let $z \in \mathfrak{Z}$. Then z[a, x] = [a, xz] = [a, x]z for all $x, y \in A$. Hence [a, A] is an ideal in \mathfrak{Z} with uv = 0 for all $u, v \in [a, A]$ so that $[a, A]^2 = (0)$. As \mathfrak{Z} is semi-prime, we have [a, A] = (0) or $a \in \mathfrak{Z}$.

Let J denote the radical of A and r(x) the spectral radius of $x \in A$.

LEMMA 3.2. Let $x, y \in A$. If $[x, y] \in \mathfrak{Z}$, then $[x, y] \in J$.

Proof. Since x permutes with [x, y], by the Kleinecke–Shirokov theorem [1, p. 91], we have r([x, y]) = 0. Let $v \in A$. As v also permutes with [x, y] we have, by [12, Theorem 1.4.1],

$$r([x, y]v) \le r([x, y])r(v) = 0.$$

Therefore [x, y]v is quasi-regular for each $v \in A$, so that $[x, y] \in J$.

THEOREM 3.3. No non-zero idempotent lies in $\mathfrak{C} \cap \mathfrak{Z}$. If \mathfrak{Z} is semi-simple, then $\mathfrak{C} \cap \mathfrak{Z} = (0)$.

Proof. Let p be a non-zero idempotent. Since $p \notin J$, we see by Lemma 3.2 that $p \notin \mathfrak{C} \cap \mathfrak{Z}$. If \mathfrak{Z} is semi-simple, then $\mathfrak{C} \cap \mathfrak{Z} = (0)$ by Lemma 3.2.

This is an extension of the classical result [11, p. 2] that the identity in a Banach algebra cannot be a commutator. We note also that if A is semi-simple, then so is \mathfrak{Z} . For, let x_0 be in the radical of \mathfrak{Z} and $y \in A$. By [12, Theorem 1.4.1], $r(x_0y) \leq r(x_0)r(y) = 0$. Thus x_0y is quasi-regular for each $y \in A$, so that $x_0 \in J$.

COROLLARY 3.4. If \mathfrak{Z} is semi-prime, then $\Gamma(\mathfrak{Z})$ is commutative.

Proof. Let $a, b \in \Gamma(\mathfrak{C})$. By the Jacobi identity [a, [b, x]] + [b, [x, a]] + [x, [a, b]] = 0 for all $x \in A$. Hence [x, [a, b]] = 0 for all $x \in A$, so that

 $[a,b] \in \mathfrak{Z}$. As \mathfrak{Z} is semi-simple, [a,b] = 0 by Theorem 3.3. Thus $\Gamma(\mathfrak{C})$ is commutative.

THEOREM 3.5. $\Gamma(\mathfrak{C}) \supset \mathfrak{Z}(\mathfrak{Z})$. If $J \subset \mathfrak{Z}$, then $\Gamma(\mathfrak{C}) = \mathfrak{Z}(\mathfrak{Z})$.

Proof. Let $a \in \mathfrak{Z}(\mathfrak{Z})$. By the Jacobi identity [a, [x, y]] + [x, [y, a]] + [y, [a, x]] = 0 for all $x, y \in A$. But as $[y, a] \in \mathfrak{Z}$ and $[a, x] \in \mathfrak{Z}$, we see that [a, [x, y]] = 0 for all $x, y \in A$, or $a \in \Gamma(\mathfrak{C})$.

Next let $a \in \Gamma(\mathfrak{C})$. Then [a, [a, x]] = 0 for all $x \in A$. Arguments of Herstein [9, p. 4] show that [a, x]A[a, x] = (0) for all $x \in A$. Then $[a, x] \in J \subset \mathfrak{Z}$.

There are interesting examples of A where $J \neq (0)$ is the set of $x \in A$ where xA = Ax = (0). Of course, in that case $J \subset \mathfrak{Z}$. The prototype of such instances is an example of C. Feldman [12, p. 297]. That example is commutative. More elaborate examples, where $J \neq (0)$, $J \subset \mathfrak{Z}$, which are not commutative, are given in [14]; the Feldman example is a special case.

THEOREM 3.6. If A is a semi-prime algebra, then $\mathfrak{Z}(\mathfrak{Z}) = \Gamma(\mathfrak{C}) = \mathfrak{Z}$.

Proof. This is valid for any algebra, not just a Banach algebra. By [9, Lemma 1.5, p. 11] we see that $\Gamma(\mathfrak{C}) = \mathfrak{Z}$. By [15, Theorem 3.1], we have $\mathfrak{Z}(\mathfrak{Z}) = \mathfrak{Z}$.

4. On the center modulo an ideal. All ideals considered here are two-sided unless otherwise specified. Henceforth K will denote a *closed* ideal in A, and π will denote the natural homomorphism of A onto A/K. We recall the notation $\mathfrak{Z}(K)$ and its complement $\mathfrak{R}(K)$ of Section 2. We examine properties of $\mathfrak{R}(K)$, motivated by the example of $A = B(\ell_2)$, the algebra of all bounded linear operators on ℓ_2 . Let K be the subset of its compact operators. It follows from [3] that $\mathfrak{R}(K)$ is the set of all elements of \mathfrak{C} which are not compact.

THEOREM 4.1. Suppose that A/K is semi-simple and $a \in A$. Either $[a, A] \subset K$, or the set of $x \in A$ such that $[a, x^n] \notin K$ and $[a, x^{*n}] \notin K$ for all positive integers n is dense in A.

Proof. An equivalent statement is that $\mathfrak{R}(K)$ is the set of all $a \in A$ with the stated properties. First, note that $\pi(\mathfrak{H}(K))$ is the hypercenter $\mathfrak{H}^{\#}$ of A/K. As A/K is semi-simple, $\mathfrak{H}^{\#}$ is the center $\mathfrak{H}^{\#}$ of A/K by [10, Lemma 2]. Now $\pi^{-1}(\mathfrak{H}^{\#}) = \{y \in A : [y, A] \subset K\} = \mathfrak{Z}(K)$. Thus

$$\mathfrak{Z}(K) \subset \mathfrak{H}(K) \subset \pi^{-1}(\mathfrak{Z}^{\#}) = \mathfrak{Z}(K).$$

Therefore $\mathfrak{Z}(K) = \mathfrak{H}(K)$. We now apply Theorem 2.3 to see that if $a \notin \mathfrak{Z}(K)$, then *a* has the required properties.

THEOREM 4.2. Suppose that A/K is semi-simple. If $a \in \mathfrak{Z}(K) \cap \mathfrak{C}$, then $a \in K$.

Proof. In other words, if $a \in \mathfrak{C}$ is not in K, then $a \in \mathfrak{R}(K)$. Note that $\pi(a)$ is a commutator lying in the center $\mathfrak{Z}^{\#}$ of A/K (see the preceding proof). Since A/K is semi-simple, $\pi(a) = 0$ by Theorem 3.3.

If the ideal $K \neq A$ of Theorem 4.2 is modular and j is an identity for A modulo K, then, by Theorem 4.2, $j \notin \mathfrak{C}$ since $j \in \mathfrak{Z}(K)$ and $j \notin K$.

Henceforth, let P denote a modular primitive ideal where j is an identity for A modulo P.

LEMMA 4.3. $\mathfrak{Z}(P)$ is the set of elements in A of the form $\lambda j + y$ where λ is a scalar and $y \in P$. Also, $A = \mathfrak{Z}(P)$ if and only if $P \supset \mathfrak{C}$.

Proof. Let π be the canonical homomorphism of A onto A/P. A/P is a primitive algebra with $\pi(j)$ as its identity. By [12, Corollary 2.4.5], the center $\mathfrak{Z}^{\#}$ of A/P is the set of scalar multiples of its identity $\pi(j)$. As in the proof of Theorem 4.1, $\mathfrak{Z}(P) = \pi^{-1}(\mathfrak{Z}^{\#})$ so that $\mathfrak{Z}(P)$ is the set of elements $\lambda j + y$ where λ is a scalar and $y \in P$.

Suppose $A = \mathfrak{Z}(P)$. By Theorem 4.2, we have $P \supset \mathfrak{C}$. Conversely, suppose that $P \supset \mathfrak{C}$, so that $[\pi(x), \pi(y)] = 0$ for all $x, y \in A$. Thus A/P is commutative and is the set of all $\lambda \pi(j)$ elements. Then $\mathfrak{Z}(P) = A$ by the description above of $\mathfrak{Z}(P)$.

Thus, if $P \not\supseteq \mathfrak{C}$ then $\mathfrak{R}(P)$ is the set of elements not of the form $\lambda j + y$, $\lambda \neq 0, y \in P$ and where $\lambda j + y \notin P$.

THEOREM 4.4. Suppose that P is a modular maximal ideal in A and that $P \not\supseteq \mathfrak{C}$. Then any $a \in A$ is of the form x + y where x is in the subalgebra Q generated by \mathfrak{C} , and $y \in P$.

Proof. Let Γ_0 be the subalgebra of A/P generated by its commutators. Here A/P is a simple algebra which, as $P \not\supseteq \mathfrak{C}$, is not commutative. By a corollary of Herstein [9, p. 6], we have $\Gamma_0 = A/P$. Now Γ_0 is the set of all $[\pi(x), \pi(y)], x, y \in A$, where π is the natural homomorphism of A onto A/P. Then any $a \in A$ is of the form $x + y, x \in Q$ and $y \in P$.

Henceforth, we confine attention to the algebra of all bounded linear operators on ℓ_2 , which we denote by \mathfrak{A} . Let \mathfrak{K} denote the subset of all compact operators.

COROLLARY 4.5. The subalgebra of \mathfrak{A} generated by \mathfrak{C} is all of \mathfrak{A} .

Proof. Here \mathfrak{K} is a modular maximal ideal in \mathfrak{A} . Also, $\mathfrak{C} \supset \mathfrak{K}$ as shown in [2]. We apply Theorem 4.4.

THEOREM 4.6. In \mathfrak{A} , $\mathfrak{C} = \mathfrak{K} \cup \mathfrak{R}(\mathfrak{K})$.

Proof. Let I denote the identity of \mathfrak{A} . By Lemma 4.3, $\mathfrak{R}(\mathfrak{K})$ is the set of elements of \mathfrak{A} not of the form $\lambda I + T$ where λ is a scalar and $T \in \mathfrak{K}$. Then

 $\mathfrak{R}(\mathfrak{K}) \cup \mathfrak{K}$ is the set of those elements not of the form $\lambda I + T$ where $\lambda \neq 0$ and $T \in \mathfrak{K}$. This, however, is \mathfrak{C} , as shown in [3].

THEOREM 4.7. $\mathfrak{R}(\mathfrak{K})$ and hence \mathfrak{C} contains a power-closed *-subset dense in \mathfrak{A} .

Proof. By Theorem 2.8, $\mathfrak{R}(\mathfrak{K})$ possesses such a dense subset. By Theorem 4.6, $\mathfrak{R}(\mathfrak{K}) \subset \mathfrak{C}$.

THEOREM 4.8. The subset of \mathfrak{C} , consisting of all [T, U] with $[T^k, U^r] \notin \mathfrak{K}$ for all positive integers k and r, is dense in \mathfrak{A} . Every T^k and U^r lies in \mathfrak{C} .

Proof. By Corollary 2.10, the subset in question is dense in \mathfrak{C} and therefore dense in \mathfrak{A} . By Theorem 4.6, every T^k and U^r is in \mathfrak{C} as $T^k, U^r \notin \mathfrak{Z}(\mathfrak{K})$.

THEOREM 4.9. \mathfrak{C} is a connected subset of \mathfrak{A} , any two elements of which are connected by one or two line segments lying entirely in \mathfrak{C} .

Proof. By Theorem 4.6, we have $\mathfrak{C} = \mathfrak{K} \cup \mathfrak{R}(\mathfrak{K})$. Any two elements of \mathfrak{K} are connected by a line segment in \mathfrak{K} . By Proposition 2.7, any two elements of $\mathfrak{R}(\mathfrak{K})$ are connected in $\mathfrak{R}(\mathfrak{K})$ by one or two line segments. Now let $T \in \mathfrak{K}$ and $U \in \mathfrak{R}(\mathfrak{K})$. We claim that $\alpha T + \beta U \in \mathfrak{C}$ for any scalars α and β . For otherwise, by [3], there exists a scalar $\gamma \neq 0$ and $W \in \mathfrak{K}$ so that $\alpha T + \beta U = \gamma I + W$. Then $\beta U = \gamma I + (W - \alpha T)$ where $W - \alpha T \in \mathfrak{K}$. This is impossible as $U \in \mathfrak{C}$.

THEOREM 4.10. \Re and (0) are the only closed Lie ideals of \Re .

Proof. \mathfrak{K} is a primitive Banach algebra with a dense socle \mathfrak{G} . The center \mathfrak{Z} of \mathfrak{K} is (0). By [5, Theorem 6.1], any closed Lie ideal \mathfrak{L} of \mathfrak{K} must contain [T, U] for all $T \in \mathfrak{G}$ and $U \in \mathfrak{K}$. Thus \mathfrak{L} contains all commutators of \mathfrak{K} . Then, as shown in [2], $\mathfrak{L} = \mathfrak{K}$.

References

- [1] F. F. Bonsall and J. Duncan, *Complete Normed Algebras*, Springer, Berlin, 1973.
- [2] A. Brown, P. R. Halmos and C. Pearcy, Commutators of operators on Hilbert spaces, Canad. J. Math. 17 (1965), 695–708.
- [3] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. 82 (1965), 112–127.
- [4] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Operators on Banach Spaces, Dekker, New York, 1974.
- [5] P. Civin and B. Yood, *Lie and Jordan structures in Banach algebras*, Pacific J. Math. 15 (1965), 775–797.
- [6] P. C. Dixon, Semiprime Banach algebras, J. London Math. Soc. 6 (1973), 676–678.
- [7] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, Berlin, 1979.

- [8] I. N. Herstein, Noncommutative Rings, Carus Math. Monogr. 15, Math. Assoc. Amer., 1968.
- [9] —, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
- [10] —, On the hypercenter of the ring, J. Algebra 36 (1975), 151–157.
- [11] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, New York, 1967.
- [12] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
- B. Yood, Commutativity theorems for Banach algebras, Michigan Math. J. 37 (1990), 203–210.
- [14] —, Banach algebras which are not Wedderburnian, Proc. Amer. Math. Soc. 118 (1993), 1125–1130.
- [15] —, Dense subsets of Banach *-algebras, Illinois J. Math. 43 (1999), 403–409.

Department of Mathematics University of Oregon Eugene, OR 97403, U.S.A. E-mail: ross@math.uoregon.edu

Received January 20, 2004

(5353)