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On solvability of the cohomology equation
in function spaces

by

Ryotaro Sato (Okayama)

Abstract. Let T be an endomorphism of a probability measure space (Ω,A, µ),
and f be a real-valued measurable function on Ω. We consider the cohomology equation
f = h ◦ T − h. Conditions for the existence of real-valued measurable solutions h in some
function spaces are deduced. The results obtained generalize and improve a recent result
of Alonso, Hong and Obaya.

1. Introduction. Let (Ω,A, µ) be a probability measure space and
T : Ω → Ω be an endomorphism of (Ω,A, µ). Thus, if A ∈ A then T−1A ∈ A
and µ(T−1A) = µ(A). T is called an automorphism of (Ω,A, µ) if T is one-
to-one and onto, and T−1 is again an endomorphism of (Ω,A, µ). If there
does not exist a set A in A with T−1A = A and 0 < µ(A) < 1, then T is
called ergodic. Let f be a real-valued measurable function on Ω. Then we
define

S0f(ω) = 0 and Sjf(ω) =
j−1∑

k=0

f(T kω) for j ≥ 1,

so that the cocycle identity Sj+kf(ω) = Sjf(ω) + Skf(T jω) holds for each
j, k ≥ 0. The function f is called a coboundary cocycle if there exists a
real-valued measurable function h on Ω such that

f(ω) = h(Tω)− h(ω) for µ-a.e. ω ∈ Ω.
In this case we have

Sjf(ω) = h(T jω)− h(ω) for µ-a.e. ω ∈ Ω
for all j ≥ 1.

Recently Alonso, Hong and Obaya [1] considered the case where T is an
ergodic automorphism and f is a function in Lr(Ω,µ) with 0 < r < ∞.
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They proved that if

lim inf
n→∞

1
n

n∑

j=1

�

A

|Sjf |r dµ <∞

for some A ∈ A with µ(A) > 0, then there exists a function h in Lr(Ω,µ)
such that

f(ω) = h(Tω)− h(ω) for µ-a.e. ω ∈ Ω.
For related results we refer the reader to [2] and [11]. In the present

paper we intend to generalize and improve the result of [1]. We prove in
Section 3 that if T is an ergodic endomorphism, and ϕ : R → [0, ∞) is a
Borel measurable function on the real line R such that lim|x|→∞ ϕ(x) =∞,
then the condition

lim inf
n→∞

1
n

n∑

j=1

�

A

ϕ(Sjf(ω)) dµ <∞

for some A ∈ A with µ(A) > 0 implies the existence of a real-valued measur-
able function h on Ω such that f(ω) = h(Tω)−h(ω) for µ-a.e. ω ∈ Ω. If the
function ϕ satisfies the additional hypotheses that sup{ϕ(x) : |x| ≤ N} <∞
for every N ≥ 1 and lim sup|x|→∞ ϕ(x+ a)/ϕ(x) <∞ for every a ∈ R, then�
Ω ϕ(h(ω)) dµ < ∞. Secondly we consider a Banach lattice (L, ‖ · ‖L) of

equivalence classes of real-valued measurable functions on Ω. Under suit-
able conditions on L, we prove that if T is an ergodic endomorphism, and
there exists a set A in A with µ(A) > 0 such that (Sjf)χA ∈ L for j ≥ 1
and

lim inf
n→∞

1
n

n∑

j=1

‖(Sjf)χA‖L <∞,

then f ∈ L and f = h ◦ T − h for some h in L. This extends a recent result
of [13]. We note that Orlicz spaces and Lorentz spaces are typical examples
of such Banach lattices (see e.g. [8], [9]). In the next section we prove some
auxiliary results.

2. Preliminaries. Let (Ω,A, µ), T and f be as in the introduction.
Let ∂D be the boundary of the open unit disc D in the complex plane, i.e.,
∂D = {eix : 0 ≤ x < 2π}, and B(∂D) be the σ-field of all Borel subsets of
∂D. Denote by dx the Lebesgue measure on ∂D. We consider the product
measure space

(Ω × ∂D,A⊗ B(∂D), µ⊗ dx).

For s ∈ R, define an endomorphism τs of (Ω × ∂D,A⊗ B(∂D), µ⊗ dx) by

τs(ω, eix) = (Tω, eixe−isS1f(ω)).
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Since the function g(ω, eix) = eix is integrable on (Ω×∂D,A⊗B(∂D), µ⊗dx)
and since τ js (ω, eix) = (T jω, eixe−isSjf(ω)) for each j ≥ 1, it follows from the
Birkhoff ergodic theorem that the limit

lim
n→∞

1
n

n∑

j=1

eixe−isSjf(ω)

exists for µ⊗ dx-a.e. (ω, eix) ∈ Ω× ∂D. Then by Fubini’s theorem the limit

lim
n→∞

1
n

n∑

j=1

e−isSjf(ω)(1)

exists for µ-a.e. ω ∈ Ω. We now define

H(ω, s) =





lim
n→∞

1
n

n∑

j=1

e−isSjf(ω) if the limit exists,

2 otherwise.

(2)

Then H(ω, s) is a real-valued measurable function on Ω × R with respect
to the σ-field A⊗B(R), where B(R) denotes the σ-field of all Borel subsets
of R. Since

e−isS1f(ω)e−isSjf(Tω) = e−isSj+1f(ω)

by the cocycle identity, it then follows that

H(Tω, s) = eisS1f(ω)H(ω, s) whenever H(ω, s) 6= 2.(3)

On the other hand, Fubini’s theorem shows that the set

Ω1 = {ω ∈ Ω : H(ω, s) 6= 2 for ds-a.e. s ∈ R}(4)

is in A. Furthermore,

µ(Ω1) = 1 and T−1Ω1 = Ω1.(5)

Now, fix ω ∈ Ω1. As a function of s ∈ R, H(ω, s) is the ds-a.e. limit
of the continuous positive definite functions (1/n)

∑n
j=1 exp(−isSjf(ω)), so

there is a nonnegative finite Borel measure µω on R such that

H(ω, s) =
�

R
eist dµω(t) for ds-a.e. s ∈ R(6)

(cf. e.g. §32 and §33 of [7]). (This argument is due to Helson [5].) By (3) and
the continuity of the mapping R 3 s 7→

�
R e

ist dµω(t), we see that
�

R
eis(S1f(ω)+t) dµω(t) = eisS1f(ω)

�

R
eist dµω(t) =

�

R
eist dµTω(t)

for all s ∈ R. Therefore

µTω(E) = µω(E − S1f(ω)) for every ω ∈ Ω1 and E ∈ B(R).(7)
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Next, let N ≥ 1. For ω ∈ Ω we put

gN (ω) = lim sup
n→∞

1
n

n∑

j=1

χ[−N,N ](Sjf(ω)),(8)

g∞(ω) = lim
N→∞

gN (ω).(9)

Clearly, g∞ is measurable on (Ω,A, µ). Since |Sjf(Tω) − Sj+1f(ω)| =
|f(ω)| < ∞, we observe that g∞(ω) > 0 if and only if g∞(Tω) > 0. Conse-
quently, the set

P = {ω ∈ Ω : g∞(ω) > 0} ∩Ω1(10)

belongs to A, and T−1P = P .
Suppose ω ∈ Ω1. Since µω = 0 is equivalent to

�

R
v̂(t) dµω(t) = 0 for every v ∈ L1(R, ds),(11)

and since�

R
v̂(t) dµω(t) =

�

R

�

R
v(s)e−ist ds dµω(t)

=
�

R

(
v(s)

�

R
e−ist dµω(t)

)
ds (by Fubini’s theorem)

=
�

R
v(s)H(ω,−s) ds (by (6))

= lim
n→∞

1
n

n∑

j=1

v̂(−Sjf(ω)) (by (2)),

it follows that µω = 0 is equivalent to

lim
n→∞

1
n

n∑

j=1

v̂(−Sjf(ω)) = 0 for every v ∈ L1(R, ds),(12)

which is clearly equivalent to g∞(ω) = 0. Thus

P = {ω ∈ Ω1 : µω > 0}.(13)

The above argument shows that the function P 3 ω 7→ µω(R) is measurable
with respect to the σ-field A, and so is the function

h(ω) = sup{t ∈ R : µω((−∞, t]) ≤ µω(R)/2} (ω ∈ P ).

The relation h(Tω) = f(ω) + h(ω) holds for every ω ∈ P , by (7).
We similarly see that the set

P1 = {ω ∈ P : µω(R) = 1}(14)

belongs to A, and T−1P1 = P1 by (7).
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Lastly, let A ∈ A be such that A ⊂ Ω1, T−1A = A, and there exists a
real-valued measurable function hA on A satisfying

f(ω) = hA(Tω)− hA(ω) for every ω ∈ A.
If we put

AN = {ω ∈ A : |hA(ω)| ≤ N} (N ≥ 1),

g̃N (ω) = lim sup
n→∞

1
n

n∑

j=1

χAN (T jω) (ω ∈ A),

then the set
Ã = {ω ∈ A : lim

N→∞
g̃N (ω) = 1}

satisfies µ(Ã) = µ(A) and T−1Ã = Ã, by the Birkhoff ergodic theorem.
Suppose ω ∈ Ã. If N ≥ |hA(ω)|, then

|Sjf(ω)| = |hA(T jω)− hA(ω)| ≤ |hA(T jω)|+N,

so that T jω ∈ AN implies |Sjf(ω)| ≤ 2N, and hence

1
n

n∑

j=1

χAN (T jω) ≤ 1
n

n∑

j=1

χ[−2N,2N ](Sjf(ω)).

On the other hand,

�

R
eist dµω(t) = lim

n→∞
1
n

n∑

j=1

e−isSjf(ω) for ds-a.e. s ∈ R

by (2) and (6), since ω ∈ Ã ⊂ A ⊂ Ω1. Therefore we find that for ds-a.e.
s ∈ R with s = θ/2N and 0 < θ ≤ π/4,
∣∣∣

�

R
eist dµω(t)

∣∣∣ = lim
n→∞

1
n

∣∣∣
n∑

j=1

e−isSjf(ω)
∣∣∣

≥ cos θ ·
(

lim sup
n→∞

1
n

n∑

j=1

χ[−2N,2N ](Sjf(ω))
)
− (1− g̃N (ω))

≥ cos θ · g̃N (ω)− (1− g̃N (ω)).

Since g̃N (ω) → 1 as N → ∞ and cos θ → 1 as θ → 0 + 0, we must have
µω(R) ≥ 1. But this implies µω(R) = 1, because µω(R) ≤ 1 is a direct
consequence of (6) and the fact that |H(ω, s)| ≤ 1 for ds-a.e. s ∈ R. We
have proved that Ã ⊂ P1.

We can summarize the above as follows.

Fact 1 (cf. Theorem 3 of [5]). Let T be an endomorphism and f be a
real-valued measurable function on Ω. Then the following hold :
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(I) The set P1 = {ω ∈ Ω1 : µω(R) = 1} is a T -invariant measurable
subset of Ω, and there exists a real-valued measurable function h on P1 such
that f(ω) = h(Tω)− h(ω) for every ω ∈ P1.

(II) µω = 0 for µ-a.e. ω ∈ Ω \ P1.
(III) If A is a T -invariant measurable subset of Ω for which there exists

a real-valued measurable function hA on A such that f(ω) = hA(Tω)−hA(ω)
for every ω ∈ A, then A ⊂ P1 (modµ), i.e., µ(A \ P1) = 0.

Fact 2. Assume that T is an ergodic endomorphism. Then there exists
a real-valued measurable function h on Ω such that f(ω) = h(Tω) − h(ω)
for µ-a.e. ω ∈ Ω if and only if µ({ω : g∞(ω) > 0}) > 0.

Next we consider the probability measure space

(KR,AR, µR) =
(
Ω × R,A⊗ B(R), µ⊗ dx

π(1 + x2)

)
,(15)

and the null-preserving transformation ϑ of (KR,AR, µR) defined by

ϑ(ω, x) = (Tω, x+ S1f(ω)) for (ω, x) ∈ KR.(16)

It follows that ϑj(ω, x) = (T jω, x+ Sjf(ω)) for j ≥ 0.
Let M : [0,∞)→ [0,∞) be an increasing function such that limx→∞M(x)

=∞ and there exist constants k > 0 and x0 ≥ 0 satisfying

M(2x) ≤ kM(x) for x ≥ x0.(17)

(See [9] for the properties of functions satisfying (17).)
Suppose h is a real-valued measurable function on Ω such that f(ω) =

h(Tω)− h(ω) for µ-a.e. ω ∈ Ω. Then define a function wh on KR by

wh(ω, x) =
1 + x2

1 + (x− h(ω))2 for (ω, x) ∈ KR.(18)

It follows that
�
KR
wh dµR = 1, and thus we can define a µR-equivalent

probability measure λh on (KR,AR) by

λh = wh dµR.(19)

We will prove that λh is invariant with respect to ϑ. To do this it may
be assumed from the start that f(ω) = h(Tω)− h(ω) for every ω ∈ Ω. For
A ∈ A and α, β ∈ R with α < β, we introduce a set E in AR by

E = {(ω, x) : ω ∈ A, h(ω) + α ≤ x < h(ω) + β}.
Then

ϑ−1E = {(ω, x) : (Tω, x+ f(ω)) ∈ E}
= {(ω, x) : ω ∈ T−1A, h(Tω) + α ≤ x+ f(ω) < h(Tω) + β}
= {(ω, x) : ω ∈ T−1A, h(ω) + α ≤ x < h(ω) + β},
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and thus the definition of λh yields

λh(ϑ−1E) = λh(E),(20)

since T is an endomorphism of (Ω,A, µ). It follows from a standard approx-
imation argument that λh is invariant with respect to ϑ.

On the other hand, an elementary calculation shows that

1 + x2

1 + (x− t)2 < 2 + t2 for x, t ∈ R,(21)

whence
0 < wh(ω, x) < 2 + h2(ω) for all (ω, x) ∈ KR.(22)

Therefore, if h is a function in L∞(Ω,µ), then wh is a function in L∞(KR, µR)
such that ‖wh‖∞ ≤ 2 + ‖h‖2.

Next, assume that h ∈ LM (Ω,µ), where LM (Ω,µ) denotes the space of
all real-valued measurable functions u on (Ω,A, µ) such that

�

Ω

M(|u(ω)|) dµ <∞.

Then we have, using Fubini’s theorem,
�

KR

whM(
√
wh) dµR ≤

�

Ω

M(
√

2 + h2(ω))
( �

R
wh(ω, x)

dx

π(1 + x2)

)
dµ(ω)

=
�

Ω

M(
√

2 + h2(ω)) dµ(ω) ≤
�

Ω

M(2 + |h(ω)|) dµ <∞,

where the last inequality comes from (17). Consequently, h ∈ LM(Ω,µ)
implies that the function whM(

√
wh) belongs to L1(KR, µR).

Conversely, assume that λ = wdµR, where 0 ≤ w ∈ L1(KR, µR), is a
µR-absolutely continuous probability measure invariant with respect to ϑ.
Then we introduce a function wΩ on Ω by

wΩ(ω) =
�

R
w(ω, x)

dx

π(1 + x2)
(ω ∈ Ω).(23)

Fubini’s theorem implies that wΩ ∈ L1(Ω,µ), and thus λΩ = wΩ dµ is a
µ-absolutely continuous probability measure invariant with respect to T .
Notice that if T is assumed to be ergodic, then wΩ(ω) = 1 for µ-a.e.
ω ∈ Ω. On the other hand, if λ is a µR-equivalent probability measure,
then wΩ(ω) > 0 for µ-a.e. ω ∈ Ω, without assuming the ergodicity of T .

Thus, in the following, we will assume that wΩ(ω) > 0 for µ-a.e. ω ∈ Ω.
Then we can define a Borel probability measure λω on R, for µ-a.e. ω ∈ Ω,
by

λω(B) =
1

wΩ(ω)

�

B

w(ω, x)
dx

π(1 + x2)
(B ∈ B(R)).(24)
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To prove the existence of a real-valued measurable function h on Ω such
that f(ω) = h(Tω)−h(ω) for µ-a.e. ω ∈ Ω, we must assume below that T is
an automorphism. By this assumption, both ϑ and ϑ−1 are null-preserving
transformations of (KR,AR, µR); and if A ∈ A and B ∈ B(R), then

λ(A×B) =
�

A

λω(B)wΩ(ω) dµ(ω),

and

λ(ϑ(A×B)) =
�

TA

λω(B + f(T−1ω))wΩ(ω) dµ(ω)

=
�

A

λTω(B + f(ω))wΩ(ω) dµ(ω),

where the last equality comes from the invariance of the measure λΩ =
wΩ dµ with respect to T . Since λ(A × B) = λ(ϑ(A × B)), it follows that
λω(B) = λTω(B + f(ω)) for µ-a.e. ω ∈ Ω, and since B(R) is separable, this
shows that λω(B) = λTω(B + f(ω)) for all B ∈ B(R) and for µ-a.e. ω ∈ Ω.
Consequently, the function

h(ω) = sup{t ∈ R : λω((−∞, t]) = 1/2} (ω ∈ Ω)(25)

satisfies h(Tω) = h(ω) + f(ω) for µ-a.e. ω ∈ Ω, and is measurable with
respect to A by an easy approximation argument.

Now, assume that w = dλ/dµR ∈ L∞(KR, µR). Since λ is invariant with
respect to ϑ by hypothesis, it follows that the set

Eλ = {(ω, x) ∈ KR : w(ω, x) > 0}(26)

satisfies ϑ−1Eλ = Eλ (modµR). On the other hand, the measure λh =
wh dµR is also invariant with respect to ϑ (cf. (18)–(20)). Thus it follows from
the Neveu–Chacon identification theorem (see e.g. Theorem 3.3.4 of [10]) for
the Chacon–Ornstein ratio ergodic limit that the function w/wh is measur-
able with respect to the σ-field

IR = {A ∈ AR : ϑ−1A = A (modµR)}.(27)

Thus there exists a real-valued positive function G on Eλ, measurable with
respect to IR, such that

wh = G · w (modµR) on Eλ.(28)

Since G ◦ ϑ = G (modµR) on Eλ, it follows that for µR-a.e. (ω, x) ∈ Eλ,

sup{wh(ϑj(ω, x)) : j ≥ 0} = G(ω, x) · sup{w(ϑj(ω, x)) : j ≥ 0}
≤ G(ω, x) · ‖w‖∞.
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The definition of wh (cf. (18)) implies that for µR-a.e. (ω, x) ∈ KR,

wh(ϑj(ω, x)) = wh(T jω, x+ Sjf(ω)) = wh(T jω, x+ h(T jω)− h(ω))

=
1 + (x+ h(T jω)− h(ω))2

1 + (x− h(ω))2 .

Hence

sup
j≥0

1 + (x+ h(T jω)− h(ω))2

1 + (x− h(ω))2 <∞ for µR-a.e. (ω, x) ∈ Eλ,

and therefore the function

g(ω) = sup
j≥0
|h(T jω)| (ω ∈ Ω)

satisfies g(ω) < ∞ for µR-a.e. (ω, x) ∈ Eλ. Now, if λ is a µR-equivalent
measure, then, since Eλ = KR (modµR), it follows that g(ω) <∞ for µ-a.e.
ω ∈ Ω. If T is ergodic, and λ is a µR-absolutely continuous probability
measure, then, since µR(Eλ) > 0, the set {ω ∈ Ω : g(ω) <∞} is of positive
µ-measure, and the ergodicity of T implies that g(ω) <∞ for µ-a.e. ω ∈ Ω.
Thus, in either case, 0 ≤ g(Tω) ≤ g(ω) <∞ for µ-a.e. ω ∈ Ω. Since µ is an
invariant measure with respect to T , it then follows that g(Tω) = g(ω) for
µ-a.e. ω ∈ Ω, and hence the sets

An = {ω ∈ Ω : n− 1 ≤ g(ω) < n}, n ≥ 1,

satisfy T−1An = An (modµ) and Ω =
⋃∞
n=1An (modµ). In particular, if T

is ergodic, then g is a constant function in L∞(Ω,µ).
Next, assume that the function w = dλ/dµR is such that wM(

√
w) ∈

L1(KR, µR). Let vj denote the Radon–Nikodym derivative d(µR ◦ ϑj)/dµR,
where µR ◦ ϑj denotes the measure defined by (µR ◦ ϑj)(A) = µR(ϑjA) for
A ∈ AR. Since ϑj(ω, x) = (T jω, x + Sjf(ω)) for (ω, x) ∈ KR, it is easy to
see that vj has the form

vj(ω, x) =
1 + x2

1 + (x+ Sjf(ω))2

=
1 + x2

1 + (x+ h(T jω)− h(ω))2 for (ω, x) ∈ KR.

Since λ = w dµR is invariant with respect to ϑ by hypothesis, it follows that
if A ∈ AR, then

�

A

w dµR =
�

ϑjA

w dµR =
�
(w · χϑjA) ◦ ϑj d(µR ◦ ϑj) =

�

A

(w ◦ ϑj)vj dµR,

whence w = (w ◦ ϑj)vj (modµR) on KR. Therefore,

w1/2(ω, x)
|x+ h(T jω)− h(ω)|√

1 + x2
≤ w1/2 ◦ ϑj(ω, x)
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for µR-a.e. (ω, x) ∈ KR. Now, if C ·w1/2(ω, x) ≥
√

1 + x2 for some constant
C > 1, then

|x+ h(T jω)− h(ω)| ≤ C · w1/2 ◦ ϑj(ω, x);

and by (17) there exist constants k(C) > 0 and x1 ≥ 0 such that

M(|x+ h(T jω)− h(ω)|) ≤ k(C) ·M(w1/2 ◦ ϑj(ω, x))

whenever w1/2 ◦ ϑj(ω, x) ≥ x1; consequently,

lim sup
n→∞

1
n

n∑

j=1

M(|x+ h(T jω)− h(ω)|)

≤M(Cx1) + k(C) · lim sup
n→∞

1
n

n∑

j=1

M(w1/2 ◦ ϑj(ω, x))

= M(Cx1) + k(C) ·E{M(w1/2) | (KR, IR, wdµR)}(ω, x) <∞
by the Birkhoff ergodic theorem, where E{M(w1/2) | (KR, IR, wdµR)} de-
notes the conditional expectation of the function M(w1/2) with respect to
the σ-field IR and the measure wdµR. Since the constant C > 0 can be
arbitrarily large, this proves that

(29) lim sup
n→∞

1
n

n∑

j=1

M(|x+h(T jω)−h(ω)|) <∞ for µR-a.e. (ω, x) ∈ Eλ.

Hence, if we define a function g̃ on Ω by

g̃(ω) = lim sup
n→∞

1
n

n∑

j=1

M(|h(T jω)|) for ω ∈ Ω,

then (29) and (17) show that g̃(ω) < ∞ for µR-a.e. (ω, x) ∈ Eλ. Therefore,
as before, if λ is a µR-equivalent measure, or if T is ergodic and λ is a
µR-absolutely continuous probability measure, then 0 ≤ g̃(Tω) = g̃(ω) <∞
for µ-a.e. ω ∈ Ω; and the sets Bn = {ω ∈ Ω : n − 1 ≤ g̃(ω) < n}, n ≥ 1,
satisfy T−1Bn = Bn,

�
Bn
M(|h|) dµ =

�
Bn
g̃ dµ <∞ (by the Birkhoff ergodic

theorem), and Ω =
⋃∞
n=1Bn (modµ). In particular, if T is ergodic, then

g̃(ω) =
�
ΩM(|h|) dµ <∞ for µ-a.e. ω ∈ Ω.

We can summarize the above as follows.

Fact 3 (cf. Proposition 3.1 of [1]). Let M : [0,∞) → [0,∞) be an
increasing function such that limx→∞M(x) = ∞ and there exist constants
k > 0 and x0 ≥ 0 satisfying (17). Then the following hold :

(I) If T is an endomorphism and h is a real-valued measurable function
on Ω such that f(ω) = h(Tω) − h(ω) for µ-a.e. ω ∈ Ω, then the measure
λh = wh dµR in (19) is a µR-equivalent probability measure invariant with
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respect to ϑ. If moreover h ∈ L∞(Ω,µ) then wh ∈ L∞(KR, µR); and if
h ∈ LM (Ω,µ) then whM(

√
wh) ∈ L1(KR, µR).

(II) If T is an automorphism and λ=w dµR, where 0<w∈ L1(KR, µR),
is a µR-equivalent probability measure invariant with respect to ϑ, then
there exists a real-valued measurable function h on Ω such that f(ω) =
h(Tω) − h(ω) for µ-a.e. ω ∈ Ω. If moreover w ∈ L∞(KR, µR) [resp.
wM(

√
w) ∈ L1(KR, µR)], then there exists a countable measurable decom-

position {An : n ≥ 1} of Ω with T−1An = An for n ≥ 1 such that
hχAn ∈ L∞(Ω,µ) [resp. hχAn ∈ LM(Ω,µ)] for every n ≥ 1.

(III) If T is an ergodic automorphism and λ = wdµR, where 0 ≤ w ∈
L1(KR, µR), is a µR-absolutely continuous probability measure invariant with
respect to ϑ, then there exists a real-valued measurable function h on Ω such
that f(ω) = h(Tω) − h(ω) for µ-a.e. ω ∈ Ω. If moreover w ∈ L∞(KR, µR)
[resp. wM(

√
w) ∈ L1(KR, µR)], then h ∈ L∞(Ω,µ) [resp. h ∈ LM (Ω,µ)].

3. Main results

Theorem 1 (cf. Theorem 1 on p. 62 of [6]). Let ϕ : R → [0,∞) be a
Borel measurable function on R such that lim|x|→∞ ϕ(x) =∞. Assume that
T is an ergodic endomorphism. If there exists a set A ∈ A with µ(A) > 0
such that

lim inf
n→∞

1
n

n∑

j=1

�

A

ϕ(Sjf(ω)) dµ <∞,(30)

then there exists a real-valued measurable function h on Ω such that f(ω) =
h(Tω) − h(ω) for µ-a.e. ω ∈ Ω. If , in addition, sup{ϕ(x) : |x| ≤ N} < ∞
for every N ≥ 1, and lim sup|x|→∞ ϕ(x + a)/ϕ(x) < ∞ for every a ∈ R,
then

�
Ω ϕ(h(ω)) dµ <∞.

Corollary (cf. Theorem 3.2 of [1]). Let T be an ergodic endomor-
phism, and 0 < r <∞. If

lim inf
n→∞

1
n

n∑

j=1

�

A

|Sjf(ω)|r dµ <∞

for some A ∈ A with µ(A) > 0, then there exists a real-valued measurable
function h on Ω with

�
Ω |h(ω)|r dµ <∞ such that f(ω) = h(Tω)−h(ω) for

µ-a.e. ω ∈ Ω.

Proof of Theorem 1. By Fatou’s lemma, the function

ϕ(f)∗(ω) = lim inf
n→∞

1
n

n∑

j=1

ϕ(Sjf(ω))
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satisfies
�

A

ϕ(f)∗(ω) dµ ≤ lim inf
n→∞

1
n

n∑

j=1

�

A

ϕ(Sjf(ω)) dµ <∞,

whence ϕ(f)∗(ω) < ∞ for µ-a.e. ω ∈ A. Since lim|x|→∞ ϕ(x) = ∞, the
inequality ϕ(f)∗(ω) <∞ implies the existence of an N ≥ 1 such that

gN (ω) = lim sup
n→∞

1
n

n∑

j=1

χ[−N,N ](Sjf(ω)) > 0.

It follows that g∞(ω) = limN→∞ gN (ω) > 0 for µ-a.e. ω ∈ A, and therefore
by Fact 2 there exists a real-valued measurable function h on Ω such that
f(ω) = h(Tω) − h(ω) for µ-a.e. ω ∈ Ω. Assume that ϕ satisfies sup{ϕ(x) :
|x| ≤ N} < ∞ for every N ≥ 1, and lim sup|x|→∞ ϕ(x + a)/ϕ(x) < ∞ for
every a ∈ R. Then, since Sjf(ω) = h(T jω)− h(ω) on Ω, it follows that

lim inf
n→∞

1
n

n∑

j=1

ϕ(h(T jω)) = lim inf
n→∞

1
n

n∑

j=1

ϕ(Sjf(ω) + h(ω)) <∞

for µ-a.e. ω ∈ A with ϕ(f)∗(ω) <∞, so that the function

h∗(ω) = lim inf
n→∞

1
n

n∑

j=1

ϕ(h(T jω))

satisfies h∗(ω) <∞ for µ-a.e. ω ∈ A. Since h∗ is an invariant function with
respect to T , the Birkhoff ergodic theorem and the ergodicity of T imply
that h∗(ω) =

�
Ω ϕ ◦h dµ <∞ for µ-a.e. ω ∈ Ω, and hence the desired result

has been established.

Remark 1. If the ergodicity of T is not assumed in Theorem 1, then the
above argument shows that inequality (30) with A = Ω implies the existence
of a real-valued measurable function h on Ω such that f(ω) = h(Tω)−h(ω)
for µ-a.e. ω ∈ Ω; if moreover sup{ϕ(x) : |x| ≤ N} < ∞ for every N ≥ 1,
and lim sup|x|→∞ ϕ(x + a)/ϕ(x) < ∞ for every a ∈ R, then there exists a
countable measurable decomposition {An : n ≥ 1} of Ω with T−1An = An
for n ≥ 1 such that

�
An
ϕ(h(ω)) dµ <∞ for every n ≥ 1.

From now on we consider a Banach lattice (L, ‖·‖L) of equivalence classes
of real-valued measurable functions on Ω. Thus, two functions u and v in
L are not distinguished provided that u(ω) = v(ω) for µ-a.e. ω ∈ Ω. By
definition, the norm ‖ · ‖L has the property:

(A) If u, v ∈ L and |u(ω)| ≤ |v(ω)| for µ-a.e. ω ∈ Ω, then ‖u‖L ≤ ‖v‖L.

In this paper we assume the additional properties:

(B) If v is a real-valued measurable function on Ω and there exists a
function u ∈ L such that |v(ω)| ≤ |u(ω)| for µ-a.e. ω ∈ Ω, then v ∈ L.
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(C) If (un) is a sequence of functions in L such that |u1(ω)| ≤
|u2(ω)| ≤ . . . for µ-a.e. ω ∈ Ω, and supn≥1 ‖un‖L < ∞, then there ex-
ists a function u ∈ L such that |un(ω)| ≤ |u(ω)| for µ-a.e. ω ∈ Ω and all
n ≥ 1.

(D) If v is a real-valued measurable function on Ω and u ∈ L is such
that

µ({ω : |v(ω)| > a}) = µ({ω : |u(ω)| > a})
for every 0 < a ∈ R, then v ∈ L and ‖v‖L = ‖u‖L.

It should be noted that, besides the usual Lp(Ω,µ)-spaces with 1 ≤ p
≤ ∞, there are many interesting Banach lattices of functions which share
these additional properties (B), (C) and (D). Examples are Orlicz spaces,
Lorentz spaces, etc. By Property (D), the mapping u 7→ u ◦ T is a linear
isometry of (L, ‖ · ‖L) for every endomorphism T .

Theorem 2 (cf. [13]). Assume that T is an ergodic endomorphism. If
there exists a set A ∈ A with µ(A) > 0 such that (Sjf)χA ∈ L for j ≥ 1
and

K := lim inf
n→∞

1
n

n∑

j=1

‖(Sjf)χA‖L <∞,(31)

then there exists a function h in L such that f = h ◦ T − h on Ω.

Proof. Define

fn(ω) = inf
m≥n

1
m

m∑

j=1

|Sjf(ω)| for n ≥ 1,(32)

f∞(ω) = lim
n→∞

fn(ω).(33)

By Property (B) and the hypothesis (Sjf)χA ∈ L for j ≥ 1 it follows
that fnχA ∈ L for n ≥ 1; and by Property (A) we have ‖fnχA‖L ≤
(1/m)

∑m
j=1 ‖(Sjf)χA‖L for m ≥ n. Thus

‖fnχA‖L ≤ lim inf
m→∞

1
m

m∑

j=1

‖(Sjf)χA‖L = K for every n ≥ 1,(34)

and hence

f∞χA ∈ L(35)

by Properties (C) and (B). In particular, f∞(ω) <∞ for µ-a.e. ω ∈ A, and
thus we can apply the proof of Theorem 1 with ϕ(x) = |x| to infer that there
exists a real-valued measurable function h on Ω with

�
Ω |h(ω)| dµ <∞ such

that f(ω) = h(Tω)− h(ω) for µ-a.e. ω ∈ Ω.
To prove that h ∈ L, we may assume below that (Ω,A, µ) is nonatomic.

(Indeed, if (Ω,A, µ) is atomic, then the ergodicity of T implies that Ω is
essentially a finite set, and then h ∈ L is obvious.) Further we may assume
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that (Ω,A, µ) is separable, because there is a countable family {Ai : i ≥ 1}
in A such that

(i) the measure space (Ω,A1, µ), where A1 denotes the σ-field generated
by {Ai : i ≥ 1}, is nonatomic,

(ii) T is an ergodic endomorphism of (Ω,A1, µ),
(iii) f is measurable with respect to A1, and
(iv) the space L1 = {g ∈ L : g is A1-measurable}, with norm ‖ · ‖L1 =

the restriction of the norm ‖·‖L to L1, is a Banach lattice having Properties
(B)–(D) with L1 and ‖ · ‖L1 in place of L and ‖ · ‖L, respectively.

Next, we use the isomorphism theorem for measure algebras (cf. e.g.
Theorem 41.C of [4]) to infer that there exists an isomorphism Φ from the
measure algebra (A(µ), µ) onto the measure algebra (B([0, 1]), dx), where
B([0, 1]) denotes the σ-field of all Borel subsets of [0, 1] and dx is the Le-
besgue measure. Thus we may assume that (Ω,A, µ) = ([0, 1],B([0, 1]), dx).
Then T can be regarded as an isomorphism from (B([0, 1]), dx) into itself.
Since [0, 1] is an uncountable complete separable metric space, it then fol-
lows (see e.g. Proposition 15.19 of [12]) that T can be considered to be an
(ergodic) endomorphism of the measure space ([0, 1],B([0, 1]), dx).

We then use the natural extension of the ergodic endomorphism T of
([0, 1],B([0, 1]), dx) (cf. e.g. §4 of Chapter 10 of [3]). That is, it is known that
there exists an ergodic automorphism T̃ of a separable nonatomic probability
measure space (Ω̃, Ã, µ̃), and a measure preserving transformation S from
(Ω̃, Ã, µ̃) to (Ω,A, µ) such that

(S ◦ T̃ )(ω̃) = (T ◦ S)(ω̃) for every ω̃ ∈ Ω̃.(36)

Denote by L̃ the space of all real-valued Ã-measurable functions ũ on Ω̃ to
which there corresponds a function u ∈ L such that µ̃({ω̃ : |ũ(ω̃)| > a}) =
µ({ω : |u(ω)| > a}) for every 0 < a ∈ R, and define ‖ũ‖L̃ = ‖u‖L. By using
Property (D) it is easy to check that if ũ and ṽ are in L̃, then ũ + ṽ ∈ L̃
and ‖ũ + ṽ‖L̃ ≤ ‖ũ‖L̃ + ‖ṽ‖L̃. (In fact, by the isomorphism theorem, there
exists an isomorphism Ψ from the measure algebra (Ã(µ̃), µ̃) onto (A(µ), µ).
Then Ψ can be uniquely extended, in an obvious manner, to an invertible
linear operator (denoted also by Ψ) from L0(Ω̃, µ̃) onto L0(Ω,µ), where
L0(Ω̃, µ̃) is the space of all real-valued measurable functions on (Ω̃, Ã, µ̃)
and, by definition, two functions ũ and ṽ in L0(Ω̃, µ̃) are not distinguished
provided that ũ(ω̃) = ṽ(ω̃) for µ̃-a.e. ω̃ ∈ Ω̃; L0(Ω,µ) is defined similarly for
(Ω,A, µ). Then ΨL̃ = L and ‖ũ‖L̃ = ‖Ψũ‖L for all ũ ∈ L̃.) It follows that
(L̃, ‖ · ‖L̃) is a Banach lattice having Properties (B)–(D) with L̃ and ‖ · ‖L̃
replaced by L and ‖ ·‖L, respectively. In order to prove that h ∈ L, it is now
sufficient to prove that h ◦ S ∈ L̃.
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Consequently, we have reached the conclusion that T may be assumed to
be an ergodic automorphism of (Ω,A, µ). With this assumption we continue
the proof as follows.

First, as is easily seen, it is enough to consider the case where µ({ω :
f(ω) 6= 0}) > 0. Then, since T is ergodic, we have

∞⋃

n=0

T−n{ω : f(ω) 6= 0} = Ω (modµ),

and thus by Property (B) there exists a set A1 ∈ A with A1 ⊂ A and
µ(A1) > 0 for which hχA1 ∈ L. This shows that we may assume from the
start that hχA ∈ L.

Now, since (h ◦ T j)χA = (Sjf)χA + hχA for j ≥ 1,

1
n

n∑

j=1

‖(Sjf)χA‖L + ‖hχA‖L ≥
1
n

n∑

j=1

‖(h ◦ T j)χA‖L

=
1
n

n∑

j=1

‖h(χA ◦ T−j)‖L (by Property (D))

≥
∥∥∥∥h
(

1
n

n∑

j=1

χA ◦ T−j
)∥∥∥∥

L

.

If we let, for n ≥ 1,

dn(ω) = inf
m≥n

1
m

m∑

j=1

χA(T−jω),

then, by the Birkhoff ergodic theorem together with the ergodicity of T ,

0 ≤ d1(ω) ≤ d2(ω) ≤ . . .→ µ(A) > 0 for µ-a.e. ω ∈ Ω.
Hence, µ(A)|h|(ω) = limn→∞ dn(ω)|h|(ω) for µ-a.e. ω ∈ Ω. Furthermore,

‖dnh‖L ≤
∥∥∥∥h
(

1
n

n∑

j=1

χA ◦ T−j
)∥∥∥∥

L

≤ 1
n

n∑

j=1

‖(Sjf)χA‖L + ‖hχA‖L.

Thus, by (31), there exists a subsequence (n′) of (n) such that ‖dn′h‖L ≤ K+
‖hχA‖L + 1 for all n′. By Properties (C) and (B) it follows that µ(A)h ∈ L,
and hence the proof is complete.

Remark 2. If the ergodicity of T is not assumed in Theorem 2, then
inequality (31) with A = Ω implies the same conclusion of the theorem.

To see this, we first notice that the above proof, together with Remark 1,
shows that there exists a real-valued measurable function h on Ω such that
f(ω) = h(Tω)−h(ω) for µ-a.e. ω ∈ Ω. Since |Sjf | = |h◦T j−h| ≥ |h◦T j |−|h|
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for j ≥ 1, it follows that

1
n

n∑

j=1

|h| ◦ T j ≤ 1
n

n∑

j=1

|Sjf |+ |h|.

Therefore, the Birkhoff ergodic theorem implies that

lim
n→∞

1
n

n∑

j=1

|h|(T jω) ≤ lim inf
n→∞

1
n

n∑

j=1

|Sjf(ω)|+ |h(ω)| <∞

for µ-a.e. ω ∈ Ω, and hence the limit

h∞(ω) = lim
n→∞

1
n

n∑

j=1

h(T jω)

exists and is finite for µ-a.e. ω ∈ Ω. Then

lim
n→∞

1
n

n∑

j=1

Sjf(ω) = h∞(ω)− h(ω)

for µ-a.e. ω ∈ Ω. Since h∞(ω) = h∞(Tω) for µ-a.e. ω ∈ Ω, it follows that
the function h0(ω) := h(ω) − h∞(ω) satisfies f(ω) = h0(Tω) − h0(ω) for
µ-a.e. ω ∈ Ω. Furthermore,

|h0(ω)| ≤ lim inf
n→∞

1
n

n∑

j=1

|Sjf(ω)| <∞

for µ-a.e. ω ∈ Ω. Since inequality (31) with A = Ω shows that the function
f∞(ω) = lim infn→∞(1/n)

∑n
j=1 |Sjf(ω)| belongs to L (see (35)), we get

h0 ∈ L by Property (B). This establishes the desired conclusion.
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