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On the isomorphism classes of weighted spaces

of harmonic and holomorphic functions

by

Wolfgang Lusky (Paderborn)

Abstract. Let Ω be either the complex plane or the open unit disc. We completely
determine the isomorphism classes of

Hv = {f : Ω → C holomorphic : sup
z∈Ω

|f(z)|v(z) < ∞}

and investigate some isomorphism classes of

hv = {f : Ω → C harmonic : sup
z∈Ω

|f(z)|v(z) < ∞}

where v is a given radial weight function. Our main results show that, without any further
condition on v, there are only two possibilities for Hv, namely either Hv ∼ l∞ or Hv ∼
H∞, and at least two possibilities for hv, again hv ∼ l∞ and hv ∼ H∞. We also discuss
many new examples of weights.

1. Introduction. Fix a > 0 or a = ∞ and put aD = {z ∈ C : |z| < a}
(i.e. aD = C if a = ∞). For 0 < r < a and f : aD → C put M∞(f, r) =
sup|z|=r |f(z)|. Recall that M∞(f, r) is increasing with respect to r if f is a
harmonic function ([5]).

We want to investigate spaces of harmonic and holomorphic functions
f where M∞(f, r) is unbounded in general but grows in a controlled way.
To this end we introduce a weight function, i.e. an upper semicontinuous,
non-increasing function v : [0, a[ → ]0,∞[ with limr→a r

mv(r) = 0 for all
m ≥ 0. (If a < ∞ this is equivalent to limr→a v(r) = 0.) We study the
growth conditions

M∞(f, r) = O

(
1

v(r)

)
and M∞(f, r) = o

(
1

v(r)

)
as r → a

by defining ‖f‖v = supz∈aD |f(z)|v(|z|) and

hv = {f : aD → C harmonic : ‖f‖v <∞},
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(hv)0 = {f ∈ hv : lim
r→a

M∞(f, r)v(r) = 0},
Hv = {f ∈ hv : f holomorphic},

(Hv)0 = (Hv) ∩ (hv)0.

These are Banach spaces (with respect to ‖ · ‖v). The condition on v ensures
that these spaces contain all polynomials (or trigonometric polynomials,
resp.). For example, if f : aD → C is harmonic, then clearly

M∞(f, r) = O

(
1

v(r)

)
as r → a if and only if f ∈ hv

and

M∞(f, r) = o

(
1

v(r)

)
as r → a if and only if f ∈ (hv)0.

By a simple substitution argument we see that it suffices to consider the
two cases a = 1 and a = ∞. We want to discuss the Banach space nature
of hv, (hv)0, Hv and (Hv)0. In this respect a lot has already been done for
holomorphic and harmonic functions on the unit disc where v is a moderately
decreasing weight ([10, 14, 16, 19–21]; see also [2, 3, 6, 7, 17]). But only
few results are known for fast decreasing weights and for functions on the
complex plane ([8, 9]).

In this article we determine all possible isomorphism classes for Hv and
(Hv)0 and some isomorphism classes for hv and (hv)0 without any further
condition on v.

Let v : [0, a[ → R+ be a weight function. Form > 0 fix a global maximum
point rm of the function r 7→ rmv(r), r ∈ [0, a[, which exists in view of the
upper semicontinuity. It is easily seen that rm ↑ a as m → ∞, and m 7→
rm
mv(rm), m > 0, is a continuous function. We want to compare quotients

of the form (rm/rn)mv(rm)/v(rn) for different m and n. First we introduce
the following boundedness condition on v:

(B) ∀b1 > 1∃b2 > 1 ∃c > 0 ∀m,n > 0:(
rm
rn

)m v(rm)

v(rn)
≤ b1 and m,n, |m−n| ≥ c ⇒

(
rn
rm

)n v(rn)

v(rm)
≤ b2.

Examples of v enjoying (B) include (1 − r)α for α > 0, exp(−(1 − r)−1),
exp(− exp((1−r)−1)), . . . , if r ∈ [0, 1[, and exp(−r̺) for ̺ > 0, exp(− logγ r)
for γ ≥ 2, exp(− exp(r)), exp(− exp(exp(r))), . . . if r ∈ R+ (see the next
section for details).

Observe that the negation of (B) reads as follows:

¬(B) ∃b1 > 1 ∀b2 > 1 ∀c > 0 ∃m,n > 0 :(
rm
rn

)m v(rm)

v(rn)
≤ b1 and m,n, |m− n| ≥ c and

(
rn
rm

)n v(rn)

v(rm)
≥ b2.
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For two Banach spaces X and Y we write X ∼ Y if they are isomorphic
to each other. Let d(X,Y ) be the Banach-Mazur distance of X and Y , i.e.

d(X,Y ) = inf{‖T‖ · ‖T−1‖ : T : X → Y is an (onto) isomorphism}.
Let Hn = span{1, z1, z2, . . . , zn} be the space of functions on ∂D with the
norm M∞(·, 1). It is well known that the Hardy space

H∞ = {f : D → C : f holomorphic, sup
0<r<1

M∞(f, r) <∞}

is isomorphic to (
∑

n ⊕Hn)∞ ([22]).

1.1. Theorem.

(a) Let v satisfy (B). Then Hv ∼ l∞ and (Hv)0 ∼ c0.
(b) Let v satisfy ¬(B). Then Hv ∼ H∞ and (Hv)0 ∼ (

∑
n ⊕Hn)0.

Sections 3–6 are dedicated to the proofs of Theorem 1.1 and the following
results.

For the isomorphic classification of hv we need another boundedness
condition:

(C) ∃c1 > 0 ∃b1 > 1 ∀b2 > 1 ∀c2 > 0 ∃m,n > 0 :(
rn
rm

)n v(rn)

v(rm)
≤ b1,

(
rm
rn

)m v(rm)

v(rn)
≥ b2,

m,n, |n−m| ≥ c2 and c1|n−m| < min(m,n).

Observe that (C) ⇒ ¬(B).

1.2. Theorem.

(a) If v satisfies (B) then hv ∼ l∞ and (hv)0 ∼ c0.
(b) If v satisfies (C) then hv ∼ H∞ and (hv)0 ∼ (

∑
n ⊕Hn)0.

If v satisfies (C) then we have the combination hv ∼ Hv ∼ H∞ while (B)
implies hv ∼ Hv ∼ l∞. If Hv ∼ l∞ then it is easily seen that hv ∼ Hv ⊕Hv

and hence also hv ∼ l∞. However, we can also have the combination Hv ∼
H∞ and hv ∼ l∞ (see the following example). It is likely that these three
are the only possibilities.

Example. Let v(r) = (1− log(1−r))−1, r ∈ [0, 1[. It is known that here
Hv ∼ H∞ and hv ∼ l∞ ([10, 16]). Hence v satisfies ¬(B) and ¬(C).

We also investigate under which (sufficient) condition hv is selfadjoint,

i.e. we have f ∈ hv if and only if f̃ ∈ hv where f̃ is the trigonometric
conjugate of f . (f̃ is such that f̃(0) = 0 and Re f + iRe f̃ , Im f + i Im f̃
are holomorphic.) This is equivalent to the fact that the Riesz projection
R : hv → Hv with

R(r|k| exp(ikϕ)) =

{
rk exp(ikϕ), k ≥ 0,

0, else,
k ∈ Z,
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is bounded. (We frequently denote the kth monomials on C by zk, zk or

rk exp(ikϕ), r|k| exp(−ikϕ).) We have f̃ = −iRf + i(id −R)f + if(0).

1.3. Theorem. Let v satisfy (B). Then hv is selfadjoint.

Hence, in particular, a harmonic function f satisfies

M∞(f, r) = O

(
1

v(r)

)
as r → a if and only if M∞(f̃ , r) = O

(
1

v(r)

)
.

(B) is a condition about a certain “inner regularity” of v rather than its
decay. To give a geometrical interpretation of (B) put ϕ(t) = − log(v(et)),
where t ∈ ]−∞, 0[ if a = 1 and t ∈ R if a = ∞. Then v(r) = exp(−ϕ(log r)).
The conditions on v imply that ϕ is increasing and that ϕ(t) → ∞ as t→ 0
for a = 1, and ϕ(t)/t → ∞ as t → ∞ for a = ∞. Due to Hadamard’s
three circles theorem we may change v on bounded annuli without changing
the isomorphic character of Hv, (Hv)0, hv or (hv)0. Therefore we may
assume without loss of generality that ϕ is twice differentiable. The function
r 7→ rmv(r) has a maximum only if ϕ′(log r) = m. Put s = log rm and
t = log rn. Then we have

log

((
rm
rn

)m v(rm)

v(rn)

)
= ϕ(t) − ϕ(s) − ϕ′(s)(t− s) =: ̺(t, s);

̺(t, s) is the distance between the graph of ϕ and its tangent.

Now, (B) is equivalent to the following

∀b1 > 0 ∃b2 > 0 ∃c > 0 ∀s, t :

̺(t, s) ≤ b1, |ϕ′(t)|, |ϕ′(s)|, |ϕ′(t) − ϕ′(s)| ≥ c ⇒ ̺(s, t) ≤ b2.

This means that the graph of ϕ has no big corners. (See also the remark
following Example 2.4.)

Acknowledgements. I am indebted to the referee for many valuable
remarks. In particular the preceding geometric interpretation of condition
(B) is due to him.

2. More examples. Here we give several examples where (B) holds.

2.1. Example. v(r) = exp(− exp(r)), r ∈ [0,∞[. Then rn log n = log n
for any n > 0. Fix m,n > 0. For m′ = m logm and n′ = n log n we obtain

(
rm′

rn′

)m′

v(rm′)

v(rn′)
= exp(m logm(log logm− log logn) + n−m)

= exp

(
(n−m)2(m logm)(1 + logm)

2m2 log2m

)
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for some m between m and n. (We have used

log logn− log logm =
n−m

m logm
− 1 + logm

2(m logm)2
(n−m)2

for appropriate m.) Moreover the function

n 7→
(

rm′

rn log n

)m′

v(rm′)

v(rn log n)
, n > 0 (for fixed m),

is increasing if n > m and decreasing if n < m.

Fix b1 > 1 and put β = 4
√

log b1, c = max(64 log b1, 2). Hence, if m ≥ c
then β/

√
m ≤ 1/2. If |n−m| = β

√
m, n,m ≥ c, then we obtain

(
rm′

rn′

)m′

v(rm′)

v(rn′)
≥ exp

(
β2m2(logm)(1 + logm)

2m2 log2m

)

≥ exp

(
β2 1

2

(
m

m

)2 logm

logm

)

≥ exp

(
β2 1

2

(
1

1 + β/
√
m

)2 logm

logm+ log(1 + β/
√
m)

)

≥ exp

(
β2

16

)
= b1.

This implies that |n−m| ≤ β
√
m whenever

(
rm′

rn′

)m′

v(rm′)

v(rn′)
≤ b1.

In this case we have
(
rn′

rm′

)n′

v(rn′)

v(rm′)
= exp

(
(n−m)2(n logn)(1 + log n̄)

2n̄2 log2 n̄

)

≤ exp

(
(n−m)2n logn

n̄2 log n̄

)

≤ exp

(
β2m

(m+ β
√
m) log(m+ β

√
m)

(m− β
√
m)2 log(m− β

√
m)

)

≤ exp

(
β2 (1 + β/

√
m)(logm+ log(1 + β/

√
m))

(1 − β/
√
m)2(logm+ log(1 − β/

√
m))

)
≤ b2

for suitable b2 independent of m. (Here n is an appropriate number between
m and n.) Thus v satisfies (B). Similarly one can deal with exp(−r̺) for
̺ > 0, exp(− exp(exp(r))), . . . .

2.2. Example. v(r) = exp(− log̺ r), r ∈ [1,∞[, for fixed ̺ ≥ 2, and
v(r) = 1, r ∈ [0, 1[. Here we obtain rn = exp((n/̺)1/(̺−1)) (for sufficiently
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large n). We have
(
rm
rn

)m v(rm)

v(rn)

= exp

(
(̺− 1)

((
m

̺

) ̺
̺−1

−
(
n

̺

) ̺
̺−1

)
+ (n−m)

(
n

̺

) 1

̺−1
)

= exp

(
(n−m)2

2(̺− 1)̺
1

̺−1m
̺−2

̺−1

)

for suitable m between m and n. (We used

xβ − xβ
0 = βxβ−1

0 (x− x0) + 1
2β(β − 1)xβ−2(x− x0)

2

for x = m/̺, x0 = n/̺, β = ̺/(̺− 1) and appropriate x.) The map

n 7→
(
rm
rn

)m v(rm)

v(rn)

is increasing if n > m and decreasing if n < m (for fixed m). Fix b1 > 1 and
put

γ =
̺− 2

̺− 1
, β =

√
2γ+1(̺− 1)̺1/(̺−1) log b1, c = (2β)2(̺−1)/̺.

Then βmγ/2−1 ≤ 1/2 provided that m ≥ c. If |n−m| = βmγ/2 and n,m ≥ c
we obtain(

rm
rn

)m v(rm)

v(rn)
≥ exp

(
2γ(log b1)

(
m

m+ βmγ/2

)γ)
≥ b1.

Hence, if (
rm
rn

)m v(rm)

v(rn)
≤ b1

then |n−m| ≤ βmγ/2 and
(
rn
rm

)
v(rm)

v(rn)
= exp

(
(n−m)2

2(̺− 1)̺
1

̺−1n
̺−2

̺−1

)

≤ exp

(
2γ

(
m

m− βmγ/2

)γ

log b1

)
≤ b4

γ

1 =: b2

(for suitable n between m and n).

2.3. Example. v(r) = exp(−1/(1 − r)), r ∈ [0, 1[. Here rm2−m = 1 −
1/m. Fix m,n > 0. For m′ = m2 −m and n′ = n2 − n we obtain

(
rm′

rn′

)m′

v(rm′)

v(rn′)
=

(
1 − 1

m

1 − 1
n

)m2−m

exp(n−m).



Weighted spaces of harmonic and holomorphic functions 25

Hence

n 7→
(

rm′

rn2−n

)m′

v(rm′)

v(rn2−n)

is decreasing if n < m and increasing if n > m. Fix β > 0 and put

am =

(
1 − 1

m

1 − 1
m±β

√
m

)m2−m

exp(±β
√
m).

We obtain limm→∞ am = exp(β2). Define β =
√

2 log b1 and take c so large
that am ≥ exp(log b1) = b1 whenever m ≥ c. Thus, if |n −m| = β

√
m we

have (
rm′

rn′

)m′

v(rm′)

v(rn′)
≥ b1.

So, if (
rm′

rn′

)m′

v(rm′)

v(rn′)
≤ b1

we must have |n−m| ≤ β
√
m. In this case we obtain

(
rn′

rm′

)n′

v(rn′)

v(rm′)
=

(
1 − 1

n

1 − 1
m

)n2−n

exp(m− n)

=

(
1 +

n−m

m− 1
· 1

n

)n2−n

exp(m− n)

≤ exp

(
(n−m)2

m− 1

)
≤ exp(2β2) =: b2.

Similarly one can show that exp(− exp(1/(1−r))), exp(− exp(exp(1/(1−r)))),
. . . satisfy (B).

2.4. Example. v(r) = (1 − r)α, r ∈ [0, 1[, for some fixed α > 0. Here
rn = n/(n + α) and, as in the preceding example, we can verify that v
satisfies (B).

The weight of Example 2.4 is of moderate decay, it satisfies

(⋆) sup
n

v(1 − 2−n)

v(1 − 2−n−1)
<∞.

Such weights have been studied extensively. Here it is possible to fix m1 <
m2 < · · · and γ > 1 such that

γ ≤ v(1 − 2−mn)

v(1 − 2−mn+1)
≤ γ2 for all n.

This implies the existence of an index j with

1− 1

2mn−j
≤ rM ≤ 1− 1

2mn+j
whenever 2mn ≤M < 2mn+1, n = 1, 2, . . . .
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Using this one can show that condition (B) is equivalent to

(⋆⋆) inf
k

lim sup
n

v(1 − 2−n−k)

v(1 − 2−n)
< 1

provided that (⋆) holds. Hence Theorem 1.1 includes one of the main results
of [16]. (We omit the details.) Weights satisfying (⋆) and (⋆⋆) are called
normal (see [4], [13], [19]–[21]).

The following proposition allows us to construct examples for all the
cases discussed in Section 1.

2.5. Proposition. Fix numbers 1 ≤ n1 < n2 < · · ·, 0 < s1 < s2 < · · ·
and v1 > v2 > · · · > 0 such that supk nk <∞, limk→∞ sk = a and

snm
m vm = sup

k
snm

k vk,(2.1)

lim
k→∞

snm

k vk = 0 for each m.(2.2)

Put v(s) = vm if sm−1 < s ≤ sm. Then v is a weight on [0, a[ with rnm = sm

for all m. Moreover , if nm−1 < j < nm then

rj =

{
sm−1 if sj

m−1vm−1 ≥ sj
mvm,

sm else.

Proof. v is upper semicontinuous, non-increasing and limr→a r
mv(r) = 0

for all m ≥ 0. Fix m. If sk−1 < s ≤ sk then snmv(s) = snmvk ≤ snm

k vk ≤
snm
m vm. Hence rnm = sm.

Now, let nm−1 < j < nm. If k ≤ m− 1 and sk−1 < s ≤ sk then

sjv(s) ≤ sj
kvk ≤ s

j−nm−1

k s
nm−1

m−1 vm−1 ≤ sj
m−1vm−1.

If k ≥ m and sk < s ≤ sk+1 then

sjv(s) ≤ sj−nmsnm
m vm ≤ sj

mvm.

Finally, if sm−1 < s ≤ sm then sjv(s) = sjvm ≤ sj
mvm. Hence rj = sm−1 if

sj
m−1vm−1 ≥ sj

mvm, and rj = sm otherwise.

2.6. Example. Using Proposition 2.5 we construct a weight v on [0,∞[
which satisfies (C). To this end put

sm = m!, nm =

m∑

j=1

j, vm =

m∏

j=1

1

jnj
.

Then snm
m vm =

∏m
j=1 j

nm−nj . Moreover
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snm

k vk =





k∏

j=1

jnm−nj if k ≤ m,

( m∏

j=1

jnm−nj

)( k∏

j=m+1

1

jnj−nm

)
if k > m.

This implies (2.1) and (2.2). Hence Proposition 2.5 yields a weight v with
rnm = sm. We obtain |nm+1 − nm| = m+ 1 ≤ min(nm, nm+1) and

(
sm

sm+1

)nm vm

vm+1
= (m+ 1)m+1 and

(
sm+1

sm

)nm+1 vm+1

vm
= 1.

This shows that v satisfies (C). Hence Hv ∼ hv ∼ H∞.

3. Trigonometric polynomials. In the following let [x] be the largest
integer ≤ x for a given number x ∈ R. We need

3.1. Lemma. Let 0 < r < s and m,n > 0.

(a) Then, for any trigonometric polynomial f of degree ≤ n, we have

M∞(f, s) ≤
(
s

r

)n

M∞(f, r).

(b) Let g ∈ span{t|k| exp(ikϕ) : |k| > m}. Then

M∞(g, r) ≤ 2(r/s)m

(r/s)2m + 1
M∞(g, s) ≤ 2

(
r

s

)m

M∞(g, s).

Proof. (a) See [15, Lemma 3.1(i)].

(b) Put p = [m] + 1. Let

h(exp(iϕ)) =
1

2
(exp(ipϕ) + exp(−ipϕ))

∑

k∈Z

(
r

s

)|k|
exp(ikϕ).

Then h is a Poisson kernel up to the factor 2−1(exp(ipϕ) + exp(−ipϕ)).

Hence (2π)−1
T2π
0 |h(exp(iϕ))| dϕ ≤ 1 and

h(exp(iϕ)) =
1

2

∑

j≥p

((
r

s

)j−p

+

(
r

s

)j+p)
exp(ijϕ)

+
1

2

∑

j≤−p

((
r

s

)p−j

+

(
r

s

)−j−p)
exp(ijϕ) +

∑

|j|<p

αj exp(ijϕ)

for some αj . If g =
∑

|k|>m βkt
|k| exp(ikϕ) for some βk we obtain

1

2

((
r

s

)p

+

(
s

r

)p)
g(r exp(iϕ)) =

1

2π

2π\
0

h(exp(i(ϕ− ψ)))g(s exp(iψ)) dψ.
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This implies, since 0 < (r/s)p < (r/s)m < 1,

|g(r exp(iϕ))| = 2

((
r

s

)p

+

(
s

r

)p)−1

×(2π)−1
∣∣∣
2π\
0

h(exp(i(ϕ− ψ)))g(s exp(iψ)) dψ
∣∣∣

≤ 2(r/s)p

(r/s)2p + 1
M∞(g, s)(2π)−1

2π\
0

|h(exp(i(ϕ− ψ)))| dψ

≤ 2(r/s)m

(r/s)2m + 1
M∞(g, s).

Hence

M∞(g, r) ≤ 2(r/s)m

(r/s)2m + 1
M∞(g, s).

Now, fix a weight v : [0, a[ → R+. As before, let rm be a maximum point of
the function r 7→ rmv(r), r > 0.

3.2. Corollary.

(a) Fix m > 0 and consider f ∈ span{r|k| exp(ikϕ) : k ∈ Z, |k| ≤ m},
g ∈ span{r|k| exp(ikϕ) : k ∈ Z, |k| > m}. Then

‖f‖v ≤ sup
r≤rm

M∞(f, r)v(r) and ‖g‖v ≤ 2 sup
r≥rm

M∞(g, r)v(r).

(b) Fix 0 < m < n and put

α =

(
rm
rn

)m v(rm)

v(rn)
, β =

(
rn
rm

)n v(rn)

v(rm)
.

Then any h ∈ span{r|k| exp(ikϕ) : k ∈ Z, m < |k| ≤ n} satisfies

‖h‖v ≤ 2αM∞(h, rn)v(rn) and ‖h‖v ≤ 2βM∞(h, rm)v(rm).

Proof. (a) If r > rm then we obtain, by Lemma 3.1,

M∞(f, r)v(r) ≤
(
r

rm

)m v(r)

v(rm)
M∞(f, rm)v(rm) ≤M∞(f, rm)v(rm).

If 0 < r < rm Lemma 3.1 implies

M∞(g, r)v(r) ≤ 2

(
r

rm

)m v(r)

v(rm)
M∞(g, rm)v(rm) ≤ 2M∞(g, rm)v(rm).

This yields (a).
(b) According to (a) we have

‖h‖v ≤ sup
r≤rn

M∞(h, r)v(r) ≤ 2 sup
r≤rn

(
r

rn

)m v(r)

v(rn)
M∞(h, rn)v(rn)

≤ 2αM∞(h, rn)v(rn)
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and

‖h‖v ≤ 2 sup
r≥rm

M∞(h, r)v(r) ≤ 2 sup
r≥rm

(
r

rm

)n v(r)

v(rm)
M∞(h, rm)v(rm)

≤ 2βM∞(h, rm)v(rm).

We want to study special operators on hv. Note that any linear operator
T : hv → hv is bounded provided that T , restricted to the trigonometric
polynomials, is bounded with respect to M∞(·, 1). Let ‖T‖v be the operator
norm with respect to ‖ · ‖v and ‖T‖∞ the operator norm with respect to
M∞(·, 1). We always have ‖T‖v ≤ ‖T‖∞. Indeed, put z = r exp(iϕ) and
f =

∑
k αkr

|k| exp(ikϕ). Then

|(Tf)(z)|v(|z|) =
∣∣∣T

(∑

k

αkr
|k| exp(ikϕ)

)∣∣∣v(r)

≤ ‖T‖∞ sup
ϕ

∣∣∣
∑

k

αkr
|k| exp(ikϕ)

∣∣∣v(r) ≤ ‖T‖∞‖f‖v.

Hence ‖Tf‖v ≤ ‖T‖∞‖f‖v.

Sometimes T is bounded with respect to ‖ · ‖v but unbounded with
respect to M∞(·, 1) (see below).

Now fix 0 < m < n (not necessarily integers) and consider the trigono-
metric polynomial f =

∑
k∈Z

αkr
|k| exp(ikϕ). We define the operator Vn,m

by

(3.1) Vn,mf =
∑

|k|≤m

αkr
|k| exp(ikϕ) +

∑

m<|k|≤n

[n] − |k|
[n] − [m]

αkr
|k| exp(ikϕ).

Moreover, we consider the Riesz projection

(3.2) Rf =
∑

k≥0

αkr
|k| exp(ikϕ).

3.3. Lemma. We have

(a) ‖Vn,m‖∞ ≤ [n] + [m]

[n] − [m]
,

(b) M∞(Rh, r) ≤
(

1 +
[n] − [m]

[m]

)
M∞(h, r)

for any r > 0 and h ∈ span{r|k| exp(ikϕ) : k ∈ Z, m < |k| ≤ n},

(c) ‖Vn4,n3
− Vn2,n1

‖∞ ≤ 4
[n4] − [n1]

[n2] − [n1]

(
3 + 4

[n4] − [n1]

[n4] − [n3]

)

if 0 < n1 < n2 < n3 < n4,
(d) ‖Vn4,n3

− Vn2,n1
‖∞ ≤ 2([n4] − [n1]),

‖R(Vn4,n3
− Vn2,n1

)‖∞ ≤ [n4] − [n1] if 0 < n1 < n2 < n3 < n4.
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Proof. (a) By definition we have Vn,m = V[n],[m]. Fix p ∈ Z+. Then

Vp,0f =
∑

|k|≤p

p− |k|
p

αkr
|k| exp(ikϕ).

It is well known ([11]) that ‖Vp,0‖∞ = 1. Since

Vn,m =
[n]V[n],0 − [m]V[m],0

[n] − [m]

we obtain (a).

(b) Let m and n be integers. Fix k ∈ Z and put, for the trigonometric
polynomial f , (Skf)(r exp(iϕ)) = exp(ikϕ)f(r exp(iϕ)). If h is as indicated
in (b) we obtain Rh = SnVn+m,n−mS−nh (compare the Fourier coefficients
on both sides). We conclude that M∞(Rh, r) ≤ 2n(2m)−1M∞(h, r). From
this the result follows.

(c) Retain the notation Sk of (b). Let 0 ≤ n1 < n2 < n3 < n4 be
integers. Put (Uf)(z) = f(z) for any trigonometric polynomial f . Set T =
Vn4+n2−2n1,n3+n2−2n1

− V2(n2−n1),n2−n1
. Then

Vn4,n3
− Vn2,n1

= US2n1−n2
RTS−(2n1−n2)U + S2n1−n2

RTS−(2n1−n2).

Hence (a) and (b) imply

‖Vn4,n3
− Vn2,n1

‖∞ ≤ 2
n4 + n2 − 2n1

n2 − n1

(
3 +

n4 + n3 + 2n2 − 4n1

n4 − n3

)

≤ 4
n4 − n1

n2 − n1

(
3 + 4

n4 − n1

n4 − n3

)
.

(d) Put f =
∑

k αk exp(ikϕ). Then, by definition, there are ̺k ∈ [0, 1]
with

(Vn4,n3
− Vn2,n1

)f =
∑

n1<|k|≤n4

αk̺k exp(ikϕ),

R(Vn4,n3
− Vn2,n1

)f =
∑

n1<k≤n4

αk̺k exp(ikϕ).

Since |αk| ≤ ‖f‖∞ for all k, (d) follows.

3.4. Proposition. Suppose that , for some n,m > 0,

α :=

(
rn
rm

)n v(rn)

v(rm)
> 2.

(a) Then there is β(α) > 0 such that ‖f‖v ≤ β(α)‖f + g‖v when-

ever f ∈ span{r|k| exp(ikϕ) : k ∈ Z, |k| ≤ min(m,n)} and g ∈
span{r|k| exp(ikϕ) : k ∈ Z, |k| > max(m,n)}; moreover ,
lim supα→∞ β(α) <∞.
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(b) There is a constant γ(α) > 0 such that V := Vmax(m,n),min(m,n) :
hv → hv satisfies ‖V ‖v ≤ γ(α); moreover , lim supα→∞ γ(α) <∞.

Proof. (a) First consider the case m < n. By Lemma 3.1 and Corollary
3.2, we have

‖f + g‖v ≥ sup
r≤rm

M∞(f + g, r)v(r)

≥ sup
r≤rm

(
M∞(f, r)v(r) −M∞(g, r)v(r)

)

≥ ‖f‖v − 2

(
rm
rn

)n v(rm)

v(rn)

(
sup
r≤rm

(
r

rm

)n v(r)

v(rm)

)
M∞(g, rn)v(rn)

≥ ‖f‖v −
2

α
sup
r≤rm

(
r

rm

)m v(r)

v(rm)
‖g‖v

≥ ‖f‖v −
2

α
‖g‖v ≥ ‖f‖v −

2

α
‖f + g‖v −

2

α
‖f‖v.

Hence ‖f‖v ≤ (1 − 2/α)−1(1 + 2/α)‖f + g‖v.

For n < m we have, by Lemma 3.1,

‖f + g‖v ≥ sup
r≥rm

M∞(f + g, r)v(r)

≥ 1

2
‖g‖v −

(
sup
r≥rm

(
r

rm

)n v(r)

v(rm)

)
M∞(f, rn)v(rn)

(
rm
rn

)n v(rm)

v(rn)

≥ 1

2

(
‖g‖v −

2

α
sup
r≥rm

(
r

rm

)m v(r)

v(rm)
‖f‖v

)

=
1

2

(
‖f‖v − ‖f + g‖v −

2

α
‖f‖v

)

We obtain ‖f‖v ≤ (3/(1 − 2/α))‖f + g‖v.

(b) Assume without loss of generality that m < n. Fix h ∈ hv, say
h =

∑
k αkr

|k| exp(ikϕ).

First consider the case [m]=[n]. Then, by definition, V h=
∑

|k|≤m αkr
|k|

exp(ikϕ). In view of (a) this means that V is bounded by β(α).

Now assume [n] − [m] ≥ 1. It suffices to assume [n] ≤ 2[m] (otherwise
Proposition 3.4 follows from Lemma 3.3). Put T = V2[n]−[m],[n]−V[m],2[m]−[n].
Lemma 3.3(a), (c) implies that T is uniformly bounded. The definition of T
yields moreover T (r|k| exp(ikϕ)) = r|k| exp(ikϕ) whenever [m] ≤ |k| ≤ [n].
Since V = V[n],[m] we obtain

V Th = (V[n],[m] − V[m],2[m]−[n])h.
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Lemma 3.3(c) implies ‖V Th‖v ≤ 88‖h‖v. Now put

Ph =
∑

|k|<m

αkr
|k| exp(ikϕ), Qh =

∑

|k|>n

αkr
|k| exp(ikϕ)

and f = P (id − T )h, g = Q(id − T )h. We obtain Th+ f + g = h.
(a) and the definitions of V and g imply

‖V h‖v = ‖f + V Th‖v ≤ ‖f‖v + 88‖h‖v ≤ β(α)‖f + g‖v + 88‖h‖v

≤ β(α)‖f + g + Th‖v + β(α)‖Th‖v + 88‖h‖v

≤ (β(α)(1 + ‖T‖v) + 88)‖h‖v.

4. Conditions (B) and ¬(B). Let v : [0, a[ → R+ be a weight. First
we prove

4.1. Proposition. Let v satisfy (B) and let c > 0 be the corresponding

constant in (B). Fix c < m < n < p and b, d > 1 such that b ≤ α, β, γ, δ ≤ d
where

α =

(
rm
rn

)m v(rm)

v(rn)
, β =

(
rn
rm

)n v(rn)

v(rm)
,

γ =

(
rn
rp

)n v(rn)

v(rp)
, δ =

(
rp
rn

)p v(rp)

v(rn)
.

Then there are constants d′ > 1 and κ, η > 0 depending only on b and d but

not on m, n or p such that either p−m ≤ c or

η ≤ p− n

n−m
≤ κ and max

((
rm
rp

)m v(rm)

v(rp)
,

(
rp
rm

)p v(rp)

v(rm)

)
≤ d′.

Proof. Our assumptions imply

rm
rn

≤
(

1

b

) 2

n−m

and
rn
rp

≤
(

1

b

) 2

p−n

.

Assume p−m > c.
If n−m ≤ p− n we have

(
rm
rp

)m v(rm)

v(rp)
= αγ

(
rp
rn

)n−m

≤ αγ

(
rp
rn

)p−n

≤ αγ2δ ≤ d4.

(B) provides us with a constant b′=b′(d4)>1 such that (rp/rm)pv(rp)/v(rm)
≤ b′. In this case we have

(
1

b′d4

) 1

p−m

≤ rm
rp

≤
(

1

b

) 2

n−m
+ 2

p−n

,

which implies

2(log b)

(
1

n−m
+

1

p− n

)
≤ log(b′d4)

p−m
.
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Since p−m = (p− n) + (n−m) we deduce

1 ≤ max

(
p− n

n−m
,
n−m

p− n

)
≤ log(b′d4)

2 log b
.

If p− n < n−m we have
(
rp
rm

)p v(rp)

v(rm)
= δβ

(
rn
rm

)p−n

≤ δβ

(
rn
rm

)n−m

≤ δβ2α ≤ d4

and we proceed exactly as before. Put d′ = max(d4, b′).

In order to discuss some consequences of 4.1 we need two technical lem-
mas.

4.2. Lemma. Let b1, b2 > 1 and m,n > 0 be such that(
rn
rm

)n v(rn)

v(rm)
≥ b2 and

(
rm
rn

)m v(rm)

v(rn)
≤ b1.

Then for any N ∈ Z+ and p = n2−N + (1 − 2−N )m, we have
(
rp
rm

)p v(rp)

v(rm)
≥ b

1/2N

2 b
−1+1/2N

1 ,

(
rm
rp

)m v(rm)

v(rp)
≤ b1

and |p−m|2N = |n−m|.
Proof. First, for n1 = (m+ n)/2 we easily obtain

(
rn
rm

)n1 v(rn)

v(rm)
≥

√
b2
b1
.

Hence (
rn1

rm

)n1 v(rn1
)

v(rm)
=

(
rn
rm

)n1 v(rn)

v(rm)

(
rn1

rn

)n1 v(rn1
)

v(rn)
≥

√
b2
b1
.

Since (rn/rn1
)m ≤ (rn/rn1

)n1 for m ≤ n1 ≤ n as well as for n ≤ n1 ≤ m we
also obtain(
rm
rn1

)m v(rm)

v(rn1
)

=

(
rm
rn

)m v(rm)

v(rn)

(
rn
rn1

)m v(rn)

v(rn1
)
≤ b1

(
rn
rn1

)n1 v(rn)

v(rn1
)
≤ b1.

In the next step we repeat the procedure with n1 instead of n and
√
b2/b1

instead of b2. This yields n2 = (n1 +m)/2 and
(
rn2

rm

)n2 v(rn2
)

v(rm)
≥ b

1/4
2 b

−1/2−1/4
1 ,

(
rm
rn2

)m v(rm)

v(rn2
)
≤ b1.

Continuation proves Lemma 4.2.

4.3. Lemma. Fix M, q ∈ Z+ and put

Pq,M (f) =
∑

j

αq+jMr
|q+jM | exp(i(q + jM)ϕ)

for any trigonometric polynomial f=
∑

k αkr
|k|exp(ikϕ). Then ‖Pq,M‖∞=1.
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Proof. We obtain

1

M

M−1∑

l=0

exp

(
−i 2π

M
lq

)
f

(
exp

(
i
2π

M
l

)
· r exp(iϕ)

)

=
1

M

∑

k

αk

(M−1∑

l=0

exp

(
i
2π

M
l(k − q)

))
r|k| exp(ikϕ)

=
∑

j

αq+jMr
|q+jM | exp(i(q + jM)ϕ).

This implies that Pq,M has norm one.

Again let Hn = span{1, z, . . . , zn} be endowed with M∞(·, 1). Now we
are ready to prove

4.4. Proposition. Assume ¬(B). Fix M,N ∈ Z+. Then there is a

subspace A ⊂ span{zk : k ≥ M} ⊂ (Hv)0 and a projection Q : Hv → A
such that ‖Q‖v and the Banach–Mazur distance d(A,HN ) do not depend on

M or N . If , in addition, v satisfies (C) then Q is defined and uniformly

bounded on all of hv.

Proof. ¬(B) yields the existence of b > 1 and m,n ≥ max(N,M), with
(
rm
rn

)m v(rm)

v(rn)
≤ b,

(
rn
rm

)n v(rn)

v(rm)
≥ b2

N+1

and |m− n| ≥ N2N . We may even assume that

(4.1) b > 2.

According to Lemma 4.2 we find p between m and n with

(4.2) |n−m| = 2N |p−m|,

(4.3)

(
rp
rm

)p v(rp)

v(rm)
≥ b and

(
rm
rp

)m v(rm)

v(rp)
≤ b

In particular we have |n− p| ≥ (2N − 1)|p−m|. Corollary 3.2 implies

(4.4) ‖f‖v ≤ 2bM∞(f, rn)v(rn)

whenever f ∈ span{r|k| exp(ikϕ) : |k| between n and m}.
Case m < p < n. Then, in view of Proposition 3.4(b), ‖Vp,m‖v does

not depend on m or p (see (4.1) and (4.3)). We may assume without loss of
generality from now on that m and p are integers. Otherwise we take [m]
and [p] instead.

Put Q1 = Pm,p−m(id−Vp,m) (Pm,p−m as in Lemma 4.3). Then, for k ≥ 0,

(4.5) Q1(z
k) =

{
zk if k = p+ j(p−m) for some integer j ≥ 0,

0 else.
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Define T1 : HN → (Hv)0 by

(4.6) T1z
j =

zp+j(p−m)

r
p+j(p−m)
n v(rn)

, j = 0, 1, . . . , N.

Since p+N(p−m) = m+(N+1)(p−m) ≤ n (see (4.2)) we obtain ‖T1‖ ≤ 2b
(see (4.4)).

Define S̃1 : Hv → L∞(∂D) by

(S̃1f)(z) = (Q1f)(rnz
1/(p−m)) · zp/(p−m)v(rn), f ∈ Hv,

which implies

(4.7) S̃1z
k =

{
rk
nz

jv(rn) if k = p+ j(p−m) for some integer j ≥ 0,

0 else

(see (4.5)). Finally, put

(4.8) S1 = VN,0S̃1.

Then (4.3), Proposition 3.4 and the definition of Q1 imply that ‖S1‖ ≤ γ(b)
for some γ(b) > 0 which does not depend on m, n or p. (Recall that N ≤ n.)
Moreover, (4.6) and (4.7) show that S1T1 = VN,0|HN

.

Case n < p < m. Here ‖Vm,p‖v does not depend on m or p. As before,
we may assume from now on that m and p are integers.

Put Q1 = Pm,m−pVm,p. Then

Q1z
k =

{
zk if k = p− j(m− p) for some integer j ≥ 0,

0 else.

Define S̃1 : Hv → L∞(∂D) by

(S̃1f)(z) = (Q1f)(rnz
1/(m−p)) · zp/(m−p)v(rn), f ∈ Hv,

so that

S̃1z
k =

{
rk
nz

jv(rn) if k = p− j(m− p) for some integer j ≥ 0,

0 else.

Then put S1 = VN,0S̃1. Finally, define T1 : HN → (Hv)0 by

T1z
j =

zp−j(m−p)

r
p−j(m−p)
n v(rn)

, j = 0, 1, . . . , N.

As before we obtain S1T1 = VN,0|HN
and ‖S1‖ ≤ γ(b), ‖T1‖ ≤ 2b.

In both cases we have S1z
k = 0 if k is not between n and m (see (4.2),

(4.7), (4.8) and take into account that min(m,n) +N |m− p| ≤ max(m,n)).
Now, fix M1 > max(M,m, n). Repeat the same procedure with M1 instead
of M to find m′ ≥M1, n

′ ≥M1 and linear operators T2 : HN → (Hv)0 and
S2 : Hv → HN such that ‖S2‖ ≤ γ(b), ‖T2‖ ≤ 2b, S2T2 = VN,0|HN

, and



36 W. Lusky

S2z
k = 0 if k is not between m′ and n′. In particular

(4.9) S2T1 = 0 and S1T2 = 0.

For a complex function f put (Wf)(z) = f(z). Finally, define V : (HN ⊕
HN )∞ → Hv by V (f, g) = T1f + T2g and U : Hv → (HN ⊕HN )∞ by

Uf = (S1f + zNWS2f, S2f + zNWS1f).

Then ‖U‖≤2γ(b) and ‖V ‖≤4b. It is easily seen that UHv=span{(zj, zN−j):
j = 0, 1, . . . , N}, which is isometrically isomorphic to HN . Moreover, by
(4.9),

UV (zj, zN−j) = U(T1z
j + T2z

N−j)

= (VN,0z
j + zNVN,0z

N−j , VN,0z
N−j + zNVN,0z

j)

= (zj, zN−j).

This implies that Q = V U : Hv → Hv is a projection and d(QHv,HN) and
‖Q‖v depend only on b. The construction of Q and U furthermore shows
that Qzk = 0 if k is neither between m and n nor between m′ and n′.

Now assume that, moreover, (C) holds. Then we can choose m, m′ and
n, n′ such that, in addition,

(4.10)
min(m′, n′) ≥ 3max(m,n), min(m,n) ≥ d|n−m|,
min(m′, n′) ≥ d|n′ −m′|

for some d > 0, say m < n < m′ < n′. Again we may assume that m, m′,
n, n′ are integers (otherwise take [m], [m′], [n], [n′] instead). Using (C) we
can assume that

(4.11)
d

2
(n−m) > 1 and

d

2
(n′ −m′) > 1.

Define W : hv → Hv by

W = R(Vn+ d
2
(n−m),n−Vm,m− d

2
(n−m))+R(Vn′+ d

2
(n′−m′),n′ −Vm′,m′− d

2
(n′−m′))

where R is the Riesz projection. From (4.10) we infer that n+2−1d(n−m) <
m′ − 2−1d(n′ −m′). Lemma 3.3(b), (c) provides us with a constant α > 0
such that

‖W‖v = α

(
1 +

(1 + d)(n−m)

m− d
2(n−m)

+ 1 +
(1 + d)(n′ −m′)

m′ − d
2 (n′ −m′)

)

≤ α

(
2 + 4

1 + d

d

)
.

The construction yields Wzj = zj if m ≤ j ≤ n or m′ ≤ j ≤ n′. Finally,
define Q̂ : hv → QHv by Q̂ = QW .

We deduce
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4.5. Corollary. Under the assumptions of Proposition 4.4 the spaces

Hv and hv each contain a complemented subspace isomorphic to H∞ while

(Hv)0 and (hv)0 each contain a complemented subspace isomorphic to

(
∑

n ⊕Hn)0.

Proof. Let c be a constant such that d(A,HN ) ≤ c and ‖Q‖ ≤ c for A,
HN , Q of Proposition 4.4. Observe that for every ε,M > 0 there is K > 0
such that if f ∈ span{r|k| exp(ikϕ) : |k| ≤ M} and g ∈ span{r|k| exp(iϕ) :
|k| ≥ N} with N −M ≥ K, then

(1 − ε) max(‖f‖v, ‖g‖v) ≤ ‖f + g‖v ≤ (1 + ε) max(‖f‖v, ‖g‖v).

This follows since limr→a v(r) = 0.

Using Proposition 4.4, by induction, we find integers 0 < M1 < M2 < · · ·
(sufficiently far apart), subspaces Ak ⊂ (Hv)0 and projections Qk : Hv →
Ak (or Qk : hv → Ak) such that d(Ak, Hk) ≤ c, ‖Qk‖ ≤ c and, for Tk =
VM4k+3,M4k+2

− VM4k+1,M4k
,

(4.12)
1

2
sup

k
‖Tkf‖v ≤

∥∥∥
∑

k

Tkf
∥∥∥

v
≤ 2 sup

k
‖Tkf‖v

for all f ∈ hv and

(4.13) Tkh = h for all h ∈ Ak, k = 1, 2, . . . .

Put Q =
∑

k QkTk. Then, in view of (4.12) and (4.13), Q is a bounded pro-
jection from (Hv)0 (or (hv)0) onto the closure of span(

⋃∞
k=1Ak) in (Hv)0.

Moreover, if the fk ∈ Ak are such that supk ‖fk‖v < ∞ then, in view
of (4.12) and Montel’s theorem,

∑
k fk converges (uniformly on compact

subsets) to a holomorphic function (called
∑

k fk again) with ‖
∑

k fk‖v

<∞. Hence
∑

k fk ∈ Hv. We conclude that {
∑

k fk : fk ∈ Ak, k = 1, 2, . . . ,
supk ‖fk‖v < ∞} is complemented in Hv (or hv). Finally, this space is
isomorphic to (

∑
n ⊕Hn)(∞) ∼ H∞.

5. Norms equivalent to ‖ · ‖v. First we prove, for a given weight
v : [0, a[ → R+,

5.1. Lemma. Fix b > 1. Then there are numbers 0 < m1 < m2 < · · ·
such that(

rmn+1

rmn

)mn+1 v(rmn+1
)

v(rmn)
≥ b and

(
rmn

rmn+1

)mn v(rmn)

v(rmn+1
)
≥ b,

and , for each n, one of these inequalities is an equality ; moreover , limn→∞mn

= ∞.

Proof. Start with m1 = 1. Then assume that we already have mn for
some n. Use limM→∞ rmn

M v(rM ) = 0 (by assumption on v) to find M0 > mn
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with (
rmn

rM

)mn v(rmn)

v(rM )
≥ b for any M ≥M0.

Fix M ≥M0 with rM > rmn and use

lim
N→∞

(
rM
rmn

)N v(rM )

v(rmn)
= ∞

to find N > M with (
rM
rmn

)N v(rM )

v(rmn)
≥ b.

Since rN
N v(rN ) ≥ rN

Mv(rM ) by definition of rN , this implies
(
rN
rmn

)N v(rN )

v(rmn)
≥ b and

(
rmn

rN

)mn v(rmn)

v(rN )
≥ b.

Now let N be the smallest number > mn which satisfies the last two inequal-
ities and put mn+1 = N (which exists since m 7→ rm

mv(rm) is continuous).
Then, in particular, one of the above inequalities is an equality.

Finally, if supnmn <∞ we would obtain

b ≤ lim
n→∞

(
rmn+1

rmn

)mn+1 v(rmn+1
)

v(rmn)

= lim
n→∞

rmn−mn+1

mn

r
mn+1
mn+1

v(rmn+1
)

rmn
mnv(rmn)

= 1

by continuity, a contradiction.

In the following let b, mn be the numbers of Lemma 5.1.

5.2. Proposition. Assume that b > 2. Then there are constants c1, c2
> 0 such that , for any f ∈ hv and fn = (Vmn+1,mn − Vmn,mn−1

)f , we have

c1 sup
n

sup
rmn−1

≤r≤rmn+1

M∞(fn, r)v(r)

≤ ‖f‖v ≤ c2 sup
n

sup
rmn−1

≤r≤rmn+1

M∞(fn, r)v(r).

Proof. The left-hand inequality is clear since, according to Proposition
3.4, the operators Vmn+1,mn −Vmn,mn−1

are uniformly bounded with respect
to ‖ · ‖v. It suffices to assume that f is a trigonometric polynomial. We have
f =

∑
k fk and fk ∈ span{r|j| exp(ijϕ) : [mk−1] + 1 ≤ |j| ≤ [mk+1]}. Fix n

and r such that rmn−1
≤ r ≤ rmn . Then we obtain, using Lemma 3.1,

M∞(f, r)v(r) ≤
∑

k

M∞(fk, r)v(r)
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≤
∑

k≤n−2

(
r

rmk+1

)mk+1 v(r)

v(rmk+1
)
M∞(fk, rmk+1

)v(rmk+1
)

+
1∑

j=−1

M∞(fn+j, r)v(r)

+ 2
∑

k≥n+2

(
r

rmk−1

)mk−1 v(r)

v(rmk−1
)
M∞(fk, rmk−1

)v(rmk−1
).

We have(
r

rmk+1

)mk+1 v(r)

v(rmk+1
)
≤

(
rmk+2

rmk+1

)mk+1 v(rmk+2
)

v(rmk+1
)

(
rmk+3

rmk+2

)mk+2 v(rmk+3
)

v(rmk+2
)

· · ·
(
rmn−1

rmn−2

)mn−2 v(rmn−1
)

v(rmn−2
)

(
r

rmn−1

)mn−1 v(r)

v(rmn−1
)
≤

(
1

b

)n−k−2

if k ≤ n− 2 and, similarly, if k ≥ n+ 2,
(

r

rmk−1

)mk−1 v(r)

v(rmk−1
)
≤

(
r

rmn+1

)mn+1 v(r)

v(rmn+1
)

(
rmn+1

rmn+2

)mn+2 v(rmn+1
)

v(rmn+2
)

· · ·
(
rmk−2

rmk−1

)mk−1 v(rmk−2
)

v(rmk−1
)
≤

(
1

b

)k−1−n

.

Since b > 1 we obtain

M∞(f, r)v(r) ≤ c2 sup
n

sup
rmn−1

≤r≤rmn+1

M∞(fn, r)v(r)

for some constant c2 which depends only on b.

Using Proposition 5.2 it might be possible to exactly describe all the
weights ṽ such that the differentiation operator Diff : Hv → Hṽ, where
Diff(f) = f ′, is bounded.

We want to strengthen Proposition 5.2. To this end fix n and find pn, qn
with mn−1 < pn < mn < qn < mn+1 such that

(
rpn

rmn

)pn v(rpn)

v(rmn)
=

√
b and

(
rqn

rmn

)qn v(rqn)

v(rmn)
=

√
b.

(Again, use the continuity of p 7→ rp
pv(rp).)

5.3. Lemma. Assume that b > 4. Then there are universal constants

d1, d2 > 0 such that , for every n, there is sn ∈ {rmn , rmn+1
} satisfying the

following.

For every f ∈ span{r|k| exp(ikϕ) : mn−1 ≤ |k| ≤ mn+1} and un =
Vmn,pnf , vn = (Vqn,mn − Vmn,pn)f , wn = (id − Vqn,mn)f , we have

‖un‖v ≤ d2M∞(un, sn−1)v(sn−1),

‖vn‖v ≤ d2M∞(vn, rmn)v(rmn),

‖wn‖v ≤ d2M∞(wn, sn)v(sn).
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In particular ,

d1max(M∞(un, sn−1)v(sn−1),M∞(vn, rmn)v(rmn),M∞(wn, sn)v(sn))≤‖f‖v

≤ d2 max(M∞(un, sn−1)v(sn−1),M∞(vn, rmn)v(rmn),M∞(wn, sn)v(sn)).

Proof. According to the choice of pn and qn, in view of Proposition 3.4,
the norms of the operators Vmn,pn and Vqn,mn depend only on b. We have

un ∈ span{r|k| exp(ikϕ) : mn−1 ≤ |k| ≤ mn},
vn ∈ span{r|k| exp(ikϕ) : pn ≤ |k| ≤ qn},
wn ∈ span{r|k| exp(ikϕ) : mn ≤ |k| ≤ mn+1}.

Fix j. If (
rmj+1

rmj

)mj+1 v(rmj+1
)

v(rmj
)

= b

put sj = rmj
. If this is not the case then, in view of Lemma 5.1, we have

(
rmj

rmj+1

)mj v(rmj
)

v(rmj+1
)

= b.

Here put sj = rmj+1
. Using Corollary 3.2 we deduce

‖un‖v ≤ 2bM∞(un, sn−1)v(sn−1),

‖vn‖v ≤ 2max( sup
rpn≤r≤rmn

M∞(vn, r)v(r), sup
rmn≤r≤rqn

M∞(vn, r)v(r))

≤ 2
√
bM∞(vn, rmn)v(rmn),

‖wn‖v ≤ 2bM∞(wn, sn)v(sn).

Since f = un + vn + wn the result follows.

Combining Lemma 5.3 and Proposition 5.2 we obtain

5.4. Corollary. Assume that b > 4. Then there are constants c1, c2
> 0, indices 0 ≤ k1 ≤ k2 ≤ . . . , radii 0 < t1 ≤ t2 ≤ · · · and uniformly

bounded linear operators

Tn : hv → span{r|j| exp(ijϕ) : kn−2 < |j| ≤ kn+1}
satisfying the following.

For every trigonometric polynomial f we have f =
∑

n Tnf ,

c1 sup
n
M∞(Tnf, tn)v(tn) ≤ ‖f‖v ≤ c2 sup

n
M∞(Tnf, tn)v(tn)

and TmTnf = 0 if |n−m| > 4.

Finally ,

‖h‖v ≤ c2M∞(h, tn)v(tn) whenever h ∈ Tnhv, n = 1, 2, . . . .
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6. The Banach space geometry of hv and Hv. First we show

6.1. Lemma.

(a) Let m,n, p ∈ Z+ with m ≤ n ≤ p. Then Hm is isometrically isomor-

phic to a 2-complemented subspace of (Hn ⊕Hp)∞.

(b) Consider integers 0 < m < n and let Bn,m = span{r|j| exp(ijϕ) :
j ∈ Z and m ≤ |j| ≤ n} be endowed with the norm M∞(·, 1). Then

there is an integer N > 0 such that Bn,m is isometrically isomorphic

to a 16-complemented subspace of (HN ⊕HN )∞.

Proof. (a) For a complex function f put (Wf)(z) = f(z). Identify zj ∈
Hm with (zj, zm−j) ∈ (Hn ⊕Hp)∞. Put

P (f, g) = (Vm,0f + zmWVm,0g, Vm,0g + zmWVm,0f).

Then P is a projection from (Hn⊕Hp)∞ onto {(zj, zm−j) : j = 0, 1, . . . ,m},
which is isometrically isomorphic to Hm. We have ‖P‖ ≤ 2.

(b) If n ≤ 2m, then, according to Lemma 3.3, the Riesz projection
R : Bn,m → zmHn−m satisfies ‖R|Bn,m‖∞ ≤ 2. Hence it follows that
d(Bn,m, (Hn−m ⊕Hn−m)∞) ≤ 4, which yields (b) with N = n−m.

If 2m < n, then Lemma 3.3 implies ‖V2n,n+m‖∞ ≤ (n −m)−1(3n +m)
≤ 7. Let W be as in (a). Consider the space

A = span{zj : j ∈ Z+, 0 ≤ j ≤ n−m or n+m ≤ j ≤ 2n},
endowed with the norm M∞(·, 1), which is isometrically isomorphic to Bn,m.
Define P : (H2n ⊕H2n)∞ → (H2n ⊕H2n)∞ by

P (f, g)

= (Vn−m,0f + (id − V2n,n+m)f + z2nWVn−m,0g + z2nW (id − V2n,n+m)g,

Vn−m,0g + (id − V2n,n+m)g + z2nWVn−m,0f + z2nW (id − V2n,n+m)f)

We easily check that P is a projection onto

span{(zj , zn+m−j) : j ∈ Z+, 0 ≤ j ≤ n−m or n+m ≤ j ≤ 2n},
which is isometrically isomorphic to A. (Observe that 0 ≤ j ≤ n−m if and
only if n +m ≤ 2n − j ≤ 2n.) We obtain ‖P‖ ≤ 16, which proves (b) with
N = 2n.

6.2. Corollary. Consider integers 0 < mk ≤ nk with limk→∞(nk−mk)
= ∞ and let Bk = span{r|j| exp(ijϕ) : j ∈ Z+ and mk ≤ |j| ≤ nk} be

endowed with M∞(·, 1). Then
(∑

k

⊕Hnk

)
∞

∼
(∑

k

⊕Bk

)
∞

∼ H∞.

Proof. Put X = (
∑

m ⊕Hm)∞. Then X is isomorphic to H∞ ([22]).
Moreover, put Y = (

∑
k ⊕Hnk

)∞. We conclude that Y is complemented
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in X. Using Lemma 6.1(a) we see that X is complemented in Y . Since H∞ ∼
(H∞ ⊕ H∞ ⊕ . . .)∞ ([22]) this shows that Y ∼ H∞. Using Lemma 6.1(a)
we also see that every Hm is 2-complemented in (Bk ⊕ Bk′)∞ for suitable
k and k′. Hence (

∑
k ⊕Bk)∞ contains a complemented subspace isomorphic

to H∞. Finally, Lemma 6.1(b) implies that (
∑

k ⊕Bk)∞ is complemented
in H∞. Hence (

∑
k ⊕Bk)∞ ∼ H∞.

6.3. Proposition. For any weight v the spaces hv and Hv are isomor-

phic to complemented subspaces of H∞, while (hv)0 and (Hv)0 are isomor-

phic to complemented subspaces of (
∑

n ⊕Hn)0.

Proof. Let c1, c2, km, tm and Tn : hv → span{r|j| exp(ijϕ) : kn−2 <
|j| ≤ kn+1} =: Bn be as in Corollary 5.4, where Bn is endowed with ‖ · ‖v.
Put X = (

∑
n ⊕(Bn, ‖ · ‖v))∞. Define U : X → hv by U(hn) =

∑
n hn.

Then, according to Corollary 5.4, U is bounded. Indeed, we have Tmhn = 0
if |n−m| > 4 and

‖U(hn)‖v ≤ c2 sup
m
M∞

(
Tm

∑

n

hn, tm

)
v(tm) ≤ 6c22 sup

n
‖hn‖v.

Conversely, define V : hv → X by

V f = (Tnf)∞n=1.

We have ‖V ‖ ≤ c−1
1 and UV = idhv, which implies that hv is isomorphic to

a complemented subspace of X.
If supn(kn+1−kn−2) <∞, then supn dimBn <∞ and hence (

∑
n ⊕Bn)∞

∼ l∞. Since l∞ is complemented in H∞ the assertion of Proposition 6.3
follows.

If supn(kn+1 − kn−2) = ∞, then in view of Corollary 5.4 we have

sup
n
d((Bn, ‖ · ‖v), (Bn,M∞(·, 1))) <∞

(since (Bn,M∞(·, tn)v(tn)) is isometrically isomorphic to (Bn,M∞(·, 1))).
We conclude, by Corollary 6.2, that X = (

∑
n ⊕Bn)∞ is isomorphic to H∞.

Again, the assertion follows in this case.
The proof for Hv instead of hv is identical. Here, instead of Bn, we con-

sider span{rj exp(ijϕ) : kn−2 < j ≤ kn+1}, which is isometrically isomorphic
to Hkn+1−kn−2−1.

Also the proof for (Hv)0 and (hv)0 instead of Hv and hv is identical.

Corollary 4.5 and Proposition 6.3 together with the decomposition
method ([12]) prove Theorems 1.1(b) and 1.2(b). Theorems 1.1(a), 1.2(a)
and 1.3 follow from

6.4. Proposition. Let v satisfy (B). Then Hv and hv are isomorphic

to l∞, while (Hv)0 and (hv)0 are isomorphic to c0. Moreover , the Riesz

projection R : hv → Hv is bounded.
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Proof. Let mn be the numbers of Lemma 5.1 with respect to some b > 2.
Then, using (B) and Proposition 4.1, we obtain universal constants η, κ and
c, d such that mn+1 −mn−1 ≤ c or

η ≤ [mn+1] − [mn]

[mn] − [mn−1]
≤ κ(6.1)

and

max

((
rmn+1

rmn−1

)mn+1 v(rmn+1
)

v(rmn−1
)
,

(
rmn−1

rmn+1

)mn−1 v(rmn−1
)

v(rmn+1
)

)
≤ d

for all n with mn−1 ≥ c. To prove the proposition it suffices to consider only
those n with mn−1 ≥ c.

Put Tn = Vmn+1,mn−Vmn,mn−1
. By (6.1), Lemma 3.3(c), (d) the operators

Tn are uniformly bounded with respect to M∞(·, 1) and hence with respect
to ‖ · ‖v and to the norms M∞(·, rmn)v(rmn). From Corollary 3.2 we deduce

‖Tnh‖v ≤ 2dM∞(Tnh, rmn+1
)v(rmn+1

)(6.2)

≤ 2d(sup
n

‖Tn‖∞)M∞(h, rmn+1
)v(rmn+1

)

whenever h ∈ hv.
Let Yn be the space of all harmonic functions on rmn+1

D whose radial
limits are L∞-functions on {z ∈ C : |z| = rmn+1

}. On Yn we consider the
norm M∞(·, rmn+1

)v(rmn+1
) which is equivalent to M∞(·, rmn+1

). Hence Yn

is isometrically isomorphic to L∞. Note that the operators Vm,m̃ make sense
on Yn and Vm,m̃h is a trigonometric polynomial for every h ∈ Yn.

If mn+1 −mn−1 > c find finite-dimensional subspaces Xn ⊂ Yn with

Vmn+2,mn+1
Yn ⊂ Xn(6.3)

and supn d(Xn, l
dim Xn∞ ) < ∞. If mn+1 −mn−1 ≤ c take Xn = Tnhv. Then

dimXn ≤ c. Altogether we obtain (
∑

n ⊕Xn)0 ∼ (
∑

n ⊕ldim Xn∞ )0 ∼ c0.
Define U : (

∑
n ⊕Xn)0 → (hv)0 by U(hk) =

∑
k Tkhk. (The functions

Tkhk are trigonometric polynomials and therefore can be regarded as ele-
ments of hv.) Since TnTm = 0 if |n−m| ≥ 2 we have

TnU(hk) = TnTn−1hn−1 + T 2
nhn + TnTn+1hn+1.

Hence ‖TnU(hk)‖v ≤ c1 supj=n−1,n,n+1 ‖Tjhj‖v for a universal constant c1.
Proposition 5.2, (6.2) and the uniform boundedness of the Tn imply that U
is bounded.

If mn+1 −mn−1 ≤ c define, for f =
∑

k αkr
|k| exp(ikϕ),

Snf =
∑

mn−1<|k|≤mn+1

αkr
|k| exp(ikϕ) ∈ Xn.

Otherwise put Sn = (id − Vmn−2,mn−2/2)Vmn+2,mn+1
. Define V : (hv)0 →

(
∑

n ⊕Xn)0 by V f = (Snf), which makes sense in view of (6.3). Recall that,
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since b > 2 in view of Proposition 3.4, we have supn ‖Vmn+2,mn+1
‖v < ∞.

Therefore, V is bounded. Moreover, UV f =
∑

n Tnf = f . This implies that
(hv)0 is isomorphic to a complemented subspace of (

∑
n ⊕Xn)0 ∼ c0 and

hence (hv)0 ∼ c0 ([12]). In view of Proposition 5.2, (6.1) and Lemma 3.3 the
Riesz projection R : (hv)0 → (Hv)0 is bounded. As a consequence we also
have (Hv)0 ∼ c0.

To prove the result for hv instead of (hv)0 we proceed exactly as before.
Define U : (

∑
n ⊕Xn)∞ → hv by U(hk) =

∑
k Tkhk. From Proposition

5.2 and (6.2), looking at the Fourier series, we see that the series
∑

k Tkhk

converges pointwise to a harmonic function (called
∑

k Tkhk again) with
‖
∑

k Tkhk‖v <∞. Hence
∑

k Tkhk ∈ hv. The definition of V can be repeated
literally for the operator hv → (

∑
n ⊕Xn)∞ with UV = idhv. Hence we

obtain hv ∼ l∞ and the Riesz projection R : hv → Hv is bounded. Therefore
we also have Hv ∼ l∞. (Alternatively, we could have used Proposition 5.2
or [1, 18] to see that hv ∼ (hv)∗∗0 ∼ l∞ and Hv ∼ (Hv)∗∗0 ∼ l∞.)
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