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Estimates of the potential kernel and Harna
k's inequalityfor the anisotropi
 fra
tional Lapla
ianbyKrzysztof Bogdan and Paweª Sztonyk (Wro
ªaw)Abstra
t. We 
hara
terize those homogeneous translation invariant symmetri
 non-lo
al operators with positive maximum prin
iple whose harmoni
 fun
tions satisfy Har-na
k's inequality. We also estimate the 
orresponding semigroup and the potential kernel.1. Main results and ba
kground. Let α ∈ (0, 2) and d ∈ {1, 2, . . .}.We 
onsider an arbitrary Lévy measure on R
d \ {0} whi
h is symmetri
, ho-mogeneous: ν(rB) = r−αν(B), and nondegenerate (for de�nitions see Se
-tion 2). It yields a 
onvolution semigroup of probability measures {Pt, t > 0}on R

d. Ea
h Pt has a smooth density pt. We 
onsider the 
orresponding po-tential measure V =
T∞
0 Pt dt and the potential kernel

V (x) =

∞\
0

pt(x) dt, x ∈ R
d.

V (x) = |x|α−dV (x/|x|), but it may be in�nite in some dire
tions ([17, pp.148�149℄). It is of interest to study 
ontinuity of V on the unit sphere S in R
dunder spe
i�
 assumptions on ν (see (13)).Theorem 1. If d > α and ν is a γ-measure on S with γ > d − 2α then

V is 
ontinuous on S.The following partial 
onverse shows that the threshold d − 2α is exa
t.Theorem 2. If V is a κ-measure on S then ν is a (κ − 2α)-measureon S.In parti
ular, if V is bounded on S then ν is a (d − 2α)-measure on S.2000 Mathemati
s Subje
t Classi�
ation: Primary 47D03, 31C05; Se
ondary 60J35,60G51.Key words and phrases: potential kernel, Harna
k's inequality, relative Kato 
ondition,Green fun
tion, stable pro
ess.Resear
h partially supported by KBN and RTN (HPRN-CT-2001-00273-HARP).[101℄ 
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102 K. Bogdan and P. SztonykWe de�ne an operator A on smooth fun
tions ϕ with 
ompa
t supportin R
d, ϕ ∈ C∞

c (Rd), by
Aϕ(x) =

\
Rd

(ϕ(x + y) − ϕ(x) − y∇ϕ(x)1|y|<1) ν(dy)

= lim
ε→0+

\
|y|>ε

(ϕ(x + y) − ϕ(x)) ν(dy).

A is a restri
tion of the in�nitesimal generator of {Pt} [35, Example 4.1.12℄,and what we refer to as the anisotropi
 fra
tional Lapla
ian in the title ofthe paper. In this 
onne
tion we re
all that in the spe
ial 
ase of ν(dy) =
c|y|−d−αdy one obtains the fra
tional Lapla
ian ∆α/2. For properties of ∆α/2and a dis
ussion of equivalent de�nitions of its harmoni
 fun
tions we referthe reader to [14℄.Harmoni
 fun
tions 
orresponding to A, or ν, are de�ned by the meanvalue property with respe
t to an appropriate family of harmoni
 measures(see Se
tion 4). The main goal of the paper is to 
hara
terize those operators
A for whi
h Harna
k's inequality holds, i.e., there is a 
onstant C = C(α, ν)su
h that for every fun
tion u whi
h is harmoni
 in the unit ball and non-negative in R

d,(1) u(x1) ≤ Cu(x2), |x1| < 1/2, |x2| < 1/2.To this end we use the relative Kato 
ondition (RK) meaning that there isa 
onstant K su
h that(2) \
B(y,1/2)

|y − v|α−d ν(dv) ≤ Kν(B(y, 1/2)), y ∈ R
d.

Theorem 3. Harna
k's inequality holds for A if and only if (RK) holdsfor ν.Theorem 3 is a strengthening of [17, Theorem 1℄, where an additionalte
hni
al assumption was made: ν(dy)≤ c|y|−d−αdy, to guarantee the bound-edness of V on S. We now drop the assumption and the boundedness is ob-tained as the sole 
onsequen
e of (2) via Theorem 1. We also adapt someof our previous te
hniques from [17℄ to handle measures ν whi
h are notabsolutely 
ontinuous with respe
t to the Lebesgue measure on Rd (see,e.g., (27)).Our estimates of the semigroup in Se
tion 3 are based in part on ideas of[43℄, whi
h 
on
erns more 
ompli
ated non
onvolutional semigroups.Another re
ent paper [53℄ gives involved estimates of our 
onvolution semi-group {Pt} in individual dire
tions (see also [32℄ in this 
onne
tion). Herewe only need isotropi
 estimates of {Pt} from above, and our 
onsiderationsbe
ome simpler than those of [53℄ and [43℄.



Harna
k's inequality for the fra
tional Lapla
ian 103In Se
tions 4�6 we develop the methods of [17℄. That (2) implies (1) isproved by using a maximum prin
iple for a Dynkin-type version of the op-erator A to expli
itly estimate its Green fun
tion G(x, v) for the unit ball(see Proposition 1 below). It is noteworthy that our proof of the estimate isspe
i�
 to nonlo
al operators, of whi
h A is an illustrative spe
ial 
ase. Inparti
ular it turns out that G(x, v) has a singularity at the pole 
omparableto that of the Riesz kernel: |v − x|α−d. The singularity in�uen
es the mag-nitude of the 
orresponding Poisson kernel of the ball, P (x, y), as given bythe Ikeda�Watanabe formula (27). The in�uen
e is 
riti
al if and only if (2)fails to hold. This relates (2) to (1). Su
h a dire
t in�uen
e of the singularityof the potential kernel on the Poisson kernel does not o

ur for se
ond orderellipti
 operators, whi
h is why we 
an expe
t analogues of Theorem 3 onlyfor nonlo
al operators.The re
ent development in the study of Harna
k's inequality for generalintegro-di�erential operators similar to A was initiated in [6℄ (see also [16℄).The 
lass of operators 
onsidered gradually extended: see [47℄, [45℄, [5℄, [17℄,[2℄, and the referen
es given there. We note that the operators dealt with inthose papers are not translation invariant, nor are they homogeneous. On theother hand, the papers fo
us on su�
ient 
onditions for Harna
k's inequalityand they are restri
ted by 
ertain isotropi
 estimates of the operator's kernelfrom below.Our 
on�nement to translation invariant homogeneous operators A re-sults in part from the fa
t that the problem of 
onstru
ting the semigroupfrom a general nonlo
al operator satisfying the positive maximum prin
ipledoes not have a �nal solution yet. We refer the reader to [48, 49℄, [35, 36℄,[5℄, and [33℄. A general survey of the subje
t and more referen
es 
an befound in [4, 37, 36℄. We refer the reader to [29, 3℄ for an a

ount of the re-lated potential theory of se
ond order ellipti
 operators. We point out thatwhile a symmetri
 se
ond order ellipti
 operator with 
onstant 
oe�
ients ismerely a linear transformation of the Lapla
ian, the operators A and theirharmoni
 fun
tions 
onsidered here are very diverse ([17℄).The remainder of the paper is organized as follows. The �rst de�nitionsare given in Se
tion 2. In Se
tion 3 we estimate the semigroup (see (17)below) and the potential measure V and we prove our �rst two theorems. InSe
tion 4 we give preliminaries needed for the proof of Theorem 3, whi
h ispresented in Se
tions 5 and 6. In Se
tion 6 we also re
all after [17℄ two expli
itexamples to show how irregular the Lévy measure ν 
an be for Harna
k'sinequality to hold or to fail for A.At the end of the paper we mention some remaining open problems.
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2. Preliminaries. For x ∈ R

d and r > 0 we let |x| =
√∑d

i=1 x2
i and

B(x, r) = {y ∈ R
d : |y − x| < r}. We de�ne S = {x ∈ R

d : |x| = 1}. All thesets, fun
tions and measures 
onsidered below will be Borel. For a measure
λ on R

d, |λ| denotes its total mass. For a fun
tion f we let λ(f) =
T
f dλwhenever the integral makes sense. When |λ| < ∞ and n = 1, 2, . . . we let

λn denote the n-fold 
onvolution of λ with itself:
λn(f) =

\
f(x1 + · · · + xn) λ(dx1) · · ·λ(dxn).We also let λ0 = δ0, the evaluation at 0. We 
all λ degenerate if there is aproper linear subspa
e M of R

d su
h that supp(λ) ⊂ M ; otherwise we 
all
λ nondegenerate.In what follows we 
onsider measures µ 
on
entrated on S. We assumethat µ is positive, �nite, nondegenerate (in parti
ular µ 6= 0), and symmetri
:

µ(D) = µ(−D), D ⊂ R
d.We 
all µ a spe
tral measure. We let(3) ν(D) =

\
S

∞\
0

1D(rξ)r−1−α dr µ(dξ), D ⊂ R
d,where 1D is the indi
ator fun
tion of D. Note that ν is symmetri
. It is aLévy measure on R

d, i.e. \
Rd

min(|y|2, 1) ν(dy) < ∞.

For r > 0 and a fun
tion ϕ on R
d we 
onsider its dilation ϕr(y) = ϕ(y/r),and we note that ν(ϕr) = r−αν(ϕ). In parti
ular ν is homogeneous: ν(rB) =

r−αν(B) for B ⊂ R
d. Similarly, if ϕ ∈ C∞

c (Rd), then A(ϕr) = r−α(Aϕ)r.This is the homogeneity of A. In 
onne
tion with the rest of our statementin the abstra
t we re
all that every operator A on C∞
c (Rd) whi
h satis�esthe positive maximum prin
iple:

sup
y∈Rd

ϕ(y) = ϕ(x) ≥ 0 implies Aϕ(x) ≤ 0,is given uniquely in the form
Aϕ(x) =

d∑

i,j=1

aij(x)DxiDxjϕ(x) + b(x)∇ϕ(x) − c(x)ϕ(x)

+
\

Rd

(ϕ(x + y) − ϕ(x) − y∇ϕ(x)1|y|<1) ν(x, dy).Here y∇ϕ is the s
alar produ
t of y and the gradient of ϕ and, for every x,
a(x) = (aij(x))n

i,j=1 is a nonnegative de�nite real symmetri
 matrix, theve
tor b(x) = (bi(x))d
i=1 has real 
oordinates, c(x) ≥ 0, and ν(x, ·) is a Lévy
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tional Lapla
ian 105measure. This des
ription is due to Courrège (see [33, Proposition 2.10℄, [49,Chapter 2℄ or [35, Chapter 4.5℄). For translation invariant operators A the
hara
teristi
s a, b, c, and ν are independent of x. If A is symmetri
:\
Rd

Aϕ(x)φ(x) dx =
\

Rd

Aφ(x)ϕ(x) dx for ϕ, φ ∈ C∞
c (Rd),

then b = 0 and ν is ne
essarily symmetri
 (see, e.g., [35, p. 251℄ and [33,Corollary 2.14℄). If A is homogeneous but not lo
al ([35℄) then a = 0 and
ν must be homogeneous, hen
e (3) holds with some α ∈ (0, 2) (note that
Aϕ(0) = ν(ϕ) if ϕ ∈ C∞

c (Rd \ {0})).We now 
onstru
t the 
orresponding semigroup (for a more axiomati
introdu
tion to 
onvolution semigroups we refer the reader to [7, 35℄). For
ε > 0 we let ν̂ε = 1B(0,ε)cν, i.e. ν̂ε(f) = ν(1B(0,ε)cf), and we let ν̃ε = 1B(0,ε)ν.We 
onsider the probability measures

P̂ ε
t = exp(t(ν̂ε − |ν̂ε|δ0)) =

∞∑

n=0

tn(ν̂ε − |ν̂ε|δ0))
n

n!
(4)

= e−t|ν̂ε|
∞∑

n=0

tnν̂n
ε

n!
, t > 0.

Here ν̂n
ε = (ν̂ε)

n. The P̂ ε
t form a 
onvolution semigroup:
P̂ ε

t ∗ P̂ ε
s = P̂ ε

s+t, s, t > 0.The Fourier transform of P̂ ε
t is

F(P̂ ε
t )(u) =

\
eiuy P̂ ε

t (dy) = exp
(
t
\
(eiuy − 1) ν̂ε(dy)

)
, u ∈ R

d.The measures P̂ ε
t weakly 
onverge to a probability measure Pt as ε → 0(this essentially depends on (6) below). {Pt, t > 0} is also a 
onvolutionsemigroup and F(Pt)(u) = exp(−tΦ(u)), where

Φ(u) = −
\
(eiuy − 1 − iuy1B(0,1)(y)) ν(dy)

= −
\
(cos(uy) − 1) ν(dy) =

π

2 sin(πα/2)Γ (1 + α)

\
S

|uξ|α µ(dξ).Sin
e µ is �nite and nondegenerate,(5) Φ(u) = |u|αΦ(u/|u|) ≈ |u|α.We 
all ν the Lévy measure of the semigroup {Pt, t ≥ 0} [33, 7℄.By a similar limiting pro
edure we 
onstru
t the semigroup {P̃ ε
t , t > 0}su
h that

F(P̃ ε
t )(u) = exp

(
t
\
(eiuy − 1 − iuy1B(0,1)(y)) ν̃ε(dy)

)
.
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Rd

|y|2 P̃ ε
t (dy) = t

\
Rd

|y|2 ν̃ε(dy).

The Lévy measures of {P̃ ε
t } and {P̂ ε

t } are ν̃ε and ν̂ε, respe
tively, and wehave(7) Pt = P̃ ε
t ∗ P̂ ε

t .The measures Pt and P̃ ε
t have rapidly de
reasing Fourier transform, hen
ethey are absolutely 
ontinuous with bounded smooth densities denoted pt(x)and p̃ε

t (x), respe
tively. Of 
ourse,(8) pt = p̃ε
t ∗ P̂ ε

t .By using (5) we obtain the s
aling property of {pt}:(9) pt(x) = t−d/αp1(t
−1/αx), x ∈ R

d.In parti
ular,(10) pt(x) ≤ ct−d/α.We de�ne the potential measure of the semigroup {Pt}:
V(D) =

∞\
0

Pt(D) dt, D ⊂ R
d.By (10), V is �nite on bounded subsets of R

d if d > α. Let(11) V (x) =

∞\
0

pt(x) dt, x ∈ R
d ,so that

V(D) =
\
D

V (x) dx, D ⊂ R
d.We 
all V (x) the potential kernel of the stable semigroup. By (9),(12) V (x) = |x|α−dV (x/|x|), x 6= 0,and V(rD) = rα

V(D) for r > 0, D ⊂ R
d.If d = 1 then up to a 
onstant there is only one measure ν to 
onsider:

ν(dy) = |y|−1−αdy, 
orresponding to A = c∆α/2. This 
ase of d = 1 is notex
luded from our 
onsiderations but it is sometimes trivial. In parti
ular,if d = 1 ≤ α then V ≡ ∞ ([7, Example 14.30℄). We refer to [18℄ for moreinformation and referen
es on the 
ase d = 1 ≤ α.Constants in this paper mean positive real numbers. We often write f ≈ gto indi
ate that there is c = c(α, µ), i.e. a 
onstant c depending only on αand µ, su
h that c−1f ≤ g ≤ cf .



Harna
k's inequality for the fra
tional Lapla
ian 1073. Estimates of the semigroup and potential measure. A generalreferen
e to the potential theory of 
onvolution semigroups is [7℄ (see also[35, 36℄).We 
onsider an auxiliary s
ale of smoothness for ν.Definition 1. We say that ν is a γ-measure on S if(13) ν(B(x, r)) ≤ crγ , |x| = 1, 0 < r < 1/2.Sin
e ν(drdθ) = r−1−αdrµ(dθ), it is at least a 1-measure and at mosta d-measure on S. If ν is a γ-measure with γ > 1, then µ has no atoms.Moreover ν is a d-measure if and only if it is absolutely 
ontinuous withrespe
t to the Lebesgue measure and has a density fun
tion whi
h is lo
allybounded on R
d \ {0}. We refer the reader to [26℄ and [30℄ for 
onsiderationsrelating to this 
ase.In the remainder of this se
tion we �x 1 ≤ γ ≤ d and we assume that νis a γ-measure on S.We �rst estimate individual terms in the series of (4).Lemma 1. There exists C = C(α, µ) su
h that for ε > 0 and n = 1, 2, . . .we have(14) ν̂n

ε (B(x, r)) ≤ Cnrγε−(n−1)α, |x| = 1 ,provided 0 < r < max(ε/3, 1/5n).Proof. We pro
eed by indu
tion. Note that (14) holds for n = 1 by (13).Let c0 and n be su
h that (14) is satis�ed with C = c0. We �rst assume that
r < ε/3. For every x ∈ S by homogeneity of ν and (13) we have

ν̂n+1
ε (B(x, r)) =

\
|x−y|>2ε/3

ν̂ε(B(x − y, r)) ν̂n
ε (dy)

≤
\

|x−y|>2ε/3

ν(B(x − y, r)) ν̂n
ε (dy)

=
\

|x−y|>2ε/3

|x − y|−αν

(
B

(
x − y

|x − y| ,
r

|x − y|

))
ν̂n

ε (dy)

≤ c1r
γ

\
|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy)

(note that r/|x − y| < 1/2 provided |x − y| > 2ε/3). Now let ε/3 ≤ r <
1/5n+1. Then 2r + ε < 1/5n and by indu
tion\
|x−y|<2r+ε

ν̂ε(B(x − y, r))ν̂n
ε (dy) ≤ |ν̂ε|ν̂n

ε (B(x, 2r + ε))

≤ |µ|
α

ε−αcn
0 (2r + ε)γε−(n−1)α ≤ cn

0c2r
γε−nα



108 K. Bogdan and P. Sztonykfor some c2 = c2(α, µ); and by homogeneity of ν and (13) we get\
|x−y|>2r+ε

ν̂ε(B(x − y, r)) ν̂n
ε (dy) ≤

\
|x−y|>2r+ε

ν(B(x − y, r)) ν̂n
ε (dy)

≤
\

|x−y|>2r+ε

c1r
γ |x − y|−α−γ ν̂n

ε (dy) ≤ c1r
γ

\
|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy).

From the above we have(15) ν̂n+1
ε (B(x, r)) ≤ c1r

γ
\

|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy) + cn

0c2r
γε−nα

for all 0 < r < max(ε/3, 1/5n+1).Let Lε = ⌊log5(3/2ε)⌋. If 2ε/3 < 1/5n then we get by indu
tion\
2ε/3<|x−y|<1/5n

|x − y|−α−γ ν̂n
ε (dy)

≤
Lε∑

k=n

\
1/5k+1<|x−y|<1/5k

|x − y|−α−γ ν̂n
ε (dy) ≤

Lε∑

k=n

(5k+1)α+γ ν̂n
ε (B(x, 1/5k))

≤ cn
05α+γε−(n−1)α

Lε∑

k=1

5kα ≤ cn
0c3ε

−nα,where c3 = c3(α, µ). Also,\
|x−y|>1/5n

|x − y|−α−γ ν̂n
ε (dy) ≤ (5α+γ)n|ν̂n

ε | = (5α+γ |µ|/α)nε−nα ≤ cn
0ε−nα,

by taking large c0. We get\
|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy) ≤ cn

0ε−nα(c3 + 1),

and (15) yields
ν̂n+1

ε (B(x, r)) ≤ cn+1
0 rγε−nα.Corollary 2. There exists C = C(α, µ) su
h that(16) ν̂n

ε (B(x, λε)) ≤ Cnλγ(1 + λα)εγ−(n−1)α, λ > 0, ε > 0, |x| = 1.Proof. Lemma 1 yields (16) for λε < 1/5n. For λε ≥ 1/5n we have
ν̂n

ε (B(x, λε)) ≤ |ν̂n
ε | =

|µ|n
αn

ε−nα ≤
( |µ|

α
5α+γ

)n

λα+γεγ−(n−1)α.In what follows we write P̂t = P̂ t1/α

t and P̃t = P̃ t1/α

t .Corollary 3. There exists C = C(α, µ) su
h that
P̂t(B(x, λt1/α)) ≤ Cλγ(1 + λα)t1+γ/α, λ > 0, t > 0, |x| = 1.



Harna
k's inequality for the fra
tional Lapla
ian 109Proof. Corollary 2 yields
P̂t(B(x, λt1/α)) = e−|µ|/α

∞∑

n=0

tnν̂n
t1/α(B(x, λt1/α))

n!

≤ e−|µ|/α
∞∑

n=0

cnλγ(1 + λα)t1+γ/α

n!
= ec−|µ|/αλγ(1 + λα)t1+γ/α.

Corollary 4. P̂1(B(y, λ)) ≤ Cλγ(1+λα)|y|−α−γ for y ∈ R
d and λ > 0.Proof. Let y ∈ R

d \ {0} and x = y/|y|, t = |y|−α. By s
aling and Corol-lary 3 we have
P̂1(B(y, λ)) = P̂t(B(x, λt1/α)) ≤ cλγ(1 + λα)|y|−α−γ.We note that for every q > 0 we have T|y|q P̃1(dy) < ∞, be
ause thesupport of ν̃1 is bounded ([46℄). A simple reasoning based on this and theboundedness of the derivative of p̃1 yields

p̃1(y) ≤ cq(1 + |y|)−q, q > 0, y ∈ R
d(see [43, Lemma 9℄).Lemma 5. For every q > 0 there exists C = C(α, µ, q) su
h that

P̃1(B(z, ̺)) ≤ C(1 + |z|)−q̺d, ̺ ≤ 1, z ∈ R
d.Proof. If |z|< 2 then P̃1(B(z, ̺)) =

T
B(z,̺) p̃1(y) dy ≤ c̺d ≤ c(1+ |z|)−q̺d.If |z| ≥ 2 then P̃1(B(z, ̺)) ≤ c(1 + |z|/2)−q̺d ≤ c(1 + |z|)−q̺d.The proof of the following lemma is a simpli�
ation of the proof of [43,Theorem 3℄.Lemma 6. P1(B(z, ̺)) ≤ C|z|−α−γ̺d for z ∈ R

d and 0 < ̺ ≤ 1.Proof. By (7), Lemma 5, and Corollary 4,
P1(B(z, ̺)) = P̃1 ∗ P̂1(B(z, ̺)) =

\
Rd

P̃1(B(z − y, ̺)) P̂1(dy)

=

1\
0

P̂1({y : P̃1(B(z − y, ̺)) > s}) ds

≤
1\
0

P̂1({y : c(1 + |z − y|)−q̺d > s}) ds

≤
c̺d\
0

P̂1(B(z, c1/qs−1/q̺d/q)) ds
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≤ c

c̺d\
0

(c1/qs−1/q̺d/q)γ(1 + (c1/qs−1/q̺d/q)α)|z|−γ−α ds

= c|z|−γ−α
[
̺dγ/q

c̺d\
0

s−γ/q ds + ̺d(γ+α)/q
c̺d\
0

s−(γ+α)/q ds
]

= c|z|−γ−α[̺dγ/q(̺d)1−γ/q + ̺d(γ+α)/q(̺d)1−(γ+α)/q] = c|z|−γ−α̺d.The following two 
orollaries are our main estimates of the semigroup.Corollary 8 is an analogue of [43, Theorem 3℄, while (17) 
orresponds to [53℄.Corollary 7. P1(B(z, ̺)) ≤ C(1 + |z|)−α−γ̺d if 0 ≤ ̺ < |z|/2.Proof. We re
all that p1(y) = P1(dy)/dy is bounded and so Lemma 6yields(17) p1(y) ≤ c(1 + |y|)−γ−α, y ∈ R
d.If 0 ≤ ̺ < |z|/2 then

P1(B(z, ̺)) ≤ c
\

B(z,̺)

(1 + |y|)−γ−α dy ≤ (1 + |z|)−α−γ̺d.

Corollary 8. Pt(B(x, ̺)) ≤ Ct1+(γ−d)/α̺d provided |x| = 1, t > 0,and 0 ≤ ̺ ≤ t1/α.Proof. By s
aling and Lemma 6 we have
Pt(B(x, ̺)) = P1(B(xt−1/α, ̺t−1/α)) ≤ ct1+(γ−d)/α̺d.Proof of Theorem 1. Let |x| = 1, 0 ≤ ̺ < 1/2. By s
aling and Corollary 7,

V(B(x, ̺)) =

∞\
0

Pt(B(x, ̺)) dt =

∞\
0

P1(B(xt−1/α, ̺t−1/α)) dt

≤ c̺d
∞\
0

(1 + t−1/α)−γ−αt−d/α dt.The integral is �nite be
ause −d/α < −1 and (γ + α − d)/α > −1. Let
y ∈ R

d \ {0}, x = y/|y|. By s
aling, a 
hange of variable, and (17),
V (y) =

∞\
0

t−d/αp1(yt−1/α) dt = |y|α−d
∞\
0

t−d/αp1(xt−1/α) dt

≤ |y|α−d
∞\
0

t−d/α(1 + t−1/α)−γ−α dt ≤ c|y|α−d.The �rst integral above is lo
ally uniformly 
onvergent on R
d \ {0}, hen
e Vis 
ontinuous there.
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ian 111We now pro
eed to our 
onverse, Theorem 2. We propose a general ap-proa
h based on a simple study of the generator A. We �rst note that(18) pt(x) > 0, x ∈ R
d (t > 0)(see [52℄ or [43, Lemma 5℄). In fa
t, (18) easily follows from (8), (4), 
ontinuityof p̃ε

t , and the fa
t that supp(ν) + · · · + supp(ν) (d times) equals R
d.By (18), (12), and 
ontinuity of pt for t > 0, there is a 
onstant c = c(α, µ)su
h that(19) V (x) ≥ c|x|α−d, x ∈ R

d.Lemma 9. Let d > α. For all ϕ ∈ C∞
c (Rd) we have\

Rd

Aϕ(x − y) V(dy) = −ϕ(x), x ∈ R
d,where the integral is absolutely 
onvergent.This is well known (see, e.g., [36, Theorem 3.5.78℄). We only note that

|Aϕ(x)| ≤ c(1 + |x|)−1−α. The absolute 
onvergen
e follows from this andthe homogeneity of V.Proof of Theorem 2. If d = 1 ≤ α then V ≡ ∞ and there is nothing toprove. Thus we assume that d > α. We �x a fun
tion φ ∈ C∞
c (Rd) su
h that

φ ≥ 0, suppφ ⊂ B(0, 1/2) and φ = 1 on B(0, 1/3). Let r > 0. Put φr(x) =
φ(x/r) and Λr(x) = Aφr(x). Homogeneity of A yields Λr(x) = r−αΛ1(x/r).Note that Aφ = Λ1 is bounded, hen
e there is a 
onstant c su
h that

Λr(x) ≥ −cr−α.If |x| ≥ r/2 then Λr(x) ≥ 0, and in fa
t Λr(x) ≥ ν(B(x, r/3)). Let |x| > r.From Lemma 9 we have
0 =

\
Rd

Λr(x − y) V(dy) ≥
\

B(x,r/2)

Λr(x − y) V(dy) +
\

B(0,r/4)

Λr(x − y) V(dy)

≥ −cr−α
V((B(x, r/2)) +

\
B(0,r/4)

ν(B(x − y, r/3)) V(dy)

≥ −cr−α
V((B(x, r/2)) + V(B(0, r/4))ν(B(x, r/12)).Sin
e V(B(0, r/4)) = rα

V(B(0, 1/4)) and V(B(0, 1/4)) < ∞ we get(20) ν(B(x, r/12)) ≤ cr−2α
V((B(x, r/2)), |x| > r.We note that similar results 
an also be derived from the lower boundsfor the semigroup as given in [53, Theorem 1.1℄.4. Harna
k's inequality: preliminaries. The general referen
es forthis se
tion are [22, 23℄, [46℄, [8℄, or [10℄. The Lévy measure ν yields astandard symmetri
 stable Lévy pro
ess (Xt, P

x) with generating triplet
(0, ν, 0). Namely, the transition probabilities of the pro
ess (Xt, P

x) are
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P (t, x, A) = Pt(A − x), t > 0, x ∈ R

d, A ⊂ R
d, and P (0, x, A) = 1A(x),where {Pt, t ≥ 0} is the stable semigroup of measures introdu
ed in Prelim-inaries. The pro
ess is strong Markov with respe
t to the so-
alled standard�ltration.The pro
ess 
onveniently leads to a de�nition of harmoni
 measures ωx

D,and their properties (21) and (24) below. For an analyti
 de�nition of these,
alled the fundamental family, we refer to [7℄ (see also [40, 9℄).For open U ⊂ R
d we de�ne τU = inf{t ≥ 0 : Xt 6∈ U}, the �rst exit timeof U . We write ωx

D for the harmoni
 measure of (open) D:
ωx

D(A) = P x(τD < ∞, XτD ∈ A), x ∈ R
d, A ⊂ R

d.By the strong Markov property(21) ωx
D(A) =

\
ωy

D(A) ωx
U (dy) if U ⊂ D.We say that a fun
tion u on R

d is harmoni
 in open D ⊂ R
d if(22) u(x) = Exu(XτU ) =

\
Uc

u(y) ωx
U (dy), x ∈ R

d,

for every bounded open set U with the 
losure U 
ontained in D. It is 
alledregular harmoni
 in D if (22) holds for U = D. If D is unbounded then
Exu(XτD) = Ex[τD < ∞; u(XτD)] by 
onvention. Under (22) it will onlybe assumed that the expe
tation in (22) is well de�ned (but not ne
essar-ily �nite). Regular harmoni
ity implies harmoni
ity, and it is inherited bysubsets U ⊂ D. This follows from (21).We denote by pD

t (x, v) the transition density of the pro
ess killed at the�rst exit from D:
pD

t (x, v) = p(t, x, v) − Ex[τD < t; p(t − τD, XτD , v)], t > 0, x, v ∈ R
d.Here p(t, x, v) = pt(v−x). For 
onvenien
e we will assume that D is regular:

P x[inf{t > 0 : Xt /∈ D} = 0] = 1 for x ∈ Dc (see [23, 22℄). Then pD
tis symmetri
: pD

t (x, v) = pD
t (v, x), x, v ∈ D (see, e.g., [24℄). The strongMarkov property yields(23) p(t, x, v) = Ex[p(t − τD, XτD , v); τD < t], x ∈ D, v ∈ Dc.In parti
ular, pD

t (x, v) = 0 if x ∈ D, v ∈ Dc. We let
GD(x, v) =

∞\
0

pD
t (x, v) dt,and we 
all GD(x, v) the Green fun
tion for D. If V is 
ontinuous on R

d\{0},so that V (x) ≤ c|x|α−d, then the strong Markov property yields, for x, v ∈ D,(24) GD(x, v) = V (x, v) − ExV (XτD , v) = V (x, v) −
\

Dc

V (z, v) ωx
D(dz).
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tional Lapla
ian 113Here V (x, v) = V (v − x). The Green fun
tion is symmetri
: GD(x, v) =
GD(v, x), 
ontinuous in D × D \ {(x, v) : x = v}, and it vanishes if x ∈ Dcor v ∈ Dc.Note that V (x, v) is harmoni
 in x on R

d \ {v}. Indeed, if x ∈ D and
dist(D, v) > 0 then by (23),

V (x, v) =

∞\
0

Ex[p(t − τD, XτD , v); τD < t] dt = ExV (XτD , v).Similarly, the Green fun
tion v 7→ GD(x, v) is harmoni
 in D \ {x}.By the Ikeda�Watanabe formula [34℄ we have(25) ωx
D(A) =

\
D

GD(x, v)ν(A − v) dv if dist(A, D) > 0.We note here that translation invarian
e of the Lebesgue measure and theFubini�Tonelli theorem yield(26) \\
Φ(v)Ψ(v + z) m(dz) dv =

\\
Φ(v + z)Ψ(v) m(dz) dvfor every symmetri
 measure m and nonnegative fun
tions Φ and Ψ . In par-ti
ular, taking m = ν, Φ(v) = GD(x, v) and Ψ(v) = 1A(v) we get\

D

GD(x, v)ν(A− v) dv =
\
A

\
−D+v

GD(x, v − z) ν(dz) dv.If the boundary of D is smooth or even Lips
hitz then
ωx

D(∂D) = 0, x ∈ D(see [50℄ and also [42℄, [54℄). In this 
ase ωx
D is absolutely 
ontinuous withrespe
t to the Lebesgue measure on Dc. Its density fun
tion, or the Poissonkernel, is given by the formula(27) PD(x, y) =

\
y−D

GD(x, y − z) ν(dz), x ∈ D.Note that D is then regular, be
ause of (18) and s
aling. In parti
ular theabove 
onsiderations apply to D = B(0, 1).It follows from (9) that for every r > 0 and x ∈ R
d the P x distributionof {Xt, t ≥ 0} is the same as the P rx distribution of {r−1Xrαt, t ≥ 0}. Inparti
ular,(28) ωx

D(A) = ωrx
rD(rA).We 
all (28) s
aling, too. It shows that for u harmoni
 on D, the dilation uris harmoni
 on rD. A similar remark 
on
erns translations.By (26) we also obtain\

B(0,1/2)

|y|α−dν(A − y) dy =
\
A

\
B(y,1/2)

|y − z|α−d ν(dz) dy, A ⊂ R
d,



114 K. Bogdan and P. Sztonykand \
B(0,1/2)

ν(A − y) dy =
\
A

ν(B(y, 1/2)) dy, A ⊂ R
d.

Therefore we 
an express the relative Kato 
ondition (RK) in an equivalentform:(29) \
B(0,1/2)

|y|α−dν(A − y) dy ≤ K
\

B(0,1/2)

ν(A − y) dy, A ⊂ R
d.

We remark that (RK) is a lo
al 
ondition at in�nity: the inequality in(2) only needs to be veri�ed for large y ∈ R
d. In parti
ular, if it holds for

|y| > 1 then it holds for all y ∈ R
d, possibly with a di�erent 
onstant (see[17℄). Note that the reverse of (2) (and (29)) always holds, so a
tually (RK)means 
omparability of both sides of (2) (and (29)).In what follows we let G = GB(0,1), P = PB(0,1) and we de�ne

s(x) = ExτB(0,1) =
\

B(0,1)

G(x, v) dv.

Expli
it formulas for these fun
tions for ν(dy) = |y|−d−αdy are known andmay give some insight into the general situation. They are essentially due toM. Riesz (see, e.g., [15℄, [11℄, [40℄, [9℄, [28℄). In parti
ular (for isotropi
 ν) wehave(30) P (x, y) = Cd
α

[
1 − |x|2
|y|2 − 1

]α/2

|x − y|−d, |x| < 1, |y| > 1.The following two lemmas are 
onsequen
es of symmetry and nondegen-era
y of the spe
tral measure µ. They 
an be proved similarly to Lemmas 4and 10 of [17℄, so we skip the proofs.Lemma 10. There exist ε = ε(α, µ) ∈ (0, 1) and C = C(α, µ) su
h that(31) ν(B(x, 1 − ε)) ≥ C, 1 − ε < |x| < 1.Lemma 11. There exists C = C(α, µ) su
h that
s(x) ≤ C(1 − |x|2)α/2, |x| < 1.For 
larity we make the following remark on nondegenera
y of ν. If asymmetri
 Lévy measure ν is 
on
entrated on a proper linear subspa
e Mof R

d, and a fun
tion u is 
onstant on x + M for every x ∈ R
d, then u isharmoni
 on R

d (relative to ν). However, su
h fun
tions in general violatethe Harna
k inequality. Thus our standing assumption of the nondegenera
yof ν is a ne
essary, or nonrestri
tive, 
ondition for Harna
k's inequality inTheorem 3.
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ian 1155. Ne
essity of the relative Kato 
ondition. In this short se
tion weassume that Harna
k's inequality (1) holds. We make no further assumptionson ν beyond those in Se
tion 2. In parti
ular our 
onsiderations do notdepend on the estimates in Se
tion 3.Lemma 12. Harna
k's inequality implies the relative Kato 
ondition.Proof. We �rst 
onsider the 
ase d > α. We 
laim that(32) V (x) ≈ |x|α−d, x ∈ R
d.Indeed, for all |x| = 1, V(B(x, 1/4)) =

T
B(x,1/4) V (v) dv ≤ V(B(0, 2)) < ∞,so there exists v ∈ B(x, 1/4) su
h that V (v) ≤ V(B(0, 2))/|B(0, 1/4)|. ByHarna
k's inequality V (x) ≤ cV (v). The estimate (32) follows from (12)and (19).Let g(v) = min(G(0, v), 1). We 
laim that(33) G(x, v) ≈ g(v)|v − x|α−d if |x| < 1/2 and |v| < 1.Indeed, by (32) and (24) for small δ > 0 we have

G(x, v) ≈ |v − x|α−d, |x| < 1/2, |x − v| < δ.Harna
k's inequality implies that G(x, v) ≈ |v − x|α−d provided |x| < 1/2and |v| < 3/4, and also G(x, v) ≈ G(0, v) if |x| < 1/2 and |v| > 3/4. Notethat g is lo
ally bounded from below on B(0, 1). This 
ompletes the proofof (33).For every A ⊂ R
d the fun
tion x 7→ ωx

B(0,1)(A) is nonnegative on R
dand regular harmoni
 in B(0, 1). Harna
k's inequality (1), (25), (33), andFubini�Tonelli yield

ω0
B(0,1)(A) ≈

\
B(0,1/2)

ωx
B(0,1)(A) dx ≈

\
B

\
B(0,1/2)

g(v)|v − x|α−dν(A − v) dv dx

≈
\
B

g(v)ν(A− v) dv.This and (25) yield\
B

g(v)|v|α−dν(A − v) dv ≈
\
B

g(v)ν(A− v) dv.To this �approximate equality� we add the following one:\
B\B(0,3/4)

|v|α−dν(A − v) dv ≈
\

B\B(0,3/4)

ν(A − v) dv,and we obtain\
B

|v|α−dν(A − v) dv ≈
\
B

ν(A − v) dv, A ⊂ Bc.The 
hange of variable v = 2u yields (29) and (2).



116 K. Bogdan and P. SztonykIn the 
ase d ≤ α we have d = 1, and so ν(dy) = c|y|−1−αdy, whi
hsatis�es (RK).6. Su�
ien
y of the relative Kato 
ondition. In what follows weassume that (RK) holds for ν. We will also assume that d > α unless statedotherwise.The key step in the proof of Harna
k's inequality is the following esti-mate for the Green fun
tion of the ball, whi
h we prove after a sequen
e oflemmas. We note that it is essentially the same as (33), but proved underexpli
it assumptions on ν rather than by stipulating Harna
k's inequality.The estimate was suggested by the sharp estimates of the Green fun
tion ofLips
hitz domains [38℄ for isotropi
 ν (see also [13℄). We also refer the readerto [39, 21℄ for more expli
it estimates for smooth domains and to, e.g., [15℄for expli
it formulas for the ball in the 
ase of isotropi
 ν.Proposition 1. G(x, v) ≈ s(v)|v−x|α−d provided |x| < 1/2 and |v| < 1.Lemma 13. ν is a (d − α)-measure on S.Proof. Indeed, for |x| = 1, 0 < r < 1/2 by (2) we obtain
ν(B(x, r)) ≤ rd−α

\
B(x,1/2)

|x − z|α−d ν(dz) ≤ Kν(B(0, 1/2)c)rd−α.

Theorem 1 implies that V is 
ontinuous on R
d\{0}. Consequently, V (x) ≈

|x|α−d and G(x, y) is 
ontinuous on B × B \ {(x, y) : x = y}.Lemma 14. G(x, v) ≈ |v − x|α−d if |x| < 1/2, |v| < 3/4.We skip the proof as it is the same as the one of Lemma 6 in [17℄.We note that limx→z G(x, v) = 0 for all v ∈ B(0, 1) and z ∈ S be
ausethe measures ωx
B(0,1) weakly 
onverge to δz. This is related to the regularityof B(0, 1), and follows, e.g., from the estimate

ωx
B(x,1−|x|)(B(0, 1)c) ≥ c,whi
h is a 
onsequen
e of s
aling, nondegenera
y of ν (
ompare (31)), and (25).We will employ the operator

Urφ(x) =
Exφ(XτB(x,r)

) − φ(x)

ExτB(x,r)
,whenever the expression is well de�ned for given φ, r > 0 and x. We notethat Ur is impli
itly used in [7, Chapter III, �17℄. Clearly, if h is harmoni
in D, x ∈ D, and r < dist(x, Dc), then Urh(x) = 0. We note that

Uφ(x) = lim
r↓0

Urφ(x)is the Dynkin 
hara
teristi
 operator, whi
h was used in [17℄ in a similarway.
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ian 117We re
ord the following observation (maximum prin
iple).Lemma 15. If there is r > 0 su
h that Urh(x) > 0 then
h(x) < sup

y∈Rd

h(y).Lemma 16. There exists C = C(α, µ) su
h that
G(x, v) < Cs(v), |x| < 1/2, 3/4 < |v| < 1.Proof. By the strong Markov property we have

s(v) = EvτB = Ev(τA + τB(0,1) ◦ θτA) = EvτA + EvEXτA τB(0,1)

= EvτA + Evs(XτA), v ∈ R
d, A ⊂ B(0, 1),whi
h yields Urs(v) = −1 for v ∈ B(0, 1) and r < 1 − |v|.For n ∈ {1, 2, . . .} and x ∈ B(0, 1/2) we let g(v) = G(x, v) and gn(v) =

min(G(x, v), n). For v ∈ B(x, 1/8)c we have G(x, v) ≤ c1|x − v|α−d, hen
e
gn(v) = G(x, v) provided n ≥ c18

d−α. By harmoni
ity of g on B(0, 1) \ {x},s
aling property, (25) and (2) we �nd that for v ∈ B(0, 1) \ B(0, 3/4) and
r < min(1 − |v|, 1/16),
Urgn(v) = Ur(gn − g)(v)

=
1

E0τB(0,1)

\
B(0,1)

G(0, w)
\
(gn − g)(v + rw + z) ν(dz) dw

≥ −c2

s(0)

\
B(0,1)

G(0, w)
\

B(x−v−rw,1/8)

|x − v − rw − z|α−d ν(dz) dw

≥ −c2K

s(0)

\
B(0,1)

G(0, w)ν(B(x − v − rw, 1/8)) dw ≥ −c3.If a > c3 then
Ur(as − gn)(v) = −a − Urgn(v) ≤ −a + c3 < 0.By s
aling

s(v) ≥ EvτB(v,1−|v|) = (1 − |v|)αE0τB(0,1)(34)
≥ 4−αE0τB(0,1), |v| < 3/4.Sin
e gn(v) ≤ n, we see that as(v) − gn(v) > 0 for v ∈ B(0, 3/4) provided

a > n/(4−αE0τB(0,1)).Let a0 = max[c3, n/(4−αE0τB(0,1))] + 1 and h(v) = a0s(v) − gn(v). Wehave h(v) ≥ 0 for v ∈ B(0, 3/4), h(v) = 0 for v ∈ B(0, 1)c and Urh(v) < 0 for
v ∈ B(0, 1) \ B(0, 3/4), r < min(1 − |v|, 1/16). Lemma 15 and 
ontinuity of
h yield h(v) ≥ 0 in B(0, 1). Sin
e gn = g on B(0, 3/4)c, the lemma follows.
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on
lusion:(35) G(x, v) ≤ C(1 − |v|)α/2, |x| < 1/2, 3/4 < |v| < 1.Lemma 17. There is C = C(α, µ) su
h that G(x, v) ≥ Cs(v) provided
|x| < 1/2 and |v| < 1.Proof. Let x ∈ B(0, 1/2). We �x ε su
h that (31) is satis�ed. Lemma14 yields G(x, v) ≥ c1 > 0 for v ∈ B(0, 1 − ε). Let n ∈ {1, 2, . . .} be su
hthat c1 ≥ 2/n. By (35) there is η > 0 su
h that G(x, v) ≤ 1/n for v ∈
B(0, 1) \ B(0, 1 − η). Let g(v) = G(x, v) and gn(v) = min(g(v), 1/n). Wehave

gn(v) = g(v), v ∈ B(0, 1) \ B(0, 1 − η),and
g(v) − gn(v) ≥ 2/n − 1/n = 1/n, v ∈ B(0, 1 − ε),hen
e by Lemma 10 for v ∈ B(0, 1) \ B(0, 1 − η) and r < min(1 − |v|,

(ε − η)/2) we obtain
Urgn(v) = Ur(gn − g)(v)

=
1

s(0)

\
B(0,1)

GB(0,1)(0, w)
\
(gn − g)(v + rw + z) ν(dz) dw

≤ − 1

n

1

s(0)

\
B(0,1)

GB(0,1)(0, w)ν(B(v + rw, 1 − ε)) dw ≤ −c2

n
.

For a > 0 we have
Ur(agn − s)(v) ≤ −c2a/n + 1, v ∈ B(0, 1) \ B(0, 1 − η).This is negative if a > n/c2. Furthermore s(v) ≤ c3 for v ∈ B(0, 1) and

gn(v) ≥ c4 > 0 for v ∈ B(0, 1 − η). Thus agn(v) − s(v) ≥ ac4 − c3 > 0for v ∈ B(0, 1 − η) if only a > c3/c4. Note that our estimates do not de-pend on x, provided |x| < 1/2. Let a0 = max(c3/c4, n/c2) + 1 and h(v) =
a0gn(v) − s(v). We have h(v) ≥ 0 for v ∈ B(0, 1 − η), and Urh(v) < 0 for
v ∈ B(0, 1) \ B(0, 1 − η). By Lemma 15 and the 
ontinuity of h we get
h(v) ≥ 0 in B(0, 1), and the lemma follows.Proof of Proposition 1. The estimate is a 
onsequen
e of (34), Lemma 14,16, and 17.Ma
iej Lewandowski [41℄ has informed us that he re
ently proved the
onverse of the inequality in Lemma 11. This implies(36) G(x, v) ≈ (1 − |v|2)α/2|v − x|α−d, |x| < 1/2, |v| < 1.We will not use (36) below; the less expli
it estimate in Lemma 17 su�
esfor our purposes. Note that the asymptoti
s of G at the pole is di�erentwhen d = 1 ≤ α (see, e.g., [15℄).
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ian 119Lemma 18. (RK) implies Harna
k's inequality for all d ∈ {1, 2, . . .} and
α ∈ (0, 2).Proof. By translation and s
aling invarian
e of the 
lass of harmoni
fun
tions and by a 
overing argument we only need to verify that

u(0) ≤ cu(x), |x| < 1/2,whenever u is nonnegative on R
d and regular harmoni
 on B(0, 1). For thisto hold it is su�
ient to have, with the same 
onstant c,(37) P (0, y) ≤ cP (x, y), |x| < 1/2, |y| > 1.If d = 1, then (37) follows from (30). Thus we only need to examine the
ase d > α. By the de
omposition B(0, 1) = B(0, 1/2)∪ [B(0, 1)\B(0, 1/2)],(27), Proposition 1, (2), and the fa
t that s is bounded away from zero on
ompa
t subsets of B(0, 1) (
f. (34)), we obtain

P (0, y) ≈
\

B(y,1)

s(y − v)|y − v|α−d ν(dv) ≈
\

B(y,1)

s(y − v) ν(dv)

≤ c
\

B(y,1)

s(y − v)|y − v − x|α−d ν(dv)

≈ P (x, y), |x| < 1/2, |y| > 1.Proof of Theorem 3. See Lemmas 12 and 18.We 
on
lude with a few remarks and open problems.By translation and dilation invarian
e of the 
lass of harmoni
 fun
tions
onsidered, and by a 
overing argument, Harna
k's inequality holds for every
ompa
t subset of every 
onne
ted domain of harmoni
ity. We note that:(1) it does not generally hold for dis
onne
ted open sets, as the support of
y 7→ P (x, y) may be smaller than B(0, 1)c (see (25)), (2) it does hold for allopen sets if ν is isotropi
 (this follows from (30), or see [14℄).We 
onsider the following examples of measures ν. (RK) holds for ν1(dy)
≈ |y|−d−αdy (both sides of (2) may be expli
itly estimated). Next, let ξ ∈ S,
0 < r <

√
2, and C = S∩ [B(ξ, r)∪B(−ξ, r)]. Then (RK) holds for ν2(dy) =

1C(y/|y|)|y|−d−αdy (see [17℄).On the other hand, 
onsider balls Bn ⊂ B′
n 
entered at S, with radii

4−n and 2−n, respe
tively, and su
h that {B′
n} are pairwise disjoint. Let

C =
⋃

n≥n0
Bn and let ν3(dy) = 1C(y/|y|)|y|−d−αdy. If d−1 > α then (RK)does not hold for ν3 ([17℄) even though ν3 is bounded by ν1.Let Bξ,r = B(ξ, r) ∩ S. By integrating in polar 
oordinates we 
an givethe 
hara
terization of the relative Kato 
ondition in terms of the spe
tralmeasure µ and Bξ,r (
f. [17℄). Let d − α > 1. Then (RK) holds for ν if
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Bξ,r

(|η − ξ|/r)α−(d−1) µ(dη) ≤ cµ(Bξ,r), ξ ∈ S, 0 < r < c.

In the 
ase d = 2, α = 1, (RK) is equivalent to(39) \
Bξ,r

log(2r/|η − ξ|) µ(dη) ≤ cµ(Bξ,r), ξ ∈ S, 0 < r < c.

In the 
ase of d = 2 and α > 1, (RK) is always satis�ed. We omit the proofs.Corollary 19. If d − 1 < α then Harna
k's inequality holds for A.This may be extended as follows. We will say that ν is a stri
t γ-measure if(40) ν(B(x, r)) ≈ rγ provided x ∈ supp ν, |x| = 1, 0 < r < 1/2(
f. (13)). Of 
ourse, if ν is a (stri
t) γ-measure on S then µ is a (stri
t) (γ−1)-measure (on S). This observation and (38) yield the following 
on
lusion,whi
h we state without proof.Corollary 20. If ν is a stri
t γ-measure with γ > d−α, then Harna
k'sinequality holds for A.The example of ν3 shows the importan
e of the stri
tness assumption.We interpret (RK) as a property of balan
e or �rmness of ν. As su
h it is
lose to the reverse Hölder 
ondition with exponent q > d/α (see [17℄).If µ(ξ) > 0 for some ξ ∈ S then ν is a 1-measure only. By Theorem 2 thepotential kernel V is unbounded on S if 1 > d−2α (in fa
t, if 1 ≥ d−2α, see[53, Theorem 1.1℄, [17℄). That V may be in�nite on rays emanating from theorigin shows that harmoni
 fun
tions 
annot be de�ned pointwise by meansof A. In general they even la
k �niteness in the domain of harmoni
ity (butsee [14℄ and [44℄ in this 
onne
tion). Thus the potential-theoreti
 propertiesof the operators A are very diverse for the measures ν 
onsidered here. Thisis in sharp 
ontrast with the fa
t that the exponents Φ (see (5)) are all
omparable and the same is true of the 
orresponding Diri
hlet forms ([27℄,see also [25℄). The boundary potential theory of A will generally be verydi�erent from that of the fra
tional Lapla
ian (see [51, p. 199℄ for a simpleremark on this subje
t).We mention a number of interesting topi
s deserving further study: (1)
hara
terization of 
ontinuity and higher order regularity of V on S ([6℄),(2) the boundary Harna
k prin
iple (
f. [12, 16, 51℄), the 
orresponding ap-proximate fa
torization of G(x, v) for all x, v ∈ B(0, 1) (
f. [13, 31, 20℄ andProposition 1 above), and related boundary problems (
f. [1, 19℄), (3) studyof other Lévy measures whi
h are produ
ts in polar 
oordinates, (4) studyof similar nonlo
al operators A whi
h are not translation invariant ([2, 47℄).
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