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A nonlinear Banah�Steinhaus theorem andsome meager sets in Banah spaesby
Jacek Jachymski (�ód¹)Dediated to the memory of my Teaher,Professor Tadeusz �wi¡tkowskiAbstrat. We establish a Banah�Steinhaus type theorem for nonlinear funtionalsof several variables. As an appliation, we obtain extensions of the reent results of Bal-erzak and Wahowiz on some meager subsets of L1(µ)× L1(µ) and c0 × c0. As anotheronsequene, we get a Banah�Mazurkiewiz type theorem on some residual subset of

C[0, 1] involving Kharazishvili's notion of Φ-derivative.1. Introdution. The Banah�Steinhaus theorem for normed linearspaes is usually given in the following form (see, e.g., [Ze95, p. 173℄):Let X be a Banah spae over K and Y be a normed spae over K. Ifa family {Tn : n ∈ N} ⊆ L(X, Y ) is pointwise bounded on X, then it isuniformly bounded , i.e., sup{‖Tnx‖ : n ∈ N, ‖x‖ ≤ 1} is �nite.This result has numerous appliations in funtional analysis.However, in their paper [BS27℄ Banah and Steinhaus obtained a some-what more general result. Namely, it su�es that {Tn : n ∈ N} is pointwisebounded on some set of seond ategory. (This version�even in a moregeneral setting�is given, e.g., in [Ru91, Theorem 2.5℄.) Hene we get thefollowing equivalent reformulation:If a family {Tn : n ∈ N} ⊆ L(X, Y ) is not uniformly bounded , then theset E := {x ∈ X : (Tnx)∞n=1 is bounded} is meager.(We use the term �meager set� instead of �set of �rst ategory�.) Thus theBanah�Steinhaus theorem also gives us a tool to study the Baire ategoryof sets: Given a set D ⊆ X, if there exists a normed spae Y and a family2000 Mathematis Subjet Classi�ation: Primary 46B25, 54E52; Seondary 26A15,26A24, 26B35, 28A12.Key words and phrases: Banah�Steinhaus theorem, Baire ategory, subadditivity,semiontinuity, σ-�nite measure, integrable funtion, Φ-derivative.[303℄
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{Tn : n ∈ N} ⊆ L(X, Y ) suh that lim supn→∞ ‖Tn‖ = ∞ and D ⊆ E,then D is meager.In this paper we are going to present some appliations of this approah.However, we will need a more general version of the Banah�Steinhaus the-orem in whih we allow Tn to be nonlinear. Some results of this kind knownin the literature usually deal with homogeneous operators, whereas the addi-tivity of Tn is replaed by weaker onditions like subadditivity of x 7→ ‖Tnx‖(see, e.g., [Ra04, p. 246℄, [Yo80, p. 69℄) or its asymptoti variant [Ga51℄.For our purposes, however, both homogeneity and subadditivity onditionsare too strong, and moreover, we need to onsider funtionals of severalvariables. A Banah�Steinhaus type theorem in this setting is established inSetion 2 (Theorem 1). The rest of the paper is devoted to its appliations. InSetion 3 we generalize a reent result of Balerzak and Wahowiz [BW01℄stating that the set

{(f, g) ∈ L1[0, 1] × L1[0, 1] : f · g ∈ L1[0, 1]}is meager. Here we onsider the Banah spae Lp(µ), where 1 ≤ p < ∞ andthe measure µ is σ-�nite, and we give a list of equivalent onditions for theset
{(f, g) ∈ Lp(µ) × Lp(µ) : f · g ∈ Lp(µ)}to be of seond ategory (f. Theorem 2). Some examples of meager subsetsof c0 × c0 and c0 × lp other than those in [BW01℄ are given in Setion 4.Finally, we establish a Banah�Mazurkiewiz ([Ba31℄, [Ma31℄) type theoremon some residual subset of C[0, 1] involving Kharazishvili's [Kh98, p. 147℄notion of Φ-derivative.2. A Banah�Steinhaus theorem for nonlinear funtionals. Westart with the following version of the uniform boundedness priniple whihis similar to [Ze95, Theorem 3B℄, though slightly more general.Proposition 1. Let (X, τ) be a topologial spae and Fn : X → R+ belower semiontinuous for all n ∈ N. Set(1) E := {x ∈ X : (Fnx)∞n=1 is bounded}.If E is of seond ategory , then the family {Fn : n ∈ N} is equibounded onsome nonempty open subset of X.Proof. We use a standard argument, observing that E =

⋃
m∈N

Em,where
Em :=

⋂

n∈N

{x ∈ X : Fnx ≤ m}.



Nonlinear Banah�Steinhaus theorem 305Sine the Fn are lower semiontinuous, all the sets Em are losed. By hy-pothesis, at least one of them has a nonempty interior, whih yields theassertion.Let R+ denote the set of all nonnegative reals. Let A be a subset of alinear spae X suh that A + A ⊆ A. Given L ≥ 1, we say that a funtion
ϕ : A → R+ is L-subadditive if

ϕ(x + y) ≤ L(ϕ(x) + ϕ(y)) for all x, y ∈ X.In partiular, if X = R, A := R+ and ϕ is nondereasing, then it is easilyseen that ϕ is L-subadditive if and only if ϕ is moderated (see, e.g., [Ra04,p. 235℄), i.e., ϕ(2x) ≤ Cϕ(x) for some C > 0 and all x ∈ R+.The following result is an extension of the lassial Banah�Steinhaus[BS27℄ theorem.Theorem 1. Given k ∈ N, let X1, . . . , Xk be normed linear spaes,
X := X1 if k = 1, and X := X1 × · · · × Xk if k > 1. Assume that L ≥ 1,
Fn : X → R+ (n ∈ N) are lower semiontinuous and suh that all funtions
xi 7→ Fn(x1, . . . , xk) (i ∈ {1, . . . , k}) are L-subadditive and even. Let E bede�ned by (1).(a) If(2) sup {Fnx : n ∈ N, ‖x‖ ≤ 1} = ∞,then E is a meager set.(b) If (2) does not hold , then E = X.In partiular , if X1, . . . , Xk are Banah spaes, then the following statementsare equivalent :(i) E is meager ;(ii) E 6= X;(iii) sup{Fnx : n ∈ N, ‖x‖ ≤ 1} = ∞.Proof. We start with the proof of (a). Endow X with the max norm if
k > 1. Assume that (2) holds. Suppose, on the ontrary, that E is of seondategory. Then, by Proposition 1, there exists a losed ball B(x0, r) suhthat {Fn : n ∈ N} is equibounded on B(x0, r). Let x0 = (x0

1, . . . , x
0
k). Thuswe get

M := sup{Fn(x1, . . . , xk) : ‖x1 − x0
1‖, . . . , ‖xk − x0

k‖ ≤ r, n ∈ N} < ∞.Following the Banah�Steinhaus argument we divide the proof into two steps.
Step 1. We show that the family {Fn : n ∈ N} is equibounded on

B(0, r). Let n ∈ N and x = (x1, . . . , xk) ∈ B(0, r), i.e., ‖xi‖ ≤ r for i ∈
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{1, . . . , k}. Then, by hypothesis, we get

Fnx = Fn(x1 + x0
1 − x0

1, x2, . . . , xk)

≤ L (Fn(x1 + x0
1, x2, . . . , xk) + Fn(−x0

1, x2, . . . , xk))

= L(Fn(x1 + x0
1, x2 + x0

2 − x0
2, x3, . . . , xk)

+ Fn(x0
1, x2 + x0

2 − x0
2, x3, . . . , xk)).Continuing in this fashion, after k steps we will get the sum of 2k values of

Fn at some points of B(x0, r) multiplied by Lk. This yields(3) sup{Fnx : n ∈ N, ‖x‖ ≤ r} ≤ 2kMLk.

Step 2. Given n, p ∈ N and x ∈ X, by L-subadditivity we get
Fnx = Fn

( p∑

i=1

x1/p, x2, . . . , xk

)
≤ pLp−1Fn(x1/p, x2, . . . , xk).The same argument applied suessively to the oordinates x2, . . . , xk gives(4) Fnx ≤ pkLk(p−1)Fn(x/p).Let p ∈ N be suh that 1/p ≤ r. If ‖x‖ ≤ 1, then x/p ∈ B(0, r), so (3) and(4) imply that

Fnx ≤ (2p)kMLkp.This means {Fn : n ∈ N} is equibounded on the unit ball, ontrary to (2).Thus E is meager.Now we prove (b). So assume that (2) does not hold, i.e.,
C := sup{Fnx : n ∈ N, ‖x‖ ≤ 1} < ∞.We show that E = X. Given x ∈ X, there is a p ∈ N suh that ‖x/p‖ ≤ 1.Then, by (4),

Fnx ≤ pkLk(p−1)C for all n ∈ N,whih means x ∈ E.To prove the last statement observe that if E is meager, then E 6= Xby Baire's theorem. (ii)⇒(iii) follows from (b), whereas (iii)⇒(i) was statedin (a).Remark 1. The referee pointed out that Theorem 1 ould be general-ized by assuming that X1, . . . , Xk are loally bounded F ∗-spaes. Indeed, bythe Aoki�Rolewiz theorem (see, e.g., [Ro84, Theorems 3.2.1 and 3.2.1′℄), forsome p > 0, there are p-homogeneous F -norms on the above spaes equiv-alent to the original ones. Using these new F -norms, we ould rewrite theproof of Theorem 1 with one minor hange in the line following (4).Remark 2. The assumption of Theorem 1 that all Fn are even in eahvariable annot be omitted. Indeed, let X := R and ϕ : R → R+ be a



Nonlinear Banah�Steinhaus theorem 307nondereasing funtion. Then it is easily seen that ϕ is subadditive i� ϕ|R+is subadditive. In partiular, if Fnx := 0 for x ≤ 0 and Fnx := nx for x > 0,then all Fn are subadditive and ontinuous, the family {Fn : n ∈ N} is notequibounded on [−1, 1], but E (= (−∞, 0]) is of seond ategory.If, however, k = 1 and a family {Fn : n ∈ N} of lower semiontinuous,
L-subadditive (not neessarily even) and nonnegative funtionals is point-wise bounded on some symmetri set of seond ategory, then the proof ofTheorem 1 shows that {Fn : n ∈ N} is equibounded on the unit ball. In thease where L = 1, this result is given in [Bo02, p. 90℄.Corollary 1. Let X, Y and Z be normed linear spaes and let
B(X × Y, Z) denote the spae of all ontinuous bilinear mappings from X×Yinto Z. Assume that a family {Tn : n ∈ N} ⊆ B(X × Y, Z) is pointwisebounded on some set D ⊆ X × Y of seond ategory. Then the sequene
(‖Tn‖)∞n=1 is bounded.Proof. Set

Fn(x, y) := ‖Tn(x, y)‖ for n ∈ N, x ∈ X and y ∈ Y.Clearly, all Fn are ontinuous; moreover, they are subadditive and even ineah variable. Further, D ⊆ E, where E is de�ned by (1). Sine D is ofseond ategory, so is E and thus Theorem 1 is appliable.Remark 3. It seems that Corollary 1 is not well known sine even itspartiular version with D = X×Y (whih may be found in [Kö79, p. 158℄ forsome wider lass of spaes) was redisovered in [Ge92℄. Atually, this versionan be obtained via the lassial Banah�Steinhaus theorem using the fatthat the spae B(X × Y, Z) is isometrially isomorphi to L(X, L(Y, Z)). Infat, Corollary 1 an also be proved in this way with the help of a onverseto the Kuratowski�Ulam theorem (see, e.g., [Ox71, p. 57℄; observe that E isan Fσ set, so it has the property of Baire). In this ase, however, we needthe extra assumption that X or Y is separable.As another simple onsequene of Theorem 1, we obtain the followingextension of the lassial priniple of ondensation of singularities ([BS27℄;see also, e.g., [Yo80, p. 74℄), whih will be useful in Setion 5.Corollary 2. Let X1, . . . , Xk and X be as in Theorem 1. Assume that
L ≥ 1, Fn,m : X → R+ (n, m ∈ N) are lower semiontinuous and suh thatall funtions xi 7→ Fn,m(x1, . . . , xk) (i ∈ {1, . . . , k}) are L-subadditive andeven. If

sup{Fn,mx : n ∈ N, ‖x‖ ≤ 1} = ∞for eah m ∈ N, then the set
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R := {x ∈ X : lim sup

n→∞
Fn,mx = ∞ for all m ∈ N}is residual.Proof. We need to show that E := X \ R is meager. Given m ∈ N, set

Em := {x ∈ X : (Fn,mx)∞n=1 is bounded}.It is lear that E =
⋃

m∈N
Em. Sine, by Theorem 1, eah Em is meager, sois E.3. A meager set in Lp(µ)× Lp(µ). Let (X, Σ, µ) be a measure spae.Following Balerzak and Wahowiz [BW01℄, given a real p ≥ 1, we onsiderthe set(5) Ep := {(f, g) ∈ Lp(µ) × Lp(µ) : f · g ∈ Lp(µ)}.It is shown in [BW01℄ that if p = 1, X := [0, 1] and µ is Lebesgue measure,then E is meager.In what follows we assume that (X, Σ, µ) is σ-�nite. Then there exists anasending sequene (Xn)∞n=1 of measurable sets of �nite measure suh that

X =
⋃

n∈N
Xn. Given n ∈ N and f ∈ Lp(µ), set(6) f∗n(x) := min{|f(x)|p, n}χXn

(x) for all x ∈ X,where χXn
denotes the harateristi funtion of Xn. Clearly, 0≤f∗n(x)≤n.Now for n ∈ N and f, g ∈ Lp(µ), de�ne(7) Fn(f, g) :=

\
X

f∗ng∗n dµ.Then we have
Fn(f, g) ≤

\
n2χXn

= n2µ(Xn) < ∞,so Fn : Lp(µ) × Lp(µ) → R+.Lemma 1. Let Ep be de�ned by (5). Then
Ep = {(f, g) ∈ Lp(µ) × Lp(µ) : (Fn(f, g))∞n=1 is bounded}with Fn as in (7).Proof. Let f, g ∈ Lp(µ). Sine (Xn)∞n=1 is asending and it overs X, weget χXn
ր 1. Hene and by (6), given x ∈ X, both sequenes (f∗n(x))∞n=1and (g∗n(x))∞n=1 are nondereasing and onverge to |f(x)|p and |g(x)|p, re-spetively. Consequently, f∗ng∗n ր |fg|p. By Beppo-Levi's theorem, we get(8) Fn(f, g) →

\
|f · g|p.Now if we assume that (Fn(f, g))∞n=1 is bounded, then (8) implies that f ·g ∈

Lp(µ), i.e., (f, g) ∈ Ep. Conversely, if (f, g) ∈ Ep, then T|f · g|p < ∞, and(8) implies that (Fn(f, g))∞n=1 is bounded. This ompletes the proof.



Nonlinear Banah�Steinhaus theorem 309Lemma 2. Let Fn be de�ned by (7). Then Fn is 2p−1-subadditive andeven in eah variable.Proof. Let f1, f2, g ∈ Lp(µ). Sine the funtion t 7→ min {t, n} (t ∈ R+) issubadditive, with the help of Hölder's inequality we infer that given x ∈ Xn,
(f1 + f2)

∗n(x) ≤ min{(|f1(x)| + |f2(x)|)p, n}
≤ min{2p−1(|f1(x)|p + |f2(x)|p), n}
≤ min{2p−1|f1(x)|p, n} + min{2p−1|f2(x)|p, n}.As n ≤ 2p−1n, we get

(f1 + f2)
∗n(x) ≤ 2p−1(f∗n

1 (x) + f∗n

2 (x)).Sine this inequality also holds for x ∈ X \ Xn, we obtain
(f1 + f2)

∗n ≤ 2p−1(f∗n

1 + f∗n

2 ).Hene f 7→ Fn(f, g) is 2p−1-subadditive. Moreover, sine (−f1)
∗n = f∗n

1 , weonlude that Fn is even in the �rst variable. Being symmetri, it has all theproperties we need.Lemma 3. The funtionals Fn : Lp(µ) × Lp(µ) → R+ de�ned by (7) arelower semiontinuous.Proof. Fix an n ∈ N. Given f0, g0 ∈ Lp(µ), we need to show that
M := lim inf

(f,g)→(f0,g0)
Fn(f, g) ≥ Fn(f0, g0).Consider a sequene ((fk, gk))

∞
k=1 suh that ‖fk − f0‖p → 0, ‖gk − g0‖p → 0and Fn(fk, gk) → M as k → ∞. By passing to a subsequene if neessary,we may assume that both (fk)

∞
k=1 and (gk)

∞
k=1 onverge a.e. to f and g,respetively. Then it is easily seen that (f∗n

k )∞k=1 and (g∗n

k )∞k=1 onverge a.e.to f∗n

0 and g∗n

0 , respetively. By Fatou's Lemma,
lim inf
k→∞

\
f∗n

k · g∗n

k ≥
\
lim inf
k→∞

f∗n

k · g∗n

k ,i.e., M ≥ Fn(f0, g0), whih ompletes the proof.Remark 4. In fat, it an be proved that all Fn are ontinuous (seeAppendix), whih, however, is somewhat more di�ult to show.Now Lemmas 1�3 and Theorem 1 immediately yield the followingProposition 2. Let (X, Σ, µ) be a σ-�nite measure spae, p ≥ 1 and
Ep be de�ned by (5). The following statements are equivalent :(i) Ep is meager in Lp(µ) × Lp(µ);(ii) Ep 6= Lp(µ) × Lp(µ).



310 J. JahymskiIn partiular, the latter ondition holds if X := [0, 1] and µ is Lebesguemeasure (onsider the pair (h, h), where h(x) := x−1/(2p)), so Proposition 2extends [BW01, Theorem 1.2℄.Remark 5. Atually, Proposition 2 is also valid for p ∈ (0, 1). (I owethis result to the referee.) This follows from Remark 1 and the fat that the
F -spae Lp(µ) is loally bounded. Moreover, Lemmas 1 and 3 remain validfor suh p, whereas the same argument as in the proof of Lemma 2 showsthis time that all funtionals Fn are subadditive in eah variable beause ofthe subadditivity of t 7→ tp for p ∈ (0, 1). Proposition 2 an also be extendedby substituting the Orliz spae N(L(µ)) for Lp(µ) if the funtion N hasappropriate properties. The details will be given in a forthoming paper.In the rest of this setion, we give other onditions equivalent to (ii) ofProposition 2 under some weaker assumptions on the measure spae. Re-all that (X, Σ, µ) is semi�nite (f. [Fr01, 211F℄) if whenever A ∈ Σ and
µ(A) = ∞, there is a B ∈ Σ suh that B ⊆ A and 0 < µ(B) < ∞. (X, Σ, µ)is loalizable (f. [Fr01, 211G℄) if it is semi�nite and whenever A ⊆ Σ, thereis a B ∈ Σ suh that A \ B is negligible for every A ∈ A; moreover, given
C ∈ Σ, if A \ C is negligible for every A ∈ A, then B \ C is negligible.Also reall that a measurable funtion f : X → R is quasi-simple (f. [Fr00,122Y(d)℄) if f is µ-integrable and f(X) is ountable.Note �rst that it is su�ient to examine ondition (ii) of Proposition 2only for p = 1 beause of the followingLemma 4. Let (X, Σ, µ) be a measure spae. The following statementsare equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) Er 6= Lr(µ) × Lr(µ) for some r ≥ 1;(iii) Ep 6= Lp(µ) × Lp(µ) for all p ≥ 1.Proof. (i)⇒(ii) and (iii)⇒(i) are obvious. We show (ii) implies (iii). By(ii), there exist f, g ∈ Lr(µ) suh that T|f · g|r = ∞. Given p ≥ 1, set
fp := |f |r/p and gp := |g|r/p. It is lear that fp, gp ∈ Lp(µ), but (fp, gp) /∈ Ep,so (iii) holds.Lemma 5. Let (X, Σ, µ) be a measure spae and f : X → R+ be measur-able. Then there exists a sequene (fn)∞n=1 of measurable nonnegative fun-tions taking values in some ountable set suh that fn → f uniformly on Xand (fn(x))∞n=1 is nondereasing for all x ∈ X.Proof. Given n ∈ N, set

Ai,n :=

{
x ∈ X :

i − 1

2n
≤ f(x) <

i

2n

} for all i ∈ N.
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i∈N

Ai,n = X sine f takes �nite values. Hene given x ∈ X, there isan ix ∈ N suh that x ∈ Aix,n, and the ix is unique sine (Ai,n)∞i=1 is disjoint.We set
fn(x) :=

ix − 1

2n
for all x ∈ X.Clearly, fn is measurable and fn(X) is ountable. Sine |fn(x)−f(x)| < 1/2nfor all x ∈ X, it follows that fn → f uniformly on X. Finally, it is easilyseen that fn(x) ≤ fn+1(x) for all x ∈ X.We will also need the following result onerning sequenes of reals, inthe proof of whih we use Hadamard's trik (f. [Kn47, �41, 178.1℄).Lemma 6. Let (bn)∞n=1 be a sequene of positive reals suh that the series∑∞

n=1 bn onverges. Let Rn−1 :=
∑∞

k=n bk for n ∈ N and assume that thesequene (Rn/bn)∞n=1 is bounded. Then there exists a sequene (an)∞n=1 ofpositive reals suh that
∞∑

n=1

anbn < ∞ and ∞∑

n=1

a2
nbn = ∞.Moreover , a2

nbn 6→ 0.Proof. Set
an :=

√
Rn−1 −

√
Rn

bn
for all n ∈ N.Then ∑n

k=1 akbk =
√

R0 −
√

Rn. Sine Rn → 0, we onlude that
∞∑

n=1

anbn =
( ∞∑

n=1

bn

)1/2
,in partiular, the series ∑∞

n=1 anbn onverges. On the other hand,
a2

nbn =

(√
Rn−1 −

√
Rn√

bn

)2

=

( √
bn√

bn + Rn +
√

Rn

)2

=
1

(
√

1 + Rn/bn +
√

Rn/bn)2
≥ 1

4(1 + Rn/bn)
.By hypothesis, there is an M > 0 suh that Rn/bn ≤ M for all n ∈ N. Hene

a2
nbn 6→ 0, so the series ∑∞

n=1 a2
nbn diverges.Proposition 3. Let (X, Σ, µ) be a measure spae and E1 be de�nedby (5). The following statements are equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) L1(µ) \ L2(µ) 6= ∅;(iii) there is a quasi-simple funtion g suh that g /∈ L2(µ);(iv) inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0;



312 J. Jahymski(v) there is a disjoint sequene (An)∞n=1 of measurable sets of positivemeasure suh that µ(An) → 0.Proof. (i)⇒(ii): By hypothesis, there are f, g ∈ L1(µ) suh that f · g /∈
L1(µ). Then f and g are �nite a.e., so

f(x)g(x) = ((f(x) + g(x))2 − (f(x) − g(x))2)/4 a.e.This implies that f + g /∈ L2(µ) or f − g /∈ L2(µ), so L1(µ) \ L2(µ) 6= ∅.(ii)⇒(iii): By hypothesis, there is an f ∈ L1(µ) \L2(µ). Without loss ofgenerality we may assume that f ≥ 0 and it takes �nite values on X.
Step 1. Assume that µ is �nite. By Lemma 5, there is a measurablefuntion h : X → R+ suh that h(X) is ountable, h ≤ f2 and(9) f2(x) − h(x) ≤ 1 for all x ∈ X.Set g :=

√
h. Then g ≤ f so g ∈ L1(µ). Moreover,

∞ =
\
f2 =

\
(f2 − g2) +

\
g2.Sine by (9), T(f2 − g2) ≤ µ(X) < ∞, we infer that Tg2 = ∞. Thus g is thedesired funtion.

Step 2. Now assume that µ(X) = ∞ and µ is σ-�nite. Then there is adisjoint over (Xn)∞n=1 of X by measurable sets of �nite positive measure.By Lemma 5, given n ∈ N, there is a measurable funtion hn : Xn → R+suh that hn ≤ f2|Xn
,

f2(x) − hn(x) ≤ 1

2nµ(Xn)
for all x ∈ Xn,and hn(Xn) is ountable. De�ne h :=

⋃
n∈N

hn. Then h : X → R+, h(X) isountable and h ≤ f2. Set g :=
√

h. Sine\
X

(f2 − g2) =

∞∑

n=1

\
Xn

(f2 − hn) ≤
∞∑

n=1

1

2n
= 1,

we infer as in Step 1 that g /∈ L2(µ). Moreover, g is quasi-simple.
Step 3. Finally, we onsider the ase of arbitrary measure. Set

X ′ := {x ∈ X : f(x) > 0}.Sine f ∈ L1(µ), the subspae measure µX′ is σ-�nite. Clearly, f |X′ ∈
L1(µX′) \ L2(µX′), so by Steps 1 and 2, there is a quasi-simple funtion
g : X ′ → R+ suh that g ∈ L1(µX′) \L2(µX′). It su�es to extend g onto Xby setting g(x) := 0 for x ∈ X \ X ′.(iii)⇒(iv): Sine g ∈ L1(µ) \L2(µ), it follows that g(X) is in�nite. Thusthere is a sequene (an)∞n=1 of distint reals suh that g(X) = {an : n ∈ N}and we may assume an ≥ 0. Let An := g−1({an}). Then g =

∑∞
n=1 anχAn

.



Nonlinear Banah�Steinhaus theorem 313Suppose, on the ontrary, that
r := inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0.Let K := {n ∈ N : µ(An) > 0}. Then Tg =

∑
n∈K anµ(An) and anµ(An) ≥

ran for all n ∈ K. Hene ∑
n∈K an < ∞; in partiular, (an)n∈K is bounded.On the other hand, we have

∞ =
\
g2 =

∑

n∈K

a2
nµ(An) ≤ sup

n∈K
an ·

\
g < ∞,whih is a ontradition.(iv)⇒(v): By hypothesis, there is a sequene (Bn)∞n=1 of measurable setsof positive measure suh that µ(Bn) → 0. By passing to a subsequene ifneessary, we may assume that µ(Bn+1) < µ(Bn)/2. Set

An := Bn \
⋃

i∈N

Bn+i for all n ∈ N.

Sine µ(Bn+i) < µ(Bn)/2i, we get
µ
( ⋃

i∈N

Bn+i

)
<

∞∑

i=1

µ(Bn)

2i
= µ(Bn),whih implies µ(An) > 0. Clearly, the sets An are disjoint and µ(An) → 0sine µ(An) ≤ µ(Bn).(v)⇒(i): Set bn := µ(An) for all n ∈ N. Again, as in the proof of(iv)⇒(v), we may assume that bn+1 < bn/2, so that bn+i < bn/2i for all

i, n ∈ N. Hene if Rn is as in Lemma 6, then Rn ≤ bn, so Rn/bn ≤ 1. ByLemma 6, there is a sequene (an)∞n=1 of positive reals suh that ∑∞
n=1 anbn

< ∞ and ∑∞
n=1 a2

nbn = ∞. Hene if
f :=

∞∑

n=1

anχAn
,then f ∈ L1(µ) \ L2(µ), i.e., (f, f) ∈ L1(µ) × L1(µ) \ E1.Lemma 7. Let (X, Σ, µ) be a loalizable measure spae. If µ is not purelyatomi, then there exists a δ > 0 suh that µ(Σ) ⊇ [0, δ].Proof. By the Saks theorem (see, e.g., [Fr01, 214X(a)℄), there is an X ′ ∈

Σ suh that the subspae measure µX′ is atomless and µX\X′ is purelyatomi. Then µ(X ′) > 0; otherwise, if A ∈ Σ and µ(A) > 0, then µ(A \ X ′)
> 0 so A \ X ′ (hene A) ontains an atom. This means µ is purely atomi,a ontradition. If µ(X ′) is �nite, then µ(Σ) ⊇ [0, µ(X ′)] by the Sierpi«ski�Fihtenholz theorem (f. [Fr01, 215D℄) sine µX′ is atomless. If µ(X ′) = ∞,then there is an A ⊆ X ′ suh that A ∈ Σ and 0 < µ(A) < ∞ sine, inpartiular, µ is semi�nite. Then as before we infer that µ(Σ) ⊇ [0, µ(A)].



314 J. JahymskiProposition 4. Let (X, Σ, µ) be a loalizable measure spae and E1 bede�ned by (5). The following statements are equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) if µ is purely atomi, then inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0.Proof. (i)⇒(ii) is obvious sine (i) implies (iv) of Proposition 3.(ii)⇒(i): It is enough to show that (ii) implies (iv) of Proposition 3. If
µ is purely atomi, then we are done; if not, then (iv) holds in virtue ofLemma 7.Proposition 5. Let (X, Σ, µ) be a measure spae and E1 be de�nedby (5). The following statements are equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) L1(µ) \ L∞(µ) 6= ∅.Proof. (i)⇒(ii): Suppose, on the ontrary, that L1(µ) ⊆ L∞(µ). Let
f, g ∈ L1(µ). Then there is an M > 0 suh that |f | ≤ M a.e. on X. Hene
|f · g| ≤ M · |g|, whih implies f · g ∈ L1(µ). Thus E1 = L1(µ) × L1(µ), aontradition.(ii)⇒(i): It su�es to show that (ii) implies (iv) of Proposition 3. Let
f ∈ L1(µ) \ L∞(µ). Suppose, on the ontrary, that

r := inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0.For n ∈ N, set
An := {x ∈ X : |f(x)| ≥ n}.Sine f /∈ L∞(µ), we infer that µ(An) > 0, whih implies µ(An) ≥ r. Henewe get

∞ >
\
X

|f | ≥
\

An

|f | ≥ nµ(An) ≥ nrfor all n ∈ N, whih yields a ontradition.Summing up the results of this setion, we have the followingTheorem 2. Let (X, Σ, µ) be a σ-�nite measure spae and
E :=

{
(f, g) ∈ L1(µ) × L1(µ) : f · g ∈ L1(µ)

}
.The following statements are equivalent :(i) E is of seond ategory ;(ii) E = L1(µ)×L1(µ), i.e., (L1(µ), ·) is a semigroup, where �·� denotesmultipliation of funtions;(iii) (Lp(µ), ·) is a semigroup for some p ≥ 1;(iv) (Lp(µ), ·) is a semigroup for all p ≥ 1;(v) L1(µ) ⊆ L2(µ);(vi) every quasi-simple funtion is in L2(µ);



Nonlinear Banah�Steinhaus theorem 315(vii) L1(µ) ⊆ L∞(µ);(viii) µ is purely atomi and inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0;(ix) inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0;(x) every disjoint sequene (An)∞n=1 of measurable sets of positive mea-sure has the property that µ(
⋃

n∈N
An) = ∞.Proof. Sine a σ-�nite measure spae is loalizable (f. [Fr01, 211L℄), theequivalene of onditions (i)�(ix) follows from Lemma 4 and Propositions2�5. (ix)⇒(x) is obvious. To prove the onverse suppose, on the ontrary,that inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0. By Proposition 3, there is a dis-joint sequene (An)∞n=1 of measurable sets of positive measure suh that

µ(An) → 0. By passing to a subsequene if neessary, we may assume that
µ(An) < 1/2n. Then µ(

⋃
n∈N

An) < 1, whih ontradits (x).4. Some meager sets in produts of Banah sequene spaes.As another appliation of Theorem 1, we give the following generalizationof [BW01, Theorem 1.1℄. We onsider here the spae c0 of all real sequenesonvergent to 0, endowed with the sup norm.Theorem 3. Let α ∈ RN and set
Eα :=

{
((xn)∞n=1, (yn)∞n=1) ∈ c0 × c0 :

( n∑

i=1

αixiyi

)∞

n=1
is bounded}.

Then Eα is meager in c0 × c0 if and only if α /∈ l1, i.e., ∑∞
n=1 |αn| = ∞.Remark 6. It is shown in [BW01℄ that the set E(1,...) is meager.Proof of Theorem 3. Set

Tn(x, y) :=
n∑

i=1

αixiyi for all n ∈ N and x, y ∈ c0.Clearly, all Tn are ontinuous bilinear funtionals on c0 × c0 and
Eα := {(x, y) ∈ c0 × c0 : (Tn(x, y))∞n=1 is bounded}.Thus by Theorem 1 (with Fn de�ned as in the proof of Corollary 1), Eα ismeager i� sup{‖Tn‖ : n ∈ N} = ∞. It is an easy exerise to show that

‖Tn‖ =
∑n

i=1 |αi|. Thus Eα is meager i� ∑∞
n=1 |αn| = ∞.In a similar way, with the help of theorems on representation of dualspaes, we may obtain results of the above type for other produts of Banahsequene spaes. For example, we give the following theorem, the proof ofwhih is left to the reader.



316 J. JahymskiTheorem 4. Let α∈RN, 1≤p≤∞, and let q be suh that 1/p + 1/q=1.Set
Eα :=

{
((xn)∞n=1, (yn)∞n=1) ∈ c0 × lp :

( n∑

i=1

αixiyi

)∞

n=1
is bounded}.Then Eα is meager i� α /∈ lq.5. A residual set in C[0, 1]. Assume that a mapping Φ : [0, 1] → c0is given, so that Φ = (ϕn)∞n=1, where ϕn : [0, 1] → R and ϕn(x) → 0 for all

x ∈ X. Suppose that(10) ϕn(1) < 0 < ϕn(0) and ϕn(x) 6= 0 for all n ∈ N and x ∈ (0, 1).Given f : [0, 1] → R and x ∈ [0, 1], we say that f has a Φ-derivative at x(see [Kh98, p. 147℄) if the following limit (possibly in�nite) exists:
f ′

Φ(x) := lim
n→∞

f(x + ϕn(x)) − f(x)

ϕn(x)
.In what follows we onsider the Banah spae C[0, 1] endowed with the supnorm. The following result was established in [Kh98, p. 148℄.Theorem 5 (Kharazishvili). Assume that Φ has the Baire property. De-�ne R1 ⊆ C[0, 1] as follows: f ∈ R1 if there is a residual set A in [0, 1] suhthat for all x ∈ A, the �nite Φ-derivative f ′

Φ(x) does not exist. Then R1 isresidual in C[0, 1].Using the notion of Φ-derivative, the lassial theorem of Banah andMazurkiewiz ([Ba31℄, [Ma31℄) an be written in the following way.Theorem 6 (Banah�Mazurkiewiz). De�ne the set R2 ⊆ C[0, 1] asfollows: f ∈ R2 if there is a mapping Φ : [0, 1] → c0 suh that ϕn(x) > 0 forall n ∈ N and x ∈ [0, 1), and f ′
Φ(x) is in�nite for all x ∈ [0, 1). Then R2 isresidual in C[0, 1].Note that R2 an also be de�ned as follows: f ∈ R2 if for all x ∈ [0, 1),

D+f(x) or D+f(x) is in�nite, where D+f(x) (resp., D+f(x)) denotes theupper (resp., lower) right Dini derivative of f at x (in Brukner's [Br94℄notation).Given a mapping Φ satisfying (10), we de�ne the upper Dini Φ-derivativeof f : [0, 1] → R at x ∈ [0, 1] as follows:
f ′

Φ(x) := lim sup
n→∞

f(x + ϕn(x)) − f(x)

ϕn(x)
.By substituting lim inf for lim sup, we get the lower Dini Φ-derivative f ′

Φ(x).Using these notions and Corollary 2, we will prove the following



Nonlinear Banah�Steinhaus theorem 317Theorem 7. Assume that Φ : [0, 1] → c0 satis�es (10) and A is a ount-able dense subset of [0, 1]. De�ne R3 ⊆ C[0, 1] as follows: f ∈ R3 if for all
x ∈ A, f ′

Φ(x) or f ′
Φ(x) is in�nite. Then R3 is residual in C[0, 1].Proof. Let A = {xm : m ∈ N}. Condition (10) implies that given x ∈

[0, 1], x + ϕn(x) ∈ [0, 1] for su�iently large n. Hene given m ∈ N, there isa km ∈ N suh that xm + ϕn+km
(xm) ∈ [0, 1] for all n ∈ N. Thus we mayde�ne funtionals Fn,m by

Fn,m(f) :=

∣∣∣∣
f(xm + ϕn+km

(xm)) − f(xm)

ϕn+km
(xm)

∣∣∣∣for all n, m ∈ N and f ∈ C[0, 1]. We show the assumptions of Corollary 2are satis�ed with k := 1 and X1 := C[0, 1]. It is easily seen that all Fn,m aresubadditive and even. Set
hn,m := ϕn+km

(xm) for all n, m ∈ N.Given f, g ∈ C[0, 1] and n, m ∈ N, we have
|Fn,m(f) − Fn,m(g)| ≤ |f(xm + hn,m) − g(xm + hn,m)|/|hn,m|

+ |g(xm) − f(xm)|/|hn,m|
≤ 2‖f − g‖/|hn,m|,whih shows Fn,m is Lipshitzian, hene ontinuous. Fix an m ∈ N. We show

M := sup{Fn,m(f) : n ∈ N, ‖f‖ ≤ 1} = ∞.Suppose that, on the ontrary, M is �nite. The following three ases arepossible.1) xm ∈ (0, 1). Let δ > 0 be suh that (xm − δ, xm + δ) ⊆ [0, 1] and
δ(M + 1) ≤ 1. Set

f(x) :=





(M + 1)(x − xm) for x ∈ (xm − δ, xm + δ),
−δ(M + 1) for x ∈ [0, xm − δ],

δ(M + 1) for x ∈ [xm + δ, 1].Then f is ontinuous and ‖f‖ ≤ 1. Sine limn→∞ hn,m = 0, there is an n ∈ Nsuh that hn,m < δ. Then Fn,m(f) = M + 1, whih is a ontradition.2) xm = 0. Set
f(x) :=

{
(M + 1)x for x ∈ [0, 1/(M + 1)),

1 for x ∈ [1/(M + 1), 1].If n ∈ N is suh that hn,m < 1/(M + 1), then Fn,m(f) = M + 1, a ontra-dition.3) xm = 1. Use a similar argument to item 2) setting
f(x) :=

{−1 for x ∈ [0, M/(M + 1)],

(M + 1)(x − 1) for x ∈ (M/(M + 1), 1].



318 J. JahymskiThus M = ∞ and by Corollary 2, the set
R = {f ∈ C[0, 1] : lim sup

n→∞
Fn,m(f) = ∞ for all m ∈ N}is residual. Clearly, R oinides with R3, so the proof is omplete.Remark 7. Atually, the assumption of Theorem 7 that A is dense issuper�uous, but the result seems to be more interesting for suh sets. More-over, Theorem 7 yields the more general version. Indeed, if A is a ountablesubset of [0, 1] and Ã := A ∪ (Q ∩ [0, 1]), then R3(Ã) ⊆ R3(A), and sine byTheorem 7, R3(Ã) is residual, so is R3(A).6. Appendix: Continuity of integral funtionals. Our purpose hereis to show that the funtionals Fn de�ned by (7) are ontinuous.Lemma 8. Given 1 ≤ p < ∞, the operator f 7→ |f |p from Lp(µ) into

L1(µ) is ontinuous.Proof. This follows immediately from the fat (f. [Ru74, Chapter 3,Exerise 24℄) that if f, g ∈ Lp(µ) and M ≥ 0 is suh that ‖f‖p ≤ M and
‖g‖p ≤ M , then(11) \

| |f |p − |g|p| ≤ 2pMp−1‖f − g‖p.Remark 8. Inequality (11) may be sharpened. Indeed, by Lagrange'stheorem we have
|sp − tp| ≤ p|s − t|(sp−1 + tp−1) for all s, t ≥ 0,whih yields(12) | |f |p − |g|p| ≤ p| |f | − |g| |(|f |p−1 + |g|p−1).Let p > 1 and q := p/(p − 1). Sine |f |p−1 and |g|p−1 are in Lq(µ), and

|f | − |g| ∈ Lp(µ), we get, by (12) and using Hölder's inequality twie,\
| |f |p − |g|p| ≤ p‖ |f | − |g| ‖p(‖f‖p/q

p + ‖g‖p/q
p )

= p‖ |f | − |g| ‖p(‖f‖p−1
p + ‖g‖p−1

p ),whih sharpens (11).Lemma 9. The operator (·)∗n : Lp(µ) → L1(µ) de�ned by (6) is ontin-uous.Proof. Let fk ∈ Lp(µ) for all k ∈ N∪{0}, and ‖fk−f0‖p → 0. Sine thereis a onegligible subset of X on whih all funtions fk have �nite values, wemay assume that fk are real-valued. Then, given k ∈ N, we have
f∗n

k = χXn
(|fk|p + n − | |fk|p − n|)/2.



Nonlinear Banah�Steinhaus theorem 319By ontinuity of the operators f 7→ |f |p from Lp(µ) into L1(µ) and (f, g) 7→
f + g from L1(µ) × L1(µ) into L1(µ), we now infer that ‖f∗n

k − f∗n

0 ‖1 → 0as k → ∞.Lemma 10. The funtional Fn : Lp(µ) × Lp(µ) → R+ de�ned by (7) isontinuous for all n ∈ N.Proof. Fix an n ∈ N. Assume that ‖fk − f‖p → 0 and ‖gk − g‖p → 0 as
k → ∞. By Lemma 9, we have ‖f∗n

k − f∗n‖1 → 0 and ‖g∗n

k − g∗n‖1 → 0 as
k → ∞. By the inequalities 0 ≤ f∗n

k ≤ n, 0 ≤ g∗n

k ≤ n, we hene get
|Fn(fk, gk) − Fn(f, g)| ≤

\
X

|f∗n

k g∗n

k − f∗ng∗n |χXn

=
\

Xn

|f∗n

k (g∗n

k − g∗n) + g∗n(f∗n

k − f∗n)|

≤ n(‖g∗n

k − g∗n‖1 + ‖f∗n
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