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On joint spectral radii in locally convex algebras
by

ANDRZEJ SOETYSIAK (Poznan)

Abstract. We present several notions of joint spectral radius of mutually commuting
elements of a locally convex algebra and prove that all of them yield the same value in
case the algebra is pseudo-complete. This generalizes a result proved by the author in
1993 for elements of a Banach algebra.

1. Notation and definitions. The term locally convex algebra will al-
ways mean a Hausdorff locally convex space over the complex field C which
is a linear associative algebra with jointly continuous multiplication. We as-
sume that a locally convex algebra A has a unit e. The topology of A can
be given by a family P of seminorms which satisfy the following conditions

(see [7]):
(i) for every p € P there exists ¢ € P such that for all a,b € A,

p(ab) < q(a)q(b);
(ii) for every pi,...,p, € P there exists ¢ € P such that for all a € A,

max{pi(a),...,pn(a)} < q(a);
(iii) p(e) =1 for all p € P.

For convenience of the reader we recall some basic facts from the spectral
theory of locally convex algebras as introduced by G. R. Allan in [1].

Let A be a locally convex algebra. An element a € A is bounded if there
exists a non-zero complex number A such that the set {(Aa)":n=1,2,...}
is a bounded subset of A or, what is the same, (Aa)” — 0 as n — co. We
denote by Ay, the set of all bounded elements of the algebra A. An important
role in this theory is played by the radius of boundedness (3(a) of an element
a defined by the formula

Ba) =inf{\A > 0: (A\"'a)" — 0 as n — oo},
2000 Mathematics Subject Classification: Primary 46HO05, 46J05; Secondary 46H30.
Key words and phrases: joint spectral radius, locally convex algebra, bounded element.

(73]



74 A. Sottysiak

where as usual inf () = +00. Clearly a € Ay, if and only if (a) < oco. Moreover
for each a € A and every non-negative integer n,

(1) Bla") = B(a)"
(see [10]). Hence an element a is bounded if and only if @™ is bounded for
all n. For bounded and commuting elements a and b we have

(2) B(ab) < B(a)B(b).
Let B denote the family of all subsets B of A such that

(i) B is absolutely convex and B? C B,
(ii) B is bounded and closed,
(iii) e € B.
For each B € B let A(B) denote the subalgebra of A generated by B, i.e.
A(B) ={Xa: A€ C, a € B}.
A(B) is a normed algebra with the norm defined by
|lal|p = inf{\ > 0: a € AB}.
The locally convex algebra A is pseudo-complete if each of the normed al-
gebras A(B) (B € B) with the norm || - ||p is a Banach algebra. Notice
that pseudo-completeness is weaker than completeness or even sequential
completeness (cf. [1, Prop. 2.6]). It is known (see [1, Cor. 2.11]) that if the
algebra A is commutative and pseudo-complete then Ay is a subalgebra of A.
Let A be a locally convex algebra and let a € A. The Allan spectrum of

a in A, denoted by Jf;‘(a), or simply by oy, (a), is the subset of the extended
complex plane C = C U co defined in the following way:

(i) if X # oo, then X € oy,(a) if Ae — a has no inverse in Ay;
(ii) oo € op(a) if and only if a & Ay,
The spectral radius of a, 74 (a) or simply r(a), is defined by
r(a) = sup{[A[: A € on(a)},
where |oo| = 0.
It is well known (see [1, Cor. 3.9 and Thm. 3.12]) that for an element a

of a locally convex algebra A we have oy,(a) # () and 3(a) < r(a). Moreover,
if A is pseudo-complete then op(a) is closed (in C) and

(3) B(a) = r(a).
From (3) it follows that the spectral radius of an element a of a pseudo-
complete locally convex algebra A does not depend upon the algebra, i.e. it
stays the same in any (closed and unital) subalgebra of A containing a.
Notice that (1) and (3) also imply that r(a™) = r(a)" for every element
a of such an algebra and each non-negative integer n. From (2) and (3) we
get r(ab) < r(a)r(b) for bounded and commuting elements a and b in A.
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We also need the notion of joint spectrum of elements in A. Let A be a
commutative locally convex algebra and let a = (ay, ..., ay) be an n-tuple of
elements of Ay,. The joint spectrum of this tuple is defined as follows (cf. [2]):

n
o (@) =an(@) =an(ar,. . ) = {1, A) ECT eg D (e — ;) Ay |
j=1
Notice that for a single element a € Ay, this notion coincides with the Allan
spectrum of a.
It follows from [1, Lemma 6.6] (cf. also [2]) that for any n-tuple a =

(ai,...,ay) of bounded elements in a commutative pseudo-complete locally
convex algebra A,
(4) op(a) = {(p(ar),...(an)): ¢ € M(Ap)},

where 9t(Ayp) denotes the set of all non-zero multiplicative linear functionals
on the algebra Ay,.

From (4) it follows that the joint spectrum op(a, ..., ay) has the spectral
mapping property on Ay, with respect to polynomials, i.e.

op(w(ag,...,an)) = w(op(a,...,ay)),

where w = (w1, ..., wy,) is an arbitrary m-tuple of polynomials over C in n
indeterminates.

If a = (a1,...,a,) is an n-tuple of elements of a locally convex algebra
A, then A(ai,...,ay), or briefly A(a), is the unital algebra generated by
these elements, i.e. A(a) is the smallest closed subalgebra of A containing
ai,...,ap and the unit. If A is pseudo-complete then so is A(a). Notice that
A(a)p = ApNA(a). The algebra A(a) is commutative if the elements a; are
pairwise commuting. Let a = (aq,...,a,) be an n-tuple of mutually com-
muting bounded elements of a locally convex algebra A. Let ¢ (a) denote the
joint spectrum of a = (ay,...,a,) in the algebra A(a), i.e. o(a) = Uf)q(a)(a).
If A is pseudo-complete we have

() o(a) = {(p(ar), ..., p(an)): ¢ € M(A(a)y)}

2. Spectral radius and joint spectral radius. Let us recall several
notions of spectral radius (see [3], [16]) in locally convex algebras.
Let A be a locally convex algebra and let a € A. Consider the following
formulas:
7(a) = sup{limsup p(a™)"/": p € P},

n—o0

' (a) = sup{limsup | f(a™)|*/": f € A},

n—oo

where A’ denotes the dual space of A.
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It is well known that 7(a) = r/(a) = B(a) (see [1, Prop. 2.18]) and more-
over, if the algebra A is pseudo-complete, then in view of (3),

(6) (a) =1'(a) = B(a) = r(a).
REMARK 1. W. Zelazko in [16] proposed another definition of spectrum
of an element of a locally convex convex algebra. Namely, let

o(a) = {X € C: Xe — a has no inverse in A},
oq(a) = {\g € C: (Ae — a) ! is discontinuous at A = Ao},
{oo} if and only if (e — Aa)~! is discontinuous at A\ = 0,
Tso(a) = .
0 otherwise.
The extended spectrum of a is the set

Y(a) =o(a)Uoqg(a) Uox(a)
and the extended spectral radius of a is

R(a) = sup{|\|]: A € X(a)}.
The Allan spectrum o}, (a) need not coincide with the extended spectrum
XY (a). However, Zelazko proved that 7(a) = 7’'(a) = R(a) in a complete
locally convex algebra (cf. [16]; in fact it is enough to assume that the alge-

bra is sequentially complete). Therefore if a is an element of a sequentially
complete locally convex algebra A, then
(a) =r'(a) = B(a) = r(a) = R(a).

The notion of spectral radius can be generalized to the case of a finite
or bounded set of elements (see [4]-[6], [8], [11]-[15]). We concentrate on the
case of a finite set of commuting elements in order to keep links between joint
spectral radius and joint spectrum. Let us recall the definitions of joint spec-
tral radii used in the theory of Banach algebras. Let A be a Banach algebra
and let a = (ay,...,ay,) be an n-tuple of pairwise commuting elements of A.
The geometric joint spectral radius of a, r(a), is defined as follows (see [5]):

r(a) = sup{|Aeo: (A1,...,An) € ou(a)},
where |\ = max{|\;|: j = 1,...,n} and on(a) denotes the Harte spec-
trum of the elements aq, ..., a,. In fact, the Harte spectrum can be replaced
by any other “reasonable” joint spectrum (cf. [5], [9, Prop. 2, p. 288], and
[14]). The Rota—Strang joint spectral radius of a is defined as (see [12])
7(a) = lim max|[a$" - - - a2 ||/,
$—0 |a|=s

where a = (a1,...,0,) € ZY, |a| = oy + -+ + ay, and || - || stands for the
norm of the algebra A. The Berger—Wang joint spectral radius is defined as
(see [4])

re(a) = 51520 ﬁiﬁr(a?l o atm)l/s,
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It was shown in [15] (cf. also [9, Thm. 5, p. 290]) that if a = (a1,...,a,) is
a commuting n-tuple of elements of a Banach algebra A, then

r(a) = r«(a) =7(a).
Moreover, in [6] E. Yu. Emel’yanov and Z. Ercan proved that all these radii
are equal to
7' (a) = sup{lim sup max | f(aS" - - - a%) |/ f e A’}
s—oo |al=s

We propose the following generalizations of these formulas to the case of
a locally convex algebra.

DEFINITION. Let A be a locally convex algebra and let a = (a1, ..., ay)
be an n-tuple of mutually commuting elements of A. Define

r(a) = sup{| Ao (A1,...,An) €0(a)} ifaj € Ay for j=1,...,n,
o0 otherwise;

T*(a) = lign sogp ‘ro{ﬁ;i);r(a‘fl o agn)l/S;
— =

7(a) = sup{lim sup max p(aj* .. aSm)Vsp e P

s—o0 |al=s

v (a) = sup{lim sup max | f(aS" ... a%)[Y/*: f e A'}.
§—00 \a|:s

REMARK 2. If the algebra A is pseudo-complete, then the upper limit
in the definition of r.(a) can be replaced by the limit. To show this let
a = (ay,...,ay) be an n-tuple of mutually commuting elements of a locally
convex pseudo-complete algebra A. If all elements a; (j = 1,...,n) are
bounded, then submultiplicativity of the spectral radius for bounded and
commuting elements implies

max r(af?---an") < maxr(a}" ---al")maxr(ait - -al)
lal=s+t lul=s lv|=t
and by the standard technique (see e.g. [9, Lemma 21, p. 8]) the limit of
max|q|—s r(ay’ ... a%n)V/s exists.
If the n-tuple a = (a1, ...,a,) contains at least one unbounded element,
say a;, then by (1) all of its powers aj are unbounded and so r(aj) = oo for
all s. Since

maxr(al’...an") > r(a;
la|=s

it follows that the limit of max, g r(ay” ... a8 )V/s is oo.

REMARK 3. In the definition of 7(a) one can replace P by the set of all
continuous seminorms on A. This will not change the value of 7(a).
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3. Main result

THEOREM. Let A be a pseudo-complete locally convex algebra and let
a=(ay,...,ap) be an n-tuple of mutually commuting elements of A. Then

(7) r(a) = max r(a;) = jil%ax B(a;) = r.(a) = r'(a) = 7(a).

=1,..., =1,...,

Proof. Notice first that if a; ¢ Ay, for some j (j = 1,...,n), then in view
of (1), aj & Ay, for every positive integer s and by (6) we have

r(a3) = B(a3) = 7(a) = r'(a) = oo.

J J J J
This implies that all expressions in (7) are equal to oo.
From now on we assume that ay,...,a, € Ayp. Let j € {1,...,n}. The

relations

r(a;)® =r(a3) < \Iﬁi}gr(a?l catm)
imply
(8) max r(a;) <ri(ar,...,an).

j=1,..n
Let a = (aq,...,ay) be a multi-index with || = s. Since
P ai) < rla)™ o r(a)™ < max (),
we have
(9) r«(at,...,an) < max r(aj).
7j=1,...,n

From (3), (8), and (9) we obtain
(10) max r(a;) = max B(a;) =r(a1,...,an).

jzlv"'vn ]—1,...,7),
Now we prove that
(1]‘) T(alv---yan):T*(a17...,an).

If A= (Mi,...,\n) € 0(a1,...,ay), then \; € Jf(a)(aj) by (5). Therefore
IAj| < r(aj) and

Moo = max [4;| < max r(aj) =ru(ay,...,an).
Consequently,
(12) r(ay,...,an) <re(ai, ..., an).
Let « = (a1, . .., a,) be a multi-index with |a| = s. The spectral mapping

property of Jlfl(a) implies that

A A ~
o}, (a)(a'f‘l ceap™) = w(oy, (a)(al, conan)) =w(o(al,. .., an)),
where w is the polynomial w(z1,...,2,) = 2{"---z3". Take any A\ €

oM@ (g8 ... ). There exists 1 = (pu1, ..., pn) € 3(a1,...,a,) such that
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A= puft - pim. We have

A= lpa ™ lpal® < ulS < r(ars. .. an)”
Since A was an arbitrary element of Uf)q(a)(a‘fl <-adm) we get
r(aft - ap™) <r(ar,...,an)°
and finally
(13) re(a, ..., an) = lim maxr(at - a2 s <r(ay,...,a,).

S§— 00 ‘a|:s

Equality (11) follows from (12) and (13).
The next step in the proof is the inequality

(14) r(ay, ... an) <rilay,...,an).
Notice first that it is enough to prove that
(15) re(at,...,an) <1 = 7(a,...,a,) < 1.

Indeed, if we take an € > 0 and the elements b; = (r.(ag,...,a,) +¢) ta;
(j=1,...,n), then r.(b1,...,b,) < 1 and hence by (15) we get 7(b1,...,by)
< 1. But

N r(al,...,ap)

(b ,...,b = )

(br ) rs(ay,...,an) +¢
which gives

r(a, ... an) <ri(ay,...,an) +e,

and since £ > 0 was arbitrary, (14) follows.

Now we proceed to the proof of (15). Let r.(a1,...,a,) < 1. By (10) we
have (3(a;) <1 for j = 1,...,n. Therefore aj — 0 as s — oo. This implies
that for every seminorm ¢ € P there exists sp = so(q) such that for every
s > sp and each j =1,...,n we have

q(aj) < 1.
Take any p € P. There exists g € P such that for all x1,...,x2, € A,
p(a1-wn) < q(a1) - q(an).

Thus for every multi-index o = (a1, ..., ;) we have

play” ---ap™) < q(ay") - qap™).
Take g € P such that

a(zy) < G(@)ily) for all 2,y € A.
Set so = so(q). Let oj = kjso +1; with kj, I; € Z and 0 < [; < s, and let
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M; = max{l,q~(aj),...,(7(&?071)} (j=1,...,n). Then

pay™ ---apr) < q(a") -+ qlay™)
< q(ay*)qlar) -+~ qlay*)q(ay)
<My ---M,=M
Consequently,

lim sup max p(a$ - - -a2")/* < 1,
s—oo |al=s

which gives 7(a1,...,a,) < 1 and completes the proof of (15).
Now we prove that
(16) r(at,...,an) <7(ai,... ap).

For every f € A’ there exist a constant M > 0 and a seminorm p € P such
that
|f(x)| < Mp(z) forall x € A.

Thus for each multi-index « with |a| = s we have
|f(agr--- agn)yl/s < Ml/sp(a?l e agn)l/s_
This implies

lim sup max | f(a$ - - - a%)|Y/* < lim sup max p(aS" - - - a&n)Y/*
s—oo |al=s s—o00 |a|=s

<7(ai,...,ap),
which gives (16).
To conclude the proof we have to show
(17) re(ar, ... an) <7'(ay,...,ap).

Let A > (a1, ...,a,). Notice that in view of (16), (14), and (10) such a
A exists. Take any f € A’. Then there exists so such that for every s > sq
and every multi-index a with |a| = s we have

|faft---agm)| Ve <A
In particular for every j € {1,...,n} and all s > sy we get
[f(a)* < A
Hence
[F(Ahay)*) < L.

This implies that the sequence ((A71a;)®)%°, is weakly bounded, therefore
bounded and A > ((a;). Finally,

A > max f(a;j) =7re(a1,...,an).
Jj=1,...,n

Since A > (a1, ..., a,) was arbitrary we get (17). m
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REMARK 4. From the proof of the Theorem it follows that the equalities

(18) max (3(a;j) =1'(a) =7(a)
Jj=1,...n

hold true in any locally convex algebra. Since without the assumption of com-
pleteness there is no satisfactory spectral theory for locally convex algebras
one cannot expect equalities in (7) in that case.

To see that (7) need not to be true in a non-complete algebra it is enough
to consider the algebra J(C) of entire functions on the complex plane with

the norm || f|| = max{|f(2)|: |z| < 1}. It is a commutative normed algebra
in which
r(f) = max r(fj) =r.(f) =00
ji]‘?"'?n
for any n-tuple f = (f1,..., fn) containing a non-constant function but (18)

is finite for such an n-tuple.

REMARK 5. V. Miiller ([8], [9]) also considered formulas for the joint
spectral radii of elements of a Banach algebra in which the ¢, norm in C"
is replaced by an ¢, norm (1 < p < 00).

It is also possible to give analogous formulas in the locally convex case.
We conjecture that a counterpart of Miiller’s result ([8, Thm. 3]) in a locally
convex case is also true.
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