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Quotient groups of non-nulear spaesfor whih the Bohner theorem fails ompletelyby
Robert Stegliński (�ód¹)Abstrat. It is proved that every real metrizable loally onvex spae whih is not nu-lear ontains a losed additive subgroup K suh that the quotient group G = (span K)/Kadmits a non-trivial ontinuous positive de�nite funtion, but no non-trivial ontinuousharater. Consequently, G annot satisfy any form of the Bohner theorem.Let G be a (Hausdor�) abelian topologial group. By a harater of Gwe mean a homomorphism of G into the multipliative group of omplexnumbers with modulus 1. The family of all ontinuous haraters of G, withpointwise multipliation and the ompat-open topology, is an abelian topo-logial group again. We all it the dual group and denote by G∧.A omplex-valued funtion ϕ on G is said to be positive de�nite if, forall n ∈ N,

n∑

i,j=1

λiλjϕ(gi − gj) ≥ 0for all λ1, . . . , λn ∈ C and g1, . . . , gn ∈ G. A �nite Borel measure µ on atopologial spae X is alled a Radon measure if, for eah Borel subset Aand eah ε > 0, there exists a ompat subset Q of A with µ(A \ Q) < ε.Let µ be a Radon probability measure on G∧. The harateristi funtionalof µ, given by
µ̂(g) =

\
G∧

χ(g) dµ(χ), g ∈ G,is a positive de�nite funtion on G with µ̂(0) = 1. We say that G is a
B-group if it satis�es the Bohner theorem in the following form: for eahontinuous positive de�nite funtion ϕ on G with ϕ(0) = 1 there is a Radonprobability measure µ on G∧ with µ̂ = ϕ. The measure µ is uniquelydetermined provided that ontinuous haraters separate the points of G(see Theorem 2 in [13℄).2000 Mathematis Subjet Classi�ation: 43A35, 43A40, 46A04.Key words and phrases: Bohner theorem, nulear spaes, positive de�nite funtions,group haraters. [283℄



284 R. Stegli«skiThe Bohner theorem says that every loally ompat abelian group is a
B-group. The Minlos theorem says that every nulear loally onvex spae(treated as an additive abelian group) is a B-group. The same is true for theso-alled nulear groups, a variety of abelian topologial groups ontainingloally ompat abelian groups and nulear loally onvex spaes, introduedin [3℄ (see Theorem 12.1 in [3℄ or Theorem 22.16 in [1℄; the result obtainedthere is in fat slightly stronger). On the other hand, if a metrizable loallyonvex spae G is a B-group, then Gmust be a nulear spae (see Theorem 5,p. 75 in [8℄).There is, however, a ertain version of the Bohner theorem whih re-mains valid in all loally onvex spaes. Namely, every ontinuous positivede�nite funtion ϕ on a loally onvex spae G with ϕ(0) = 1 is the har-ateristi funtional of a (unique) ylindrial probability measure on G∧, sothat it an be in some way synthesized of ontinuous haraters (see Theo-rem 1, p. 348 in [5℄ or Proposition A, p. 21 in [9℄). The situation beomesompletely di�erent if we onsider quotient groups.Let K be a losed subgroup of a topologial vetor spae E. Continuousharaters separate the points of E/K if and only if K is weakly losed in
E, and (E/K)∧ = {1} if and only if K is weakly dense in E ([3, Proposi-tion 2.5℄). Every losed subgroup of a nulear loally onvex spae is weaklylosed ([2, Theorem A℄). On the other hand, if a real metrizable loallyonvex spae is not nulear, then it ontains a disrete subgroup K suhthat the quotient group (spanK)/K has no non-trivial ontinuous posi-tive de�nite funtions, i.e. no non-trivial ontinuous unitary representations(see [3, Theorem 6.1℄).We say that an abelian topologial group G is NBT (no Bohner theo-rem) if it admits a non-trivial ontinuous positive de�nite funtion ϕ, but
G∧ = {1}. Then ϕ annot be synthesized of ontinuous haraters (sine thelatter do not exist), and one annot speak of any version of the Bohnertheorem in this ase.Throughout the paper, we assume that all vetor spaes are over thereal �eld R, unless expliitly stated otherwise. Consider the Banah spae
Lp(0, 1), 1 ≤ p <∞, and let Lp

Z
(0, 1) be the losed subgroup of Lp(0, 1) on-sisting of integer-valued funtions. Then Lp

Z
(0, 1) is weakly dense in Lp(0, 1)and the quotient group Lp(0, 1)/Lp

Z
(0, 1) is NBT (f. Lemma 5 below). Sim-ple examples of NBT quotient groups of lp, 1 < p ≤ 2, are given by Theorem5.1() and (e) in [3℄. It has been proved in [12℄ that every in�nite-dimensionalreal normed spae ontains a disrete subgroup K suh that the quotientgroup (spanK)/K is NBT. It was onjetured in [3, p. 111℄ that NBT quo-tient groups an be onstruted in every non-nulear loally onvex metriz-able spae. The aim of the present paper is to prove that onjeture.



Quotient groups of non-nulear spaes 285Theorem 1. Every real metrizable loally onvex spae whih is not nu-lear ontains a losed additive subgroup K suh that the quotient group
G = (spanK)/K is NBT.The proof will be preeded by several lemmas. By λn we denote theLebesgue measure on R

n. Let U , W be two symmetri onvex bodies in an
n-dimensional vetor spae X. Let |U |

|W | denote the real number de�ned by
|U |
|W | :=

λn(T (U))

λn(T (W ))where T : X → R
n is a linear isomorphism.Lemma 2. Let U ,W be two symmetri onvex bodies in an n-dimensionalvetor spae N with U ⊂ W . Let M be an m-dimensional subspae of Nand π : N →M an arbitrary projetion. Then

|U ∩M |
|W ∩M | ≥

m!

n!

|U |
|W | ,(a)

|π(U)|
|π(W )| ≥

m!

n!

|U |
|W | .(b)For (a), see [3, Lemma 6.6℄. The proof of (b) is similar; we leave it to thereader.Let p be a seminorm on a vetor spae E. The quotient spae E/p−1(0)with the anonial norm will be denoted by Ep. If q ≤ p is another seminormon E, then the anonial operator Ep → Eq will be denoted by Tpq.Let T : E → F be a bounded linear operator between normed spaes.For eah n = 1, 2, . . . , we de�ne

νn(T ) = sup
M

( |T (BE ∩M)|
|BF ∩ T (M)|

)1/n

where BE , BF denote the losed unit balls in E, F respetively and the supre-mum is taken over all linear subspaesM of E with dimM = dimT (M) = n.If rank T < n, then we de�ne ν(T ) = 0.Lemma 3. Let E be a loally onvex spae. Suppose that there exists an
ε > 0 with the following property : for eah ontinuous seminorm q on Ethere is another ontinuous seminorm p ≥ q suh that νn(Tpq) = o(n−ε).Then E is nulear.This is Lemma 6.5 of [3℄.Lemma 4. Let E, F be normed spaes and let T : E → F be an injetivebounded linear operator suh that

lim sup
n→∞

n1/5νn(T ) = ∞.



286 R. Stegli«skiIf X is a subspae of E with codimX <∞, then
lim sup

n→∞
n1/5νn(T|X) = ∞.The proof of this lemma is similar to that of Lemma 6.8 of [3℄.Lemma 5. Let K be a losed subgroup of a topologial vetor spae Eand let σ : E → E/K be the anonial homomorphism.(a) Let T : E → L2(0, 1) be a non-zero ontinuous linear operator with

T (K) ⊂ L2
Z
(0, 1). Then the formula

ϕ(x) =

1\
0

exp {2πiTx(t)} dt, x ∈ E,de�nes a non-trivial ontinuous positive de�nite funtion ϕ on Ewith ϕ ≡ 1 on K. Consequently , the formula ψ(σ(x)) = ϕ(x), x ∈ E,de�nes a non-trivial ontinuous positive de�nite funtion ψ on E/K.(b) Let χ be a non-trivial ontinuous harater of E/K. Then thereexists a non-zero ontinuous linear funtional f on E with f(K) ⊂ Zsuh that
(∗) χ(σ(x)) = exp {2πif(x)} for eah x ∈ E.Proof. (a) It is not hard to see that

Φxf(t) = f(t) · exp {2πiTx(t)} (x ∈ E; f ∈ L2(0, 1); t ∈ (0, 1))de�nes a ontinuous unitary representation Φ of the group E in the omplexHilbert spae L2(0, 1) (see e.g. the proof of Proposition 4.1 in [3℄). Let f0 ≡ 1on (0, 1). Then we have ϕ(x) = (Φxf0, f0) for eah x ∈ E, whih means that
ϕ is a ontinuous positive de�nite funtion on E. Sine T 6≡ 0, there is some
x ∈ E with Tx /∈ L2

Z
(0, 1), and then Reϕ(x) < 1. The last assertion isstandard (see e.g. [6, (32.6)℄).(b) The omposition χ ◦ σ is a ontinuous harater of E. Thereforethere exists a ontinuous linear funtional f on E satisfying (∗) (see e.g.[11, Lemma 1℄, or [6, (23.32)℄, or [3, (2.3)℄). It is lear that f(K) ⊂ Z.By a step funtion we mean a linear ombination of harateristi fun-tions of �nite intervals. By SZ(0, 1) we denote the set of integer-valued stepfuntions on (0, 1).Lemma 6. Let I be a �nite interval and let α ∈ R. Then there exists astep funtion ψ : I → (−1, 1) suh that ψ+α is integer-valued and TI ψ = 0.Proof. Let I = (a, b). If α ∈ Z, we set ψ ≡ 0. Suppose α /∈ Z. Then
c := a+ (b− a)(α− [α]) ∈ (a, b)



Quotient groups of non-nulear spaes 287and we may de�ne, for instane,
ψ(t) =

{
[α] − α+ 1 for t ∈ (a, c),
[α] − α for t ∈ (c, b).Let X, Y be two n-dimensional normed spaes. Their Banah�Mazurdistane will be denoted by d(X,Y ). By R

n
2 we denote the spae R

n endowedwith the anonial eulidean norm. We will write Bn
2 for the losed unit ballof R

n
2 .We will need the Milman quotient subspae theorem in the followingform (see Theorem 3.1.1, p. 1171 in [7℄):Lemma 7. Let 1/2 ≤ α ≤ 1 and let X be a normed spae of dimension n.Then there exist subspaes E ⊃ F of X with

k = dimE/F ≥ αn, d(E/F,Rk
2) < rfor some onstant r independent of n.Let E be a vetor spae and let A ⊂ E. The linear subspae and theadditive subgroup generated by A are denoted by 〈A〉 and 〈A〉Z, respetively.Let E be a normed spae. The adjoint spae of E will be denoted by E∗.We say that a losed subgroup K of E is �nite-dimensional if dim〈K〉 <∞.Then the group K is topologially isomorphi to R

a ×Z
b, where a and b arenon-negative integers (see Theorem (9.11) in [6℄).Let ‖ · ‖0, ‖ · ‖1 be two norms on a vetor spae E. Write

E0 := (E, ‖ · ‖0), E1 := (E, ‖ · ‖1)and
B0 := BE0 , B1 := BE1 .Let M , N be two �nite-dimensional subspaes of E. Let M0 (resp. (M/N)0)denote the spae M (resp. M/N) endowed with the norm indued by ‖ · ‖0.Let M1 (resp. (M/N)1) denote the spae M (resp. M/N) endowed with thenorm indued by ‖ · ‖1. If T : M → L2(0, 1) is a linear operator, then ‖T‖0denotes the norm of T : M0 → L2(0, 1). If f : M → R (resp. f : M/N → R)is a linear funtional, then ‖f‖1 denotes the norm of f : M1 → R (resp.

f : (M/N)1 → R).Lemma 8. Let ‖ · ‖0, ‖ · ‖1 be two norms on a vetor spae E suh that
‖ · ‖0 ≤ ‖ · ‖1 and let I : E1 → E0 denote the identity operator. Suppose that(1) lim sup

n→∞
n1/5νn(I) = ∞.Let K1, K2 be �nite-dimensional losed subgroups of E with 〈K1〉 ∩ 〈K2〉

= {0} and let K = K1 + K2. Let f : 〈K1〉 → R be a non-zero linearfuntional with f(K1) ⊂ Z and let T : 〈K〉 → L2(0, 1) be a non-zero linearoperator with T (K) ⊂ SZ(0, 1).



288 R. Stegli«skiGiven ε ∈ (0, 1), one an �nd a �nite-dimensional losed subgroup K3suh that 〈K〉∩〈K3〉 = {0} and if we de�ne K̃ = K+K3, then the followingonditions are satis�ed :(i) there are no linear funtionals f̃ : 〈K̃〉 → R with f̃|〈K1〉 = f and
f̃(K̃) ⊂ Z suh that ‖f̃‖1 ≤ 1;(ii) there exists a linear operator T̃ : 〈K̃〉 → L2(0, 1) with T̃〈K〉 = T and
T̃ (K̃) ⊂ SZ(0, 1) suh that ‖T̃‖0 ≤ (1 + ε)‖T‖0.Proof. Fix ε ∈ (0, 1). Choose δ ∈ (0, 1) suh that(2) 1

1 − δ
< 1 +

ε

2
.A standard argument shows that there is a linear subspae X ⊂ E with

codimX <∞ suh that(3) ‖x+ y‖0 ≥ (1 − δ) ‖x‖0 for all x ∈ 〈K〉 and y ∈ X.Then 〈K〉 ∩X = {0}. Moreover, we have(4) ‖x+ y‖0 ≥ 1 − δ

2 − δ
· ‖y‖0 for all x ∈ 〈K〉 and y ∈ X.Let A =

√
2π e(5/4)2. Let r be the onstant orresponding to α = 4/5 inLemma 7. Choose γ > 0 suh that

(5)
2 − δ

1 − δ
· r
γ
≤ ε

2
‖T‖0,

(6) A · γ ≥ 1.From (1) and Lemma 4 it follows that
lim sup

n→∞
n1/5νn(I|X) = ∞.Therefore we an �nd some n and an n-dimensional subspae Y of X suhthat(7) |B1 ∩ Y |

|B0 ∩ Y | > (Aγ)nn−n/5.Aording to our de�nition of r, we an �nd a subspae M of Y and asubspae N of M suh that
(8) l := dim(M/N) >

4

5
n,

(9) d((M/N)0,R
l
2) < r.



Quotient groups of non-nulear spaes 289Let π : M → M/N be the anonial projetion. Set m = dimM . ApplyingLemma 2 (a) and then (b), we see that
|π(B1 ∩M)|
|π(B0 ∩M)| ≥

l!

m!

|B1 ∩M |
|B0 ∩M | ≥

l!

m!

m!

n!

|B1 ∩ Y |
|B0 ∩ Y | .Hene, by (6)�(8) and Stirling's formula, we derive

|π(B1 ∩M)|
|π(B0 ∩M)| ≥

l!

n!

|B1 ∩ Y |
|B0 ∩ Y | >

l!

n!
(Aγ)nn−n/5(10)

≥
√

2πl
(

l
e

)l

√
2π 5

4 l
(

5l
4e

)5l/4
e
· (Aγ)ll−l/4

(
4

5

)l/4

≥ γl

(
2πe

l

)l/2

≥ γlλl(B
l
2).It follows from (9) that there is a linear isomorphism R : R

l
2 → (M/N)0suh that ‖R‖ ≤ 1 and ‖R−1‖ < r. Let R∗ : (M/N)∗0 → R

l
2 be the adjointoperator (we identify (Rl

2)
∗ with R

l
2 in the usual way). Put S = γR∗. Then

‖S∗‖ = γ‖R‖ ≤ γ, i.e.(11) (S∗)−1(B(M/N)0) ⊃ γ−1Bl
2.Sine (S∗)−1 is a linear isomorphism, we have(12) |π(B1 ∩M)|

|π(B0 ∩M)| =
λl((S

∗)−1(B(M/N)1))

λl((S∗)−1(B(M/N)0))
.Let B(M/N)∗1

denote the losed unit ball in the adjoint spae of (M/N)1. Thesets S(B(M/N)∗1
) and (S∗)−1(B(M/N)1) are polar reiproal to eah other withrespet to the salar produt in R

l
2. Therefore, by the Santaló inequality (see(4.3.5) in [7℄ or �4 in [10℄), we have(13) λl(S(B(M/N)∗1

)) · λl((S
∗)−1(B(M/N)1)) ≤ (λl(B

l
2))

2.Now, from (10)�(13), we get(14) λl(S(B(M/N)∗1
)) < 1.Let e1, . . . , el be the anonial orthonormal basis in R

l
2 and let Z

l = Ze1+
· · ·+Zel be the integer lattie. From (14) it follows that S(B(M/N)∗1

)+Z
l 6= R

l.So, there is some ξ = (ξ1, . . . , ξl) ∈ R
l suh that(15) (Zl − ξ) ∩ S(B(M/N)∗1

) = ∅.The vetors wi = γR(ei), i = 1, . . . , l, form a basis in M/N . Choose
bi ∈M suh that π(bi) = wi. Choose v ∈ 〈K1〉 with f(v) = 1. Let(16) K3 = N + 〈b1 + ξ1v, . . . , bl + ξlv〉Z.



290 R. Stegli«skiThen K3 is a �nite-dimensional losed subgroup of E. It is easy to see that
〈K〉 ∩ 〈K3〉 = {0} and 〈K〉 + 〈K3〉 = 〈K〉 +M . De�ne

K̃ = K +K3.Then K̃ is a �nite-dimensional losed subgroup of E with K ⊂ K̃.To prove (i), take an arbitrary f̃ ∈ 〈K̃〉∗ with f̃|〈K1〉 = f and f̃(K̃) ⊂ Z.Sine N ⊂ K̃, it follows that f̃(N) = {0}, and hene there is a linearfuntional g ∈ (M/N)∗ with f̃|M = g ◦ π and ‖g‖1 = ‖f̃|M‖1. It is easy tohek that
S(h) =

l∑

i=1

h(wi)ei for all h ∈ (M/N)∗.Hene
S(g) =

l∑

i=1

g(wi)ei =
l∑

i=1

g(π(bi))ei =
l∑

i=1

f̃|M (bi)ei

=
l∑

i=1

f̃(bi + ξiv)ei −
l∑

i=1

f̃(ξiv)ei ∈ Z
l − ξ.In view of (15), this means that g /∈ B(M/N)∗1

, or equivalently, ‖g‖1 > 1,whih gives ‖f̃‖1 ≥ ‖f̃|M‖1 = ‖g‖1 > 1.To prove (ii), we shall onstrut a sequene ϕ1, . . . , ϕl of pairwise orthog-onal step funtions on (0, 1) suh that |ϕi| ≤ 1 and(17) ϕi + ξiTv ∈ SZ(0, 1) for i = 1, . . . , l.Sine T (K) ⊂ SZ(0, 1) and v ∈ 〈K1〉 ⊂ 〈K〉, it follows that Tv is a stepfuntion. We may write
Tv =

m1∑

j=1

αjχIjwhere α1, . . . , αm1 ∈ R and I1, . . . , Im1 is a deomposition of (0, 1) into somesmaller intervals. We de�ne
ϕ1(t) = [ξ1αj ] − ξ1αjfor t ∈ Ij , j = 1, . . . ,m1. Then |ϕ1| < 1 and ϕ1 + ξ1Tv ∈ SZ(0, 1).Then we proeed by indution. Suppose we have onstruted ϕ1, . . . , ϕk−1for a ertain k = 2, . . . , l. The interval (0, 1) deomposes into a �nite unionof smaller intervals I(k)

j , 1 ≤ j ≤ mk, suh that eah of the funtions
Tv, ϕ1, . . . , ϕk−1 is onstant on every I(k)

j . By Lemma 6, for eah j=1, . . . ,mkwe an �nd a step funtion ψj on I(k)
j with |ψj | ≤ 1 suh that T

I
(k)
j

ψj = 0



Quotient groups of non-nulear spaes 291and ψj + ξkTv is integer-valued. We de�ne
ϕk(t) = ψj(t) for t ∈ I

(k)
j , j = 1, . . . ,mk.Then ϕk is a step funtion on (0, 1) with |ϕk| ≤ 1 suh that ϕk + ξkTv ∈

SZ(0, 1). It is lear that T10 ϕkϕi = 0 for eah i = 1, . . . , k − 1.Consider the linear operator Q : R
l
2 → L2(0, 1) given by Q(ei) = ϕi for

i = 1, . . . , l. Sine the funtions ϕi are pairwise orthogonal and |ϕi| ≤ 1, wehave ‖Q‖ ≤ 1. Let T1 = γ−1Q ◦R−1 ◦ π : M → L2(0, 1). Then T1bi = ϕi for
i = 1, . . . , l. Sine ‖R−1‖ < r, we have ‖T1‖0 < rγ−1. Let P1 : 〈K̃〉0 → M0and P2 : 〈K̃〉0 → 〈K〉0 be the projetions. By (3) and (4), we have(18) ‖P1‖ ≤ 2 − δ

1 − δ
, ‖P2‖ ≤ 1

1 − δ
.De�ne T̃ = T1P1 + TP2 : 〈K̃〉 → L2(0, 1). Then T̃|〈K〉 = T . In view of (2),(5), (18), we have

‖T̃‖0 ≤ ‖T1‖0‖P1‖ + ‖T‖0‖P2‖

≤ γ−1r · 2 − δ

1 − δ
+

1

1 − δ
· ‖T‖0 ≤ (1 + ε)‖T‖0.To �nish the proof we must show that T̃ (K̃) ⊂ SZ(0, 1). Sine K̃ =

K+N+〈b1+ξ1v, . . . , bl+ξlv〉Z, it su�es to make the following observation:if x ∈ K, then T̃ (x) = T (x) ∈ SZ(0, 1); if x ∈ N , then T̃ (x) = 0; and if
x = bi + ξiv for some i = 1, . . . , l, then

T̃ (bi + ξiv) = T (ξiv) + (Q ◦R−1 ◦ π)(bi) = ξiTv + ϕi ∈ SZ(0, 1)by (17).Lemma 9. Let ‖ · ‖0, ‖ · ‖1 be two norms on a vetor spae E suh that
‖ · ‖0 ≤ ‖ · ‖1 and let I : E1 → E0 denote the identity operator. Suppose that(19) lim sup

n→∞
n1/5νn(I) = ∞.Let K be a �nite-dimensional losed subgroup of E and let T : 〈K〉 →

L2(0, 1) be a non-zero linear operator with T (K) ⊂ SZ(0, 1). Then, given
ε ∈ (0, 1), one an �nd a �nite-dimensional losed subgroup K̃ with K ⊂ K̃suh that the following onditions are satis�ed :(i) there are no linear funtionals f̃ : 〈K̃〉 → R with f̃|〈K〉 6≡ 0 and

f̃(K̃) ⊂ Z suh that ‖f̃‖1 ≤ 1;(ii) there exists a linear operator T̃ : 〈K̃〉 → L2(0, 1) with T̃〈K〉 = T and
T̃ (K̃) ⊂ SZ(0, 1) suh that ‖T̃‖0 ≤ (1 + ε)‖T‖0.Proof. It is lear that the set

Q = {f ∈ 〈K〉∗ : f(K) ⊂ Z and ‖f‖1 ≤ 1}



292 R. Stegli«skiis �nite. Let f1, . . . , fm be the non-zero elements of Q (if there are none, wemay just take K̃ = K). Choose ε′ ∈ (0, 1) suh that(20) (1 + ε′)m ≤ 1 + ε.Set K0 = K. Applying the previous lemma, we �nd indutively an in-reasing sequene K0,K1, . . . ,Km of �nite-dimensional losed subgroups of
E and a sequene of linear operators Ti : 〈Ki〉 → L2(0, 1) for i = 0, 1, . . . ,msuh that, for eah i = 1, . . . ,m, the following onditions are satis�ed:(ai) Ti(Ki) ⊂ SZ(0, 1);(bi) Ti|〈Ki−1〉 = Ti−1;(ci) ‖Ti‖0 ≤ (1 + ε′)‖Ti−1‖0;(di) there are no linear funtionals f ∈ 〈Ki〉∗ with f|〈K〉 = fi and f(Ki) ⊂

Z suh that ‖f‖1 ≤ 1.De�ne K̃ = Km and T̃ = Tm.Condition (am) says that T̃ (K̃) ⊂ SZ(0, 1). Conditions (bi), i = 1, . . . ,m,imply that T̃|〈K〉 = T . Conditions (ci) together with (20) yield
‖T̃‖0 = ‖Tm‖0 ≤ (1 + ε′)m‖T0‖0 ≤ (1 + ε)‖T‖0.To prove (ii), take any f̃ ∈ 〈K̃〉∗ with f̃|〈K〉 6≡ 0 and f̃(K̃) ⊂ Z. If

f̃|〈K〉 /∈ Q, then ‖f̃‖1 ≥ ‖f̃|〈K〉‖1 > 1. So, suppose that f̃|〈K〉 = fi for aertain i = 1, . . . ,m. Let f = f̃|〈Ki〉. Then we have f|〈K〉 = f̃|〈K〉 = fi and
f(Ki) = f̃(Ki) ⊂ f̃(K̃) ⊂ Z. Condition (di) says that ‖f‖1 > 1, whene
‖f̃‖1 ≥ ‖f‖1 > 1.Let (‖ · ‖i)

∞
i=0 be a sequene of norms in a vetor spae E. For eah

i = 0, 1, 2, . . . , let Ei denote the normed spae (E, ‖ · ‖i). Let M be a �nite-dimensional subspae of E. If f : M → R is a linear funional, then ‖f‖i,
i = 0, 1, 2, . . . , denotes the norm of f : (M, ‖ · ‖i) → R.Lemma 10. Let E be a metrizable loally onvex spae with topologyde�ned by an inreasing sequene of norms (‖ · ‖i)

∞
i=0. For eah i = 1, 2, . . . ,let Ii : Ei → E0 be the identity operator. Suppose that(21) lim sup

n→∞
n1/5νn(Ii) = ∞for i = 1, 2, . . . . Then there exists a losed subgroup K of E suh that thequotient group 〈K〉/K is NBT.Proof. Set

Bi = {x ∈ E : ‖x‖i ≤ 1}, i = 1, 2, . . . .Without loss of generality we an assume that {Bi}∞i=1 is a neighbourhoodbase at zero in E.



Quotient groups of non-nulear spaes 293Choose εi ∈ (0, 1), i = 1, 2, . . . , suh that
∞∏

i=1

(1 + εi) <∞.Next, hoose some u ∈ E with ‖u‖0 = 1. De�ne K0 = 〈u〉Z and let
T0 : 〈K0〉 → L2(0, 1) be the linear operator suh that T0u ≡ 1. Then
‖T0‖0 = 1. Applying the previous lemma, we onstrut indutively an in-reasing sequene (Ki)

∞
i=0 of �nite-dimensional losed subgroups of E and asequene of linear operators Ti : 〈Ki〉 → L2(0, 1), i = 0, 1, 2, . . . , suh that,for eah i = 1, 2, . . . , the following onditions are satis�ed:(ai) Ti(Ki) ⊂ SZ(0, 1);(bi) Ti|〈Ki−1〉 = Ti−1;(ci) ‖Ti‖0 ≤ (1 + εi)‖Ti−1‖0;(di) there are no linear funtionals f ∈ 〈Ki〉∗ with f|〈Ki−1〉 6≡ 0 and

f(Ki) ⊂ Z suh that ‖f‖i ≤ 1.De�ne
K∞ =

∞⋃

i=0

Ki, K = K∞(here the losure is taken in the topology of E).We proeed to show that the quotient group 〈K〉/K is NBT. We �rstshow that (〈K〉/K)∧ = {1}. In view of Lemma 5(b), it is enough to provethat there are no non-zero ontinuous linear funtionals f : 〈K〉 → R with
f(K) ⊂ Z. Suppose that f is suh a funtional. Then there is n ∈ N suhthat f|〈Kn〉 6≡ 0. Sine {Bi}∞i=0 is a neighbourhood base at zero in E, thereis m ∈ N suh that ‖f‖m < 1. Let i = max(n+ 1,m) and f ′ = f|〈Ki〉. Then
f ′|〈Ki−1〉

6≡ 0, f ′(Ki) ⊂ Z and ‖f ′‖i ≤ 1, whih ontradits (di).We will now show that the group 〈K〉/K admits a non-trivial ontinu-ous positive de�nite funtion. In view of Lemma 5(a), it is enough to showthat there is a non-zero ontinuous linear operator T : 〈K〉 → L2(0, 1)with T (K) ⊂ L2
Z
(0, 1). Conditions (bi) allow us to de�ne a linear opera-tor T∞ : 〈K∞〉 → L2(0, 1) by T∞|〈Ki〉 = Ti for every i = 1, 2, . . . . Con-ditions (ai) imply that T∞(K∞) ⊂ SZ(0, 1). Conditions (ci) imply that

‖Ti‖0 ≤ ∏i
k=1 (1 + εk) for every i = 1, 2, . . . , so if we denote by ‖T∞‖0the norm of the operator T∞ : (〈K∞〉, ‖ · ‖0) → L2(0, 1), we have

‖T∞‖0 = sup
i

‖Ti‖0 ≤
∞∏

k=1

(1 + εk) <∞.

Let T : 〈K〉 → L2(0, 1) be the ontinuous extension of T∞. Hene
T (K) = T (K∞) ⊂ T (K∞) ⊂ SZ(0, 1) = SZ(0, 1).



294 R. Stegli«skiWe are now ready to give the proof of Theorem 1:Proof of Theorem 1. Let E be a metrizable loally onvex spae whihis not nulear. Aording to Lemma 3, there is a ontinuous seminorm q on
E suh that if p ≥ q is any other ontinuous seminorm, then(22) lim sup

n→∞
n1/5νn(Tpq) = ∞.Choose a sequene of seminorms q = p0 ≤ p1 ≤ p2 ≤ · · · de�ning thetopology of E. More preisely, we assume that the sets Bk = {x ∈ E :

pk(x) < 1}, k = 0, 1, . . . , form a neighbourhood base at zero in E. Let
F = {x ∈ E : p0(x) = 0} and let π : E → E/F be the anonial projetion.Sine the sets π(Bk), k = 0, 1, . . . , are onvex, symmetri about the originand do not ontain straight lines, their Minkowski funtionals are norms. Letus denote them by ‖ · ‖k. Let Ik : (E/F, ‖ · ‖k) → (E/F, ‖ · ‖0) be the identityoperator. Then for all n, k = 1, 2, . . . we have νn(Ik) = νn(Tpkp0), as is easyto hek.Applying the previous lemma we an �nd a losed subgroup L of E/Fsuh that the quotient group 〈L〉/L is NBT. De�ne K = π−1(L). It is notdi�ult to see that the quotient group 〈K〉/K is NBT.
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