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Maximal regularity of delay equations
in Banach spaces

by

CARLOS Li1zaMA and VERONICA POBLETE (Santiago)

Abstract. We characterize existence and uniqueness of solutions for an inhomoge-
neous abstract delay equation in Holder spaces. The main tool is the theory of operator-
valued Fourier multipliers.

1. Introduction. Partial differential equations with delay have been ex-
tensively studied in the last years. In an abstract way they can be written as

(1.1) u'(t) = Au(t) + Fus + f(t), teR,

where (A, D(A)) is an (unbounded) linear operator on a Banach space X,
ut(+) = u(t + ) on [—r,0], > 0, and the delay operator F' is supposed to
belong to B(C([—r,0], X), X).

First studies on equation (1.1) go back to J. Hale [8] and G. Webb [12].
A general and systematic study of linear delay equations with emphasis
on the qualitative behavior and asymptotic properties can be found in the
recent monograph by Batkai and Piazzera [5]. See also [13]|. The problem to
find conditions for all solutions of (1.1) to be in the same space as f arises
naturally from recent studies on maximal regularity and their application
to nonlinear problems in the theory of evolution equations; see the recent
monograph by Denk-Hieber—Priiss [7] and references therein.

Recently, a significant progress has been made in finding sufficient condi-
tions for operator-valued functions to be C“-Fourier multipliers (see [3]). In
particular, in [4] the theory of operator-valued Fourier multipliers is applied
to obtain results on the hyperbolicity of delay equations and in [9] to obtain
stability of linear control systems in Banach spaces. Also in [10] existence and
uniqueness of periodic solutions for equation (1.1) via LP-Fourier multiplier
theorems has recently been obtained.
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In this paper we obtain necessary and sufficient conditions of well-posed-
ness of the delay equation (1.1) in the Holder spaces C*(R, X) (0 < a < 1),
under the condition that X is a B-convex space. We stress that here A is
not necessarily the generator of a Cy-semigroup.

The Fourier multiplier approach allows us to give a direct treatment of the
equation, in contrast with the approach using the correspondence between
(1.1) and the solutions of the abstract Cauchy problem

U't)=Aut) + F(t), t>0,
where A = (éd/ga)' In the latter case the question of well-posedness of the

delay equation reduces to the question whether or not the operator (A, D(A))
generates a Cy-semigroup; see [5, 6, 11] and references therein.

2. Preliminaries. Let X, Y be Banach spaces and let 0 < a < 1. We

consider the spaces
CUR,X) ={f:R— X : f(0) =0, || flla < oo}

normed by
1£(t) — f(s)

t—sl*

Let £2 C R be an open set. By C°(§2) we denote the space of all C'>-
functions in 2 C R having compact support in 2.

We denote by Ff or f the Fourier transform, i.e.

(Ff(s) =\ e ™ f(t)dt (s€R, fe L (R X)).
R

DEFINITION 2.1. Let M : R\ {0} — B(X,Y) be continuous. We say that
M is a C*multiplier if there exists a mapping L : C*(R, X) — C*(R,Y)
such that
(2.1) V(L) (8)(Fo)(s)ds = | (F(¢- M))(s)f(s) ds

R R

for all f € CY(R,X) and ¢ € C°(R\ {0}).

Here (F(¢- M))(s) = (e *'o(t)M(t) dt € B(X,Y). Note that L is well
defined, linear and continuous (cf. [3, Definition 5.2]).

Define

[[flla = sup
t#s

C'R,X)={f:R— X :|fllce < o0}
with the norm

[fllce = [[flla + £ O)]-

Let C®TY(R, X) be the Banach space of all u € C'(R,X) such that
uw € C*(R, X), equipped with the norm

lullcars = [[w/[lce + [lu(0)]].
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By Definition 2.1 and since
} (F(6M)(s))(s) ds = 2m(¢M)(0) = 0,

R
it follows that f € C*R,X) implies Lf € C*(R, X). Moreover, if f €
C%(R, X) is bounded then Lf is bounded as well (see [3, Remark 6.3]).
The following multiplier theorem is due to Arendt-Batty and Bu |3,
Theorem 5.3].

THEOREM 2.2. Let M € C*(R\ {0}, B(X,Y)) be such that
(2.2) sup || M (¢)]| + sup [[£M (£)[| + sup [[£M" (t)]| < oo
t£0 40 40

Then M is a C*-multiplier.

REMARK 2.3. If X is B-convex, in particular if X is a UMD space, The-
orem 2.2 remains valid if condition (2.2) is replaced by the weaker condition

(2.3) sup || M (t)|| + sup [[£M' (t)]] < oo,
t#£0 t#0

where M € C1(R\ {0}, B(X,Y)) (cf. [3, Remark 5.5]).

~

We use the symbol f(\) for the Carleman transform:

 e™Mrt)at, Re ) > 0,
F=3"
— | eMft)dt, Rer<o,

where f € Ll (R, X) is of subexponential growth; by this we mean

loc
o0
S e ()| dt < 0o for each & > 0.
—00
We remark that if v/ € Llloc(]R, X) is of subexponential growth, then

W(X) = AGA) — u(0), ReA#0.

3. A characterization. In this section we consider the equation
(3.1) u'(t) = Au(t) + Fug + f(t), tER,

where A : D(A) € X — X is a closed linear operator, f € C*R,X),
and, for some r > 0, F' : C([-r,0],X) — X is a bounded linear operator.
Moreover u; is an element of C([—r,0], X) defined by w;(0) = u(t + 6) for
—r <0<0.



94 C. Lizama and V. Poblete

ExAMPLE 3.1. Let g : [-r,0] — B(X) be of bounded variation. Let
F : C([-r,0,X) — X be the bounded operator given by the Riemann—
Stieltjes integral
0
F(¢)= | ¢dp forall ¢ € C([-r,0],X).

T

An important special case involves operators F' defined by
n
F(¢) =Y Crp(m), ¢ € C([-r,0],X),
k=0

where Cy, € B(X) and 7 € [—7,0] for £k =0, 1,...,n. For concrete equations
with the above classes of delay operators see the monograph of Batkai and
Piazzera [5, Chapter 3|.

DEFINITION 3.2. We say that (1.1) is C*-well posed if for each f €
C%(R, X) there is a unique function v € C**}(R, X) N C*(R, [D(A)]) such
that (1.1) is satisfied.

Set ex(t) := e for all A\ € R, and define the operators {F)}xer C B(X)
by
(3.2) Fyx = F(eyx) forallAe€Rand z e X.

We define the real spectrum of (3.1) by

o(A)={seR:is] — F;— A e B([D(A)], X) is not invertible}.

PROPOSITION 3.3. Let X be a Banach space and let A: D(A) C X — X
be a closed linear operator. Suppose that (1.1) is C*-well posed. Then

(i) o(4) =0,
(i) {in(in — A — F,)"1},er is bounded.

Proof. Let x € D(A) and let u(t) = €™z for n € R. Then uy(s) =
e'etsy. Thus
(3.3) F(uy) = e"F(epz) = e F)x.
Now if (in — A — Fy))x = 0, then u(t) is a solution of equation (1.1) when
f = 0. Hence by uniqueness = = 0. Now let L : C*(R, X) — C**1(R, X) be
the bounded operator which takes each f € C*(R, X) to the unique solution
u € C*TYR, X) of (1.1). Fix y € X and so € R, and define f(t) = ey,
t € R. Let u(t) be the unique solution of (1.1) such that L(f) = u.

We claim that v(t) := u(t + so) and w(t) := e"*0u(t) both satisfy (1.1)
when f is replaced by €%07 f(t). First we notice that

ve(s) = u(t + so + 5) = Upts, ().



Mazimal regularity of delay equations 95

Hence F(v¢) = F(utys,). Then an easy computation shows that v(t) satis-
fies (1.1). On the other hand,

wi(s) = w(t + s) = eOu(t + s) = 0w (s).
Hence F(w;) = 0" F(u;). Thus
0w/ (1) = 0 (Au(t) + F(up) + f(t)) = Aw(t) + F(wg) + € f(1),
that is, w(t) satisfies (1.1). By uniqueness we again have
u(t + s) = e"u(t)
for all t,s € R. In particular, when ¢ = 0 we obtain
u(s) = eu(0), scR.
Now let © = u(0) € D(A). Then u(t) = ez satisfies (1.1), that is,
by (3.3),
inu(t) = Au(t) + F(ug) + ey = Au(t) + e Fyz + ey.
In particular, if ¢ = 0 we obtain
inr = Az + Fx + vy,
since = u(0). Thus
(3.4) (inl —A—-F)z=y
and hence inl — A—F, is bijective. This shows assertion (i) of the proposition.
Next we notice that u(t) = (in— A — F,) "'y by (3.4). Since e, ® z|lo =
Kq|n|“||z||, we have
Ko n|*|lin(in — A= Fy) " yll = lley @ in(in — A = Fy) "'yl = [[u]la
< Mlulliva = 1L liva < LI la < WLl + 1F(0)])
= [ILlI(len @ ylla + llyll) < ILI(Kalnl* + Dlyll-
Hence for ¢ > 0 it follows that

o _ 1
sup |[in(in — A — F,) "1yl < ||L| sup (1 t % a) <00. m
|n|>e [n|>e oz‘m

Recall that a Banach space X has Fourier type p, where 1 < p < 2, if
the Fourier transform defines a bounded linear operator from LP(R, X) to
LR, X), where ¢ is the conjugate index of p. For example, the space LP({2),
where 1 < p < 2, has Fourier type p; X has Fourier type 2 if and only if X
is a Hilbert space; X has Fourier type p if and only if X* has Fourier type p.
Every Banach space has Fourier type 1; X is B-convex if it has Fourier type
p for some p > 1. Every uniformly convex space is B-convex.

Our main result in this paper establishes that the converse of Proposi-
tion 3.3 is true.
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THEOREM 3.4. Let A be a closed linear operator defined on a B-convex
space X . Then the following assertions are equivalent:

(i) Equation (1.1) is C“-well posed.
(ii) o(A) =0 and sup, g |lin(in] — A — F,)7!|| < oc.

Proof. (ii)=(i). Define the operator M(t) = (B; — A)~!, with B; =
it] — F;. Note that by hypothesis M € C'(R, B(X, [D(A)])).

We claim that M is a C*-multiplier. In fact, by hypothesis it is clear that
sup;eg || M (t)|| < co. On the other hand, we have

M'(t) = —M(t)B;M(t)

with B, = il — F] and F](x) = F(e}z) where ¢}(s) = ise’t. Note that for
each z € X,

(3.5) [Fexllx < ||F(ew)x < [[Fll leexlloo < [[F| |2l x,
and
(3.6) [F{z|lx < [|[F(etx)llx < IF[ letzlloo < rIF]| 2] x-

Hence B is uniformly bounded with respect to t € R and we conclude from
the hypothesis that

(3.7) sup [EM7(#)]| = sup I[tM(£)] BiM (1) < o0,

and hence the claim follows from Theorem 2.2 and Remark 2.3.

Now, define N € C*(R,B(X)) by N(t) = (id - M)(t), where id(t) := it
for all t € R. We will prove that N is a C“-multiplier. In fact, with a direct
calculation, we have

tN'(t) = it M(t) + it> M’ (t) = it M (t) + i[it M ()| Bi[it M (t)]
= N(t) +iN(t)B;N(t).

By hypothesis and (3.6) it follows that
sup [[tN'(t)]| < sup [N (#)]| +sup [[N(t) BiN(t)]| < oo,
teR teR teR

hence from Theorem 2.2 and Remark 2.3 the claim is proved.

A similar calculation proves that P € CY(R\ {0},B(X)) defined by
P(t) = F,M(t) is a C*multiplier. In fact, we have tP'(t) = F/N(t) +
F;tM'(t), and hence from (3.5), (3.6) and (3.7) we see that sup,cp || P(t)] +
supyeg [[tP' ()| < oo.

Let f € C*(R,X). Since M, N and P are C*-multipliers, there exist
u € C*R,[D(A)]), ve C*R, X) and w € C*(R, X) such that
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(3.8) Va(s)(F¢)(s)ds = | F(¢- M)(s)f(s) ds
R R

(3.9) Vo(s)(Fy)(s)ds = { F(yp - id- M)(s)f(s)ds
R R

(3.10) Vw(s)(Fe)(s)ds = | F(o- F.M)(s)f(s)ds,
R R

for all ¢,v, p € CX(R).
Note that for z € X and ¢ € C°(R) we have

(3.11)  F(pF.M)(s)x = {e o) M (t)zdt = | e " p(t) F (e, M (t)) dt,

R R

where { e *'¢(t)e,M(t)xdt € C([-r,0], X). Now, for all § € [-r,0] we
have

|feto@e@mwzdrl < Jio@lIM@)allx dt.
R R
Since F' is bounded, we deduce that

(3.12) F(p-FM)(s)x = F(F(¢-e. M)(s)x).

Furthermore, observe that for 6 € [—r,0] fixed we have e ()¢ € CX(R).
Using (3.8) we obtain

Y\ e o (t) dt ds

e~ UsH0)t o(t) dtds

hence SRES(}“d))( )ds—g Fle.p-M)(s)f(s)ds.

Since 0 — (@ Fo)(s)ds € C([—r,0],X) (see [3, p. 25]), from the
boundedness of F and ( 12) it follows that
)

(3.13) | F(¢- FM)(s)f(s)ds =

R
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for all ¢ € C°(R). Since F M is a C*-multiplier, from (3.10) we obtain
Vw(s)(Fo)(s)ds = | Fuy(Fo)(s) ds

R R
for all ¢ € C°(R). We conclude that there exists y; € X satisfying w(t) =
Fu; + y1, proving that Fu, € C*(R, X).
Choosing ¢ = id - 1 in (3.8) we deduce from (3.9) that

(3.14) Va(s)F(id - v)(s)ds = | v(s)(Fy)(s)ds
R R
and it follows from Lemma 6.2 in [3] that u € C*TH(R, X) and @ = v + yo
for some yo € X.
Since (idI —F —A)M = I we have id- M = I+ F M+ AM and replacing
n (3.9) gives

(3.15)  Ju(s)(F =\ F(¢- I+ F M+ AM))(s) f(s) ds
R R
= \(F¢)(s)f(s)ds + | F(¢- F.M)(s)f(s) ds
R R
+ | F(¢- AM)(s)f(s) ds

R
for all ¢ € C°(R).
Since u(t) € D(A) and F(¢ - M)(s)x E D(A) for all z € X, using the
fact that A is closed and inserting (3.8

) and (3.13) in (3.15) we obtain
(316)  {u(s)(F@)(s)ds = | Fuy(Fo)(s) ds + | Au(s)(Fo)(s)/(s) ds
R R R
+ | £(s)(Fo)(s) ds
R

for all ¢ € C°(R). By Lemma 5.1 in [3] this implies that for some y3 € X
one has

o(t) = Fa, + Au(t) + f(t) +ys, teER.

Consequently, @' (t) = v(t) + y2 = Fu, + Au(t) + f(t) + y where y =
y2 + y3. In particular Auw € C*(R, X). Now, by hypothesis we can define

= (A+ F)"'y € D(A), and then it is clear that u(t) := wu(t) + = is
in C“"Y(R, X) N CY(R, [D(A)]) and satisfies (1.1). We have shown that a
solution of (1.1) exists.

In order to prove uniqueness, suppose that

(3.17) u'(t) = Au(t) + Fuy, tER,
where u € CYML(R, X)NC%(R, [D(A)]) and, as shown, Au, Fu, € C*(R, X).
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We claim that @, (\) € C([-r,0], X) for Re A # 0. In fact, let Re A > 0.
Then

le™Mutlloo = sup [leMu(t +0)[x < sup e TA(L+ |t +0]%)
0e[—r,0] oe[—r,0]
< e BN (] + 1))
Since e~ ReA (1 4 (|t| + 7)) € L (R,), applying the dominated convergence
theorem we obtain the claim. Analogously we argue for Re A < 0.
Now, note that for ReA > 0 and 6 € [—r 0],

S e—)\tut(g) dt = S e—)\t t+9 S e—)\(t 9) dt
0 0 0
[e'e) 0 0
= [ e Mu(e)dt = e ((§ e Nult) e+ [N ue) dr)
6 0 0
0
_ ek@ao\) + e/\G S e—)\tu(t) dt.
9
Analogously if ReA < 0 and 6 € [—7,0], then
0 0 9
— | e Mu@)di=— | e Mu(t+0)dt=— | e Ou(t)at
_ ,\9( S N (t) dt S Myt dt)
— 00 0
0
= MT(N) + M S e Mu(t) dt.
9

Since F' is bounded, we obtain
(3.18) Fu.(\) = Fi.(\) = Fgi(\) + Fgh  for ReX # 0
where g(0) = e*? and h(f) = Sg e Mu(t) dt. Note that gh € C([-r,0], X).
Since u/(A) = Au(A) — u(0) for Re A # 0, one has u(\) € D(A) and
(3.19) w(N) = Au(A) + Fu.())  for ReA # 0.
Using the fact that A is closed, from (3.18) and (3.19) we get
(M — Fg— A)u(\) =u(0)+ Fgh for all A € C\ R.

Since iR C p(A), it follows that the Carleman spectrum spq(u) of w is empty.
Hence uw = 0 by [2, Theorem 4.8.2]. =

We denote by Kp(X) the class of operators in X satisfying (ii) in the
above theorem. If A € Kp(X) we have v/, Au, Fu, € C%(R, X), and hence
we deduce the following result.
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COROLLARY 3.5. Let X be B-conver and A € Kp(X). Then

(i) (1.1) has a unique solution in Z = C*THR, X) N C*(R,[D(A)]) if
and only if f € C*(R, X).

(ii) There ezists a constant M > 0 independent of f € C*(R, X) such
that

(3-20) [0/ | cor,x) + AUl o, x) + 1 Fullcom,x) < M| fllcam,x).

REMARK 3.6. The inequality (3.20) is a consequence of the closed graph
theorem and known as the mazimal regularity property for equation (1.1).
From it we deduce that the operator L defined by

D(L) =2, (Lu)(t)=1u'(t) — Au(t) — Fuy,

is an isomorphism onto. In fact, since A is closed, the space Z becomes a
Banach space under the norm

lullz == |lullcem x) + ||U,HC’0‘(R,X) + [[Aull o r, x)-
Such isomorphisms are crucial for the treatment of nonlinear versions of
(1.1).
Assume X is B-convex and A € Kp(X) and consider the semilinear
problem

(3.21) ' (t) = Au(t) + Fug + f(t,u(t)), t>0.

Define the Nemytskil superposition operator N : Z — C%(R,X) by
N(v)(t) = f(t,v(t)), and the bounded linear operator

S:C*R,X)—Z
by S(g) = u where u is the unique solution of the linear problem
u'(t) = Au(t) + Fug + g(t).

Then to solve (3.21) we have to show that the operator H : Z — Z defined
by H = SN has a fixed point.

For related information we refer to Amann [1] where results on quasilinear
delay equations involving the method of maximal regularity are presented.

We finish this paper with the following result which gives us a useful
criterion to verify condition (ii) in the above theorem.

THEOREM 3.7. Let X be a B-convez space and let A: D(A) C X — X
be a closed linear operator such that iR C o(A) and supep |A(isI—A) 7| =:
M < oco. Suppose that

1
(3.22) | F|| < AT
Then for each f € C*(R, X) there is a unique function u € C*T1(R, X) N
CY(R,[D(A)]) such that (1.1) is satisfied.
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Proof. From the identity
is] — A — Fy = (isI — A)(I — Fy(isI — A)™1), seR,

it follows that is] — A — Fy is invertible whenever || Fy(is — A)~!|| < 1. Next
observe that

(3.23) 1N < [1E1],
and hence

1Fs(isT — A) 7| = [|F, AT AGis — A)TH < |FIHIATHIM =: o
Therefore, under the condition (3.22) we obtain o(A) = () and the identity
(3.24) (isI — A — F,)™' = (isI — A" (I — F,(isI — A)™1)

oo

= (is] — A)™' Y [Fu(isI — A)~']".
n=0
For all n € N we have

|is(isI — A) " [Fy(isI — A7)
< |lis(isI — A) 7| | Fs At A(isT — A)~H"
< |lis(isI = A) M E AT AGisT = A)7H"
< |lis(isI — A)THHIATHPIEN" 1A — A)H™
By (3.23) we obtain
lis(isT — A) "M Fy(isl = A)7"| < |lis(is] — A) 7 A" F)" M
= ||is(isI — A)~ Yo"
Finally, by (3.24), one has

-1 1 < M + 1'
-« -«

This proves that {is(is] — A— Fs)~'} is bounded and the conclusion follows

from Theorem 3.4. m

lis(isI — A — F)7| < |lis(isI — A)
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