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Commutators in Banach ∗-algebras

by

Bertram Yood (Eugene, OR)

Abstract. The set of commutators in a Banach ∗-algebra A, with continuous invo-
lution, is examined. Applications are made to the case where A = B(`2), the algebra of
all bounded linear operators on `2.

1. Introduction. We present a study of commutators, elements of the
form [x, y] = xy− yx in Banach and Banach ∗-algebras. Commutators have
been examined carefully in the case of B(X), the algebra of all bounded
linear operators on a Hilbert space X. We cite the book by Putnam [11],
where further references can be found.

Let A be a Banach ∗-algebra with a continuous involution. Our results
also apply to any Banach algebra if the conclusions involving the involution
are ignored. Throughout we let E denote a closed linear subspace in A. We
let C denote the set of all commutators in A, and let Z(E) denote the center
of A modulo E, the set of all a ∈ A such that [a, x] ∈ E for all x ∈ A. In
Herstein’s book [9, p. 5], this notion was studied for ring theory under the
notation T (E). He showed [9, Lemma 1.4] that T (E) is both a subring and
a Lie ideal if E is a Lie ideal.

Suppose that A has an identity and that E 6⊃ C. We show that the
complement of Z(E) contains a set Σ where x∗ ∈ Σ and xn ∈ Σ for all
positive integers n whenever x ∈ Σ. This implies that the set D(E) of all
[a, b] ∈ C such that [ak, br] /∈ E for all positive integers k and r, is dense in C.
We apply this when A = B(`2), the algebra of all bounded linear operators
on `2. As shown in [3], C is dense in A. Let E 6= A. Then D(E) is dense in
A as well as in C. If E = K(`2), the algebra of all compact linear operators
on `2, and [a, b] ∈ D(E), then also every ak and br lies in C.

In Section 3 we study relations between the center Z of A, C and the
centralizer Γ (C) of C, the set of a ∈ A with [a, x] = 0 for all x ∈ C. If A is
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semi-prime, then Γ (C) = Z. Also, if Z is semi-simple, then Z ∩ C = (0) and
Γ (C) is commutative.

In Section 4 we treat the case where E is a closed two-sided ideal in A.
Particular attention is given to the case where E is a modular primitive
ideal. These results are applied to the case A = B(`2). We make use of the
remarkable result in [3] that here C is dense in A. We show that C contains a
set Γ , dense in B(`2), such that an ∈ Γ for all positive integers n whenever
a ∈ Γ and each a ∈ Γ fails to be compact. Not only is C dense in B(`2), but
the subalgebra of B(`2) generated by C is all of B(`2).

2. On the center modulo E. We retain the notation of the introduc-
tion. We make use of a notion of Herstein, that of the hypercenter of a ring
[10]. For a ring R its hypercenter H is the set of w ∈ R such that, for each
x ∈ R, there is a positive integer n = n(x,w) with [w, xn] = 0. For a Banach
algebra A, we study a variant of this notion, the hypercenter H(E) modulo
E. By H(E) we mean the set of a ∈ A such that, for each x ∈ A, there is a
positive integer n = n(x, a) with [a, xn] ∈ E.

We will make frequent use of the following fact. Let p(t) =
∑n

j=0 ajt
j be

a polynomial in the real variable t with coefficients in A. If p(t) ∈ E for an
infinite subset of the reals, then every aj is in E.

Lemma 2.1. H(E) is the set of all a ∈ A for which there is a positive
integer r = r(a) such that [a, xr] ∈ E for all a ∈ A.

Proof. Let a ∈ H(E). For each positive integer n, let Fn = {x ∈ A :
[a, xn] ∈ E}. Then A is the union of the closed sets Fn so that at least one
of them, say Fr, contains a non-empty open set Ω. Let b ∈ Ω and y be any
element of A. There is some ε > 0 such that [a, (b+ ty)r] ∈ E for all real t,
0 ≤ t ≤ ε. Hence [a, yr] is in E.

Lemma 2.2. For a positive integer n, either [a, xn] ∈ E for all x ∈ A or
the set Gn of x ∈ A with both [a, xn] /∈ E and [a, x∗n] /∈ E is a dense open
set in A.

Proof. Clearly Gn is open. Suppose that Gn is not dense in A. Then
there is a non-empty open set Ω in A such that, for each x ∈ Ω, either
[a, xn] ∈ E or [a, x∗n] ∈ E. Let b ∈ Ω and y ∈ A. There is some ε > 0 so that
b+ ty ∈ Ω for all real t, 0 ≤ t ≤ ε. For each such t, either [a, (b+ ty)n] ∈ E
or [a, (b + ty)∗n] ∈ E. At least one of these possibilities holds for infinitely
many values of t. Thus either [a, yn] ∈ E or [a, y∗n] ∈ E. Then A is the union
of two closed sets, F1 = {y ∈ A : yn ∈ E} and F2 = {y ∈ A : y∗n ∈ E}. At
least one of the sets F1, F2 must contain a non-empty open subset Γ of A.
Say, F1 ⊃ Γ. Let w ∈ Γ and y ∈ A. There is an interval of reals of positive
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length with [a, (w + ty)n] ∈ E for each such real t. Hence [a, yn] ∈ E for all
y ∈ A. Likewise, if F2 ⊃ Γ , then [a, y∗n] ∈ E for all y ∈ A.

Theorem 2.3. Either a ∈ H(E) or the set S(a,E), of x ∈ A such that
both [a, xn] /∈ E and [a, x∗n] /∈ E for all positive integers n, is dense in A.

Proof. If S(a,E) is dense, then a /∈ H(E) by Lemma 2.1. Suppose that
a /∈ H(E). Then, by Lemma 2.1, for each positive integer n there is some
x ∈ A where [a, xn] /∈ E. By Lemma 2.2, each of the sets Gn of that
lemma is dense and open. By the Baire category theorem, their intersection⋂
Gn = S(a,E) is dense in A.

Notation. We will continue to use S(a,E) to denote the set of x ∈ A
such that both [a, xn] /∈ E and [a, x∗n] /∈ E for all positive integers n.

We treat the case E = (0). Let Z denote the center of A.

Theorem 2.4. Let A be a semi-prime Banach algebra and E = (0).
Either a ∈ Z or S(a,E) is dense in A.

Proof. Suppose S(a,E) is not dense in A. Then by Theorem 2.3, a is
in the hypercenter H of A. Herstein [10, Theorem 2] has shown that if a
ring R has no nil ideals, then H = Z. For a Banach algebra A, Dixon [6]
showed that the condition for A to have no nil ideals is equivalent to A being
semi-prime.

For the notion of a left or right approximate identity, see [7, p. 2].

Theorem 2.5. Suppose that A has a left or a right approximate identity
{eλ}. Then H(E) = Z(E) so that either a ∈ Z(E) or S(a,E) is dense in A.

Proof. Clearly Z(E) ⊂ H(E). Let a ∈ H(E). By Lemma 2.1, there is a
fixed positive integer n such that [a, xn] ∈ E for all x ∈ A. We show this
holds for n = 1 so that a ∈ Z(E).

Suppose that n > 1 and [a, xn] ∈ E for all x ∈ A. Then [a, (x+teλ)n] ∈ E
for each given x ∈ A, each eλ and all real values of t. The coefficient of t in
the polynomial [a, (x+ teλ)n] lies in E, so that[

a,

n−1∑
j=0

xjeλx
n−1−j

]
∈ E.

Taking the limit on eλ, we see that [a, xn−1] ∈ E for all x ∈ A. Continuing
in this way, we see that a ∈ Z(E).

Theorem 2.5 need not hold if A has no approximate identity. For exam-
ple, take any A such that, for some positive integer n, xn = 0 for all x ∈ A.
However, when E = (0), we have seen in Theorem 2.4 that the conclusion
holds for every semi-prime A. We do not know if this is the case for all E,
but we show that such is the case if A has a dense socle.
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Theorem 2.6. Let A be a semi-prime Banach algebra with a dense
socle Σ. Then H(E) = Z(E) for all E.

Proof. Let a ∈ H(E). By Lemma 2.1, there is a positive integer n so that
[a, xn] ∈ E for all x ∈ A. We show that the validity of this statement for
some n ≥ 2 implies its validity for n = 1.

Let Ap, where p2 = p, be a minimal left ideal in A. Note that [a, p] ∈ E
as p = pn. We have

t−1[a, (p+ ty)n − p] ∈ E
for all real values of t 6= 0 and any y ∈ A. Also

(p+ ty)n = p+ t[yp+ (n− 2)pyp+ py] + · · · ,
where we have omitted all terms in the expansion of (p + ty)n involving
higher powers of t. Therefore, if we let t→ 0, we see that

[a, yp+ (n− 2)pyp+ py] ∈ E.
However, pyp = λp for a scalar λ so that [a, yp + py] ∈ E for all y ∈ A.
Replace y by yp to see that [a, yp + pyp] ∈ E or [a, yp] ∈ E for all y ∈ A.
Therefore [a,w] ∈ E for all w ∈ Σ. As Σ is dense in A, we have a ∈ Z(E).

Note that E contains the set C of all commutators if and only if [x, y] ∈ E
for all x, y ∈ A or, equivalently, Z(E) = A. Thus if E 6⊃ C, then Z(E) is a
proper closed linear subspace of A, so that its complement is dense in A.
We denote that complement by R(E).

Proposition 2.7. R(E) is an open subset of A, any two elements of
which are connected by one or two line segments in R(E).

Proof. We assume that R(E) is not empty. For a ∈ A, a ∈ R(E) if and
only if [a, b] /∈ E for some b ∈ A. Let a, b ∈ A with [a, b] /∈ E so that a and b
lie in R(E). For any scalars λ and µ where λ 6= 0, we have [λa+ µb, b] /∈ E.
Thus the line segment from a to b lies in R(E).

Let v, w ∈ R(E). We show that there is y ∈ A with [v, y] /∈ E and
[w, y] /∈ E. For suppose otherwise. Let F1 = {x ∈ A : [v, x] ∈ E} and
F2 = {x ∈ A : [w, x] ∈ E}. Then A is the union of the closed sets F1 and
F2 so that at least one of them, say F1, contains a non-empty open subset.
Arguing as in the proof of Lemma 2.2, we see that [v, x] ∈ E for all x ∈ A,
so that v /∈ R(E).

Now let y ∈ A with [v, y] /∈ E and [w, y] /∈ E. The line segments joining
v to y and y to w lie in R(E).

We say that a subset S of A is power-closed if xn ∈ S for all positive
integers n whenever x ∈ S.

Theorem 2.8. Suppose that A has an identity e and that E 6⊃ C. Then
R(E) contains a dense power-closed ∗-subset of A.
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Proof. Let S1 be the set of all x ∈ A for which both xn ∈ R(E) and
x∗n ∈ R(E) for all positive integers n. We show S1 to be dense in A. Suppose
otherwise. Then there exists a non-empty open set G where, for each x ∈ G,
either there is a positive integer n with xn ∈ Z(E) or a positive integer m
with x∗m ∈ Z(E). For positive integers p and q, let

Wp,q = {x ∈ A : xp /∈ Z(E) and x∗q /∈ Z(E)}.

If every Wp,q was dense in A, then so also would be their intersection by
the Baire category theorem. But this would contradict the existence of G.
Then we have the existence of a non-empty open set Ω in the complement
of Wr,s, say. Let a ∈ Ω and y ∈ A. For some ε > 0 either (a + ty)r ∈ Z(E)
or (a + ty∗)s ∈ Z(E) for each t, 0 ≤ t ≤ ε. Arguing as in the proof of
Lemma 2.2, we see that there is a positive integer n so that yn ∈ Z(E) for
all y ∈ A.

We employ notation used in [13, p. 204]. Let Br denote the sum of those
terms in the expansion of (a + b)n for which the sum of the exponents of
the bi factors is r. Thus B0 = an and B1 =

∑n−1
k=0 a

kban−1−k. For any a and
b in A and any real value of t, we see that (a + tb)n =

∑n
r=0Brt

r lies in
Z(E). Therefore each Br is in Z(E) and hence [B0, B1] ∈ E. We use this for
a = e+ tx and b = y to see, as in [13, p. 208], that[

t−1{(e+ tx)n − e},
n−1∑
j=0

(e+ tx)jy(e+ tx)n−1−j
]
∈ E

for every real t 6= 0. We let t→ 0 to see that [x, y] ∈ E for all x, y ∈ A. This
contradicts E 6⊃ C so that S1 is dense in A.

We let D(E) be the set of all [a, b] ∈ C where [ak, br] /∈ E for all positive
integers k and r.

Theorem 2.9. Suppose that A has an identity and that E 6⊃ C. Then
D(E) is dense in C.

Proof. By Theorem 2.5 the set S(w,E) is dense in A for each w /∈ Z(E).
Recall that S(w,E) is the intersection of countably many open dense subsets
of A. We employ the set S1 of Theorem 2.8.

Let [a, b] ∈ C. Fix attention on the positive integer n. There is an ∈ S1

where ‖a − an‖ < n−1. As S1 is power-closed, we have akn ∈ S1 for each
positive integer k, so that S(akn, E) is a dense ∗-subset of A. By the Baire
category theorem, the set Qn =

⋂
k S(akn, E) is dense in A. By its definition,

every S(akn, E) is power-closed. Therefore, so is Qn. We select bn ∈ Qn with
‖b − bn‖ < n−1. Then [akn, b

r
n] /∈ E for all positive integers k and r. Also

[an, bn]→ [a, b].
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Corollary 2.10. Let A be the algebra of all bounded linear operators
on `2. Let E be a proper closed linear subspace of A. Then D(E) is dense
in A.

Proof. In [3, Corollary 5.2] it is pointed out that C is dense in A. There-
fore E 6⊃ C. We apply Theorem 2.9 to see that D(E) is dense in A as well
as in C.

3. Sets related to the center Z. We examine the sets Z, Z(Z) =
{a ∈ A : [a,A] ⊂ Z} and Γ (C), the centralizer of C, i.e., the set of x ∈ A
such that [x, y] = 0 for all y ∈ C.

First we show that properties of Z alone can affect the nature of Z(Z),
Γ (C) and C.

Theorem 3.1. If Z is a semi-prime algebra, then Z(Z) = Z.

Proof. Let a ∈ Z(Z). Since [a, [a, x]] = 0 for all x ∈ A, arguments in [9,
p. 4] show that [a, x][a, y] = 0 for all x, y ∈ A. Let z ∈ Z. Then z[a, x] =
[a, xz] = [a, x]z for all x, y ∈ A. Hence [a,A] is an ideal in Z with uv = 0 for
all u, v ∈ [a,A] so that [a,A]2 = (0). As Z is semi-prime, we have [a,A] = (0)
or a ∈ Z.

Let J denote the radical of A and r(x) the spectral radius of x ∈ A.

Lemma 3.2. Let x, y ∈ A. If [x, y] ∈ Z, then [x, y] ∈ J .

Proof. Since x permutes with [x, y], by the Kleinecke–Shirokov theorem
[1, p. 91], we have r([x, y]) = 0. Let v ∈ A. As v also permutes with [x, y]
we have, by [12, Theorem 1.4.1],

r([x, y]v) ≤ r([x, y])r(v) = 0.

Therefore [x, y]v is quasi-regular for each v ∈ A, so that [x, y] ∈ J .

Theorem 3.3. No non-zero idempotent lies in C∩Z. If Z is semi-simple,
then C ∩ Z = (0).

Proof. Let p be a non-zero idempotent. Since p /∈ J , we see by Lemma
3.2 that p /∈ C ∩ Z. If Z is semi-simple, then C ∩ Z = (0) by Lemma 3.2.

This is an extension of the classical result [11, p. 2] that the identity
in a Banach algebra cannot be a commutator. We note also that if A is
semi-simple, then so is Z. For, let x0 be in the radical of Z and y ∈ A. By
[12, Theorem 1.4.1], r(x0y) ≤ r(x0)r(y) = 0. Thus x0y is quasi-regular for
each y ∈ A, so that x0 ∈ J .

Corollary 3.4. If Z is semi-prime, then Γ (Z) is commutative.

Proof. Let a, b ∈ Γ (C). By the Jacobi identity [a, [b, x]] + [b, [x, a]] +
[x, [a, b]] = 0 for all x ∈ A. Hence [x, [a, b]] = 0 for all x ∈ A, so that
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[a, b] ∈ Z. As Z is semi-simple, [a, b] = 0 by Theorem 3.3. Thus Γ (C) is
commutative.

Theorem 3.5. Γ (C) ⊃ Z(Z). If J ⊂ Z, then Γ (C) = Z(Z).

Proof. Let a ∈ Z(Z). By the Jacobi identity [a, [x, y]]+[x, [y, a]]+[y, [a, x]]
= 0 for all x, y ∈ A. But as [y, a] ∈ Z and [a, x] ∈ Z, we see that [a, [x, y]] = 0
for all x, y ∈ A, or a ∈ Γ (C).

Next let a ∈ Γ (C). Then [a, [a, x]] = 0 for all x ∈ A. Arguments of
Herstein [9, p. 4] show that [a, x]A[a, x] = (0) for all x ∈ A. Then [a, x] ∈
J ⊂ Z.

There are interesting examples of A where J 6= (0) is the set of x ∈ A
where xA = Ax = (0). Of course, in that case J ⊂ Z. The prototype of
such instances is an example of C. Feldman [12, p. 297]. That example is
commutative. More elaborate examples, where J 6= (0), J ⊂ Z, which are
not commutative, are given in [14]; the Feldman example is a special case.

Theorem 3.6. If A is a semi-prime algebra, then Z(Z) = Γ (C) = Z.

Proof. This is valid for any algebra, not just a Banach algebra. By [9,
Lemma 1.5, p. 11] we see that Γ (C) = Z. By [15, Theorem 3.1], we have
Z(Z) = Z.

4. On the center modulo an ideal. All ideals considered here are
two-sided unless otherwise specified. Henceforth K will denote a closed ideal
in A, and π will denote the natural homomorphism of A onto A/K. We recall
the notation Z(K) and its complement R(K) of Section 2. We examine
properties of R(K), motivated by the example of A = B(`2), the algebra
of all bounded linear operators on `2. Let K be the subset of its compact
operators. It follows from [3] that R(K) is the set of all elements of C which
are not compact.

Theorem 4.1. Suppose that A/K is semi-simple and a ∈ A. Either
[a,A] ⊂ K, or the set of x ∈ A such that [a, xn] /∈ K and [a, x∗n] /∈ K for
all positive integers n is dense in A.

Proof. An equivalent statement is that R(K) is the set of all a ∈ A with
the stated properties. First, note that π(H(K)) is the hypercenter H# of
A/K. As A/K is semi-simple, H# is the center Z# of A/K by [10, Lemma 2].
Now π−1(Z#) = {y ∈ A : [y,A] ⊂ K} = Z(K). Thus

Z(K) ⊂ H(K) ⊂ π−1(Z#) = Z(K).

Therefore Z(K) = H(K). We now apply Theorem 2.3 to see that if a /∈ Z(K),
then a has the required properties.

Theorem 4.2. Suppose that A/K is semi-simple. If a ∈ Z(K)∩C, then
a ∈ K.
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Proof. In other words, if a ∈ C is not in K, then a ∈ R(K). Note that
π(a) is a commutator lying in the center Z# of A/K (see the preceding
proof). Since A/K is semi-simple, π(a) = 0 by Theorem 3.3.

If the ideal K 6= A of Theorem 4.2 is modular and j is an identity for A
modulo K, then, by Theorem 4.2, j /∈ C since j ∈ Z(K) and j /∈ K.

Henceforth, let P denote a modular primitive ideal where j is an identity
for A modulo P .

Lemma 4.3. Z(P ) is the set of elements in A of the form λj + y where
λ is a scalar and y ∈ P . Also, A = Z(P ) if and only if P ⊃ C.

Proof. Let π be the canonical homomorphism of A onto A/P . A/P is
a primitive algebra with π(j) as its identity. By [12, Corollary 2.4.5], the
center Z# of A/P is the set of scalar multiples of its identity π(j). As in the
proof of Theorem 4.1, Z(P ) = π−1(Z#) so that Z(P ) is the set of elements
λj + y where λ is a scalar and y ∈ P .

Suppose A = Z(P ). By Theorem 4.2, we have P ⊃ C. Conversely, sup-
pose that P ⊃ C, so that [π(x), π(y)] = 0 for all x, y ∈ A. Thus A/P is
commutative and is the set of all λπ(j) elements. Then Z(P ) = A by the
description above of Z(P ).

Thus, if P 6⊃ C then R(P ) is the set of elements not of the form λj + y,
λ 6= 0, y ∈ P and where λj + y /∈ P .

Theorem 4.4. Suppose that P is a modular maximal ideal in A and that
P 6⊃ C. Then any a ∈ A is of the form x+ y where x is in the subalgebra Q
generated by C, and y ∈ P .

Proof. Let Γ0 be the subalgebra of A/P generated by its commutators.
Here A/P is a simple algebra which, as P 6⊃ C, is not commutative. By a
corollary of Herstein [9, p. 6], we have Γ0 = A/P . Now Γ0 is the set of all
[π(x), π(y)], x, y ∈ A, where π is the natural homomorphism of A onto A/P .
Then any a ∈ A is of the form x+ y, x ∈ Q and y ∈ P .

Henceforth, we confine attention to the algebra of all bounded linear
operators on `2, which we denote by A. Let K denote the subset of all
compact operators.

Corollary 4.5. The subalgebra of A generated by C is all of A.

Proof. Here K is a modular maximal ideal in A. Also, C ⊃ K as shown
in [2]. We apply Theorem 4.4.

Theorem 4.6. In A, C = K ∪R(K).

Proof. Let I denote the identity of A. By Lemma 4.3, R(K) is the set of
elements of A not of the form λI + T where λ is a scalar and T ∈ K. Then



Commutators in Banach ∗-algebras 9

R(K) ∪ K is the set of those elements not of the form λI + T where λ 6= 0
and T ∈ K. This, however, is C, as shown in [3].

Theorem 4.7. R(K) and hence C contains a power-closed ∗-subset dense
in A.

Proof. By Theorem 2.8, R(K) possesses such a dense subset. By Theorem
4.6, R(K) ⊂ C.

Theorem 4.8. The subset of C, consisting of all [T,U ] with [T k, U r]
/∈ K for all positive integers k and r, is dense in A. Every T k and U r lies
in C.

Proof. By Corollary 2.10, the subset in question is dense in C and there-
fore dense in A. By Theorem 4.6, every T k and U r is in C as T k, U r /∈ Z(K).

Theorem 4.9. C is a connected subset of A, any two elements of which
are connected by one or two line segments lying entirely in C.

Proof. By Theorem 4.6, we have C = K ∪R(K). Any two elements of K
are connected by a line segment in K. By Proposition 2.7, any two elements
of R(K) are connected in R(K) by one or two line segments. Now let T ∈ K
and U ∈ R(K). We claim that αT + βU ∈ C for any scalars α and β. For
otherwise, by [3], there exists a scalar γ 6= 0 and W ∈ K so that αT + βU =
γI +W . Then βU = γI + (W −αT ) where W −αT ∈ K. This is impossible
as U ∈ C.

Theorem 4.10. K and (0) are the only closed Lie ideals of K.

Proof. K is a primitive Banach algebra with a dense socle G. The center Z
of K is (0). By [5, Theorem 6.1], any closed Lie ideal L of K must contain
[T,U ] for all T ∈ G and U ∈ K. Thus L contains all commutators of K.
Then, as shown in [2], L = K.
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