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On solvability of the cohomology equation
in function spaces

by

RYOTARO SATO (Okayama)

Abstract. Let T be an endomorphism of a probability measure space (2,4, u),
and f be a real-valued measurable function on {2. We consider the cohomology equation
f =hoT — h. Conditions for the existence of real-valued measurable solutions % in some
function spaces are deduced. The results obtained generalize and improve a recent result
of Alonso, Hong and Obaya.

1. Introduction. Let ({2,.4,u) be a probability measure space and
T : 2 — 2 be an endomorphism of (£2, A, i1). Thus, if A € Athen T !4 € A
and (T *A) = u(A). T is called an automorphism of (£2, A, ) if T is one-
to-one and onto, and T~! is again an endomorphism of (§2, A, u). If there
does not exist a set A in A with T"'A = A and 0 < pu(A) < 1, then T is
called ergodic. Let f be a real-valued measurable function on {2. Then we
define

<.
|
—_

Sof(w)=0 and S;f(w)= f(T*w) forj>1,
0

so that the cocycle identity Sjixf(w) = S;f(w) 4+ Sk f(T?w) holds for each
j,k > 0. The function f is called a coboundary cocycle if there exists a
real-valued measurable function & on {2 such that

fw)=h(Tw) — h(w) for p-ae. w e .
In this case we have
Sif(w) =hTIw) — h(w) for p-ae. we 2

T

for all j > 1.
Recently Alonso, Hong and Obaya [1] considered the case where T' is an
ergodic automorphism and f is a function in L,(§2,u) with 0 < r < oo.
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They proved that if
1 n
lim inf - e
iminf > || dpu < o0
j=1A
for some A € A with pu(A) > 0, then there exists a function h in L, ({2, 1)
such that
fw)=h(Tw) — h(w) for p-ae. w e .

For related results we refer the reader to [2] and [11]. In the present
paper we intend to generalize and improve the result of [1]. We prove in
Section 3 that if T is an ergodic endomorphism, and ¢ : R — [0, c0) is a
Borel measurable function on the real line R such that lim ;| ¢(z) = oo,

then the condition
n

el

lim inf ~ ;imww dp < 00
for some A € A with u(A) > 0 implies the existence of a real-valued measur-
able function h on {2 such that f(w) = h(Tw) — h(w) for p-a.e. w € 2. If the
function ¢ satisfies the additional hypotheses that sup{¢(x) : |z| < N} < o0
for every N > 1 and lim supjy| .o, (2 +a)/p(x) < oo for every a € R, then
§o@(h(w))du < oco. Secondly we consider a Banach lattice (L, | - ||z) of
equivalence classes of real-valued measurable functions on 2. Under suit-
able conditions on L, we prove that if T is an ergodic endomorphism, and
there exists a set A in A with p(A) > 0 such that (S;f)xa € L for j > 1
and

1 n
liminf — S |(S;
it - 1(Sjf)xallL < oo,

then f € L and f = hoT — h for some h in L. This extends a recent result
of [13]. We note that Orlicz spaces and Lorentz spaces are typical examples
of such Banach lattices (see e.g. [8], [9]). In the next section we prove some
auxiliary results.

2. Preliminaries. Let (£2, A, ), T and f be as in the introduction.
Let 0D be the boundary of the open unit disc D in the complex plane, i.e.,
0D = {e"® : 0 < x < 27}, and B(0D) be the o-field of all Borel subsets of
0D. Denote by dx the Lebesgue measure on dD. We consider the product
measure space

(2x0D,A® B(0D), p ® dz).
For s € R, define an endomorphism 75 of (2 x 0D, A® B(0D), u ® dz) by

To(w, €)= (Tw, e™e w517 W)),
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Since the function g(w, e'®) = €' is integrable on (2x0D, ARB(OD), p@dx)
and since 77 (w, %) = (T9w, e~ /(W) for each j > 1, it follows from the
Birkhoff ergodic theorem that the limit

1< .
lim — ezxefszjf(w)
j:

exists for p ® dr-a.e. (w,e™) € £2x OD. Then by Fubini’s theorem the limit
1 n
: - —i8S; f(w)
o Jm 2 e
]:

exists for p-a.e. w € 2. We now define

1 e
(2) H(w,s) = { Jm > e 5/ if the limit exists,
) - n—oon,
7j=1
2 otherwise.

Then H(w,s) is a real-valued measurable function on 2 x R with respect
to the o-field A ® B(R), where B(R) denotes the o-field of all Borel subsets
of R. Since

e~ 1891 f(w) o—isS; f(Tw) _ —isSjt1f(w)

by the cocycle identity, it then follows that
(3) H(Tw,s) = e @ H(w, s)  whenever H(w,s) # 2.
On the other hand, Fubini’s theorem shows that the set
(4) O ={weN:Hw,s)#2 for ds-ae. s R}
is in A. Furthermore,
(5) p(21) =1 and T 10 = 0.

Now, fix w € §2;. As a function of s € R, H(w,s) is the ds-a.e. limit

of the continuous positive definite functions (1/n) > _7_, exp(—isS; f(w)), so
there is a nonnegative finite Borel measure p,, on R such that

(6) H(w,s) = Sem duy(t) for ds-a.e. s € R
R

(cf. e.g. §32 and §33 of [7]). (This argument is due to Helson [5].) By (3) and
the continuity of the mapping R 3 s — {; et dp,,(t), we see that

Seis(Slf(w)—&-t) dﬂw(t) _ eisslf(w) S eist dﬂw(t) — Seist dMTw(t)
R R R
for all s € R. Therefore

(1) prw(E) = po(E—Si1f(w)) forevery w € 21 and E € B(R).
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Next, let N > 1. For w € {2 we put

(8) gn(w) = limsup — Zx _nN (S5 f (W),
9) goolw) = lim gn(w).

Clearly, goo is measurable on ({2, A, p). Since |S;f(Tw) — Sjt1f(w)| =
|f(w)] < 0o, we observe that goo(w) > 0 if and only if goo(Tw) > 0. Conse-
quently, the set
(10) P={weN:go(w)>0}Nn
belongs to A, and T7'P = P.

Suppose w € §2;. Since pu, = 0 is equivalent to

(11) Sﬁ(t) dp,(t) =0  for every v € Ly1(R, ds),
R
and since
J0(t) dpo(t) = § §u(s)e™™" ds dpuu(t)
R RR
= S (v et dpy, (t )> ds  (by Fubini’s theorem)
R
= Sv VH (w, —s) ds (by (6))
R

it follows that u, = 0 is equivalent to

n

.1 -
(12) nh_)]rr;o - Z;U(—ij(w)) =0 for every v € L1(R,ds),
J:
which is clearly equivalent to goo(w) = 0. Thus
(13) P={we:pu, >0}

The above argument shows that the function P 3 w — pu,(R) is measurable
with respect to the o-field A, and so is the function

hw) = sup{t € R : i ((—00,1]) < pu(R)/2}  (w € P).
The relation h(Tw) = f(w) + h(w) holds for every w € P, by (7).
We similarly see that the set

(14) Pi={weP: pu(R) =1}
belongs to A, and T~1P, = P, by (7).
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Lastly, let A € A be such that A C 2y, T™'A = A, and there exists a
real-valued measurable function h4 on A satisfying

f(w) =ha(Tw) — ha(w) for every w € A.

If we put
AN:{WEA"hA( )‘<N} (NZl),

gn(w) = limsup — ZXAN Tiw) (weA),

n—oo M
7j=1

then the set N
A:{weA:]\}im gn(w) =1}
satisfies u(A) = u(A) and T~ A = A, by the Birkhoff ergodic theorem.
Suppose w € A. If N > |ha(w)|, then
[Sif (W) = [ha(T’w) = ha(w)| < [ha(T’w)| + N,
so that T'w € Ay implies |S; f(w)| < 2N, and hence

_ZXAN (T7w) ZX —an2n] (S f (w))-
On the other hand7

. 1 & A
15t — 1 _ —i85; f(w) _
Se dpi, (1) nh_}rrgo - Z e "5 for ds-a.e. s € R
R 7j=1
by (2) and (6), since w € A C A C §2;. Therefore we find that for ds-a.e.
s € R with s =0/2N and 0 < 0 < /4,

‘S ZStd,u — lim _‘Ze—ZSwa)}
R

n—oo N

> cost (hmsup > axan (53 ) ~ (1~ v (o)
n—oo
J=1
> cost - gn(w) — (1 — gn(w)).
Since gy(w) — 1 as N — oo and cosf — 1 as § — 0+ 0, we must have
py(R) > 1. But this implies p,(R) = 1, because p,(R) < 1 is a direct
consequence of (6) and the fact that |H(w,s)| < 1 for ds-a.e. s € R. We
have proved that A C P;.
We can summarize the above as follows.

FAacT 1 (cf. Theorem 3 of [5]). Let T be an endomorphism and f be a
real-valued measurable function on §2. Then the following hold:
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(I) The set P = {w € 1 : u,(R) = 1} is a T-invariant measurable
subset of (2, and there exists a real-valued measurable function h on P; such
that f(w) = h(Tw) — h(w) for every w € P;.

(I1) py =0 for p-a.e. w € 2\ Py.

(ITI) If A is a T-invariant measurable subset of §2 for which there exists
a real-valued measurable function hy on A such that f(w) = ha(Tw)—ha(w)
for every w € A, then A C Py (mod p), i.e., u(A\ P1) =0.

Fact 2. Assume that T is an ergodic endomorphism. Then there exists
a real-valued measurable function h on §2 such that f(w) = h(Tw) — h(w)
for p-a.e. w € 2 if and only if p({w : goo(w) > 0}) > 0.

Next we consider the probability measure space

dx
15 K =2 xR B(R _
( ) ( R,AR,,U]R) < X ’A® ( )’M®7T(1+372)>7
and the null-preserving transformation ¥ of (Kg, Ag, ur) defined by
(16) Hw,z) = (Tw,z+ S1f(w)) for (w,x) € K.

It follows that ¥/ (w,z) = (TVw,z + S; f(w)) for j > 0.

Let M : [0, 00) — [0, 00) be an increasing function such that lim,_. M (z)
= o0 and there exist constants k > 0 and x¢ > 0 satisfying
(17) M(2z) < kEM(x) for z > xo.

(See [9] for the properties of functions satisfying (17).)
Suppose h is a real-valued measurable function on {2 such that f(w) =
h(Tw) — h(w) for p-a.e. w € £2. Then define a function wy, on Kg by
1+ 22
1+ (z— h(w))?
It follows that SKR wpdur = 1, and thus we can define a ug-equivalent
probability measure A, on (Kg, Ar) by

(19) )\h = Wk, dﬂR-

(18) wp(w, x) =

for (w,z) € Kg.

We will prove that A is invariant with respect to 9. To do this it may
be assumed from the start that f(w) = h(Tw) — h(w) for every w € 2. For
A€ Aand a,8 € R with a < 3, we introduce a set E in Ag by

E={(w,z):weA h(w)+a<z<h(w)+ 5}
Then
VB = {(w,z): (Tw,z+ f(w)) € E}
= {(w, ) rweTA WTw) +a <z + fw) < h(Tw) + 8}
= {(w,z):weT A h(w)+a <z < hw)+ 6},
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and thus the definition of Ay, yields
(20) MO TIE) = M\(B),

since T is an endomorphism of (£2, A, u). It follows from a standard approx-
imation argument that A is invariant with respect to .
On the other hand, an elementary calculation shows that

1+ 22 2
21 —= <24t f teR
(21) @@= - °" or Tt e R,
whence
(22) 0 <wp(w,z) <2+ h*w) forall (w,z) € Kg.

Therefore, if h is a function in L (§2, 1), then wy, is a function in Lo (KR, ugr)
such that ||wp|leo < 2+ ||h]2.

Next, assume that h € Ly(§2, 1), where Ly (§2, 1) denotes the space of
all real-valued measurable functions u on (§2, 4, ) such that

| M (Ju(w)]) dp < oc.
2
Then we have, using Fubini’s theorem,

dz
[§R wp M (ywp) dpr < ;ZM( 2+ h?(w)) <]§gwh(w,fv) m) du(w)
= | M(/2+ h2(w)) du(w) < | M2+ |h(w)]) du < o,
Q Q

where the last inequality comes from (17). Consequently, h € Ly ({2, )
implies that the function wy M (\/wy) belongs to Li(Kg, pir)-

Conversely, assume that A = wdug, where 0 < w € Li(Kg, ur), is a
ur-absolutely continuous probability measure invariant with respect to ¥.
Then we introduce a function wg on 2 by

(23) wo(w) = {w(w,2) - dx

T, (we ).
R

Fubini’s theorem implies that wp € Li(§2, 1), and thus Ap = wodu is a
p-absolutely continuous probability measure invariant with respect to T'.
Notice that if 7' is assumed to be ergodic, then wn(w) = 1 for p-a.e.
w € (2. On the other hand, if A is a ur-equivalent probability measure,
then wg(w) > 0 for p-a.e. w € 2, without assuming the ergodicity of 7.

Thus, in the following, we will assume that wo(w) > 0 for p-a.e. w € 2.
Then we can define a Borel probability measure A, on R, for p-a.e. w € £2,
by

(24) Mo(B) = —

dx
wo(w) ;

(14 22)

(B € B(R)).

w(w, x)
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To prove the existence of a real-valued measurable function h on {2 such
that f(w) = h(Tw) — h(w) for p-a.e. w € 2, we must assume below that T is
an automorphism. By this assumption, both ¥ and ¥~! are null-preserving
transformations of (Kg, Ag, ur); and if A € A and B € B(R), then

MA x B) = | \(B)wg(w) du(w),
A

and
AW(Ax B)) = | M\(B+ f(T7'w))wo(w) du(w)
TA

= | A\ (B + f(w))wo(w) du(w),
A

where the last equality comes from the invariance of the measure A =
wq dp with respect to T. Since M(A x B) = A(J(A x B)), it follows that
Ao(B) = Arw(B + f(w)) for p-a.e. w € £2, and since B(R) is separable, this
shows that A\, (B) = Ar,(B + f(w)) for all B € B(R) and for u-a.e. w € §2.
Consequently, the function

(25) h(w) =sup{t € R: A\,((—00,t]) =1/2} (we N)

satisfies h(Tw) = h(w) + f(w) for p-a.e. w € §2, and is measurable with
respect to A by an easy approximation argument.

Now, assume that w = d\/dur € Loo(KR, pr). Since A is invariant with
respect to ¥ by hypothesis, it follows that the set

(26) E), ={(w,z) € Kg : w(w,x) > 0}

satisfies 9"'Ey\ = E) (modpgr). On the other hand, the measure )\, =
wy, dug is also invariant with respect to ¥ (cf. (18)—(20)). Thus it follows from
the Neveu—Chacon identification theorem (see e.g. Theorem 3.3.4 of [10]) for
the Chacon—Ornstein ratio ergodic limit that the function w/wy, is measur-
able with respect to the o-field

(27) Tp={AcAp : 9 'A= A (mod pg)}.

Thus there exists a real-valued positive function G on E), measurable with
respect to Zg, such that

(28) wp, =G -w (mod ug) on E).
Since G o ¥ = G (mod ur) on E), it follows that for ugr-a.e. (w,z) € Ej,

sup{wy, (¥ (w, x)) : 7 > 0} = G(w, z) - sup{w (¥ (w,z)) : j > 0}
< Glw,2) - 0]l
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The definition of wy, (cf. (18)) implies that for ug-a.e. (w,z) € Kg,
wy (¥ (w, ) = wp(TVw,  + S; f(w)) = wp(T?w, x + (T w) — h(w))
14 (24 MTIw) — h(w))?
14 (z — h(w))?

Hence

1+ (2 + h(TVw) — h(w))?
f -a.e. E
jlzllg T+ (@~ h(@)? < oo for pg-a.e. (w,z) € E),

and therefore the function

g(w) =sup [h(T?w)| (we Q)
j=0

satisfies g(w) < oo for ug-a.e. (w,x) € E). Now, if A is a ug-equivalent
measure, then, since E\ = Kr (mod ug), it follows that g(w) < oo for p-a.e.
w € 2. If T is ergodic, and A is a ugr-absolutely continuous probability
measure, then, since ur(E)) > 0, the set {w € 2 : g(w) < 0o} is of positive
p-measure, and the ergodicity of T" implies that g(w) < oo for p-a.e. w € §2.
Thus, in either case, 0 < g(Tw) < g(w) < oo for p-a.e. w € 2. Since u is an
invariant measure with respect to 7', it then follows that g(Tw) = g(w) for
p-a.e. w € (2, and hence the sets
Ap={we:n—-1<gw)<n}, n>1,

satisfy T™1A,, = A, (mod p) and 2 = )72 A, (mod p). In particular, if T
is ergodic, then g is a constant function in Lo (§2, p).

Next, assume that the function w = dA/dug is such that wM(y/w) €
L1 (Kg, pr). Let v; denote the Radon-Nikodym derivative d(ugr o 9/)/dur,
where pig 019 denotes the measure defined by (ur o ¥/)(A4) = pur(¥’A) for
A € Ag. Since ¥ (w,z) = (T?w,x + S f(w)) for (w,z) € Kg, it is easy to
see that v; has the form

1+ 22
1+ (z+ S5 f(w))?
1+ 2?2
= . fi € Kr.
T+ @+ (i) —h@)E  [or W) € Ke

Since A = w dug is invariant with respect to 9 by hypothesis, it follows that
if A € Ag, then

Vwdpe = | wdpr ={(w- xp54) 0 d(pr 097) = {(w o ¥)v; dpg,
A I A A

vj(w,z) =

whence w = (w0 ¥/)v; (mod ug) on Kg. Therefore,
|z + W(T/w) — h(w)|
V1+ 22

w'/?(w, z) < w'? oW (w, z)
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for pp-a.e. (w,z) € Kg. Now, if C'- w'/?(w, ) > /1 + 22 for some constant
C > 1, then
|z 4+ h(TIw) — h(w)| < C - w'? o ¥ (w, z);
and by (17) there exist constants k£(C') > 0 and x; > 0 such that
M(|z + W(Tw) — h(w)]) < k(C) - M(w/? 0 99 (w, x))

whenever w!'/2 o 7 (w,x) > x1; consequently,

1 & ,
lim sup — > M(Jx + h(TIw) = h(w)])
n—oo j=1

< M(Ca1) + k(C) - lim sup % S M2 0 9w, 2))

= M(Cz1) + k(C) - B{M (w"/?) | (Kg, Ir, wdpg) }(w, z) < 0o

by the Birkhoff ergodic theorem, where E{M (w'/?)|(Kg,Zg, wdug)} de-
notes the conditional expectation of the function M (w'/?) with respect to
the o-field Zg and the measure wdugr. Since the constant C' > 0 can be
arbitrarily large, this proves that

1 ¢ :
(29) limsup - ZM(|x+h(T7w)—h(w)|) < oo for pg-ae. (w,x) € Ej.

Hence, if we define a function g on (2 by

n

g(w) = limsup 1 Z M(|MT?w)|)  for w € 12,
n—oo T =
then (29) and (17) show that g(w) < oo for ug-a.e. (w,x) € Ey. Therefore,
as before, if A is a pgr-equivalent measure, or if T is ergodic and A is a
pr-absolutely continuous probability measure, then 0 < g(Tw) = g(w) < oo
for p-a.e. w € £2; and the sets B, = {w e 2 :n—-1<g(w) < n}, n>1,
satisfy T~'B,, = B, SBn M(|h|) du = SBn gdu < oo (by the Birkhoff ergodic
theorem), and 2 = (J7; B, (modp). In particular, if T is ergodic, then
g(w) =, M(|h|)dp < oo for pra.e. w € £2.

We can summarize the above as follows.

Fact 3 (cf. Proposition 3.1 of [1]). Let M : [0,00) — [0,00) be an

increasing function such that lim, .o, M(x) = oo and there exist constants
k>0 and xo > 0 satisfying (17). Then the following hold:

(I) If T is an endomorphism and h is a real-valued measurable function
on §2 such that f(w) = h(Tw) — h(w) for p-a.e. w € 2, then the measure
Ap = wp dur in (19) is a pr-equivalent probability measure invariant with
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respect to 9. If moreover h € Loo(£2,u) then wy € Loo(Kg,ur); and if
h € Ly (82, 1) then wy, M (\/wp) € L1(KR, pir)-

(IT) If T is an automorphism and X\ = w dur, where 0 <wé€ Li(Kg, ur),
s a ur-equivalent probability measure invariant with respect to 19, then
there exists a real-valued measurable function h on §2 such that f(w) =
hMTw) — h(w) for p-a.e. w € 2. If moreover w € Loo(Kg,pr) [resp.
wM(y/w) € Li(Kg, ur)], then there exists a countable measurable decom-
position {An, : n > 1} of 2 with T-'A, = A, for n > 1 such that
hxa, € Loo($2, 1) [resp. hxa, € Lar(82, )] for every n > 1.

(IIT) If T is an ergodic automorphism and \ = wdug, where 0 < w €
Ly (KRg, pr), is a pr-absolutely continuous probability measure invariant with
respect to 9, then there exists a real-valued measurable function h on {2 such
that f(w) = h(Tw) — h(w) for p-a.e. w € Q2. If moreover w € Loo (KR, r)
[resp. wM (yJ/w) € L1 (KR, pr)], then h € Loo(£2, 1) [resp. h € Ly (2, p)].

3. Main results

THEOREM 1 (cf. Theorem 1 on p. 62 of [6]). Let ¢ : R — [0,00) be a
Borel measurable function on R such that lim,_o p(z) = co. Assume that
T is an ergodic endomorphism. If there exists a set A € A with p(A) > 0
such that

n

(30) timinf 5™ { (8 /() dp < oo,

=1 A
then there exists a real-valued measurable function h on §2 such that f(w) =
hMTw) — h(w) for p-a.e. w € 2. If , in addition, sup{p(z) : |z|] < N} < 0o
for every N > 1, and limsup,|_, ¢(* + a)/p(z) < oo for every a € R,
then §, p(h(w)) dp < co.
COROLLARY (cf. Theorem 3.2 of [1]). Let T be an ergodic endomor-
phism, and 0 <r < oco. If

1 n
lim inf & ‘ r
iminf =% 19/ (w)]" dpp < o0
j=1A
for some A € A with u(A) > 0, then there exists a real-valued measurable
function h on 2 with §, |h(w)|" dp < oo such that f(w) = h(Tw)— h(w) for
-a.e. w € §2.

Proof of Theorem 1. By Fatou’s lemma, the function

P(F)e(w) = Tminf = 3™ (S /()

Jj=1
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satisfies
n

Sgo d,u<hmmf—ZSg0(ij(w))d,u<oo,

A j=1A
whence ¢(f)«(w) < oo for p-a.e. w € A. Since lim,_ ¢(z) = oo, the
inequality ¢(f)«(w) < oo implies the existence of an N > 1 such that

gn(w) = limsup — ZX[ N (Si f(w)) >

n—oo

It follows that goo(w) = limy_ o gN(w) > 0 for p-a.e. w € A, and therefore
by Fact 2 there exists a real-valued measurable function h on {2 such that
f(w) = h(Tw) — h(w) for p-a.e. w € 2. Assume that ¢ satisfies sup{p(x) :
|z] < N} < oo for every N > 1, and limsupjg|_. (7 + a)/p(z) < oo for
every a € R. Then, since S;f(w) = h(T?w) — h(w) on £2, it follows that

liminf = S p(h(T7) = liminf (8 £(w) + h(e) < o0

i=1 =1
for p-a.e. w € A with ¢(f)«(w) < oo, so that the function

1 o :
TS y
hy(w) = hnnllo%f - Z; o(h(Tw))
]:
satisfies h.(w) < oo for p-a.e. w € A. Since h, is an invariant function with
respect to T, the Birkhoff ergodic theorem and the ergodicity of T imply
that h,(w) = §,pohdu < co for p-a.e. w € £2, and hence the desired result

has been established.

REMARK 1. If the ergodicity of T is not assumed in Theorem 1, then the
above argument shows that inequality (30) with A = (2 implies the existence
of a real-valued measurable function h on {2 such that f(w) = h(Tw) — h(w)
for pra.e. w € §2; if moreover sup{p(z) : |z| < N} < oo for every N > 1,
and lim supy,|_.o ¢(z + a)/p(z) < oo for every a € R, then there exists a
countable measurable decomposition {4, : n > 1} of 2 with T~14, = 4,
for n > 1 such that §, ¢(h(w))dp < oo for every n > 1.

From now on we consider a Banach lattice (L, ||-||1) of equivalence classes
of real-valued measurable functions on (2. Thus, two functions v and v in
L are not distinguished provided that u(w) = v(w) for p-a.e. w € 2. By
definition, the norm || - ||z has the property:

(A) If u,v € L and |u(w)| < |v(w)]| for p-a.e. w € 2, then ||ul|r < ||v] .
In this paper we assume the additional properties:

(B) If v is a real-valued measurable function on (2 and there exists a
function u € L such that |v(w)| < |u(w)]| for p-a.e. w € £2, then v € L.
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(C) If (un) is a sequence of functions in L such that |uj(w)| <
lug(w)| < ... for p-a.e. w € 2, and sup,,> ||un|| < oo, then there ex-
ists a function u € L such that |u,(w)| < Ju(w)| for p-a.e. w € 2 and all
n>1.

(D) If v is a real-valued measurable function on 2 and u € L is such

that
p{w: Jo(w)[ > a}) = p({w : [u(w)| > a})
for every 0 < a € R, then v € L and ||v||z = ||u||L-

It should be noted that, besides the usual L, ({2, u)-spaces with 1 < p
< 00, there are many interesting Banach lattices of functions which share
these additional properties (B), (C) and (D). Examples are Orlicz spaces,
Lorentz spaces, etc. By Property (D), the mapping u +— w o T is a linear
isometry of (L, || - ||z) for every endomorphism 7.

THEOREM 2 (cf. [13]). Assume that T is an ergodic endomorphism. If
there exists a set A € A with p(A) > 0 such that (Sjf)xa € L for j >1
and

1 n
31 K :=liminf — S
(31) i 23185l < oo
then there exists a function h in L such that f = hoT — h on {2.
Proof. Define

(32) fn(w) = ngl% Z 1S;f(w)| forn>1,
(33) foolw )—gggofn( )~

By Property (B) and the hypothesis (S;f)xa € L for j > 1 it follows
that f,xa € L for n > 1; and by Property (A) we have | fnxallz <
(L/m) 375 1085 f)xallr for m > n. Thus

1 m
4 " < liminf — ; =K f > 1,
(34)  [lfuxallr < limn: m;l!(sgf)XAHL or every n >
and hence

(35) fooxa €L
by Properties (C) and (B). In particular, foo(w) < oo for p-a.e. w € A, and
thus we can apply the proof of Theorem 1 with ¢(z) = |z| to infer that there
exists a real-valued measurable function h on £2 with §{, |h(w)| dp < oo such
that f(w) = h(Tw) — h(w) for p-a.e. w € 2.

To prove that h € L, we may assume below that ({2, .4, ) is nonatomic.
(Indeed, if (£2,.A, ) is atomic, then the ergodicity of T" implies that {2 is
essentially a finite set, and then h € L is obvious.) Further we may assume
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that (£2, A, ) is separable, because there is a countable family {A; : i > 1}
in A such that

(i) the measure space (§2, Ay, i), where A; denotes the o-field generated
by {4; : i > 1}, is nonatomic,
(ii) T is an ergodic endomorphism of (£2,.41, ),
(iii) f is measurable with respect to A;, and
(iv) the space L1 = {g € L : g is Aj-measurable}, with norm | - ||z, =
the restriction of the norm ||- ||z to L1, is a Banach lattice having Properties
(B)-(D) with L; and || - ||, in place of L and || - ||z, respectively.

Next, we use the isomorphism theorem for measure algebras (cf. e.g.
Theorem 41.C of [4]) to infer that there exists an isomorphism @ from the
measure algebra (A(u), ) onto the measure algebra (B([0,1]), dz), where
B([0,1]) denotes the o-field of all Borel subsets of [0, 1] and dz is the Le-
besgue measure. Thus we may assume that (£2, .4, u) = ([0, 1], B([0, 1]), dx).
Then T can be regarded as an isomorphism from (B(][0,1]),dz) into itself.
Since [0, 1] is an uncountable complete separable metric space, it then fol-
lows (see e.g. Proposition 15.19 of [12]) that T' can be considered to be an
(ergodic) endomorphism of the measure space ([0, 1], B([0, 1]), dz).

We then use the natural extension of the ergodic endomorphism 7' of

([0,1], B([0,1]), dz) (cf. e.g. §4 of Chapter 10 of [3]). That is, it is known that
there exists an ergodic automorphism T ofa separable nonatomic probability
measure space (f),fl, i), and a measure preserving transformation S from
(2, A, ) to (£2, A, p) such that
(36) (SoT)(@) = (ToS)(@) forevery & e £2.
Denote by L the space of all real-valued A-measurable functions @ on {2 to
which there corresponds a function u € L such that p({@ : |[u(®)| > a}) =
p({w : [u(w)| > a}) for every 0 < a € R, and define |[u[|; = [lu/ L. By using
Property (D) it is easy to check that if u and v are in L then @ +79 €L
and ||z +v|; < [[ul|z + [[v]]7. (In fact, by the isomorphism theorem, there
exists an isomorphism ¥ from the measure algebra (A(f), i) onto (A(g), ).
Then ¥ can be uniquely extended, in an obvious manner, to an invertible
linear operator (denoted also by ¥) from Lo({2, ) onto Lo({2, ), where
Lo(£2, 1) is the space of all real-valued measurable functions on ({2, A, i)
and, by definition, two functions u and v in LO(INZ, i) are not distinguished
provided that @() = (&) for fi-a.e. @ € £2; Lo(£2, ) is defined similarly for
(22,A,p). Then WL = L and |||z = ||, for all @ € L.) Tt follows that
(L, | - |7) is a Banach lattice having Properties (B)-(D) with L and | - 7
replaced by L and || - ||, respectively. In order to prove that h € L, it is now
sufficient to prove that ho S € L.
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Consequently, we have reached the conclusion that T' may be assumed to
be an ergodic automorphism of (£2, A, ;). With this assumption we continue
the proof as follows.

First, as is easily seen, it is enough to consider the case where p({w
f(w) # 0}) > 0. Then, since T is ergodic, we have

UT"{w w) 0} = 2 (mod p),

and thus by Property (B) there exists a set A; € A with 47 C A and
(A1) > 0 for which hxa, € L. This shows that we may assume from the
start that hys € L.

Now, since (hoT?)xa = (S;f)xa + hxa for j > 1,

1 — 1 — ,
gz 1(S;F)xallz + lhxallr > - Z [(hoT?)xallL
j=1 j=1

1 — .
= Z |h(xaoT )|l (by Property (D))

1< ,
> \|lh( — -J
_H <”ZXAOT ) L
j=1
If we let, for n > 1,
o) = it 3,

then, by the Birkhoff ergodic theorem together with the ergodicity of T,
0<di(w) <ds(w) <...— u(A)>0 for p-a.e we
Hence, pu(A)|h|(w) = limy,— o0 dn(w)|h|(w) for p-a.e. w € £2. Furthermore,

1 :
dohllL < ||h| = T
laui < | (H;XAO )

Thus, by (31), there exists a subsequence (n’) of (n) such that ||d,/h| L < K+
lhxallz + 1 for all n’. By Properties (C) and (B) it follows that u(A)h € L,
and hence the proof is complete.

1 n
’ . SIS Hxalls + Ihxallz.
L =

REMARK 2. If the ergodicity of T is not assumed in Theorem 2, then
inequality (31) with A = {2 implies the same conclusion of the theorem.

To see this, we first notice that the above proof, together with Remark 1,
shows that there exists a real-valued measurable function h on {2 such that
f(w) = W(Tw)—h(w) for p-a.e.w € 2. Since |S; f| = |hoTV—h| > |hoT7|—|h|
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for j > 1, it follows that

1 — R
gZIhIOT” < gZ‘Sﬁf‘Hh"
j=1 j=1

Therefore, the Birkhoff ergodic theorem implies that

lim _Z|h| TIw) < l1m1nf—2|5 W)+ [h(w)| < oo

n—oo N

for p-a.e. w € Q, and hence the limit

hoo(w) = lim —Zh (Tw)

n—oo n

exists and is finite for p-a.e. w € (2. Then

hm—ZSf hoo(w) — h(w)

n—oo n

for p-a.e. w € £2. Slnceh():
the function ho(w) := h(w) — heo
p-a.e. w € 2. Furthermore,

heo(Tw) for p-a.e. w € £2, it follows that
(w) satisfies f(w) = ho(Tw) — ho(w) for

1 n
< liminf — <
[ho(w)| < limin nZ!ng(w)l < o0

for p-a.e. w € §2. Since inequality (31) with A = {2 shows that the function
foo(w) = liminf,_oo(1/n) 377 [S;f(w)| belongs to L (see (35)), we get
ho € L by Property (B). This establishes the desired conclusion.
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