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Maximal regularity of delay equationsin Bana
h spa
esby
Carlos Lizama and Verónica Poblete (Santiago)Abstra
t. We 
hara
terize existen
e and uniqueness of solutions for an inhomoge-neous abstra
t delay equation in Hölder spa
es. The main tool is the theory of operator-valued Fourier multipliers.1. Introdu
tion. Partial di�erential equations with delay have been ex-tensively studied in the last years. In an abstra
t way they 
an be written as(1.1) u′(t) = Au(t) + Fut + f(t), t ∈ R,where (A,D(A)) is an (unbounded) linear operator on a Bana
h spa
e X,

ut(·) = u(t + ·) on [−r, 0], r > 0, and the delay operator F is supposed tobelong to B(C([−r, 0], X), X).First studies on equation (1.1) go ba
k to J. Hale [8℄ and G. Webb [12℄.A general and systemati
 study of linear delay equations with emphasison the qualitative behavior and asymptoti
 properties 
an be found in there
ent monograph by Bátkai and Piazzera [5℄. See also [13℄. The problem to�nd 
onditions for all solutions of (1.1) to be in the same spa
e as f arisesnaturally from re
ent studies on maximal regularity and their appli
ationto nonlinear problems in the theory of evolution equations; see the re
entmonograph by Denk�Hieber�Prüss [7℄ and referen
es therein.Re
ently, a signi�
ant progress has been made in �nding su�
ient 
ondi-tions for operator-valued fun
tions to be Cα-Fourier multipliers (see [3℄). Inparti
ular, in [4℄ the theory of operator-valued Fourier multipliers is appliedto obtain results on the hyperboli
ity of delay equations and in [9℄ to obtainstability of linear 
ontrol systems in Bana
h spa
es. Also in [10℄ existen
e anduniqueness of periodi
 solutions for equation (1.1) via Lp-Fourier multipliertheorems has re
ently been obtained.2000 Mathemati
s Subje
t Classi�
ation: 34G10, 34K30, 47D06.Key words and phrases: Fourier multipliers, delay di�erential equations, C0-semi-groups.The �rst author is partially supported by FONDECYT Grant #1050084.[91℄



92 C. Lizama and V. PobleteIn this paper we obtain ne
essary and su�
ient 
onditions of well-posed-ness of the delay equation (1.1) in the Hölder spa
es Cα(R, X) (0 < α < 1),under the 
ondition that X is a B-
onvex spa
e. We stress that here A isnot ne
essarily the generator of a C0-semigroup.The Fourier multiplier approa
h allows us to give a dire
t treatment of theequation, in 
ontrast with the approa
h using the 
orresponden
e between(1.1) and the solutions of the abstra
t Cau
hy problem
U ′(t) = AU(t) + F(t), t ≥ 0,where A =

(
A F
0 d/dσ

). In the latter 
ase the question of well-posedness of thedelay equation redu
es to the question whether or not the operator (A, D(A))generates a C0-semigroup; see [5, 6, 11℄ and referen
es therein.2. Preliminaries. Let X, Y be Bana
h spa
es and let 0 < α < 1. We
onsider the spa
es
Ċα(R, X) = {f : R → X : f(0) = 0, ‖f‖α <∞}normed by

‖f‖α = sup
t6=s

‖f(t) − f(s)‖

|t− s|α
.Let Ω ⊂ R be an open set. By C∞

c (Ω) we denote the spa
e of all C∞-fun
tions in Ω ⊆ R having 
ompa
t support in Ω.We denote by Ff or f̃ the Fourier transform, i.e.
(Ff)(s) :=

\
R

e−istf(t) dt (s ∈ R, f ∈ L1(R, X)).Definition 2.1. LetM : R\{0} → B(X,Y ) be 
ontinuous. We say that
M is a Ċα-multiplier if there exists a mapping L : Ċα(R, X) → Ċα(R, Y )su
h that(2.1) \

R

(Lf)(s)(Fφ)(s) ds =
\
R

(F(φ ·M))(s)f(s) dsfor all f ∈ Cα(R, X) and φ ∈ C∞
c (R \ {0}).Here (F(φ ·M))(s) =

T
R
e−istφ(t)M(t) dt ∈ B(X,Y ). Note that L is wellde�ned, linear and 
ontinuous (
f. [3, De�nition 5.2℄).De�ne

Cα(R, X) = {f : R → X : ‖f‖Cα <∞}with the norm
‖f‖Cα = ‖f‖α + ‖f(0)‖.Let Cα+1(R, X) be the Bana
h spa
e of all u ∈ C1(R, X) su
h that

u′ ∈ Cα(R, X), equipped with the norm
‖u‖Cα+1 = ‖u′‖Cα + ‖u(0)‖.



Maximal regularity of delay equations 93By De�nition 2.1 and sin
e\
R

(F(φM)(s))(s) ds = 2π(φM)(0) = 0,it follows that f ∈ Cα(R, X) implies Lf ∈ Cα(R, X). Moreover, if f ∈
Cα(R, X) is bounded then Lf is bounded as well (see [3, Remark 6.3℄).The following multiplier theorem is due to Arendt�Batty and Bu [3,Theorem 5.3℄.Theorem 2.2. Let M ∈ C2(R \ {0},B(X,Y )) be su
h that(2.2) sup

t6=0
‖M(t)‖ + sup

t6=0
‖tM ′(t)‖ + sup

t6=0
‖t2M ′′(t)‖ <∞.Then M is a Ċα-multiplier.Remark 2.3. If X is B-
onvex, in parti
ular if X is a UMD spa
e, The-orem 2.2 remains valid if 
ondition (2.2) is repla
ed by the weaker 
ondition(2.3) sup

t6=0
‖M(t)‖ + sup

t6=0
‖tM ′(t)‖ <∞,where M ∈ C1(R \ {0},B(X,Y )) (
f. [3, Remark 5.5℄).We use the symbol f̂(λ) for the Carleman transform:

f̂(λ) =





∞\
0

e−λtf(t) dt, Reλ > 0,

−
0\

−∞

e−λtf(t) dt, Reλ < 0,

where f ∈ L1
loc(R, X) is of subexponential growth; by this we mean

∞\
−∞

e−ε|t|‖f(t)‖ dt <∞ for ea
h ε > 0.

We remark that if u′ ∈ L1
loc(R, X) is of subexponential growth, then

û′(λ) = λû(λ) − u(0), Reλ 6= 0.3. A 
hara
terization. In this se
tion we 
onsider the equation(3.1) u′(t) = Au(t) + Fut + f(t), t ∈ R,where A : D(A) ⊆ X → X is a 
losed linear operator, f ∈ Cα(R, X),and, for some r > 0, F : C([−r, 0], X) → X is a bounded linear operator.Moreover ut is an element of C([−r, 0], X) de�ned by ut(θ) = u(t + θ) for
−r ≤ θ ≤ 0.



94 C. Lizama and V. PobleteExample 3.1. Let µ : [−r, 0] → B(X) be of bounded variation. Let
F : C([−r, 0], X) → X be the bounded operator given by the Riemann�Stieltjes integral

F (φ) =

0\
−r

φdµ for all φ ∈ C([−r, 0], X).An important spe
ial 
ase involves operators F de�ned by
F (φ) =

n∑

k=0

Ckφ(τk), φ ∈ C([−r, 0], X),where Ck ∈ B(X) and τk ∈ [−r, 0] for k = 0, 1, . . . , n. For 
on
rete equationswith the above 
lasses of delay operators see the monograph of Bátkai andPiazzera [5, Chapter 3℄.Definition 3.2. We say that (1.1) is Cα-well posed if for ea
h f ∈
Cα(R, X) there is a unique fun
tion u ∈ Cα+1(R, X) ∩ Cα(R, [D(A)]) su
hthat (1.1) is satis�ed.Set eλ(t) := eiλt for all λ ∈ R, and de�ne the operators {Fλ}λ∈R ⊆ B(X)by(3.2) Fλx = F (eλx) for all λ ∈ R and x ∈ X.We de�ne the real spe
trum of (3.1) by

σ(∆) = {s ∈ R : isI − Fs −A ∈ B([D(A)], X) is not invertible}.Proposition 3.3. Let X be a Bana
h spa
e and let A : D(A) ⊂ X → Xbe a 
losed linear operator. Suppose that (1.1) is Cα-well posed. Then(i) σ(∆) = ∅,(ii) {iη(iηI −A− Fη)
−1}η∈R is bounded.Proof. Let x ∈ D(A) and let u(t) = eiηtx for η ∈ R. Then ut(s) =

eitηeisηx. Thus(3.3) F (ut) = eitηF (eηx) = eitηFηx.Now if (iη − A − Fη)x = 0, then u(t) is a solution of equation (1.1) when
f ≡ 0. Hen
e by uniqueness x = 0. Now let L : Cα(R, X) → Cα+1(R, X) bethe bounded operator whi
h takes ea
h f ∈ Cα(R, X) to the unique solution
u ∈ Cα+1(R, X) of (1.1). Fix y ∈ X and s0 ∈ R, and de�ne f(t) = eitηy,
t ∈ R. Let u(t) be the unique solution of (1.1) su
h that L(f) = u.We 
laim that v(t) := u(t + s0) and w(t) := eiηs0u(t) both satisfy (1.1)when f is repla
ed by eis0ηf(t). First we noti
e that

vt(s) = u(t+ s0 + s) = ut+s0
(s).
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e F (vt) = F (ut+s0
). Then an easy 
omputation shows that v(t) satis-�es (1.1). On the other hand,

wt(s) = w(t+ s) = eiηs0u(t+ s) = eiηs0ut(s).Hen
e F (wt) = eis0ηF (ut). Thus
eiηs0u′(t) = eiηs0(Au(t) + F (ut) + f(t)) = Aw(t) + F (wt) + eiηs0f(t),that is, w(t) satis�es (1.1). By uniqueness we again have

u(t+ s) = eiηsu(t)for all t, s ∈ R. In parti
ular, when t = 0 we obtain
u(s) = eiηsu(0), s ∈ R.Now let x = u(0) ∈ D(A). Then u(t) = eiηtx satis�es (1.1), that is,by (3.3),

iηu(t) = Au(t) + F (ut) + eiηty = Au(t) + eiηtFηx+ eiηty.In parti
ular, if t = 0 we obtain
iηx = Ax+ Fηx+ y,sin
e x = u(0). Thus(3.4) (iηI −A− Fη)x = yand hen
e iηI−A−Fη is bije
tive. This shows assertion (i) of the proposition.Next we noti
e that u(t) = (iη−A−Fη)

−1y by (3.4). Sin
e ‖eη ⊗ x‖α =
Kα|η|

α‖x‖, we have
Kα|η|

α‖iη(iη −A− Fη)
−1y‖ = ‖eη ⊗ iη(iη −A− Fη)

−1y‖α = ‖u′‖α

≤ ‖u‖1+α = ‖Lf‖1+α ≤ ‖L‖ ‖f‖α ≤ ‖L‖(‖f‖α + ‖f(0)‖)

= ‖L‖(‖eη ⊗ y‖α + ‖y‖) ≤ ‖L‖(Kα|η|
α + 1)‖y‖.Hen
e for ε > 0 it follows that

sup
|η|>ε

‖iη(iη −A− Fη)
−1y‖ ≤ ‖L‖ sup

|η|>ε

(
1 +

1

Kα|η|α

)
<∞.Re
all that a Bana
h spa
e X has Fourier type p, where 1 ≤ p ≤ 2, ifthe Fourier transform de�nes a bounded linear operator from Lp(R, X) to

Lq(R, X), where q is the 
onjugate index of p. For example, the spa
e Lp(Ω),where 1 ≤ p ≤ 2, has Fourier type p; X has Fourier type 2 if and only if Xis a Hilbert spa
e; X has Fourier type p if and only if X∗ has Fourier type p.Every Bana
h spa
e has Fourier type 1; X is B-
onvex if it has Fourier type
p for some p > 1. Every uniformly 
onvex spa
e is B-
onvex.Our main result in this paper establishes that the 
onverse of Proposi-tion 3.3 is true.



96 C. Lizama and V. PobleteTheorem 3.4. Let A be a 
losed linear operator de�ned on a B-
onvexspa
e X. Then the following assertions are equivalent :(i) Equation (1.1) is Cα-well posed.(ii) σ(∆) = ∅ and supη∈R ‖iη(iηI −A− Fη)
−1‖ <∞.Proof. (ii)⇒(i). De�ne the operator M(t) = (Bt − A)−1, with Bt =

itI − Ft. Note that by hypothesis M ∈ C1(R,B(X, [D(A)])).We 
laim thatM is a Cα-multiplier. In fa
t, by hypothesis it is 
lear that
supt∈R ‖M(t)‖ <∞. On the other hand, we have

M ′(t) = −M(t)B′
tM(t)with B′

t = iI − F ′
t and F ′

t(x) = F (e′tx) where e′t(s) = iseist. Note that forea
h x ∈ X,(3.5) ‖Ftx‖X ≤ ‖F (etx)‖X ≤ ‖F‖ ‖etx‖∞ ≤ ‖F‖ ‖x‖X ,and(3.6) ‖F ′
tx‖X ≤ ‖F (e′tx)‖X ≤ ‖F‖ ‖e′tx‖∞ ≤ r‖F‖ ‖x‖X .Hen
e B′

t is uniformly bounded with respe
t to t ∈ R and we 
on
lude fromthe hypothesis that(3.7) sup
t∈R

‖tM ′(t)‖ = sup
t∈R

‖[tM(t)]B′
tM(t)‖ <∞,and hen
e the 
laim follows from Theorem 2.2 and Remark 2.3.Now, de�ne N ∈ C1(R,B(X)) by N(t) = (id ·M)(t), where id(t) := itfor all t ∈ R. We will prove that N is a Cα-multiplier. In fa
t, with a dire
t
al
ulation, we have

tN ′(t) = itM(t) + it2M ′(t) = itM(t) + i[itM(t)]B′
t[itM(t)]

= N(t) + iN(t)B′
tN(t).By hypothesis and (3.6) it follows that

sup
t∈R

‖tN ′(t)‖ ≤ sup
t∈R

‖N(t)‖ + sup
t∈R

‖N(t)B′
tN(t)‖ < ∞,hen
e from Theorem 2.2 and Remark 2.3 the 
laim is proved.A similar 
al
ulation proves that P ∈ C1(R \ {0},B(X)) de�ned by

P (t) = FtM(t) is a Cα-multiplier. In fa
t, we have tP ′(t) = F ′
tN(t) +

FttM
′(t), and hen
e from (3.5), (3.6) and (3.7) we see that supt∈R ‖P (t)‖+

supt∈R ‖tP ′(t)‖ <∞.Let f ∈ Cα(R, X). Sin
e M,N and P are Cα-multipliers, there exist
u ∈ Cα(R, [D(A)]), v ∈ Cα(R, X) and w ∈ Cα(R, X) su
h that
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R

u(s)(Fφ)(s) ds =
\
R

F(φ ·M)(s)f(s) ds,(3.8) \
R

v(s)(Fψ)(s) ds =
\
R

F(ψ · id ·M)(s)f(s) ds,(3.9) \
R

w(s)(Fϕ)(s) ds =
\
R

F(ϕ · F.M)(s)f(s) ds,(3.10)
for all φ, ψ, ϕ ∈ C∞

c (R).Note that for x ∈ X and φ ∈ C∞
c (R) we have

(3.11) F(φF.M)(s)x =
\
R

e−istφ(t)FtM(t)x dt =
\
R

e−istφ(t)F (etM(t)x) dt,

where T
R
e−istφ(t)etM(t)x dt ∈ C([−r, 0], X). Now, for all θ ∈ [−r, 0] wehave ∥∥∥
\
R

e−istφ(t)et(θ)M(t)x dt
∥∥∥

X
≤
\
R

|φ(t)| ‖M(t)x‖X dt.Sin
e F is bounded, we dedu
e that(3.12) F(φ · F.M)(s)x = F (F(φ · e.M)(s)x).Furthermore, observe that for θ ∈ [−r, 0] �xed we have e.(θ)φ ∈ C∞
c (R).Using (3.8) we obtain\

R

u(s+ θ)(Fφ)(s)ds =
\
R

u(s+ θ)
\
R

e−istφ(t) dt ds

=
\
R

u(s+ θ)
\
R

e−i(s+θ)tet(θ)φ(t) dt ds

=
\
R

u(s+ θ)(Fe.(θ)φ)(s+ θ) ds

=
\
R

u(s)(Fe.(θ)φ)(s) ds

=
\
R

F(e.(θ)φ ·M)(s)f(s) ds,

hen
e T
R
us(Fφ)(s) ds =

T
R
F(e.φ ·M)(s)f(s) ds.Sin
e θ 7→

T
R
us(θ)(Fφ)(s) ds ∈ C([−r, 0], X) (see [3, p. 25℄), from theboundedness of F and (3.12) it follows that\

R

F(φ · F.M)(s)f(s) ds =
\
R

FF(φ · e.M)(s)f(s) ds(3.13)
=
\
R

Fus(Fφ)(s) ds



98 C. Lizama and V. Pobletefor all φ ∈ C∞
c (R). Sin
e F.M is a Cα-multiplier, from (3.10) we obtain\

R

w(s)(Fφ)(s) ds =
\
R

Fus(Fφ)(s) dsfor all φ ∈ C∞
c (R). We 
on
lude that there exists y1 ∈ X satisfying w(t) =

Fut + y1, proving that Fu. ∈ Cα(R, X).Choosing φ = id · ψ in (3.8) we dedu
e from (3.9) that(3.14) \
R

u(s)F(id · ψ)(s) ds =
\
R

v(s)(Fψ)(s) ds,

and it follows from Lemma 6.2 in [3℄ that u ∈ Cα+1(R, X) and u′ = v + y2for some y2 ∈ X.Sin
e (id I−F.−A)M = I we have id ·M = I+F.M+AM and repla
ingin (3.9) gives\
R

v(s)(Fφ)(s) ds =
\
R

F(φ · (I + F.M +AM))(s)f(s) ds(3.15)
=
\
R

(Fφ)(s)f(s) ds+
\
R

F(φ · F.M)(s)f(s) ds

+
\
R

F(φ ·AM)(s)f(s) dsfor all φ ∈ C∞
c (R).Sin
e u(t) ∈ D(A) and F(φ ·M)(s)x ∈ D(A) for all x ∈ X, using thefa
t that A is 
losed and inserting (3.8) and (3.13) in (3.15) we obtain\

R

v(s)(Fφ)(s) ds =
\
R

Fus(Fφ)(s) ds+
\
R

Au(s)(Fφ)(s)f(s) ds(3.16)
+
\
R

f(s)(Fφ)(s) dsfor all φ ∈ C∞
c (R). By Lemma 5.1 in [3℄ this implies that for some y3 ∈ Xone has

v(t) = Fut +Au(t) + f(t) + y3, t ∈ R.Consequently, u′(t) = v(t) + y2 = Fut + Au(t) + f(t) + y where y =
y2 + y3. In parti
ular Au ∈ Cα(R, X). Now, by hypothesis we 
an de�ne
x = (A + F )−1y ∈ D(A), and then it is 
lear that u(t) := u(t) + x isin Cα+1(R, X) ∩ Cα(R, [D(A)]) and satis�es (1.1). We have shown that asolution of (1.1) exists.In order to prove uniqueness, suppose that(3.17) u′(t) = Au(t) + Fut, t ∈ R,where u ∈ Cα+1(R, X)∩Cα(R, [D(A)]) and, as shown, Au, Fu. ∈ Cα(R, X).
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laim that û.(λ) ∈ C([−r, 0], X) for Reλ 6= 0. In fa
t, let Reλ > 0.Then
‖e−λtut‖∞ = sup

θ∈[−r,0]
‖e−λtu(t+ θ)‖X ≤ sup

θ∈[−r,0]
e−Re λt(1 + |t+ θ|α)

≤ e−Re λt(1 + (|t| + r)α).Sin
e e−Re λt(1 + (|t|+ r)α) ∈ L1(R+), applying the dominated 
onvergen
etheorem we obtain the 
laim. Analogously we argue for Reλ < 0.Now, note that for Reλ > 0 and θ ∈ [−r, 0],
∞\
0

e−λtut(θ) dt =

∞\
0

e−λtu(t+ θ) dt =

∞\
θ

e−λ(t−θ)u(t) dt

= eλθ
∞\
θ

e−λtu(t) dt = eλθ
(∞\

0

e−λtu(t) dt+

0\
θ

e−λtu(t) dt
)

= eλθû(λ) + eλθ
0\
θ

e−λtu(t) dt.Analogously if Reλ < 0 and θ ∈ [−r, 0], then
−

0\
−∞

e−λtut(θ) dt = −
0\

−∞

e−λtu(t+ θ) dt = −
θ\

−∞

e−λ(t−θ)u(t) dt

= −eλθ
( 0\
−∞

e−λtu(t) dt−
0\
θ

e−λtu(t) dt
)

= eλθû(λ) + eλθ
0\
θ

e−λtu(t) dt.Sin
e F is bounded, we obtain(3.18) F̂ u.(λ) = Fû.(λ) = Fgû(λ) + Fgh for Reλ 6= 0where g(θ) = eλθ and h(θ) =
T0
θ e

−λtu(t) dt. Note that gh ∈ C([−r, 0], X).Sin
e û′(λ) = λû(λ) − u(0) for Reλ 6= 0, one has û(λ) ∈ D(A) and(3.19) û′(λ) = Âu(λ) + F̂ u.(λ) for Reλ 6= 0.Using the fa
t that A is 
losed, from (3.18) and (3.19) we get
(λI − Fg −A)û(λ) = u(0) + Fgh for all λ ∈ C \ iR.Sin
e iR ⊂ ̺(A), it follows that the Carleman spe
trum spC(u) of u is empty.Hen
e u ≡ 0 by [2, Theorem 4.8.2℄.We denote by KF (X) the 
lass of operators in X satisfying (ii) in theabove theorem. If A ∈ KF (X) we have u′, Au, Fu. ∈ Cα(R, X), and hen
ewe dedu
e the following result.



100 C. Lizama and V. PobleteCorollary 3.5. Let X be B-
onvex and A ∈ KF (X). Then(i) (1.1) has a unique solution in Z := Cα+1(R, X) ∩ Cα(R, [D(A)]) ifand only if f ∈ Cα(R, X).(ii) There exists a 
onstant M > 0 independent of f ∈ Cα(R, X) su
hthat(3.20) ‖u′‖Cα(R,X) + ‖Au‖Cα(R,X) + ‖Fu.‖Cα(R,X) ≤M‖f‖Cα(R,X).Remark 3.6. The inequality (3.20) is a 
onsequen
e of the 
losed graphtheorem and known as the maximal regularity property for equation (1.1).From it we dedu
e that the operator L de�ned by
D(L) = Z, (Lu)(t) = u′(t) −Au(t) − Fut,is an isomorphism onto. In fa
t, sin
e A is 
losed, the spa
e Z be
omes aBana
h spa
e under the norm

‖u‖Z := ‖u‖Cα(R,X) + ‖u′‖Cα(R,X) + ‖Au‖Cα(R,X).Su
h isomorphisms are 
ru
ial for the treatment of nonlinear versions of(1.1).Assume X is B-
onvex and A ∈ KF (X) and 
onsider the semilinearproblem(3.21) u′(t) = Au(t) + Fut + f(t, u(t)), t ≥ 0.De�ne the Nemytski�� superposition operator N : Z → Cα(R, X) by
N(v)(t) = f(t, v(t)), and the bounded linear operator

S : Cα(R, X) → Zby S(g) = u where u is the unique solution of the linear problem
u′(t) = Au(t) + Fut + g(t).Then to solve (3.21) we have to show that the operator H : Z → Z de�nedby H = SN has a �xed point.For related information we refer to Amann [1℄ where results on quasilineardelay equations involving the method of maximal regularity are presented.We �nish this paper with the following result whi
h gives us a useful
riterion to verify 
ondition (ii) in the above theorem.Theorem 3.7. Let X be a B-
onvex spa
e and let A : D(A) ⊂ X → Xbe a 
losed linear operator su
h that iR ⊂ ̺(A) and sups∈R ‖A(isI−A)−1‖ =:

M <∞. Suppose that(3.22) ‖F‖ <
1

‖A−1‖M
.Then for ea
h f ∈ Cα(R, X) there is a unique fun
tion u ∈ Cα+1(R, X) ∩

Cα(R, [D(A)]) su
h that (1.1) is satis�ed.



Maximal regularity of delay equations 101Proof. From the identity
isI −A− Fs = (isI −A)(I − Fs(isI −A)−1), s ∈ R,it follows that isI−A−Fs is invertible whenever ‖Fs(isI−A)−1‖ < 1. Nextobserve that(3.23) ‖Fs‖ ≤ ‖F‖,and hen
e

‖Fs(isI −A)−1‖ = ‖FsA
−1A(isI −A)−1‖ ≤ ‖F‖ ‖A−1‖M =: α.Therefore, under the 
ondition (3.22) we obtain σ(∆) = ∅ and the identity

(isI −A− Fs)
−1 = (isI −A)−1(I − Fs(isI −A)−1)(3.24)

= (isI −A)−1
∞∑

n=0

[Fs(isI −A)−1]n.For all n ∈ N we have
‖is(isI −A)−1[Fs(isI −A)−1]n‖

≤ ‖is(isI −A)−1‖ ‖FsA
−1A(isI −A)−1‖n

≤ ‖is(isI −A)−1‖FsA
−1‖n‖A(isI −A)−1‖n

≤ ‖is(isI −A)−1‖ ‖A−1‖n‖Fs‖
n‖A(isI −A)−1‖n.By (3.23) we obtain

‖is(isI −A)−1[Fs(isI −A)−1]n‖ ≤ ‖is(isI −A)−1‖ ‖A−1‖n‖F‖nMn

= ‖is(isI −A)−1‖αn.Finally, by (3.24), one has
‖is(isI −A− Fs)

−1‖ ≤ ‖is(isI −A)−1‖
1

1 − α
≤
M + 1

1 − α
.This proves that {is(isI−A−Fs)

−1} is bounded and the 
on
lusion followsfrom Theorem 3.4.
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