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Estimates of the potential kernel and Harnak's inequalityfor the anisotropi frational LaplaianbyKrzysztof Bogdan and Paweª Sztonyk (Wroªaw)Abstrat. We haraterize those homogeneous translation invariant symmetri non-loal operators with positive maximum priniple whose harmoni funtions satisfy Har-nak's inequality. We also estimate the orresponding semigroup and the potential kernel.1. Main results and bakground. Let α ∈ (0, 2) and d ∈ {1, 2, . . .}.We onsider an arbitrary Lévy measure on R
d \ {0} whih is symmetri, ho-mogeneous: ν(rB) = r−αν(B), and nondegenerate (for de�nitions see Se-tion 2). It yields a onvolution semigroup of probability measures {Pt, t > 0}on R

d. Eah Pt has a smooth density pt. We onsider the orresponding po-tential measure V =
T∞
0 Pt dt and the potential kernel

V (x) =

∞\
0

pt(x) dt, x ∈ R
d.

V (x) = |x|α−dV (x/|x|), but it may be in�nite in some diretions ([17, pp.148�149℄). It is of interest to study ontinuity of V on the unit sphere S in R
dunder spei� assumptions on ν (see (13)).Theorem 1. If d > α and ν is a γ-measure on S with γ > d − 2α then

V is ontinuous on S.The following partial onverse shows that the threshold d − 2α is exat.Theorem 2. If V is a κ-measure on S then ν is a (κ − 2α)-measureon S.In partiular, if V is bounded on S then ν is a (d − 2α)-measure on S.2000 Mathematis Subjet Classi�ation: Primary 47D03, 31C05; Seondary 60J35,60G51.Key words and phrases: potential kernel, Harnak's inequality, relative Kato ondition,Green funtion, stable proess.Researh partially supported by KBN and RTN (HPRN-CT-2001-00273-HARP).[101℄ © Instytut Matematyzny PAN, 2007



102 K. Bogdan and P. SztonykWe de�ne an operator A on smooth funtions ϕ with ompat supportin R
d, ϕ ∈ C∞

c (Rd), by
Aϕ(x) =

\
Rd

(ϕ(x + y) − ϕ(x) − y∇ϕ(x)1|y|<1) ν(dy)

= lim
ε→0+

\
|y|>ε

(ϕ(x + y) − ϕ(x)) ν(dy).

A is a restrition of the in�nitesimal generator of {Pt} [35, Example 4.1.12℄,and what we refer to as the anisotropi frational Laplaian in the title ofthe paper. In this onnetion we reall that in the speial ase of ν(dy) =
c|y|−d−αdy one obtains the frational Laplaian ∆α/2. For properties of ∆α/2and a disussion of equivalent de�nitions of its harmoni funtions we referthe reader to [14℄.Harmoni funtions orresponding to A, or ν, are de�ned by the meanvalue property with respet to an appropriate family of harmoni measures(see Setion 4). The main goal of the paper is to haraterize those operators
A for whih Harnak's inequality holds, i.e., there is a onstant C = C(α, ν)suh that for every funtion u whih is harmoni in the unit ball and non-negative in R

d,(1) u(x1) ≤ Cu(x2), |x1| < 1/2, |x2| < 1/2.To this end we use the relative Kato ondition (RK) meaning that there isa onstant K suh that(2) \
B(y,1/2)

|y − v|α−d ν(dv) ≤ Kν(B(y, 1/2)), y ∈ R
d.

Theorem 3. Harnak's inequality holds for A if and only if (RK) holdsfor ν.Theorem 3 is a strengthening of [17, Theorem 1℄, where an additionaltehnial assumption was made: ν(dy)≤ c|y|−d−αdy, to guarantee the bound-edness of V on S. We now drop the assumption and the boundedness is ob-tained as the sole onsequene of (2) via Theorem 1. We also adapt someof our previous tehniques from [17℄ to handle measures ν whih are notabsolutely ontinuous with respet to the Lebesgue measure on Rd (see,e.g., (27)).Our estimates of the semigroup in Setion 3 are based in part on ideas of[43℄, whih onerns more ompliated nononvolutional semigroups.Another reent paper [53℄ gives involved estimates of our onvolution semi-group {Pt} in individual diretions (see also [32℄ in this onnetion). Herewe only need isotropi estimates of {Pt} from above, and our onsiderationsbeome simpler than those of [53℄ and [43℄.



Harnak's inequality for the frational Laplaian 103In Setions 4�6 we develop the methods of [17℄. That (2) implies (1) isproved by using a maximum priniple for a Dynkin-type version of the op-erator A to expliitly estimate its Green funtion G(x, v) for the unit ball(see Proposition 1 below). It is noteworthy that our proof of the estimate isspei� to nonloal operators, of whih A is an illustrative speial ase. Inpartiular it turns out that G(x, v) has a singularity at the pole omparableto that of the Riesz kernel: |v − x|α−d. The singularity in�uenes the mag-nitude of the orresponding Poisson kernel of the ball, P (x, y), as given bythe Ikeda�Watanabe formula (27). The in�uene is ritial if and only if (2)fails to hold. This relates (2) to (1). Suh a diret in�uene of the singularityof the potential kernel on the Poisson kernel does not our for seond orderellipti operators, whih is why we an expet analogues of Theorem 3 onlyfor nonloal operators.The reent development in the study of Harnak's inequality for generalintegro-di�erential operators similar to A was initiated in [6℄ (see also [16℄).The lass of operators onsidered gradually extended: see [47℄, [45℄, [5℄, [17℄,[2℄, and the referenes given there. We note that the operators dealt with inthose papers are not translation invariant, nor are they homogeneous. On theother hand, the papers fous on su�ient onditions for Harnak's inequalityand they are restrited by ertain isotropi estimates of the operator's kernelfrom below.Our on�nement to translation invariant homogeneous operators A re-sults in part from the fat that the problem of onstruting the semigroupfrom a general nonloal operator satisfying the positive maximum prinipledoes not have a �nal solution yet. We refer the reader to [48, 49℄, [35, 36℄,[5℄, and [33℄. A general survey of the subjet and more referenes an befound in [4, 37, 36℄. We refer the reader to [29, 3℄ for an aount of the re-lated potential theory of seond order ellipti operators. We point out thatwhile a symmetri seond order ellipti operator with onstant oe�ients ismerely a linear transformation of the Laplaian, the operators A and theirharmoni funtions onsidered here are very diverse ([17℄).The remainder of the paper is organized as follows. The �rst de�nitionsare given in Setion 2. In Setion 3 we estimate the semigroup (see (17)below) and the potential measure V and we prove our �rst two theorems. InSetion 4 we give preliminaries needed for the proof of Theorem 3, whih ispresented in Setions 5 and 6. In Setion 6 we also reall after [17℄ two expliitexamples to show how irregular the Lévy measure ν an be for Harnak'sinequality to hold or to fail for A.At the end of the paper we mention some remaining open problems.



104 K. Bogdan and P. Sztonyk
2. Preliminaries. For x ∈ R

d and r > 0 we let |x| =
√∑d

i=1 x2
i and

B(x, r) = {y ∈ R
d : |y − x| < r}. We de�ne S = {x ∈ R

d : |x| = 1}. All thesets, funtions and measures onsidered below will be Borel. For a measure
λ on R

d, |λ| denotes its total mass. For a funtion f we let λ(f) =
T
f dλwhenever the integral makes sense. When |λ| < ∞ and n = 1, 2, . . . we let

λn denote the n-fold onvolution of λ with itself:
λn(f) =

\
f(x1 + · · · + xn) λ(dx1) · · ·λ(dxn).We also let λ0 = δ0, the evaluation at 0. We all λ degenerate if there is aproper linear subspae M of R

d suh that supp(λ) ⊂ M ; otherwise we all
λ nondegenerate.In what follows we onsider measures µ onentrated on S. We assumethat µ is positive, �nite, nondegenerate (in partiular µ 6= 0), and symmetri:

µ(D) = µ(−D), D ⊂ R
d.We all µ a spetral measure. We let(3) ν(D) =

\
S

∞\
0

1D(rξ)r−1−α dr µ(dξ), D ⊂ R
d,where 1D is the indiator funtion of D. Note that ν is symmetri. It is aLévy measure on R

d, i.e. \
Rd

min(|y|2, 1) ν(dy) < ∞.

For r > 0 and a funtion ϕ on R
d we onsider its dilation ϕr(y) = ϕ(y/r),and we note that ν(ϕr) = r−αν(ϕ). In partiular ν is homogeneous: ν(rB) =

r−αν(B) for B ⊂ R
d. Similarly, if ϕ ∈ C∞

c (Rd), then A(ϕr) = r−α(Aϕ)r.This is the homogeneity of A. In onnetion with the rest of our statementin the abstrat we reall that every operator A on C∞
c (Rd) whih satis�esthe positive maximum priniple:

sup
y∈Rd

ϕ(y) = ϕ(x) ≥ 0 implies Aϕ(x) ≤ 0,is given uniquely in the form
Aϕ(x) =

d∑

i,j=1

aij(x)DxiDxjϕ(x) + b(x)∇ϕ(x) − c(x)ϕ(x)

+
\

Rd

(ϕ(x + y) − ϕ(x) − y∇ϕ(x)1|y|<1) ν(x, dy).Here y∇ϕ is the salar produt of y and the gradient of ϕ and, for every x,
a(x) = (aij(x))n

i,j=1 is a nonnegative de�nite real symmetri matrix, thevetor b(x) = (bi(x))d
i=1 has real oordinates, c(x) ≥ 0, and ν(x, ·) is a Lévy



Harnak's inequality for the frational Laplaian 105measure. This desription is due to Courrège (see [33, Proposition 2.10℄, [49,Chapter 2℄ or [35, Chapter 4.5℄). For translation invariant operators A theharateristis a, b, c, and ν are independent of x. If A is symmetri:\
Rd

Aϕ(x)φ(x) dx =
\

Rd

Aφ(x)ϕ(x) dx for ϕ, φ ∈ C∞
c (Rd),

then b = 0 and ν is neessarily symmetri (see, e.g., [35, p. 251℄ and [33,Corollary 2.14℄). If A is homogeneous but not loal ([35℄) then a = 0 and
ν must be homogeneous, hene (3) holds with some α ∈ (0, 2) (note that
Aϕ(0) = ν(ϕ) if ϕ ∈ C∞

c (Rd \ {0})).We now onstrut the orresponding semigroup (for a more axiomatiintrodution to onvolution semigroups we refer the reader to [7, 35℄). For
ε > 0 we let ν̂ε = 1B(0,ε)cν, i.e. ν̂ε(f) = ν(1B(0,ε)cf), and we let ν̃ε = 1B(0,ε)ν.We onsider the probability measures

P̂ ε
t = exp(t(ν̂ε − |ν̂ε|δ0)) =

∞∑

n=0

tn(ν̂ε − |ν̂ε|δ0))
n

n!
(4)

= e−t|ν̂ε|
∞∑

n=0

tnν̂n
ε

n!
, t > 0.

Here ν̂n
ε = (ν̂ε)

n. The P̂ ε
t form a onvolution semigroup:
P̂ ε

t ∗ P̂ ε
s = P̂ ε

s+t, s, t > 0.The Fourier transform of P̂ ε
t is

F(P̂ ε
t )(u) =

\
eiuy P̂ ε

t (dy) = exp
(
t
\
(eiuy − 1) ν̂ε(dy)

)
, u ∈ R

d.The measures P̂ ε
t weakly onverge to a probability measure Pt as ε → 0(this essentially depends on (6) below). {Pt, t > 0} is also a onvolutionsemigroup and F(Pt)(u) = exp(−tΦ(u)), where

Φ(u) = −
\
(eiuy − 1 − iuy1B(0,1)(y)) ν(dy)

= −
\
(cos(uy) − 1) ν(dy) =

π

2 sin(πα/2)Γ (1 + α)

\
S

|uξ|α µ(dξ).Sine µ is �nite and nondegenerate,(5) Φ(u) = |u|αΦ(u/|u|) ≈ |u|α.We all ν the Lévy measure of the semigroup {Pt, t ≥ 0} [33, 7℄.By a similar limiting proedure we onstrut the semigroup {P̃ ε
t , t > 0}suh that

F(P̃ ε
t )(u) = exp

(
t
\
(eiuy − 1 − iuy1B(0,1)(y)) ν̃ε(dy)

)
.



106 K. Bogdan and P. SztonykNote that(6) \
Rd

|y|2 P̃ ε
t (dy) = t

\
Rd

|y|2 ν̃ε(dy).

The Lévy measures of {P̃ ε
t } and {P̂ ε

t } are ν̃ε and ν̂ε, respetively, and wehave(7) Pt = P̃ ε
t ∗ P̂ ε

t .The measures Pt and P̃ ε
t have rapidly dereasing Fourier transform, henethey are absolutely ontinuous with bounded smooth densities denoted pt(x)and p̃ε

t (x), respetively. Of ourse,(8) pt = p̃ε
t ∗ P̂ ε

t .By using (5) we obtain the saling property of {pt}:(9) pt(x) = t−d/αp1(t
−1/αx), x ∈ R

d.In partiular,(10) pt(x) ≤ ct−d/α.We de�ne the potential measure of the semigroup {Pt}:
V(D) =

∞\
0

Pt(D) dt, D ⊂ R
d.By (10), V is �nite on bounded subsets of R

d if d > α. Let(11) V (x) =

∞\
0

pt(x) dt, x ∈ R
d ,so that

V(D) =
\
D

V (x) dx, D ⊂ R
d.We all V (x) the potential kernel of the stable semigroup. By (9),(12) V (x) = |x|α−dV (x/|x|), x 6= 0,and V(rD) = rα

V(D) for r > 0, D ⊂ R
d.If d = 1 then up to a onstant there is only one measure ν to onsider:

ν(dy) = |y|−1−αdy, orresponding to A = c∆α/2. This ase of d = 1 is notexluded from our onsiderations but it is sometimes trivial. In partiular,if d = 1 ≤ α then V ≡ ∞ ([7, Example 14.30℄). We refer to [18℄ for moreinformation and referenes on the ase d = 1 ≤ α.Constants in this paper mean positive real numbers. We often write f ≈ gto indiate that there is c = c(α, µ), i.e. a onstant c depending only on αand µ, suh that c−1f ≤ g ≤ cf .



Harnak's inequality for the frational Laplaian 1073. Estimates of the semigroup and potential measure. A generalreferene to the potential theory of onvolution semigroups is [7℄ (see also[35, 36℄).We onsider an auxiliary sale of smoothness for ν.Definition 1. We say that ν is a γ-measure on S if(13) ν(B(x, r)) ≤ crγ , |x| = 1, 0 < r < 1/2.Sine ν(drdθ) = r−1−αdrµ(dθ), it is at least a 1-measure and at mosta d-measure on S. If ν is a γ-measure with γ > 1, then µ has no atoms.Moreover ν is a d-measure if and only if it is absolutely ontinuous withrespet to the Lebesgue measure and has a density funtion whih is loallybounded on R
d \ {0}. We refer the reader to [26℄ and [30℄ for onsiderationsrelating to this ase.In the remainder of this setion we �x 1 ≤ γ ≤ d and we assume that νis a γ-measure on S.We �rst estimate individual terms in the series of (4).Lemma 1. There exists C = C(α, µ) suh that for ε > 0 and n = 1, 2, . . .we have(14) ν̂n

ε (B(x, r)) ≤ Cnrγε−(n−1)α, |x| = 1 ,provided 0 < r < max(ε/3, 1/5n).Proof. We proeed by indution. Note that (14) holds for n = 1 by (13).Let c0 and n be suh that (14) is satis�ed with C = c0. We �rst assume that
r < ε/3. For every x ∈ S by homogeneity of ν and (13) we have

ν̂n+1
ε (B(x, r)) =

\
|x−y|>2ε/3

ν̂ε(B(x − y, r)) ν̂n
ε (dy)

≤
\

|x−y|>2ε/3

ν(B(x − y, r)) ν̂n
ε (dy)

=
\

|x−y|>2ε/3

|x − y|−αν

(
B

(
x − y

|x − y| ,
r

|x − y|

))
ν̂n

ε (dy)

≤ c1r
γ

\
|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy)

(note that r/|x − y| < 1/2 provided |x − y| > 2ε/3). Now let ε/3 ≤ r <
1/5n+1. Then 2r + ε < 1/5n and by indution\
|x−y|<2r+ε

ν̂ε(B(x − y, r))ν̂n
ε (dy) ≤ |ν̂ε|ν̂n

ε (B(x, 2r + ε))

≤ |µ|
α

ε−αcn
0 (2r + ε)γε−(n−1)α ≤ cn

0c2r
γε−nα



108 K. Bogdan and P. Sztonykfor some c2 = c2(α, µ); and by homogeneity of ν and (13) we get\
|x−y|>2r+ε

ν̂ε(B(x − y, r)) ν̂n
ε (dy) ≤

\
|x−y|>2r+ε

ν(B(x − y, r)) ν̂n
ε (dy)

≤
\

|x−y|>2r+ε

c1r
γ |x − y|−α−γ ν̂n

ε (dy) ≤ c1r
γ

\
|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy).

From the above we have(15) ν̂n+1
ε (B(x, r)) ≤ c1r

γ
\

|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy) + cn

0c2r
γε−nα

for all 0 < r < max(ε/3, 1/5n+1).Let Lε = ⌊log5(3/2ε)⌋. If 2ε/3 < 1/5n then we get by indution\
2ε/3<|x−y|<1/5n

|x − y|−α−γ ν̂n
ε (dy)

≤
Lε∑

k=n

\
1/5k+1<|x−y|<1/5k

|x − y|−α−γ ν̂n
ε (dy) ≤

Lε∑

k=n

(5k+1)α+γ ν̂n
ε (B(x, 1/5k))

≤ cn
05α+γε−(n−1)α

Lε∑

k=1

5kα ≤ cn
0c3ε

−nα,where c3 = c3(α, µ). Also,\
|x−y|>1/5n

|x − y|−α−γ ν̂n
ε (dy) ≤ (5α+γ)n|ν̂n

ε | = (5α+γ |µ|/α)nε−nα ≤ cn
0ε−nα,

by taking large c0. We get\
|x−y|>2ε/3

|x − y|−α−γ ν̂n
ε (dy) ≤ cn

0ε−nα(c3 + 1),

and (15) yields
ν̂n+1

ε (B(x, r)) ≤ cn+1
0 rγε−nα.Corollary 2. There exists C = C(α, µ) suh that(16) ν̂n

ε (B(x, λε)) ≤ Cnλγ(1 + λα)εγ−(n−1)α, λ > 0, ε > 0, |x| = 1.Proof. Lemma 1 yields (16) for λε < 1/5n. For λε ≥ 1/5n we have
ν̂n

ε (B(x, λε)) ≤ |ν̂n
ε | =

|µ|n
αn

ε−nα ≤
( |µ|

α
5α+γ

)n

λα+γεγ−(n−1)α.In what follows we write P̂t = P̂ t1/α

t and P̃t = P̃ t1/α

t .Corollary 3. There exists C = C(α, µ) suh that
P̂t(B(x, λt1/α)) ≤ Cλγ(1 + λα)t1+γ/α, λ > 0, t > 0, |x| = 1.



Harnak's inequality for the frational Laplaian 109Proof. Corollary 2 yields
P̂t(B(x, λt1/α)) = e−|µ|/α

∞∑

n=0

tnν̂n
t1/α(B(x, λt1/α))

n!

≤ e−|µ|/α
∞∑

n=0

cnλγ(1 + λα)t1+γ/α

n!
= ec−|µ|/αλγ(1 + λα)t1+γ/α.

Corollary 4. P̂1(B(y, λ)) ≤ Cλγ(1+λα)|y|−α−γ for y ∈ R
d and λ > 0.Proof. Let y ∈ R

d \ {0} and x = y/|y|, t = |y|−α. By saling and Corol-lary 3 we have
P̂1(B(y, λ)) = P̂t(B(x, λt1/α)) ≤ cλγ(1 + λα)|y|−α−γ.We note that for every q > 0 we have T|y|q P̃1(dy) < ∞, beause thesupport of ν̃1 is bounded ([46℄). A simple reasoning based on this and theboundedness of the derivative of p̃1 yields

p̃1(y) ≤ cq(1 + |y|)−q, q > 0, y ∈ R
d(see [43, Lemma 9℄).Lemma 5. For every q > 0 there exists C = C(α, µ, q) suh that

P̃1(B(z, ̺)) ≤ C(1 + |z|)−q̺d, ̺ ≤ 1, z ∈ R
d.Proof. If |z|< 2 then P̃1(B(z, ̺)) =

T
B(z,̺) p̃1(y) dy ≤ c̺d ≤ c(1+ |z|)−q̺d.If |z| ≥ 2 then P̃1(B(z, ̺)) ≤ c(1 + |z|/2)−q̺d ≤ c(1 + |z|)−q̺d.The proof of the following lemma is a simpli�ation of the proof of [43,Theorem 3℄.Lemma 6. P1(B(z, ̺)) ≤ C|z|−α−γ̺d for z ∈ R

d and 0 < ̺ ≤ 1.Proof. By (7), Lemma 5, and Corollary 4,
P1(B(z, ̺)) = P̃1 ∗ P̂1(B(z, ̺)) =

\
Rd

P̃1(B(z − y, ̺)) P̂1(dy)

=

1\
0

P̂1({y : P̃1(B(z − y, ̺)) > s}) ds

≤
1\
0

P̂1({y : c(1 + |z − y|)−q̺d > s}) ds

≤
c̺d\
0

P̂1(B(z, c1/qs−1/q̺d/q)) ds



110 K. Bogdan and P. Sztonyk
≤ c

c̺d\
0

(c1/qs−1/q̺d/q)γ(1 + (c1/qs−1/q̺d/q)α)|z|−γ−α ds

= c|z|−γ−α
[
̺dγ/q

c̺d\
0

s−γ/q ds + ̺d(γ+α)/q
c̺d\
0

s−(γ+α)/q ds
]

= c|z|−γ−α[̺dγ/q(̺d)1−γ/q + ̺d(γ+α)/q(̺d)1−(γ+α)/q] = c|z|−γ−α̺d.The following two orollaries are our main estimates of the semigroup.Corollary 8 is an analogue of [43, Theorem 3℄, while (17) orresponds to [53℄.Corollary 7. P1(B(z, ̺)) ≤ C(1 + |z|)−α−γ̺d if 0 ≤ ̺ < |z|/2.Proof. We reall that p1(y) = P1(dy)/dy is bounded and so Lemma 6yields(17) p1(y) ≤ c(1 + |y|)−γ−α, y ∈ R
d.If 0 ≤ ̺ < |z|/2 then

P1(B(z, ̺)) ≤ c
\

B(z,̺)

(1 + |y|)−γ−α dy ≤ (1 + |z|)−α−γ̺d.

Corollary 8. Pt(B(x, ̺)) ≤ Ct1+(γ−d)/α̺d provided |x| = 1, t > 0,and 0 ≤ ̺ ≤ t1/α.Proof. By saling and Lemma 6 we have
Pt(B(x, ̺)) = P1(B(xt−1/α, ̺t−1/α)) ≤ ct1+(γ−d)/α̺d.Proof of Theorem 1. Let |x| = 1, 0 ≤ ̺ < 1/2. By saling and Corollary 7,

V(B(x, ̺)) =

∞\
0

Pt(B(x, ̺)) dt =

∞\
0

P1(B(xt−1/α, ̺t−1/α)) dt

≤ c̺d
∞\
0

(1 + t−1/α)−γ−αt−d/α dt.The integral is �nite beause −d/α < −1 and (γ + α − d)/α > −1. Let
y ∈ R

d \ {0}, x = y/|y|. By saling, a hange of variable, and (17),
V (y) =

∞\
0

t−d/αp1(yt−1/α) dt = |y|α−d
∞\
0

t−d/αp1(xt−1/α) dt

≤ |y|α−d
∞\
0

t−d/α(1 + t−1/α)−γ−α dt ≤ c|y|α−d.The �rst integral above is loally uniformly onvergent on R
d \ {0}, hene Vis ontinuous there.



Harnak's inequality for the frational Laplaian 111We now proeed to our onverse, Theorem 2. We propose a general ap-proah based on a simple study of the generator A. We �rst note that(18) pt(x) > 0, x ∈ R
d (t > 0)(see [52℄ or [43, Lemma 5℄). In fat, (18) easily follows from (8), (4), ontinuityof p̃ε

t , and the fat that supp(ν) + · · · + supp(ν) (d times) equals R
d.By (18), (12), and ontinuity of pt for t > 0, there is a onstant c = c(α, µ)suh that(19) V (x) ≥ c|x|α−d, x ∈ R

d.Lemma 9. Let d > α. For all ϕ ∈ C∞
c (Rd) we have\

Rd

Aϕ(x − y) V(dy) = −ϕ(x), x ∈ R
d,where the integral is absolutely onvergent.This is well known (see, e.g., [36, Theorem 3.5.78℄). We only note that

|Aϕ(x)| ≤ c(1 + |x|)−1−α. The absolute onvergene follows from this andthe homogeneity of V.Proof of Theorem 2. If d = 1 ≤ α then V ≡ ∞ and there is nothing toprove. Thus we assume that d > α. We �x a funtion φ ∈ C∞
c (Rd) suh that

φ ≥ 0, suppφ ⊂ B(0, 1/2) and φ = 1 on B(0, 1/3). Let r > 0. Put φr(x) =
φ(x/r) and Λr(x) = Aφr(x). Homogeneity of A yields Λr(x) = r−αΛ1(x/r).Note that Aφ = Λ1 is bounded, hene there is a onstant c suh that

Λr(x) ≥ −cr−α.If |x| ≥ r/2 then Λr(x) ≥ 0, and in fat Λr(x) ≥ ν(B(x, r/3)). Let |x| > r.From Lemma 9 we have
0 =

\
Rd

Λr(x − y) V(dy) ≥
\

B(x,r/2)

Λr(x − y) V(dy) +
\

B(0,r/4)

Λr(x − y) V(dy)

≥ −cr−α
V((B(x, r/2)) +

\
B(0,r/4)

ν(B(x − y, r/3)) V(dy)

≥ −cr−α
V((B(x, r/2)) + V(B(0, r/4))ν(B(x, r/12)).Sine V(B(0, r/4)) = rα

V(B(0, 1/4)) and V(B(0, 1/4)) < ∞ we get(20) ν(B(x, r/12)) ≤ cr−2α
V((B(x, r/2)), |x| > r.We note that similar results an also be derived from the lower boundsfor the semigroup as given in [53, Theorem 1.1℄.4. Harnak's inequality: preliminaries. The general referenes forthis setion are [22, 23℄, [46℄, [8℄, or [10℄. The Lévy measure ν yields astandard symmetri stable Lévy proess (Xt, P

x) with generating triplet
(0, ν, 0). Namely, the transition probabilities of the proess (Xt, P

x) are
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P (t, x, A) = Pt(A − x), t > 0, x ∈ R

d, A ⊂ R
d, and P (0, x, A) = 1A(x),where {Pt, t ≥ 0} is the stable semigroup of measures introdued in Prelim-inaries. The proess is strong Markov with respet to the so-alled standard�ltration.The proess onveniently leads to a de�nition of harmoni measures ωx

D,and their properties (21) and (24) below. For an analyti de�nition of these,alled the fundamental family, we refer to [7℄ (see also [40, 9℄).For open U ⊂ R
d we de�ne τU = inf{t ≥ 0 : Xt 6∈ U}, the �rst exit timeof U . We write ωx

D for the harmoni measure of (open) D:
ωx

D(A) = P x(τD < ∞, XτD ∈ A), x ∈ R
d, A ⊂ R

d.By the strong Markov property(21) ωx
D(A) =

\
ωy

D(A) ωx
U (dy) if U ⊂ D.We say that a funtion u on R

d is harmoni in open D ⊂ R
d if(22) u(x) = Exu(XτU ) =

\
Uc

u(y) ωx
U (dy), x ∈ R

d,

for every bounded open set U with the losure U ontained in D. It is alledregular harmoni in D if (22) holds for U = D. If D is unbounded then
Exu(XτD) = Ex[τD < ∞; u(XτD)] by onvention. Under (22) it will onlybe assumed that the expetation in (22) is well de�ned (but not neessar-ily �nite). Regular harmoniity implies harmoniity, and it is inherited bysubsets U ⊂ D. This follows from (21).We denote by pD

t (x, v) the transition density of the proess killed at the�rst exit from D:
pD

t (x, v) = p(t, x, v) − Ex[τD < t; p(t − τD, XτD , v)], t > 0, x, v ∈ R
d.Here p(t, x, v) = pt(v−x). For onveniene we will assume that D is regular:

P x[inf{t > 0 : Xt /∈ D} = 0] = 1 for x ∈ Dc (see [23, 22℄). Then pD
tis symmetri: pD

t (x, v) = pD
t (v, x), x, v ∈ D (see, e.g., [24℄). The strongMarkov property yields(23) p(t, x, v) = Ex[p(t − τD, XτD , v); τD < t], x ∈ D, v ∈ Dc.In partiular, pD

t (x, v) = 0 if x ∈ D, v ∈ Dc. We let
GD(x, v) =

∞\
0

pD
t (x, v) dt,and we all GD(x, v) the Green funtion for D. If V is ontinuous on R

d\{0},so that V (x) ≤ c|x|α−d, then the strong Markov property yields, for x, v ∈ D,(24) GD(x, v) = V (x, v) − ExV (XτD , v) = V (x, v) −
\

Dc

V (z, v) ωx
D(dz).



Harnak's inequality for the frational Laplaian 113Here V (x, v) = V (v − x). The Green funtion is symmetri: GD(x, v) =
GD(v, x), ontinuous in D × D \ {(x, v) : x = v}, and it vanishes if x ∈ Dcor v ∈ Dc.Note that V (x, v) is harmoni in x on R

d \ {v}. Indeed, if x ∈ D and
dist(D, v) > 0 then by (23),

V (x, v) =

∞\
0

Ex[p(t − τD, XτD , v); τD < t] dt = ExV (XτD , v).Similarly, the Green funtion v 7→ GD(x, v) is harmoni in D \ {x}.By the Ikeda�Watanabe formula [34℄ we have(25) ωx
D(A) =

\
D

GD(x, v)ν(A − v) dv if dist(A, D) > 0.We note here that translation invariane of the Lebesgue measure and theFubini�Tonelli theorem yield(26) \\
Φ(v)Ψ(v + z) m(dz) dv =

\\
Φ(v + z)Ψ(v) m(dz) dvfor every symmetri measure m and nonnegative funtions Φ and Ψ . In par-tiular, taking m = ν, Φ(v) = GD(x, v) and Ψ(v) = 1A(v) we get\

D

GD(x, v)ν(A− v) dv =
\
A

\
−D+v

GD(x, v − z) ν(dz) dv.If the boundary of D is smooth or even Lipshitz then
ωx

D(∂D) = 0, x ∈ D(see [50℄ and also [42℄, [54℄). In this ase ωx
D is absolutely ontinuous withrespet to the Lebesgue measure on Dc. Its density funtion, or the Poissonkernel, is given by the formula(27) PD(x, y) =

\
y−D

GD(x, y − z) ν(dz), x ∈ D.Note that D is then regular, beause of (18) and saling. In partiular theabove onsiderations apply to D = B(0, 1).It follows from (9) that for every r > 0 and x ∈ R
d the P x distributionof {Xt, t ≥ 0} is the same as the P rx distribution of {r−1Xrαt, t ≥ 0}. Inpartiular,(28) ωx

D(A) = ωrx
rD(rA).We all (28) saling, too. It shows that for u harmoni on D, the dilation uris harmoni on rD. A similar remark onerns translations.By (26) we also obtain\

B(0,1/2)

|y|α−dν(A − y) dy =
\
A

\
B(y,1/2)

|y − z|α−d ν(dz) dy, A ⊂ R
d,
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B(0,1/2)

ν(A − y) dy =
\
A

ν(B(y, 1/2)) dy, A ⊂ R
d.

Therefore we an express the relative Kato ondition (RK) in an equivalentform:(29) \
B(0,1/2)

|y|α−dν(A − y) dy ≤ K
\

B(0,1/2)

ν(A − y) dy, A ⊂ R
d.

We remark that (RK) is a loal ondition at in�nity: the inequality in(2) only needs to be veri�ed for large y ∈ R
d. In partiular, if it holds for

|y| > 1 then it holds for all y ∈ R
d, possibly with a di�erent onstant (see[17℄). Note that the reverse of (2) (and (29)) always holds, so atually (RK)means omparability of both sides of (2) (and (29)).In what follows we let G = GB(0,1), P = PB(0,1) and we de�ne

s(x) = ExτB(0,1) =
\

B(0,1)

G(x, v) dv.

Expliit formulas for these funtions for ν(dy) = |y|−d−αdy are known andmay give some insight into the general situation. They are essentially due toM. Riesz (see, e.g., [15℄, [11℄, [40℄, [9℄, [28℄). In partiular (for isotropi ν) wehave(30) P (x, y) = Cd
α

[
1 − |x|2
|y|2 − 1

]α/2

|x − y|−d, |x| < 1, |y| > 1.The following two lemmas are onsequenes of symmetry and nondegen-eray of the spetral measure µ. They an be proved similarly to Lemmas 4and 10 of [17℄, so we skip the proofs.Lemma 10. There exist ε = ε(α, µ) ∈ (0, 1) and C = C(α, µ) suh that(31) ν(B(x, 1 − ε)) ≥ C, 1 − ε < |x| < 1.Lemma 11. There exists C = C(α, µ) suh that
s(x) ≤ C(1 − |x|2)α/2, |x| < 1.For larity we make the following remark on nondegeneray of ν. If asymmetri Lévy measure ν is onentrated on a proper linear subspae Mof R

d, and a funtion u is onstant on x + M for every x ∈ R
d, then u isharmoni on R

d (relative to ν). However, suh funtions in general violatethe Harnak inequality. Thus our standing assumption of the nondegenerayof ν is a neessary, or nonrestritive, ondition for Harnak's inequality inTheorem 3.



Harnak's inequality for the frational Laplaian 1155. Neessity of the relative Kato ondition. In this short setion weassume that Harnak's inequality (1) holds. We make no further assumptionson ν beyond those in Setion 2. In partiular our onsiderations do notdepend on the estimates in Setion 3.Lemma 12. Harnak's inequality implies the relative Kato ondition.Proof. We �rst onsider the ase d > α. We laim that(32) V (x) ≈ |x|α−d, x ∈ R
d.Indeed, for all |x| = 1, V(B(x, 1/4)) =

T
B(x,1/4) V (v) dv ≤ V(B(0, 2)) < ∞,so there exists v ∈ B(x, 1/4) suh that V (v) ≤ V(B(0, 2))/|B(0, 1/4)|. ByHarnak's inequality V (x) ≤ cV (v). The estimate (32) follows from (12)and (19).Let g(v) = min(G(0, v), 1). We laim that(33) G(x, v) ≈ g(v)|v − x|α−d if |x| < 1/2 and |v| < 1.Indeed, by (32) and (24) for small δ > 0 we have

G(x, v) ≈ |v − x|α−d, |x| < 1/2, |x − v| < δ.Harnak's inequality implies that G(x, v) ≈ |v − x|α−d provided |x| < 1/2and |v| < 3/4, and also G(x, v) ≈ G(0, v) if |x| < 1/2 and |v| > 3/4. Notethat g is loally bounded from below on B(0, 1). This ompletes the proofof (33).For every A ⊂ R
d the funtion x 7→ ωx

B(0,1)(A) is nonnegative on R
dand regular harmoni in B(0, 1). Harnak's inequality (1), (25), (33), andFubini�Tonelli yield

ω0
B(0,1)(A) ≈

\
B(0,1/2)

ωx
B(0,1)(A) dx ≈

\
B

\
B(0,1/2)

g(v)|v − x|α−dν(A − v) dv dx

≈
\
B

g(v)ν(A− v) dv.This and (25) yield\
B

g(v)|v|α−dν(A − v) dv ≈
\
B

g(v)ν(A− v) dv.To this �approximate equality� we add the following one:\
B\B(0,3/4)

|v|α−dν(A − v) dv ≈
\

B\B(0,3/4)

ν(A − v) dv,and we obtain\
B

|v|α−dν(A − v) dv ≈
\
B

ν(A − v) dv, A ⊂ Bc.The hange of variable v = 2u yields (29) and (2).



116 K. Bogdan and P. SztonykIn the ase d ≤ α we have d = 1, and so ν(dy) = c|y|−1−αdy, whihsatis�es (RK).6. Su�ieny of the relative Kato ondition. In what follows weassume that (RK) holds for ν. We will also assume that d > α unless statedotherwise.The key step in the proof of Harnak's inequality is the following esti-mate for the Green funtion of the ball, whih we prove after a sequene oflemmas. We note that it is essentially the same as (33), but proved underexpliit assumptions on ν rather than by stipulating Harnak's inequality.The estimate was suggested by the sharp estimates of the Green funtion ofLipshitz domains [38℄ for isotropi ν (see also [13℄). We also refer the readerto [39, 21℄ for more expliit estimates for smooth domains and to, e.g., [15℄for expliit formulas for the ball in the ase of isotropi ν.Proposition 1. G(x, v) ≈ s(v)|v−x|α−d provided |x| < 1/2 and |v| < 1.Lemma 13. ν is a (d − α)-measure on S.Proof. Indeed, for |x| = 1, 0 < r < 1/2 by (2) we obtain
ν(B(x, r)) ≤ rd−α

\
B(x,1/2)

|x − z|α−d ν(dz) ≤ Kν(B(0, 1/2)c)rd−α.

Theorem 1 implies that V is ontinuous on R
d\{0}. Consequently, V (x) ≈

|x|α−d and G(x, y) is ontinuous on B × B \ {(x, y) : x = y}.Lemma 14. G(x, v) ≈ |v − x|α−d if |x| < 1/2, |v| < 3/4.We skip the proof as it is the same as the one of Lemma 6 in [17℄.We note that limx→z G(x, v) = 0 for all v ∈ B(0, 1) and z ∈ S beausethe measures ωx
B(0,1) weakly onverge to δz. This is related to the regularityof B(0, 1), and follows, e.g., from the estimate

ωx
B(x,1−|x|)(B(0, 1)c) ≥ c,whih is a onsequene of saling, nondegeneray of ν (ompare (31)), and (25).We will employ the operator

Urφ(x) =
Exφ(XτB(x,r)

) − φ(x)

ExτB(x,r)
,whenever the expression is well de�ned for given φ, r > 0 and x. We notethat Ur is impliitly used in [7, Chapter III, �17℄. Clearly, if h is harmoniin D, x ∈ D, and r < dist(x, Dc), then Urh(x) = 0. We note that

Uφ(x) = lim
r↓0

Urφ(x)is the Dynkin harateristi operator, whih was used in [17℄ in a similarway.



Harnak's inequality for the frational Laplaian 117We reord the following observation (maximum priniple).Lemma 15. If there is r > 0 suh that Urh(x) > 0 then
h(x) < sup

y∈Rd

h(y).Lemma 16. There exists C = C(α, µ) suh that
G(x, v) < Cs(v), |x| < 1/2, 3/4 < |v| < 1.Proof. By the strong Markov property we have

s(v) = EvτB = Ev(τA + τB(0,1) ◦ θτA) = EvτA + EvEXτA τB(0,1)

= EvτA + Evs(XτA), v ∈ R
d, A ⊂ B(0, 1),whih yields Urs(v) = −1 for v ∈ B(0, 1) and r < 1 − |v|.For n ∈ {1, 2, . . .} and x ∈ B(0, 1/2) we let g(v) = G(x, v) and gn(v) =

min(G(x, v), n). For v ∈ B(x, 1/8)c we have G(x, v) ≤ c1|x − v|α−d, hene
gn(v) = G(x, v) provided n ≥ c18

d−α. By harmoniity of g on B(0, 1) \ {x},saling property, (25) and (2) we �nd that for v ∈ B(0, 1) \ B(0, 3/4) and
r < min(1 − |v|, 1/16),
Urgn(v) = Ur(gn − g)(v)

=
1

E0τB(0,1)

\
B(0,1)

G(0, w)
\
(gn − g)(v + rw + z) ν(dz) dw

≥ −c2

s(0)

\
B(0,1)

G(0, w)
\

B(x−v−rw,1/8)

|x − v − rw − z|α−d ν(dz) dw

≥ −c2K

s(0)

\
B(0,1)

G(0, w)ν(B(x − v − rw, 1/8)) dw ≥ −c3.If a > c3 then
Ur(as − gn)(v) = −a − Urgn(v) ≤ −a + c3 < 0.By saling

s(v) ≥ EvτB(v,1−|v|) = (1 − |v|)αE0τB(0,1)(34)
≥ 4−αE0τB(0,1), |v| < 3/4.Sine gn(v) ≤ n, we see that as(v) − gn(v) > 0 for v ∈ B(0, 3/4) provided

a > n/(4−αE0τB(0,1)).Let a0 = max[c3, n/(4−αE0τB(0,1))] + 1 and h(v) = a0s(v) − gn(v). Wehave h(v) ≥ 0 for v ∈ B(0, 3/4), h(v) = 0 for v ∈ B(0, 1)c and Urh(v) < 0 for
v ∈ B(0, 1) \ B(0, 3/4), r < min(1 − |v|, 1/16). Lemma 15 and ontinuity of
h yield h(v) ≥ 0 in B(0, 1). Sine gn = g on B(0, 3/4)c, the lemma follows.



118 K. Bogdan and P. SztonykLemmas 16 and 11 yield the following onlusion:(35) G(x, v) ≤ C(1 − |v|)α/2, |x| < 1/2, 3/4 < |v| < 1.Lemma 17. There is C = C(α, µ) suh that G(x, v) ≥ Cs(v) provided
|x| < 1/2 and |v| < 1.Proof. Let x ∈ B(0, 1/2). We �x ε suh that (31) is satis�ed. Lemma14 yields G(x, v) ≥ c1 > 0 for v ∈ B(0, 1 − ε). Let n ∈ {1, 2, . . .} be suhthat c1 ≥ 2/n. By (35) there is η > 0 suh that G(x, v) ≤ 1/n for v ∈
B(0, 1) \ B(0, 1 − η). Let g(v) = G(x, v) and gn(v) = min(g(v), 1/n). Wehave

gn(v) = g(v), v ∈ B(0, 1) \ B(0, 1 − η),and
g(v) − gn(v) ≥ 2/n − 1/n = 1/n, v ∈ B(0, 1 − ε),hene by Lemma 10 for v ∈ B(0, 1) \ B(0, 1 − η) and r < min(1 − |v|,

(ε − η)/2) we obtain
Urgn(v) = Ur(gn − g)(v)

=
1

s(0)

\
B(0,1)

GB(0,1)(0, w)
\
(gn − g)(v + rw + z) ν(dz) dw

≤ − 1

n

1

s(0)

\
B(0,1)

GB(0,1)(0, w)ν(B(v + rw, 1 − ε)) dw ≤ −c2

n
.

For a > 0 we have
Ur(agn − s)(v) ≤ −c2a/n + 1, v ∈ B(0, 1) \ B(0, 1 − η).This is negative if a > n/c2. Furthermore s(v) ≤ c3 for v ∈ B(0, 1) and

gn(v) ≥ c4 > 0 for v ∈ B(0, 1 − η). Thus agn(v) − s(v) ≥ ac4 − c3 > 0for v ∈ B(0, 1 − η) if only a > c3/c4. Note that our estimates do not de-pend on x, provided |x| < 1/2. Let a0 = max(c3/c4, n/c2) + 1 and h(v) =
a0gn(v) − s(v). We have h(v) ≥ 0 for v ∈ B(0, 1 − η), and Urh(v) < 0 for
v ∈ B(0, 1) \ B(0, 1 − η). By Lemma 15 and the ontinuity of h we get
h(v) ≥ 0 in B(0, 1), and the lemma follows.Proof of Proposition 1. The estimate is a onsequene of (34), Lemma 14,16, and 17.Maiej Lewandowski [41℄ has informed us that he reently proved theonverse of the inequality in Lemma 11. This implies(36) G(x, v) ≈ (1 − |v|2)α/2|v − x|α−d, |x| < 1/2, |v| < 1.We will not use (36) below; the less expliit estimate in Lemma 17 su�esfor our purposes. Note that the asymptotis of G at the pole is di�erentwhen d = 1 ≤ α (see, e.g., [15℄).



Harnak's inequality for the frational Laplaian 119Lemma 18. (RK) implies Harnak's inequality for all d ∈ {1, 2, . . .} and
α ∈ (0, 2).Proof. By translation and saling invariane of the lass of harmonifuntions and by a overing argument we only need to verify that

u(0) ≤ cu(x), |x| < 1/2,whenever u is nonnegative on R
d and regular harmoni on B(0, 1). For thisto hold it is su�ient to have, with the same onstant c,(37) P (0, y) ≤ cP (x, y), |x| < 1/2, |y| > 1.If d = 1, then (37) follows from (30). Thus we only need to examine thease d > α. By the deomposition B(0, 1) = B(0, 1/2)∪ [B(0, 1)\B(0, 1/2)],(27), Proposition 1, (2), and the fat that s is bounded away from zero onompat subsets of B(0, 1) (f. (34)), we obtain

P (0, y) ≈
\

B(y,1)

s(y − v)|y − v|α−d ν(dv) ≈
\

B(y,1)

s(y − v) ν(dv)

≤ c
\

B(y,1)

s(y − v)|y − v − x|α−d ν(dv)

≈ P (x, y), |x| < 1/2, |y| > 1.Proof of Theorem 3. See Lemmas 12 and 18.We onlude with a few remarks and open problems.By translation and dilation invariane of the lass of harmoni funtionsonsidered, and by a overing argument, Harnak's inequality holds for everyompat subset of every onneted domain of harmoniity. We note that:(1) it does not generally hold for disonneted open sets, as the support of
y 7→ P (x, y) may be smaller than B(0, 1)c (see (25)), (2) it does hold for allopen sets if ν is isotropi (this follows from (30), or see [14℄).We onsider the following examples of measures ν. (RK) holds for ν1(dy)
≈ |y|−d−αdy (both sides of (2) may be expliitly estimated). Next, let ξ ∈ S,
0 < r <

√
2, and C = S∩ [B(ξ, r)∪B(−ξ, r)]. Then (RK) holds for ν2(dy) =

1C(y/|y|)|y|−d−αdy (see [17℄).On the other hand, onsider balls Bn ⊂ B′
n entered at S, with radii

4−n and 2−n, respetively, and suh that {B′
n} are pairwise disjoint. Let

C =
⋃

n≥n0
Bn and let ν3(dy) = 1C(y/|y|)|y|−d−αdy. If d−1 > α then (RK)does not hold for ν3 ([17℄) even though ν3 is bounded by ν1.Let Bξ,r = B(ξ, r) ∩ S. By integrating in polar oordinates we an givethe haraterization of the relative Kato ondition in terms of the spetralmeasure µ and Bξ,r (f. [17℄). Let d − α > 1. Then (RK) holds for ν if



120 K. Bogdan and P. Sztonykand only if(38) \
Bξ,r

(|η − ξ|/r)α−(d−1) µ(dη) ≤ cµ(Bξ,r), ξ ∈ S, 0 < r < c.

In the ase d = 2, α = 1, (RK) is equivalent to(39) \
Bξ,r

log(2r/|η − ξ|) µ(dη) ≤ cµ(Bξ,r), ξ ∈ S, 0 < r < c.

In the ase of d = 2 and α > 1, (RK) is always satis�ed. We omit the proofs.Corollary 19. If d − 1 < α then Harnak's inequality holds for A.This may be extended as follows. We will say that ν is a strit γ-measure if(40) ν(B(x, r)) ≈ rγ provided x ∈ supp ν, |x| = 1, 0 < r < 1/2(f. (13)). Of ourse, if ν is a (strit) γ-measure on S then µ is a (strit) (γ−1)-measure (on S). This observation and (38) yield the following onlusion,whih we state without proof.Corollary 20. If ν is a strit γ-measure with γ > d−α, then Harnak'sinequality holds for A.The example of ν3 shows the importane of the stritness assumption.We interpret (RK) as a property of balane or �rmness of ν. As suh it islose to the reverse Hölder ondition with exponent q > d/α (see [17℄).If µ(ξ) > 0 for some ξ ∈ S then ν is a 1-measure only. By Theorem 2 thepotential kernel V is unbounded on S if 1 > d−2α (in fat, if 1 ≥ d−2α, see[53, Theorem 1.1℄, [17℄). That V may be in�nite on rays emanating from theorigin shows that harmoni funtions annot be de�ned pointwise by meansof A. In general they even lak �niteness in the domain of harmoniity (butsee [14℄ and [44℄ in this onnetion). Thus the potential-theoreti propertiesof the operators A are very diverse for the measures ν onsidered here. Thisis in sharp ontrast with the fat that the exponents Φ (see (5)) are allomparable and the same is true of the orresponding Dirihlet forms ([27℄,see also [25℄). The boundary potential theory of A will generally be verydi�erent from that of the frational Laplaian (see [51, p. 199℄ for a simpleremark on this subjet).We mention a number of interesting topis deserving further study: (1)haraterization of ontinuity and higher order regularity of V on S ([6℄),(2) the boundary Harnak priniple (f. [12, 16, 51℄), the orresponding ap-proximate fatorization of G(x, v) for all x, v ∈ B(0, 1) (f. [13, 31, 20℄ andProposition 1 above), and related boundary problems (f. [1, 19℄), (3) studyof other Lévy measures whih are produts in polar oordinates, (4) studyof similar nonloal operators A whih are not translation invariant ([2, 47℄).
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