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Dedicated to Professor Carlos Segovia on his 65th birthday

Abstract. Let f be a measurable function defined on R. For each n ∈ Z we consider

the average Anf(x) = 2−n
� x+2n

x
f . The square function is defined as

Sf(x) =
( ∞∑

n=−∞
|Anf(x)− An−1f(x)|2

)1/2

.

The local version of this operator, namely the operator

S1f(x) =
( 0∑

n=−∞
|Anf(x)−An−1f(x)|2

)1/2

,

is of interest in ergodic theory and it has been extensively studied. In particular it has
been proved [3] that it is of weak type (1, 1), maps Lp into itself (p > 1) and L∞ into
BMO. We prove that the operator S not only maps L∞ into BMO but it also maps BMO
into BMO. We also prove that the Lp boundedness still holds if one replaces Lebesgue
measure by a measure of the form w(x)dx if, and only if, the weight w belongs to the A+

p

class introduced by E. Sawyer [8]. Finally we prove that the one-sided Hardy–Littlewood
maximal function maps BMO into itself.

Introduction. Let f be a measurable function defined on R. For each
n ∈ Z define the operator An by

Anf(x) =
1
2n

x+2n�

x

f(y) dy.

It is a classical problem to study the different kinds of convergence of the
sequence {Anf}n when the function f belongs to Lp(R, dx), p being in the
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range 1 ≤ p < ∞. A method of measuring the speed of convergence of this
sequence is to analyze the boundedness of the square function

(0.1) Sf(x) =
( ∞∑

n=−∞
|Anf(x)− An−1f(x)|2

)1/2
.

Recently, among other operators, the local version of this operator, namely
the operator

(0.2) S1f(x) =
( 0∑

n=−∞
|Anf(x)− An−1f(x)|2

)1/2

has been studied in [3] and [4]. It has been proved that S1 maps Lp(R, dx)
into itself for each p in the range 1 < p < ∞ and that S1 is of weak type
(1, 1), that is,

|{x : Sf(x) > λ}| ≤ C

λ

�

R
|f(y)| dy,

where as usual we denote by |E| the Lebesgue measure of a set E ⊂ R.
The aim of this note is to characterize the weights ω (almost everywhere

positive measurable functions) such that either, for each p in the range
1 < p <∞, the operator S maps Lp(R, ω(x)dx) into itself, or the following
weak type (1, 1) inequality is satisfied:

(0.3) ω({x : Sf(x) > λ}) ≤ C

λ

�

R
|f(y)|ω(y) dy,

where C is a positive constant.
In our opinion, the natural way of proving weighted results for this op-

erator is to use the theory of vector-valued singular integrals. Therefore it
would seem that the right class of weights were the Ap classes of Mucken-
houpt, but this would overlook the fact that the operator S is one-sided ,
i.e. Sf(x) = S(f(·)χ(x,∞)(·))(x); clearly Ap is not a necessary condition.
For one-sided operators the natural classes are the A+

p classes introduced
by E. Sawyer [8] (see (2.1) and (2.2) in Section 2 for the corresponding
definitions). In fact we shall prove the following result.

Theorem A. Given p in the range 1 ≤ p < ∞, and a weight ω, the
following are equivalent :

(i) There exists a constant Cp such that

(0.4) (ω({x : Sf(x) > λ}))1/p ≤ Cp
λ
‖f‖Lp(R,ω(x)dx),

(ii) ω ∈ A+
p .

Moreover , in the case 1 < p < ∞ they are also equivalent to the following
statement :
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(iii) There exists a constant Cp such that

(0.5) ‖Sf‖Lp(R,ω(x)dx) ≤ Cp‖f‖Lp(R,ω(x)dx).

In order to prove this theorem we shall introduce a one-sided vector-
valued Calderón–Zygmund operator U (see Definition 1.1). We believe that
our main contribution is a careful geometric analysis of the kernel of the
operator U (see Lemma 1.2 and also (1.4)) that allows us to show that
the kernel satisfies some one-sided Hörmander type conditions (see Defini-
tion 1.5). Conditions of this type suggest in general boundedness from L∞

into BMO; however, the following example seems to forbid such a result.

Example. If f =
∑∞
n=0 χ[4n,2·4n] =

∑∞
i=0 χ[22i,22i+1], then Sf(x) = ∞

for every x.

Proof. We shall see that Sf(0) = ∞; if x 6= 0 one can prove Sf(x) =
∞ in the same way. If j = 2k + 1 then Ajf(0) = (1/2j)

∑k
i=0 4i, while

Aj+1f(0) = 1
2Ajf(0). It follows that |A2k+2f(0)−A2k+1f(0)| = 1

2A2k+1f(0)
> 1

4 and so Sf(0) =∞.

In fact as a byproduct of our study we shall obtain the following di-
chotomy results that we believe are of independent interest.

Theorem B. (a) Given a function f in L∞(R), either Sf(x) = ∞ for
a.e. x or Sf(x) < ∞ for a.e. x. Moreover in the second case Sf ∈ BMO
and there exists a constant C such that ‖Sf‖BMO(R) ≤ C‖f‖L∞(R).

(b) Given a function f in BMO(R), either Sf(x) = ∞ for a.e. x or
Sf(x) < ∞ for a.e. x. Moreover in the second case Sf ∈ BMO and there
exists a constant C such that ‖Sf‖BMO(R) ≤ C‖f‖BMO(R).

We believe that the geometric analysis developed for the study of the
square function can be of interest for other one-sided operators. In partic-
ular we apply these ideas to study the behaviour of the one-sided Hardy–
Littlewood maximal operator acting on functions that belong to the BMO
class, and again we get a dichotomy result of the type of Theorem B (see
Theorem 3.10).

The organization of the paper is as follows. In Section 1 we develop the
adapted one-sided Calderón–Zygmund theory that we need and as a quick
consequence we prove Theorem B. Section 2 is devoted to the study of
weighted inequalities, and in particular to the proof of Theorem A. Finally
in Section 3 we analyze the one-sided Hardy–Littlewood maximal operator.
We end this introduction with some notation. Given a measurable set E and
a weight w, w(E) will represent the integral of w on E. If I is an interval
and f a locally integrable function, we will denote by fI the average of f
on I, i.e. fI = (1/|I|)

�
I
f .
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1. Vector-valued analysis. Boundedness on BMO and L∞

Definition 1.1. Given a locally integrable function f we define the
sequence-valued operator U as follows:

Uf(x) = {Anf(x)− An−1f(x)}n

=
{ �

R

(
1
2n

χ(−2n,0)(x− y)− 1
2n−1 χ(−2n−1,0)(x− y)

)
f(y) dy

}

n

=
�

R
K(x− y)f(y) dy,

where K is the sequence-valued function

K(x) =
{

1
2n

χ(−2n,0)(x)− 1
2n−1 χ(−2n−1,0)(x)

}

n

.

Observe that ‖Uf(x)‖`2 = Sf(x). Although the operator U is defined in
terms of averages with nonsmooth kernels it satisfies a one-sided smoothness
condition, which will play the role of the Hörmander condition in the classical
theory of singular integrals.

Lemma 1.2. Given x0 ∈ R and i ∈ Z, consider x and y in R such
that x0 < x ≤ x0 + 2i and x0 + 2j < y ≤ x0 + 2j+1 with j > i. Let
χn(y) = χ(−2n,0)(y). Then χn(x−y)−χn(x0−y) = 0 unless n = j in which
case χj(x− y)− χj(x0 − y) = χ(x0+2j ,x+2j)(y).

Proof. It is clear that χn(x − y) = χ(x,x+2n)(y). Now if n < i then
x+2n < x−x0 +x0 +2i ≤ x0 +2i+1 ≤ x0 +2j < y. Therefore χn(x−y) = 0.
Obviously the same holds for χn(x0 − y). If i ≤ n < j then x + 2n ≤
x0 + 2i + 2n ≤ x0 + 2 · 2n ≤ x0 + 2j , and χn(x − y) = χn(x0 − y) = 0.
If n > j then x + 2n > x0 + 2n ≥ x0 + 2j+1 ≥ y, and since y > x >
x0 we have χn(x − y) − χn(x0 − y) = 1 − 1 = 0. Finally if n = j then
χj(x0−y) = χ(x0,x0+2j)(y) = 0, while χj(x−y) = χ(x,x+2j)(y) = 1 whenever
x0 + 2j ≤ y ≤ x+ 2j .

Lemma 1.3 (Smoothness condition). Assume x0, x, y are as in the pre-
ceding lemma. Let K be the vector-valued kernel that appears in Defini-
tion 1.1. Then

(1.4) ‖K(x− y)−K(x0 − y)‖`2 =

√
2

2j
χ(x0+2j ,x+2j)(y).

Proof. We have

‖K(x− y)−K(x0 − y)‖2`2 =
∑

n

∣∣∣∣
1
2n

χn(x− y)− 1
2n−1 χn−1(x− y)

−
(

1
2n

χn(x0 − y)− 1
2n−1 χn−1(x0 − y)

)∣∣∣∣
2
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=
∑

n

∣∣∣∣
1
2n

χn(x− y)− 1
2n

χn(x0 − y)

−
(

1
2n−1 χn−1(x− y)− 1

2n−1 χn−1(x0 − y)
)∣∣∣∣

2

= 2
∣∣∣∣

1
2j
χj(x− y)− 1

2j
χj(x0 − y)

∣∣∣∣
2

= 2
∣∣∣∣

1
2j
χ(x0+2j ,x+2j)(y)

∣∣∣∣
2

.

It follows from (1.4) that the kernel K does not satisfy the “gradient”
condition

‖K(x− y)−K(x0 − y)‖`2 ≤ C(x− x0)(y − x0)−2

whenever y− x0 > 2(x− x0). Nevertheless (1.4) will allow us to prove some
kind of condition that implies Hörmander’s.

Parallel to [7] we give the following

Definition 1.5. We say that the kernel K satisfies one-sided condition
Dr, for 1 ≤ r <∞, and write K ∈ Dr, if there exists a sequence {cl}∞l=1 of
positive numbers such that

∑
l cl <∞ and for any l ≥ 2 and x > 0,

( �

Sl(x)

‖K(x− y)−K(−y)‖r`2 dy
)1/r

≤ cl|Sl(x)|−1/r′ ,

where Sl(x) = (2lx, 2l+1x).

It is easy to see that Ds ⊂ Dr ⊂ D1 for 1 ≤ r < s, where K ∈ D1 means
the following Hörmander’s type condition:

�

{y>4x}
‖K(x− y)−K(−y)‖`2 dy ≤ C

where C is a positive constant.

Theorem 1.6. The kernel K introduced in Definition 1.1 satisfies Dr

for any r ≥ 1 with cl = C2−l/r.

Proof. Given x, choose an integer i such that 2i−1 ≤ x < 2i. Lemma 1.3
and Hölder’s inequality give us

( 2l+1x�

2lx

‖K(x− y)−K(−y)‖r`2 dy
)1/r

≤
( 2l+i�

2l+i−1

‖K(x− y)−K(−y)‖r`2 dy
)1/r
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+
( 2l+i+1�

2l+i

‖K(x− y)−K(−y)‖r`2 dy
)1/r

≤ 2
2i/r

2l+i
= C2−l/r|Sl(x)|−1/r′ .

Since we have Hörmander’s condition and it is easy to check that the
Fourier transform of the kernel of our vector-valued operator U is bounded
we deduce that the operator S is bounded on Lp, p > 1, and satisfies a
weak type (1, 1) inequality. Now we shall use our smoothness condition in
order to study the pointwise size of the operator. We start with the following
technical lemma.

Lemma 1.7. Let f be a locally integrable function such that Sf(x0) <∞
for some x0 ∈ R. Then S(f(·)χ[x,∞)(·))(x0) <∞ for any x > x0.

Proof. Let i be an integer such that 2i < x − x0 ≤ 2i+1, consider g =
fχ(x,∞) and I =

� x
x0
f . If j ≤ i, then Ajg(x0) = 0. If j > i then

Ajg(x0) =
1
2j

x0+2j�

x0

g =
1
2j

x0+2j�

x0

f − 1
2j

x�

x0

f = Ajf(x0)− 1
2j
I.

Therefore

Sg(x0) =
(∑

j

|Ajg(x0)− Aj−1g(x0)|2
)1/2

=
∣∣∣∣Ai+1f(x0)− 1

2i+1 I
∣∣∣∣+
( ∑

j>i+2

|Ajf(x0)− Aj−1f(x0)|2
)1/2

+
( ∑

j>i+2

∣∣∣∣
1

2j−1 −
1
2j

∣∣∣∣
2)1/2

I

≤
∣∣∣∣Ai+1f(x0)− 1

2i+1 I
∣∣∣∣+ Sf(x0) +

( ∑

j>i+2

∣∣∣∣
1

2j−1 −
1
2j

∣∣∣∣
2)1/2

I

<∞.
Proposition 1.8. Let f ∈ L∞(R) and let x0 be such that Sf(x0) <∞.

Then Sf(x) <∞ for almost all x > x0.

Proof. We shall prove that the `2-valued operator U defined in 1.1 sat-
isfies ‖Uf(x)‖`2 < ∞ for almost every x > x0. Consider the interval I0 =
(x0, x0 + 4(x − x0)). Let f1 = fχI0 and f2 = f − f1. Since the operator S
is bounded on L2, we have ‖Uf1(y)‖`2 = Sf1(y) < ∞. On the other hand,
by using the one-sided nature of S and the last Lemma 1.7, we deduce that
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for x > x0,

‖Uf2(x0)‖`2 = Sf2(x0) = S(f(·)χ(x0+4(x−x0),∞)(·))(x0) <∞.
Therefore it is enough to prove that ‖Uf2(x) − Uf2(x0)‖`2 < ∞. By using
again the one-sided nature and condition Dr with r = 1, we obtain

‖Uf2(x)− Uf2(x0)‖`2 =
∥∥∥

∞�

x0+4(x−x0)

(K(x− y)−K(x0 − y))f(y) dy
∥∥∥
`2

≤
∞�

x0+4(x−x0)

‖K(x− y)−K(x0 − y)‖`2 |f(y)| dy ≤ C‖f‖∞.

Proposition 1.9. Let f ∈ L∞(R) and let x0 be such that Sf(x0) <∞.
Then Sf(y) <∞ for almost all y < x0.

Proof. Following the proof of the last proposition, we shall see that
‖Uf(y)‖`2 < ∞ for almost every y < x0. Given y < x0. Set I0 = (y, y +
4(x0 − y)), f1 = fχI0 and f2 = f − f1. Again ‖Uf1(y)‖`2 = Sf1(y) <∞ for
almost every y, because S is bounded on L2. On the other hand, by using
the one-sided nature of S and Lemma 1.7 (observe that y+ 4(x0− y) > x0),
we see that for y < x0,

‖Uf2(x0)‖`2 = Sf2(x0) = S(f(·)χ(y+4(x0−y),∞)(·))(x0) <∞.
Therefore it is enough to prove that ‖Uf2(y) − Uf2(x0)‖`2 < ∞. Now the
proof ends as in the last proposition.

We have proved that for an L∞ function f , Sf is either infinite a.e. or
finite a.e. The same result can be proved, with minor modifications, for BMO
functions. Therefore in order to prove Theorem B we need to prove that for
functions f in L∞ (respectively in BMO) with Sf finite almost everywhere,
the function Sf is in BMO, and the BMO norm of Sf is controlled by the
L∞ norm (respectively the BMO norm) of f . We shall give only the proof
in the case f ∈ BMO. The case f ∈ L∞ is easier and we leave the details to
the reader. We start with a technical lemma.

Lemma 1.10. Let C be a positive constant and let I1 and I2 be two
intervals such that if J is the smallest interval that contains both then |J | ≤
C|Ii|, i = 1, 2. Then given a function f ∈ BMO we have

|fI1 − fI2 | ≤ 2C‖f‖BMO.

Proof. It is clear that |fI1 − fI2 | ≤ |fI1 − fJ |+ |fJ − fI2 |. Now

|fI1 − fJ | ≤
C

|J |
�

J

|f − fJ | ≤ C‖f‖BMO.

The other term is handled in the same way.
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Corollary 1.11. Let f be a BMO function, x0 ∈ R, h > 0, i an integer
such that 2i ≤ h < 2i+1, j any integer greater than i, and I = (x0, x0 + h).
Then (

1
2j

x0+2j+1�

x0+2j

|f(y)− fI |2 dy
)1/2

≤ C(j − i+ 1)‖f‖BMO.

Proof. For any integer l between i and j we denote by Il the interval
(x0 + 2l, x0 + 2l+1). Then
(

1
2j

x0+2j+1�

x0+2j

|f(y)− fI |2 dy
)1/2

≤
(

1
2j

x0+2j+1�

x0+2j

|f(y)− fIj |2 dy
)1/2

+
j∑

l=i+1

(|fIl − fIl−1 |+ |fIi+1 − fI |).

By John–Nirenberg,
(

1
2j

x0+2j+1�

x0+2j

|f(y)− fIj |2 dy
)1/2

≤ C‖f‖BMO,

and by the preceding lemma, each of the other terms is dominated by
4‖f‖BMO.

Theorem 1.12. Let f be a BMO function such that Sf(x) < ∞ a.e.
Then Sf ∈ BMO and there exists C so that

‖Sf‖BMO ≤ C‖f‖BMO.

Proof. Fix x0 and h > 0. Consider the interval I = (x0, x0 + h) and the
average fI = (1/h)

�
I
f . Since Sf(x) is finite a.e., it is enough to prove that

there exists a positive constant C so that

1
h

x0+h�

x0

|Sf(x)− S((f(·)− fI)χ(x0+8h,∞)(·))(x0)| dx ≤ C‖f‖BMO.

We define f1 = (f − fI)χ(x0,x0+8h) and f2 = (f − fI)χ(x0+8h,∞); then
f = f1 + f2 + fI . By using the linear operator U defined in 1.1, we have

1
h

x0+h�

x0

|Sf(x)− Sf2(x0)| dx =
1
h

x0+h�

x0

∣∣‖Uf(x)‖`2 − ‖Uf2(x0)‖`2
∣∣ dx

≤ 1
h

x0+h�

x0

‖Uf(x)− Uf2(x0)‖`2 dx

=
1
h

x0+h�

x0

‖Uf1(x) + Uf2(x)− Uf2(x0)‖`2 dx
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≤ 1
h

x0+h�

x0

‖Uf1(x)‖`2 dx

+
1
h

x0+h�

x0

‖Uf2(x)− Uf2(x0)‖`2 dx

= B1 +B2.

The boundedness of S in L2 and the John–Nirenberg inequality imply that

B1 ≤
(

1
h

x0+h�

x0

|Sf1|2
)1/2

≤ C
(

1
h

�

R
|f1|2

)1/2

= C

(
1
h

x0+8h�

x0

|f − fI |2
)1/2

≤ C‖f‖BMO.

For B2 we just observe that if i is an integer such that 2i ≤ h < 2i+1, then
using our smoothness condition and Corollary 1.11 we have

B2 ≤
∞�

x0+8h

‖(K(x− y)−K(x0 − y))(f(y)− fI)‖`2 dy

≤
∞∑

j=i+3

( x0+2j+1�

x0+2j

‖K(x− y)−K(x0 − y)‖2`2 dy
)1/2

×
(

1
2j

x0+2j+1�

x0+2j

|f(y)− fI |2 dy
)1/2

2j/2

≤ C
∞∑

j=i+3

2i/2(j − i) 1
2j

2j/2‖f‖BMO ≤ C‖f‖BMO.

2. Weights for the operator S. We recall that the A+
p classes were

introduced by E. Sawyer [8] in the study of the one-sided Hardy–Littlewood
maximal operators

M+f(x) = sup
h>0

x+h�

x

|f |, M−f(x) = sup
h>0

x�

x−h
|f |.

He proved the following.

Theorem. If p > 1 then the inequality
�

R
M+f(x)pw(x) dx ≤ C

�

R
|f(x)|pw(x) dx

holds for all f ∈ Lp(w) if and only if w satisfies the following condition:
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(A+
p ) There exists C such that for any three points a < b < c,

(2.1)
( b�

a

w
)1/p( c�

b

w1−p′
)1/p′

≤ C(c− a) (p+ p′ = pp′).

If p = 1 then the weak type inequality
�

{x:M+f(x)>λ}
w ≤ C

λ

�
|f(x)|w(x) dx

holds for all f ∈ L1(w) if and only if

(A+
1 ) There exists C such that for almost every x,

(2.2) M−w(x) ≤ Cw(x).

Remark 2.3. It is known (see [6]) that condition A+
p is equivalent to

the following condition, called Ã∗p:

b−h�

b−2h

w
( b+h�

b

w1−p′
)p−1

≤ Chp.

Analogously in the case p = 1, condition A+
1 is equivalent to the following

condition: there exists C, which depends on the constant in (2.2), so that
for almost every b, if I = (a, b) then

�

I

w ≤ C|I| inf{w(x) : x ∈ (b, 2b− a)}.

Of course there are similar results for the operator M− reversing the
orientation of R. Since it is easy to see that any increasing function satisfies
A+

1 , it is obvious that the A+
p classes are different from the Muckenhoupt

Ap classes. It also follows that the A+
p weights do not satisfy the doubling

condition nor the reverse Hölder inequality. Nevertheless there are nice sub-
stitutes for the doubling condition and the reverse Hölder inequality. Sawyer
[8] proves that if w ∈ A+

1 , then wr ∈ A+
1 for some r > 1, and that w ∈ A+

p

for some p > 1 implies w ∈ A+
s for some 1 < s < p. On the other hand it is

easy to see that any A+
p weight w satisfies the following one-sided doubling

condition:

There exists C such that if I = (a, b) and I+ = (b, c) with b− a = c− b
then

�
I
w ≤ C

�
I+ w, which is clearly equivalent to

�
I∪I+ w ≤ C

�
I+ w for

some constant C.

In this section we shall prove Theorem A. The result does not follow
from [1] because although our operator can be considered as a one-sided
(vector-valued) singular integral, it does not satisfy the gradient condition
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nor the cancellation conditions assumed in that article. Our main tool will
be the following extrapolation theorem of Maćıas and Riveros [5]:

Theorem (Extrapolation). Let T be a sublinear operator with the fol-
lowing property : For every w such that w−1 ∈ A−1 there exists a constant
C(w), which may depend on w, such that

‖wχ[x−h,x]‖∞
1
h

x+h�

x

(
|Tf |(y)− 1

h

x+2h�

x+h

|Tf |
)+

dy ≤ C(w)‖fw‖∞

for every h > 0, x ∈ R. Let 1 < p <∞ and w ∈ A+
p . Then

�
|Tf |pw ≤ C

�
|f |pw

provided the left hand side is finite.

Here is the estimate we get for the operator S.

Theorem 2.4. Assume that w is such that w−1 ∈ A−1 . Then there exists
a constant C(w), which may depend on w, such that for every h > 0 and
x0 ∈ R,

‖wχ[x0−h,x0]‖∞
1
h

x0+h�

x0

|Sf(x)− S(fχ(x0+8h,∞))(x0)| dx ≤ C(w)‖fw‖∞.

Proof. Given a function f we define f1 = fχ(x0,x0+8h), f2 = fχ(x0+8h,∞).
Then by using the linear operator introduced in Definition 1.1, we have

1
h

x0+h�

x0

|Sf(x)− Sf2(x0)| dx =
1
h

x0+h�

x0

∣∣‖Uf(x)‖`2 − ‖Uf2(x0)‖`2
∣∣ dx

≤ 1
h

x0+h�

x0

‖Uf(x)− Uf2(x0)‖`2 dx

≤ 1
h

x0+h�

x0

‖Uf1(x)‖`2 dx

+
1
h

x0+h�

x0

‖Uf2(x)− Uf2(x0)‖`2 dx

= B1 +B2.

We choose t > 1 sufficiently close to 1 such that:

(i) (w−1)t ∈ A−1 ,
(ii) there exists s in the range 2 < s <∞ such that 1/2 + 1/s+ 1/t = 1.
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Observe that in this case 1/s + 1/t = 1/2. Then as the operator S is
bounded in Lp(R) for every p in the range 1 < p <∞, we have

B1 ≤
(

1
h

x0+h�

x0

‖U(f1)(x)‖t`2 dx
)1/t

=
(

1
h

x0+h�

x0

|Sf1|t
)1/t

≤ C
(

1
h

x0+8h�

x0

|f |t dx
)1/t

≤ C‖fw‖∞
(

1
h

x0+8h�

x0

(w−1(x))t dx
)1/t

.

Since w−t ∈ A−1 we have

‖wχ(x0−h,x0)‖∞B1 ≤ ‖fw‖∞‖wχ(x0−h,x0)‖∞
(

1
h

x0+8h�

x0

(w−1)t
)1/t

≤ C.

In order to bound B2, we consider an integer i such that 2i ≤ h < 2i+1.
If we use Hölder’s inequality and our smoothness condition, we get

‖Uf2(x)− Uf2(x0)‖`2

≤
∞�

x0+8h

‖K(x− y)−K(x0 − y)‖`2 |f(y)| dy

≤
∞∑

j=i+3

( x0+2j+1�

x0+2j

‖K(x− y)−K(x0 − y)‖2`2 dy
)1/2

×
( x0+2j+1�

x0+2j

w−t
)1/t( x0+2j+1�

x0+2j

fsws
)1/s

≤ C‖fw‖∞
∑

j>i+3

2i/22−j2j/s
( x0+2j+1�

x0

w−t
)1/t

.

Therefore as t was chosen in such a way that w−t ∈ A−1 and 1/s+1/t = 1/2,
we have

‖wχ(x0−h,x0)‖∞B2 ≤ C‖fw‖∞
∑

j>i+3

2i/22−j2j/s2j/t

≤ C‖fw‖∞
∑

j>i+3

2i/22−j/2 ≤ C‖fw‖∞.

In order to check that the hypotheses of the extrapolation theorem are
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satisfied, we just look at the following inequalities:

1
h

x+h�

x

(
Sf(y)− 1

h

x+2h�

x+h

Sf

)+

dy ≤ 1
h

x+h�

x

|Sf(y)− S(fχ(x+8h,∞))(x)| dy

+
1
h

x+2h�

x+h

|Sf(y)− S(fχ(x+8h,∞))(x))| dy

≤ C 1
h

x+2h�

x

|Sf(y)− S(fχ(x+8h,∞))(x))| dy.

Therefore S maps Lp(w) into itself if w ∈ A+
p , provided p > 1.

For the case p = 1 we obtain weak type. The proof will use the following
lemma:

Lemma 2.5. Let a be a function supported on I = (x∗, x∗+h) such that�
I
a(y) dy = 0. For any w ∈ A+

1 there exists C depending only on w so that
�

y<x∗−2h

Sa(y)w(y) dy ≤ C
�

I

|a(y)|w(y) dy.

Proof. It is enough to prove the following

Claim. Let a be a function supported on I = (x∗, x∗ + 2i) such that�
I
a(y) dy = 0. For any w ∈ A+

1 there exists C depending only on w so that
�

y<x∗−2i

Sa(y)w(y) dy ≤ C
�

I

|a(y)|w(y) dy.

Observe that if the claim is true, given h we choose i such that 2i−1 ≤
h < 2i; then

�
y<x∗−2i a(y) dy = 0 and {y < x∗ − 2h} ⊂ {y < x∗ − 2i}.

Now we shall prove the claim. For k = 0, 1, 2 . . . let xk = x∗−2k+i. Then

�

y<x∗−2i

Sa(y)w(y) dy =
∞∑

k=1

xk−1�

xk

Sa(y)w(y) dy.

Now if x ∈ Ik = [xk, xk−1] and j > k + i then

Aja(x) =
1
2j

x+2j�

x

a(y) dy =
1
2j

x+2j�

x∗
a(y) dy =

1
2j

�

I

a(y) dy = 0,

because x + 2j ≥ x∗ − 2k+i + 2k+i+1 ≥ x∗ + 2i. But if j < k + i then
x+ 2j ≤ x∗ − 2k+i−1 + 2k+i−1 < x∗ and again Aja(x) = 0. If j = k+ i and
xk + 2i < x then x+ 2j ≥ x∗− 2k+i + 2i + 2k+i = x∗+ 2i, and Aj(x) = 0. In
other words, on each Ik, Sf is zero except on the subinterval (xk, xk + 2i),
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and on that interval it is less than or equal to (C/2k+i)
�
|a(y)| dy. Now

�

y<x∗−2i

Sa(y)w(y) dy ≤ C
∞∑

k=1

1
2k+i

xk+2i�

xk

w(y)
�

I

|a(z)| dz dy.

If, for each k, we use the fact that wr ∈ A+
1 for some r > 1, we may write

xk+2i�

xk

w(y)
�

I

|a(z)| dz dy ≤
( xk+2i�

xk

w(y)r dy
)1/r

2i/r
′ �

I

|a(z)| dz

≤
( x∗�

xk

w(y)r dy
)1/r

2i/r
′ �
|a(z)| dz

≤ C2i/r
′
2(k+i)/r

�

I

|a(z)|w(z) dz,

where the constant C depends only on w. If we sum over k we have

�

y<x∗−2i

Sa(y)w(y) dy ≤
∞∑

k=1

C
1

2k+i 2(k+i)/r2i/r
′ �

I

|a(y)|w(y) dy

≤ C
�

I

|a(y)|w(y) dy.

Theorem 2.6. Let w ∈ A+
1 . Then there exists C, depending only on w,

so that for any λ > 0,
�

{x:Sf(x)>λ}
w(x) dx ≤ C

λ

�
|f(x)|w(x) dx.

Proof. Let Oλ = {x : M+f(x) > λ}. It is well known [8] that if Ii are the
connected components of Oλ, then λ = (1/|Ii|)

�
Ii
f = fIi . We decompose f

as
f = fχR\Oλ +

∑
fIiχIi +

∑
(f − fIi)χIi .

As usual fχR\Oλ +
∑
fIiχIi will be denoted by g, and

∑
(f−fIi)χIi =

∑
bi

by b. Observe that each bi has support on Ii and average zero. Now,
�

R
|g(y)|w(y) dy ≤

�

R\Oλ
|f(y)|w(y) dy +

∑
w(Ii)fIi

=
�

R\Oλ
|f(y)|w(y) dy + λ

∑
w(Ii) =

�

R\Oλ
|f(y)|w(y) dy + λw(Oλ)

≤ C
�
|f |w,

because the operator M+f is of weak type (1, 1) with respect to w.
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For each interval I = (b, c), denote by 2I the interval (b − 2c, c). We
also denote by Õλ the union of all the intervals 2Ii, Ii being the connected
components of Oλ. The one-sided doubling property of the weight (see the
comments at the beginning of Section 2) gives

w(Õλ) = w
(⋃

i

2Ii
)
≤ Cw(Oλ) ≤ C

λ

�
|f(y)|w(y) dy.

Observe that

w{x : Sf(x) > λ} ≤ w{x : Sg(x) > λ/2}+ w(Õλ)

+ w{x 6∈ Õλ : Sb(x) > λ/2}.
The second term is already known to be bounded by (C/λ)

�
|f(x)|w(x) dx.

Since S is a bounded operator in L2(w), and condition A+
1 implies condition

A+
p for any p > 1, we have

w{x : Sg(x) > λ/2} ≤ C

λ2

�
(Sg(y))2w(y) dy ≤ C

λ2

�
|g(y)|2w(y) dy

≤ C

λ

�
|g(y)|w(y) dy ≤ C

λ

�
|f(y)|w(y) dy.

In the last two inequalities we have used |g| ≤ λ and
�
|g|w ≤ C

�
|f |w.

Finally for the third term by using the preceding lemma and the one-sided
nature of the operator S, we have

w{x 6∈ Õλ : Sb(x) > λ/2} ≤ C

λ

�

R\Õλ

Sb(x)w(x) dx

≤ C

λ

∑

j

�

R\2Ii
Sbi(x)w(x) dx

≤
∑

i

�

Ii

|bi(x)|w(x) dx.

But since the Ii’s are disjoint and b(x) = bi(x) on each Ii, the last term is
bounded by

�
|b(x)|w(x) dx =

�
|f(x)− g(x)|w(x) dx ≤ C

�
|f(x)|w(x) dx.

Now we shall prove the converses of the last theorems.

Theorem 2.7. Assume that for some p ≥ 1 there exists a constant Cp
so that �

{x:Sf(x)>λ}
w ≤ Cp

λp

�
|f |pw.

Then w satisfies condition A+
p , and the constant in the condition depends

only on the constant Cp.
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Proof. We shall prove that the weight w satisfies condition Ã+
p (see Re-

mark 2.3). Let p > 1. Let i be an integer such that 2i < h < 2i+1. Let
f = w1−p′χ(b,b+h). If x ∈ (b − 2h, b − h) then Aif(x) = 0 and Ai+3f(x) =

(1/2i+3)
� b+h
b

w1−p′ . If we choose λ = (1/2i+3)
� b+h
b

w1−p′ , we have

λ = Ai+3f(x) ≤ |Ai+3f(x)− Ai+2f(x)|+ |Ai+2f(x)− Ai+1f(x)|
+ |Ai+1f(x)−Aif(x)|

≤ CSf(x).

This means that (b− 2h, b− h) ⊂ {x : Sf(x) > λ}, and then
b−h�

b−2h

w ≤ Chp
( b+h�

b

w1−p′
)1−p

,

which is Ã+
p . We have thus proved that for p > 1 the operator S is bounded

on Lp(w) if and only if w satisfies A+
p . If p = 1 and b is a Lebesgue point

for w, we consider the interval (b, b + 2i) and f = χ(b,b+h), where h < 2i.
It is clear that if x ∈ (b − 2i+1, b − 2i) then Aif(x) = 0, while Ai+2f(x) =
(1/2i+2)h. It follows that Sf(x) > Ch/2i, and so (b − 2i+1, b − 2i) ⊂ {x :
Sf(x) > h/2i}. Therefore

w(b− 2i+1, b− 2i) ≤ C 2i

h

b+h�

b

w.

It follows that
1
2i
w(b− 2i+1, b− 2i) ≤ Cw(b).

If now I = (a, b) is any interval of length 2j we define x0 = a and for k ≥ 1,
xk = (xk−1 + b)/2. We may then write

�

I

w =
∑ xk+1�

xk

w ≤ Cw(b)
∑

(xk+1 − xk) = Cw(b)(b− a),

which is A+
1 .

Remark 2.8. It is easy to see that the same methods prove that the
operator S1 defined in the introduction maps Lp(w) into itself if and only
if the weight w satisfies condition A+

p , but restricted to intervals of length
less than one.

3. The action of the one-sided maximal operator on BMO func-
tions. It is easy to prove that for certain functions f in BMO the maximal
operator M+f is infinite at every point. Take for example f(x) = log+ x. In
fact results similar to Propositions 1.8 and 1.9 can be proved in this case;
we leave the details to the reader.



One-sided discrete square function 259

On the other hand it is extremely easy to prove that if a function f is in
BMO and M+f(x) < ∞ for a.e. x then M+f ∈ BMO. This fact is parallel
to the corresponding result for the Hardy–Littlewood maximal operator in
[2], but it does not follow from the fact that M+f(x) ≤ Mf(x), because
g ∈ BMO and 0 ≤ f ≤ g do not imply f ∈ BMO. We need the following
lemma, whose detailed and easy proof is left to the reader.

Lemma 3.9. Let I = (x0, x0 + h), k > h. Then

x0+k+h�

x0+k

|f(x)− fI | dx ≤ Ck‖f‖BMO.

Theorem 3.10. If f ∈ BMO then either M+f(x) = ∞ for a.e. x or
M+f(x) <∞ for a.e. x. In the second case M+f ∈ BMO and ‖M+f‖BMO

≤ C‖f‖BMO.

Proof. Fix x0 and h > 0. Let I = (x0, x0 + h). We decompose f as f =
f1 + f2, where f1(x) = (f(x)− fI)χ(x0,x0+2h)(x) and f2(x) = f(x)− f1(x).
Since M+f(x) and M+f2(x0) are finite, we may write

1
h

x0+h�

x0

|M+f(x)−M+f2(x0)| dx

≤ 1
h

�

I

M+f1(x) dx+
1
h

�

I

sup
k>0

∣∣∣∣
1
k

x+k�

x

f2(y) dy − 1
k

x0+k�

x0

f2(y) dy
∣∣∣∣dx

= B1 +B2.

If we use Hölder’s inequality, the fact that the operator M+ is bounded in
Lp for any p > 1, and the John–Nirenberg theorem, we get B1 ≤ C‖f‖BMO.

Now we shall analyze B2. Due to the one-sided nature of the operator
M+, we can substitute f2 by g2(x) = (f(x) − fI)χ(x0+2h,∞)(x). Now for
each k > 0 it is clear that

1
k

x+k�

x

g2(y) dy −
x0+k�

x0

g2(y) dy

is 0 unless k > h and in this case

1
k

∣∣∣∣
x+k�

x

g2 −
x0+k�

x0

g2

∣∣∣∣ ≤
1
k

x0+h+k�

x0+k

|g2(y)| dy.

But since g2(y) = (f(y)− fI)χ(x0+2h,∞)(y), the last lemma tells us that

B2 ≤ C‖f‖BMO.
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