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Weyl type theorem for operator matrices

by

Xiaohong Cao (Xi’an)

Abstract. Using topological uniform descent, we give necessary and sufficient con-
ditions for Browder’s theorem and Weyl’s theorem to hold for an operator A. The two
theorems are liable to fail for 2× 2 operator matrices. In this paper, we explore how they
survive for 2× 2 operator matrices on a Hilbert space.

1. Introduction. Throughout this note, let H and K be complex,
separable, infinite-dimensional Hilbert spaces, and let B(H,K) denote the
set of bounded linear operators from H to K; we abbreviate B(H,H) to
B(H). If A ∈ B(H), write N(A) and R(A) for the null space and range of
A; σ(A) for the spectrum of A; %(A) = C\σ(A); π00(A) = π0(A) ∩ isoσ(A),
where π0(A) = {λ ∈ C : 0 < dimN(A − λI) < ∞} are the eigenvalues
of finite multiplicity. An operator A ∈ B(H) is called upper semi-Fredholm
if it has closed range with finite-dimensional null space; if R(A) has fi-
nite codimension, then A ∈ B(H) is called lower semi-Fredholm. We call
A ∈ B(H) Fredholm if it is both upper and lower semi-Fredholm. If A is
upper or lower semi-Fredholm, then the index of A, ind(A), is defined to be
ind(A) = dimN(A)−dimH/R(A). The ascent of A, asc(A), is the least non-
negative integer n such that N(An) = N(An+1), and the descent , des(A), is
the least nonnegative integer n such that R(An) = R(An+1). The operator
A is Weyl if it is Fredholm of index zero, and Browder if it is Fredholm
of finite ascent and descent. The essential spectrum σe(A), Weyl spectrum
σw(A) and Browder spectrum σb(A) of A are defined by

σe(A) = {λ ∈ C : A− λI is not Fredholm},
σw(A) = {λ ∈ C : A− λI is not Weyl},
σb(A) = {λ ∈ C : A− λI is not Browder}.
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Let σa(A) denote the approximate point spectrum of the operator A ∈ B(H)
and set πa

00(A) = π0(A) ∩ isoσa(A). We say that Browder’s theorem holds
for A if

σw(A) = σb(A),

Weyl’s theorem holds for A if

σ(A) \ σw(A) = π00(A),

and a-Weyl’s theorem holds for A if

σa(A) \ σea(A) = πa
00(A),

where σea(A) = {λ ∈ C : A − λI /∈ SF−+(H)} and SF−+(H) = {A ∈ B(H) :
A is upper semi-Fredholm of ind(A) ≤ 0}. Browder’s essential approximate
point spectrum σab(A) is defined by σab(A) = σea(A)∪accσa(A). If σab(A) =
σea(A), we say that a-Browder’s theorem holds for A. The concept of a-
Weyl’s theorem was introduced by Rakočević: a-Weyl’s theorem for A ⇒
Weyl’s theorem for A, but the converse is generally false [9].

Sufficient conditions for an operator A ∈ B(H) to satisfy Weyl’s theorem
have recently been considered by a number of authors ([1], [3], [7], e.g.). The
plan of this paper is as follows. In Section 2, we prove our main result and
give necessary and sufficient conditions for Weyl’s theorem and Browder’s
theorem to hold for A. In Section 3, we explore how the two theorems survive
for 2× 2 operator matrices.

2. Weyl type theorem and topological uniform descent. If
A ∈ B(H), then for each nonnegative integer n, A induces a linear trans-
formation from the vector space R(An)/R(An+1) to R(An+1)/R(An+2). We
will let kn(A) be the dimension of the null space of the induced map and let
k(A) =

∑∞
n=0 kn(A). The following definition describes the classes of oper-

ators we will study. These definitions were introduced by S. Grabiner [5].

Definition 2.1. If there is a nonnegative integer d for which kn(A) = 0
for n ≥ d (i.e., the induced maps are isomorphisms for n ≥ d), we say that
A has uniform descent for n ≥ d.

Definition 2.2. Suppose there is a nonnegative integer d such that A
has uniform descent for n ≥ d. If R(An) is closed in the operator range
topology of R(Ad) for n ≥ d, then we say that A has topological uniform
descent .

It can be shown that if A is upper semi-Fredholm, then A has topological
uniform descent. Let

%τ (A) = {λ ∈ C : A− λI has topological uniform descent}.
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If A has topological uniform descent, then it has the following property
([5, Corollary 4.9]):

Lemma 2.3. Suppose that A ∈ B(H) and λ belongs to the boundary of
the spectrum of A. If A − λI has topological uniform descent , then λ is a
pole of A.

Let

%1(A) = {λ ∈ C : dimN(A− λI) <∞ and there exists ε > 0 such that
A− µI is Weyl if 0 < |µ− λI| < ε},

and let σ1(A) = C \ %1(A). Clearly, σ1(A) ⊆ σw(A).

Theorem 2.4. Browder’s theorem holds for A⇔ %τ (A) ⊆ %b(A)∪σ1(A),
where %b(A) = C \ σb(A).

Proof. Suppose %τ (A) ⊆ %b(A)∪σ1(A). If A−λI is Weyl, then λ ∈ %τ (A).
Hence λ ∈ %b(A)∪ σ1(A). Since λ /∈ σ1(A), it follows that λ ∈ %b(A), which
means that A−λI is Browder. Thus σw(A) = σb(A), and therefore Browder’s
theorem holds for A.

Conversely, suppose Browder’s theorem holds for A. Let λ0 ∈ %τ (A). If
λ0 /∈ σ1(A), then dimN(A − λ0I) < ∞ and there exists ε > 0 such that
A − λI is Weyl if 0 < |λ − λ0| < ε. Since Browder’s theorem holds for A,
it follows that A − λI is Browder. Hence λ0 ∈ %(A) ∪ ∂σ(A). Without loss
of generality, we suppose λ0 ∈ ∂σ(A). By Lemma 2.3, λ0 is a pole of A. Let
asc(A−λ0I) = des(A−λ0I) = p. Then H = N [(A−λ0I)p]⊕R[(A−λ0I)p].
Using the fact that dimN(A−λ0I) <∞, we infer that A−λ0I is Browder.
Therefore λ0 ∈ %b(A). This proves %τ (A) ⊆ %b(A) ∪ σ1(A).

Theorem 2.5. Weyl’s theorem holds for A ⇔ π00(A) ⊆ %τ (A) ⊆
%b(A) ∪ σ1(A).

Proof. Suppose Weyl’s theorem holds for A. Since Weyl’s theorem im-
plies Browder’s theorem, from Theorem 2.4, %τ (A) ⊆ %b(A) ∪ σ1(A). Let
λ0 ∈ π00(A). Then A−λ0I is Browder because Weyl’s theorem holds for A.
Therefore λ0 ∈ %τ (A). Thus π00(A) ⊆ %τ (A) ⊆ %b(A) ∪ σ1(A).

For the converse, the condition %τ (A) ⊆ %b(A) ∪ σ1(A) implies that
Browder’s theorem holds for A, that is, σ(A) \ σw(A) ⊆ π00(A). If λ0 ∈
π00(A), then λ0 ∈ %τ (A) ⊆ %b(A) ∪ σ1(A). Since λ0 /∈ σ1(A), it follows that
λ0 ∈ %b(A). Hence A−λ0I is Browder, which means that λ0 ∈ σ(A)\σw(A).
Thus σ(A) \ σw(A) = π00(A), and so Weyl’s theorem holds for A.

Corollary 2.6. Weyl’s theorem holds for A and A∗ ⇔ [π00(A)∪π00(A∗)]
⊆ %τ (A) ⊆ %b(A) ∪ σ1(A).

Let H(A) be the class of all complex-valued functions which are analytic
on a neighborhood of σ(A) and are not constant on any component of σ(A).
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Corollary 2.7. Suppose isoσ(A) ⊆ %τ (A) ⊆ %b(A) ∪ σ1(A). Then:

(1) Weyl’s theorem holds for A and A∗.
(2) If f ∈ H(A), then Weyl’s theorem holds for f(A) and f(A)∗ if and

only if Browder’s theorem holds for f(A).

Let

%2(A) = {λ ∈ C : dimN(A− λI) <∞ and there exists ε > 0 such that
A− µI ∈ SF−+(H) if 0 < |µ− λI| < ε},

and let σ2(A) = C \ %2(A). Clearly, σ2(A) ⊆ σ1(A).

Corollary 2.8. Suppose isoσ(A) ⊆ %τ (A) ⊆ %b(A) ∪ σ2(A). Then:

(1) Weyl’s theorem holds for A and A∗.
(2) a-Weyl’s theorem holds for A.
(3) Weyl’s theorem holds for f(A) and f(A)∗ for any f ∈ H(A).
(4) a-Weyl’s theorem holds for f(A) for any f ∈ H(A).

Proof. (1) Apply Corollary 2.7.
(2) Since isoσ(A) ⊆ %τ (A) ⊆ %b(A) ∪ σ2(A), it follows that σ(A) =

σa(A) and σw(A) = σea(A) = σb(A). Weyl’s theorem for A implies that
σ(A) \ σw(A) = π00(A). Thus σa(A) \ σea(A) = πa

00(A), which means that
a-Weyl’s theorem holds for A.

(3) Let µ0 ∈ σ(f(A)) \ σw(f(A)) and let

f(A)− µ0I = a(A− λ1I)n1 · · · (A− λkI)nkg(A),

where λi 6= λj , a 6= 0 and g(A) is invertible. Then A − λiI is Fredholm
and

∑k
i=1 ind[(A − λiI)ni ] = ind(f(A) − µ0I) = 0. Hence λi ∈ %τ (A) ⊆

%b(A)∪ σ2(A). Suppose λ1, . . . , λj ∈ %b(A) and λj+1, . . . , λk ∈ σ2(A). Using
the definition of %2(A), we deduce that ind(A−λiI) > 0 for i = j + 1, . . . , k.
Thus

k∑
i=1

ind[(A− λiI)ni ] =
j∑
i=1

ind[(A− λiI)ni ] +
k∑

i=j+1

ind[(A− λiI)ni ]

= 0 +
k∑

i=j+1

ind[(A− λiI)ni ] > 0.

This is a contradiction, so λi ∈ %b(A) for all i = 1, . . . , k. Therefore f(A)−
µ0I is Browder, which means that σ(f(A)) \σw(f(A)) ⊆ π00(f(A)). For the
converse, let µ0 ∈ π00(f(A)) and let

f(A)− µ0I = a(A− λ1I)n1 · · · (A− λkI)nkg(A),

where λi 6= λj , a 6= 0 and g(A) is invertible. Without loss of generality, we
suppose that λi∈σ(A), i= 1, . . . , k. Thus λi∈ isoσ(A) and dimN(A−λiI)
< ∞. Hence λi ∈ %τ (A) ⊆ %b(A) ∪ σ2(A) and λi /∈ σ2(A). Then A − λiI
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is Browder. This implies that f(A) − µ0I is Browder, that is, π00(f(A)) ⊆
σ(f(A)) \ σw(f(A)). Hence σ(f(A)) \ σw(f(A)) = π00(f(A)), which means
that Weyl’s theorem holds for f(A).

(4) Since σ(A) = σa(A), it follows that σa(f(A)) = f(σa(A)) = f(σ(A))
= σ(f(A)). Similar to the proof of (3), we can show that σea(f(A)) =
σb(f(A)). Since Weyl’s theorem holds for f(A), it follows that σw(f(A)) =
σb(f(A)). Thus σea(f(A)) = σb(f(A)) = σw(f(A)). Now Weyl’s theorem
for f(A) implies that a-Weyl’s theorem also holds for f(A).

Example. Recall that A ∈ B(H) is said to be ∗-paranormal if

‖A∗x‖2 ≤ ‖A2x‖ ‖x‖ for all x ∈ H,
and totally ∗-paranormal if A−λI is ∗-paranormal for every λ ∈ C. We have
the following facts:

(1) If A ∈ B(H) is totally ∗-paranormal, then A − λI has finite ascent
for each λ ∈ C.

(2) If A ∈ B(H) is totally ∗-paranormal, then H0(A−λI) = N(A−λI)
for every λ ∈ C, where

H0(A− λI) = {x ∈ H : lim
n→∞

‖(A− λI)nx‖1/n = 0}.

In fact, for each λ ∈ C, if x ∈ N [(A−λI)2], then (A∗−λI)(A−λI)x = 0.
It follows that (A−λI)x = 0, which means that A−λI has finite ascent for
every λ ∈ C.

Since any ∗-paranormal operator is normaloid, it follows that ‖(A−λI)x‖
≤ ‖(A − λI)nx‖1/n for all x ∈ H and n ∈ N, and hence H0(A − λI) ⊆
N(A− λI). The converse inclusion is clear.

We next claim that:

(1) If A ∈ B(H) is totally ∗-paranormal, then Weyl’s theorem hold for
f(A) and f(A)∗ for every f ∈ H(A).

(2) If A∗ ∈ B(H) is totally ∗-paranormal, then a-Weyl’s theorem holds
for f(A) for every f ∈ H(A).

For (1), from Corollary 2.7, we only need to prove that isoσ(A) ⊆
%τ (A) ⊆ %b(A) ∪ σ1(A) and that Browder’s theorem holds for f(A) for
every f ∈ H(A).

Let λ0 ∈ isoσ(A). Then there are decompositions H = H0(A−λ0I)⊕M
and A = A1 ⊕ A2, where σ(A1) = {λ0} and A2 − λ0I is invertible. Since
H0(A− λ0I) = N(A− λ0I), it follows that A1− λ0I = 0. Thus A− λ0I has
finite ascent and finite descent, which means that λ0 is a pole of A. Hence
λ0 ∈ %τ (A). Next, suppose λ0 ∈ %τ (A) \ σ1(A). Then dimN(A− λ0I) <∞
and there exists ε > 0 such that A − λI is Weyl if 0 < |λ − λ0| < ε.
Since A − λI has finite ascent, it follows that A − λI is Browder, which
means that λ0 is on the boundary of the spectrum of A or A − λ0I is
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invertible. Thus λ0 ∈ %b(A), so we have proved that isoσ(A) ⊆ %τ (A) ⊆
%b(A) ∪ σ1(A). For any f ∈ H(A), suppose f(A) − µ0I is Weyl and let
f(A) − µ0I = (A − λ1I)n1 · · · (A − λkI)nkg(A), where λi 6= λj and g(A)
is invertible. Then A − λiI is Fredholm and has finite ascent for each i =
1, . . . , k. Thus f(A)−µ0I has finite ascent, which means that f(A)−µ0I is
Browder. Then σw(f(A)) = σb(f(A)), and hence Browder’s theorem holds
for f(A) for every f ∈ H(A).

For (2), since A∗ is totally ∗-paranormal, it follows that σa(A) = σ(A)
and σ1(A) = σ2(A). We can then prove that isoσ(A) ⊆ %τ (A) ⊆
%b(A) ∪ σ2(A), so a-Weyl’s theorem holds for f(A) for every f ∈ H(A).

3. Weyl type theorem for operator matrices. The study of upper
triangular operator matrices arises naturally from the following fact: if A is
a Hilbert space operator and M is an invariant subspace for A, then A has
the following 2× 2 upper triangular operator matrix representation:

A =
(
∗ ∗
0 ∗

)
: M ⊕M⊥ →M ⊕M⊥,

and one way to study operators is to see them as entries of simpler operators.
The upper triangular operator matrices have been studied by many authors
([6], [8], e.g.). When A ∈ B(H) and B ∈ B(K) are given, we denote by MC

an operator acting on H ⊕K of the form

MC =
(
A C

0 B

)
,

where C ∈ B(K,H). If C = 0, let M0 =
(
A
0

0
B

)
.

Weyl’s theorem may or may not hold for a direct sum of operators for
which Weyl’s theorem holds. In this section, using the new spectrum set σ2(·)
and the topological uniform descent, we explore the Weyl type theorem for
2× 2 operator matrices. We begin with ([2, Lemma 3.1]):

Lemma 3.1. For a given pair (A,B) of operators, if both A and B have
finite ascent , then for every C ∈ B(K,H), MC has finite ascent.

Theorem 3.2. Let A ∈ B(H) be such that %τ (A) ⊆ %b(A) ∪ σ2(A) and
let B ∈ B(K).

(1) If Browder’s theorem holds for
(
A
0
C0

B

)
for some C0 ∈ B(K,H), then

it holds for
(
A
0
C
B

)
for every C ∈ B(K,H).

(2) If a-Browder’s theorem holds for
(
A
0
C0

B

)
for some C0 ∈ B(K,H),

then it holds for
(
A
0
C
B

)
for every C ∈ B(K,H).



Weyl type theorem for operator matrices 35

Proof. (1) For any C ∈ B(K,H), if MC − λ0I is Weyl, from

MC − λ0I =
(
I 0
0 B − λ0I

)(
I C

0 I

)(
A− λ0I 0

0 I

)
we know A− λ0I is upper semi-Fredholm, B − λ0I is lower semi-Fredholm
and A− λ0I is Fredholm if and only if B − λ0I is Fredholm. Since A− λ0I
is upper semi-Fredholm, λ0 ∈ %τ (A) ⊆ %b(A) ∪ σ2(A). By the definition
of %2(A), we must have ind(A − λ0I) ≥ 0, which means that A − λ0I is
Fredholm. Then B− λ0I is Fredholm and hence ind(MC0 − λ0I) = ind(A−
λ0I)+ind(B−λ0I) = ind(MC−λ0I) = 0. Therefore MC0−λ0I is Weyl. But
since Browder’s theorem holds for MC0 , it follows that MC0−λ0I is Browder.
Thus asc(A − λ0I) < ∞ and des(B − λ0I) < ∞. This implies λ0 /∈ σ2(A),
which means that A− λ0I is Browder. Since both MC0 − λ0I and A− λ0I
are Browder and B − λ0I is Fredholm, it follows that λ0 ∈ isoσ(B) ∪ %(B),
hence B − λ0I is Browder. Thus MC − λ0I is Browder. Now we see that
σw(MC) = σb(MC), which means that Browder’s theorem holds for MC for
every C ∈ B(K,H).

(2) For every C ∈ B(K,H) if MC − λ0I ∈ SF−+(H ⊕K), then A − λ0I
is upper semi-Fredholm. Thus λ0 ∈ %τ (A) ⊆ %b(A) ∪ σ2(A). From the proof
of (1) we know that A − λ0I is Fredholm. Theorem 2.1 in [2] tells us that
B − λ0I is upper semi-Fredholm and MC0 − λ0I ∈ SF−+(H ⊕K). Since a-
Browder’s theorem holds for MC0 , it follows that MC0−λ0I has finite ascent.
Hence A−λ0I has finite ascent, which means that A−λ0I is Browder. Thus
there exists ε > 0 such that MC0 − λI is bounded from below and A− λI is
invertible if 0 < |λ− λ0| < ε. This implies that λ0 ∈ isoσa(B) or B − λ0I is
bounded from below. But since B−λ0I is upper semi-Fredholm, it has finite
ascent ([4, Theorem 11]). Then MC−λ0I has finite ascent, which means that
λ0 /∈ σab(MC). Thus σea(MC) = σab(MC) and hence a-Browder’s theorem
holds for MC for every C ∈ B(K,H).

Corollary 3.3. If %τ (A) ⊆ %b(A) ∪ σ2(A), then for every B ∈ B(K)
and C ∈ B(K,H):

(1) If Browder’s theorem holds for
(
A
0

0
B

)
, then it also does for

(
A
0
C
B

)
.

(2) If a-Browder’s theorem holds for
(
A
0

0
B

)
, then it also does for

(
A
0
C
B

)
.

Remark. The implications of Theorem 3.2 may fail for Weyl’s theorem
and a-Weyl’s theorem. To see this, let A,B,C ∈ B(`2) be defined by

A(x1, x2, x3, . . .) =
(
0, x1, 0, 1

2x2, 0, 1
3x3, . . .

)
,

B(x1, x2, x3, . . .) = (0, x2, 0, x4, . . .),

C(x1, x2, x3, . . .) = (x1, 0, 0, 0, x5, 0, x7, · · · ).
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Then σ2(A) = ∅, thus %τ (A) ⊆ %b(A)∪σ2(A) = %(A). Also a straightforward
calculation shows that

σ

(
A 0
0 B

)
= σa

(
A 0
0 B

)
= σ

(
A C

0 B

)
= {0, 1} = σa

(
A C

0 B

)
,

σw

(
A 0
0 B

)
= σea

(
A 0
0 B

)
= σw

(
A C

0 B

)
= σea

(
A C

0 B

)
= {0, 1},

π00

(
A 0
0 B

)
= πa

00

(
A 0
0 B

)
= ∅,

while

π00

(
A C

0 B

)
= πa

00

(
A C

0 B

)
= {0},

which implies that Weyl’s theorem and a-Weyl’s theorem hold for
(
A
0

0
B

)
,

but fail for
(
A
0
C
B

)
.

We now have:

Theorem 3.4. Let A ∈ B(H) be such that isoσ(A) ⊆ %τ (A) ⊆
%b(A) ∪ σ2(A) and B ∈ B(K).

(1) If Weyl’s theorem holds for
(
A
0
C0

B

)
for some C0 ∈ B(K,H), then it

holds for
(
A
0
C
B

)
for every C ∈ B(K,H).

(2) If a-Weyl’s theorem holds for
(
A
0
C0

B

)
for some C0 ∈ B(K,H), then

it holds for
(
A
0
C
B

)
for every C ∈ B(K,H).

Proof. The same argument as in the proof of Theorem 3.2 gives σ(MC)\
σw(MC) ⊆ π00(MC) and σa(MC) \ σea(MC) ⊆ πa

00(MC). For the reverse
inclusion, first suppose λ0 ∈ π00(MC). Then 0 < dimN(MC − λ0I) < ∞
and there exists ε > 0 such that MC − λI is invertible if 0 < |λ − λ0| < ε.
It follows that A − λI is bounded from below and B − λI is surjective if
0 < |λ − λ0| < ε. Then λ ∈ %τ (A) ⊆ %b(A) ∪ σ2(A) and λ /∈ σ2(A). Thus
A−λI is Browder and hence A−λI is invertible because A−λI is injective.
This implies B − λI is also invertible. Hence λ0 ∈ isoσ(MC0). We will show
that 0 < dimN(MC0 −λ0I) <∞. First of all observe that there is a general
inclusion

N(MC − λ0I) ⊆ (A− λ0I)−1[CN(B − λ0I)]⊕N(B − λ0I),

which forces N(A − λ0I) ⊕N(B − λ0I) to be nontrivial because otherwise
N(MC − λ0I) would be trivial, a contradiction. Now we must show that
N(A−λ0I)⊕N(B−λ0I) is finite-dimensional. But since N(A−λ0I)⊕{0} ⊆
N(MC − λ0I), it follows that dimN(A − λ0I) < ∞. Thus we only need
to prove that dimN(B − λ0I) < ∞. Suppose otherwise. Without loss of
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generality, suppose λ0 ∈ σ(A). Then λ0 ∈ isoσ(A) ⊆ %τ (A) ⊆ %b(A)∪σ2(A)
and λ0 /∈ σ2(A), which means that A− λ0I is Browder. Now there are two
cases to consider.

Suppose that CN(B − λ0I) is finite-dimensional. Then N(C) must con-
tain an orthonormal sequence {yi} in N(B − λ0I). But then

(
0
yi

)
∈

N(MC−λ0I), which implies that N(MC−λ0I) is infinite-dimensional, a con-
tradiction.

Suppose CN(B−λ0I) is infinite-dimensional. Since A−λ0I is Browder,
R(A − λ0I)⊥ is finite-dimensional. Therefore CN(B − λ0I) ∩ R(A − λ0I)
is infinite-dimensional. Thus we can find an orthonormal sequence {yi}
in N(B − λ0I) for which there exists a sequence {xi} in H such that
(A−λ0I)xi = Cyi for each i = 1, 2, . . . . Then

(
xi
−yi

)
∈ N(MC −λ0I), which

implies that N(MC − λ0I) is infinite-dimensional, a contradiction again.
From the preceding proof, we know that 0<dim[N(A−λ0I)⊕N(B−λ0I)]

<∞. The fact thatN(MC0−λ0I)⊆(A−λ0I)−1[CN(B−λ0I)]⊕N(B−λ0I)
implies that dimN(MC0−λ0I)<∞. If N(MC0−λ0I)={0}, then N(A−λ0I)
= {0}, which means that A − λ0I is invertible. Thus 0 < dimN(B − λ0I)
< ∞. Let y0 ∈ N(B − λ0I) and y0 6= 0. There exists x0 ∈ H such that
(A − λ0I)x0 = C0y0, because R(A − λ0I) is surjective. Then

(
x0

−y0

)
∈

N(MC0−λ0I), a contradiction. Hense λ0 ∈ π00(MC0). Since Weyl’s theorem
holds for MC0 , it follows that MC0−λ0I is Browder. As A−λ0I is Browder,
so is B − λ0I. Hence MC − λ0I is Browder. Thus λ0 ∈ σ(MC) \ σw(MC), so
σ(MC) \ σw(MC) = π00(MC), and hence Weyl’s theorem holds for MC for
each C ∈ B(K,H).

If λ0 ∈ πa
00(MC), then 0 < dimN(MC−λ0I) <∞ and there exists ε > 0

such that MC − λI is bounded from below if 0 < |λ− λ0| < ε. Then A− λI
is bounded from below. Similarly to the preceding proof, we can show that
λ0 ∈ isoσa(MC0) and A−λ0I is Browder. Thus λ0 ∈ πa

00(MC0). In a similar
way, we deduce that a-Weyl’s theorem holds for MC for any C ∈ B(K,H).

The example in the Remark before Theorem 3.4 tells us that the condi-
tion isoσ(A) ⊆ %τ (A) is essential in Theorem 3.4.

Corollary 3.5. If isoσ(A) ⊆ %τ (A) ⊆ %b(A) ∪ σ2(A) and isoσ(B) ⊆
%τ (B) ⊆ %b(B) ∪ σ2(B), then for every C ∈ B(K,H), Weyl’s theorem and
a-Weyl’s theorem hold for f(MC) for every f ∈ H(MC).

Proof. Suppose f(MC)−µI is Weyl and let f(MC)−µI = (MC−λ1I)n1

· · · (MC − λkI)nkg(MC), where λi 6= λj and g(MC) is invertible. Then∑k
i=1 ind[(MC − λiI)ni ] = 0 and MC − λiI is Fredholm. This implies that

both A−λiI and B−λiI are also Fredholm. Thus λi ∈ %τ (A) ⊆ %b(A)∪σ2(A)
and λi ∈ %τ (B) ⊆ %b(B)∪σ2(B), so ind(A−λiI) ≥ 0 and ind(B−λiI) ≥ 0.
Therefore ind(MC − λiI) ≥ 0 for every i = 1, . . . , k, which implies that
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ind(MC − λiI) = 0 because
∑k

i=1 ind[(MC − λiI)ni ] = 0. In this case, we
must have λi ∈ %b(A) ∩ %b(B). Thus MC − λiI is Browder, and hence so is
f(MC)− µI, which means that σ(f(MC)) \ σw(f(MC)) ⊆ π00(f(MC)). For
the converse, let µ ∈ π00(f(MC)) and

f(MC)− µI = (MC − λ1I)n1 · · · (MC − λkI)nkg(MC),

where λi 6= λj and g(MC) is invertible. Without loss of generality, we sup-
pose λi ∈ isoσ(MC). Then λi ∈ isoσ(A) ∪ %(A), λi ∈ isoσ(B) ∪ %(B) and
both dimN(A − λiI) < ∞ and dimN(B − λiI) < ∞. Using the assump-
tion, we deduce that both A − λiI and B − λiI are Browder and hence so
is MC − λiI. This implies that f(MC) − µI is Browder, so π00(f(MC)) ⊆
σ(f(MC))\σw(f(MC)). Therefore Weyl’s theorem holds for f(MC) for every
f ∈ H(MC). For a-Weyl’s theorem, the proof is similar.

Example. Let A,B ∈ B(`2) be defined by

A(x1, x2, x3, . . .) = (x2, x4, x6, . . .),

B(x1, x2, x3, · · · ) = (0, x1, 0, x2, 0, x3, 0, . . .).

Then isoσ(A) = ∅ and σ2(A) = σ(A). Thus we have isoσ(A) ⊆ %τ (A) ⊆
%b(A) ∪ σ2(A) = C.

Using a straightforward calculation, we find that

σ

(
A 0
0 B

)
= σw

(
A 0
0 B

)
= σb

(
A 0
0 B

)
= D,

σa

(
A 0
0 B

)
= σea

(
A 0
0 B

)
= σab

(
A 0
0 B

)
= D,

Thus both Weyl’s theorem and a-Weyl’s theorem hold for
(
A
0

0
B

)
.

From Theorem 3.4, for each C ∈ B(`2, `2), Weyl’s theorem and a-Weyl’s
theorem hold for MC .
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