STUDIA MATHEMATICA 181 (2) (2007)

Estimates of the potential kernel and Harnack’s inequality
for the anisotropic fractional Laplacian

by

KRZYSZTOF BOGDAN and PAWEL SZTONYK (Wroclaw)

Abstract. We characterize those homogeneous translation invariant symmetric non-
local operators with positive maximum principle whose harmonic functions satisfy Har-
nack’s inequality. We also estimate the corresponding semigroup and the potential kernel.

1. Main results and background. Let o € (0,2) and d € {1,2,...}.
We consider an arbitrary Lévy measure on R?\ {0} which is symmetric, ho-
mogeneous: v(rB) = r~“v(B), and nondegenerate (for definitions see Sec-
tion 2). It yields a convolution semigroup of probability measures {P;, ¢t > 0}
on R?. Each P; has a smooth density p;. We consider the corresponding po-
tential measure V = Sgo P, dt and the potential kernel

oo
Vix) = S pe(x)dt, xeR<
0
V(z) = |z|*"%V (z/|z|), but it may be infinite in some directions ([17, pp.
148-149]). It is of interest to study continuity of V on the unit sphere S in R?
under specific assumptions on v (see (13)).

THEOREM 1. Ifd > « and v is a y-measure on S with v > d — 2« then
V' is continuous on S.

The following partial converse shows that the threshold d — 2« is exact.

THEOREM 2. If V is a k-measure on S then v is a (k — 2a)-measure
on S.

In particular, if V' is bounded on S then v is a (d — 2a)-measure on S.
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We define an operator A on smooth functions ¢ with compact support
in RY, p € C(R?), by

Ap(z) = | (p(x +y) — o(z) — yV(2)1)y<1) v(dy)
Rd
= lm | (o(z+y)— @) v(dy).

e—0t
ly|>e

A is a restriction of the infinitesimal generator of { P;} [35, Example 4.1.12],
and what we refer to as the anisotropic fractional Laplacian in the title of
the paper. In this connection we recall that in the special case of v(dy) =
c|y|~?*dy one obtains the fractional Laplacian A%/2. For properties of A%/2
and a discussion of equivalent definitions of its harmonic functions we refer
the reader to [14].

Harmonic functions corresponding to A, or v, are defined by the mean
value property with respect to an appropriate family of harmonic measures
(see Section 4). The main goal of the paper is to characterize those operators
A for which Harnack’s inequality holds, i.e., there is a constant C' = C'(a, V)
such that for every function u which is harmonic in the unit ball and non-
negative in R%,

(1) u(zy) < Cu(ze), |z1] < 1/2, |za] < 1/2.

To this end we use the relative Kato condition (RK) meaning that there is
a constant K such that

(2) [ ly—vl*v(dv) < Ku(B(y,1/2)), yeR%
B(y,1/2)

THEOREM 3. Harnack’s inequality holds for A if and only if (RK) holds
for v.

Theorem 3 is a strengthening of [17, Theorem 1], where an additional
technical assumption was made: v(dy) < c|y|~%~*dy, to guarantee the bound-
edness of V on S. We now drop the assumption and the boundedness is ob-
tained as the sole consequence of (2) via Theorem 1. We also adapt some
of our previous techniques from [17] to handle measures v which are not
absolutely continuous with respect to the Lebesgue measure on R? (see,
e.g., (27)).

Our estimates of the semigroup in Section 3 are based in part on ideas of
[43], which concerns more complicated nonconvolutional semigroups.
Another recent paper [53] gives involved estimates of our convolution semi-
group {P;} in individual directions (see also [32] in this connection). Here
we only need isotropic estimates of {P;} from above, and our considerations
become simpler than those of [53] and [43].
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In Sections 4-6 we develop the methods of [17]. That (2) implies (1) is
proved by using a maximum principle for a Dynkin-type version of the op-
erator A to explicitly estimate its Green function G(z,v) for the unit ball
(see Proposition 1 below). It is noteworthy that our proof of the estimate is
specific to nonlocal operators, of which A is an illustrative special case. In
particular it turns out that G(z,v) has a singularity at the pole comparable
to that of the Riesz kernel: [v — x|*~%. The singularity influences the mag-
nitude of the corresponding Poisson kernel of the ball, P(z,y), as given by
the Ikeda-Watanabe formula (27). The influence is critical if and only if (2)
fails to hold. This relates (2) to (1). Such a direct influence of the singularity
of the potential kernel on the Poisson kernel does not occur for second order
elliptic operators, which is why we can expect analogues of Theorem 3 only
for nonlocal operators.

The recent development in the study of Harnack’s inequality for general
integro-differential operators similar to .4 was initiated in [6] (see also [16]).
The class of operators considered gradually extended: see [47], [45], [5], [17],
[2], and the references given there. We note that the operators dealt with in
those papers are not translation invariant, nor are they homogeneous. On the
other hand, the papers focus on sufficient conditions for Harnack’s inequality
and they are restricted by certain isotropic estimates of the operator’s kernel
from below.

Our confinement to translation invariant homogeneous operators A re-
sults in part from the fact that the problem of constructing the semigroup
from a general nonlocal operator satisfying the positive maximum principle
does not have a final solution yet. We refer the reader to [48, 49], [35, 36],
[5], and [33]. A general survey of the subject and more references can be
found in [4, 37, 36]. We refer the reader to [29, 3] for an account of the re-
lated potential theory of second order elliptic operators. We point out that
while a symmetric second order elliptic operator with constant coeflicients is
merely a linear transformation of the Laplacian, the operators A and their
harmonic functions considered here are very diverse ([17]).

The remainder of the paper is organized as follows. The first definitions
are given in Section 2. In Section 3 we estimate the semigroup (see (17)
below) and the potential measure V and we prove our first two theorems. In
Section 4 we give preliminaries needed for the proof of Theorem 3, which is
presented in Sections 5 and 6. In Section 6 we also recall after [17] two explicit
examples to show how irregular the Lévy measure v can be for Harnack’s
inequality to hold or to fail for A.

At the end of the paper we mention some remaining open problems.
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2. Preliminaries. For z € R and r > 0 we let |z| = /3% | 22 and
B(z,7) = {y € R?: |y — 2| < r}. We define S = {z € R? : |z| = 1}. All the
sets, functions and measures considered below will be Borel. For a measure
A on RY, |\| denotes its total mass. For a function f we let A(f) = { fd\
whenever the integral makes sense. When |A| < oo and n = 1,2,... we let
A" denote the n-fold convolution of A with itself:

N(f) = f@r + -+ 20) Aldar) - A(d).

We also let \? = §y, the evaluation at 0. We call \ degenerate if there is a
proper linear subspace M of R? such that supp(\) C M; otherwise we call
A nondegenerate.

In what follows we consider measures p concentrated on S. We assume
that p is positive, finite, nondegenerate (in particular p # 0), and symmetric:

u(D)=p(-D), DCER

We call u a spectral measure. We let

o
(3) v(D) =\ { 1p(r&)r~'"*dr p(d¢), D CR,
S0
where 1p is the indicator function of D. Note that v is symmetric. It is a
Lévy measure on RY, i.e.

| min(|y[*, 1) v(dy) < oo.
Rd
For r > 0 and a function ¢ on R? we consider its dilation ¢, (y) = p(y/r),
and we note that v(p,) = r~*v(p). In particular v is homogeneous: v(rB) =
r~v(B) for B C R%. Similarly, if ¢ € C°(R?), then A(p,) = r~*(Ap),.
This is the homogeneity of A. In connection with the rest of our statement
in the abstract we recall that every operator A on C2°(RY) which satisfies
the positive mazimum principle:
sup ¢(y) = ¢(z) >0 implies Ap(z) <0,
yeRd

is given uniquely in the form

d
Ap(z) =Y aij(2)Da, Dy jip(x) + b(z) V() — () ()
ij—1
+ | (@ +y) — (@) — yVe() 1y <) v(z, dy).
Rd

Here yV is the scalar product of y and the gradient of ¢ and, for every x,
a(r) = (ai;(x))7;—; is a nonnegative definite real symmetric matrix, the
vector b(z) = (b;(x))%_, has real coordinates, c(z) > 0, and v(z, ) is a Lévy
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measure. This description is due to Courrége (see [33, Proposition 2.10], [49,
Chapter 2| or [35, Chapter 4.5]). For translation invariant operators A the
characteristics a, b, ¢, and v are independent of x. If A is symmetric:

| Ap(@)(z) de = | Ap(x)p(x)de  for ¢,¢ € CZ(RY),

Rd Rd
then b = 0 and v is necessarily symmetric (see, e.g., [35, p. 251 and [33,
Corollary 2.14]). If A is homogeneous but not local ([35]) then @ = 0 and
v must be homogeneous, hence (3) holds with some a € (0,2) (note that
Ap(0) = v(p) if ¢ € CZ(R\ {0})).

We now construct the corresponding semigroup (for a more axiomatic
introduction to convolution semigroups we refer the reader to |7, 35]). For
e >0welet U. = 1 yev, ie. Ve(f) = v(1p(oe)ef), and we let v = 1p(g V-
We consider the probability measures
"(ve — ’D€|5O))n

(4) B = explt(0- — [P2l00) = 3 10

n=0
X unon
_ —t|§5|zt Ve
= e ' s
n.
n=0

Here v = (v.)". The Pf form a convolution semigroup:

P;x P; =Py, s,t>0.

n!

t> 0.

The Fourier transform of ﬁf is

~

F(Bf)(u) = | e Pi(dy) = exp (tg (€™ — 1) ﬁg(dy)), ueR?

The measures ]3,56 weakly converge to a probability measure P; as ¢ — 0
(this essentially depends on (6) below). {P;, ¢ > 0} is also a convolution
semigroup and F(F;)(u) = exp(—t®(u)), where

P(u) = = (™ — 1 —iuylp(y)) v(dy)

= = (cosuy) = ) udy) = 5 éw n(de).

Since p is finite and nondegenerate,
(5) P(u) = [ul*P(u/|u]) = |u]®.
We call v the Lévy measure of the semigroup {P;, t > 0} [33, 7].

By a similar limiting procedure we construct the semigroup {ﬁf, t>0}
such that

F(P7) () = exp (] (" = 1 = duylpo1)(y)) -(dy) ).
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Note that
(6) \ 1yl Pf(dy) =t | |y* oe(dy).
R? R
The Lévy measures of {Pf} and {Pf} are 7. and 7., respectively, and we
have
(7) P, = Pf « Pt
The measures P; and ﬁf have rapidly decreasing Fourier transform, hence

they are absolutely continuous with bounded smooth densities denoted p;(x)
and pj (x), respectively. Of course,

(8) Pt = Dj * ﬁf.

By using (5) we obtain the scaling property of {p:}:

(9) pe(x) = t=Yp (7Y ), xeRL
In particular,

(10) pe(z) < et~

We define the potential measure of the semigroup {P;}:

[e.9]

V(D)= | P(D)dt, DcR"
0
By (10), V is finite on bounded subsets of R? if d > a. Let
(11) V(z)= | p(x)dt, zeR?,
0
so that
V(D)= |V(z)dz, DcR"
D
We call V() the potential kernel of the stable semigroup. By (9),
(12) V() = |2[*V (z/l2]), = #0,

and V(rD) = r*V(D) for r > 0, D C R,

If d = 1 then up to a constant there is only one measure v to consider:
v(dy) = |y|~'~“dy, corresponding to A = cA*/2. This case of d = 1 is not,
excluded from our considerations but it is sometimes trivial. In particular,
if d =1 < a then V = oo (|7, Example 14.30]). We refer to [18] for more
information and references on the case d =1 < a.

Constants in this paper mean positive real numbers. We often write f =~ ¢
to indicate that there is ¢ = ¢(a, ), i.e. a constant ¢ depending only on «
and p, such that ¢71f < g < cf.
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3. Estimates of the semigroup and potential measure. A general
reference to the potential theory of convolution semigroups is [7] (see also
[35, 36]).

We consider an auxiliary scale of smoothness for v.

DEFINITION 1. We say that v is a y-measure on S if
(13) v(B(z,r)) <er?, |z|=1,0<r<1/2.

Since v(drdf) = r~1=%dru(d), it is at least a 1-measure and at most
a d-measure on S. If v is a y-measure with v > 1, then p has no atoms.
Moreover v is a d-measure if and only if it is absolutely continuous with
respect to the Lebesgue measure and has a density function which is locally
bounded on R?\ {0}. We refer the reader to [26] and [30] for considerations
relating to this case.

In the remainder of this section we fix 1 < v < d and we assume that v
is a «y-measure on S.

We first estimate individual terms in the series of (4).

LEMMA 1. There ezxists C = C(c, ) such that fore >0 andn =1,2,...
we have

(14) *(B(x,r)) < Chpiemmmba g =1,

provided 0 < r < max(e/3,1/5™).

Proof. We proceed by induction. Note that (14) holds for n = 1 by (13).
Let ¢g and n be such that (14) is satisfied with C' = ¢y. We first assume that
r < e/3. For every z € S by homogeneity of v and (13) we have

B = | By 7
|z—y|>2¢/3
< X v(B(z —y,r)) V7 (dy)
le—y|>2¢/3
_ r—y T ~
= | -y QV<B< ’ >) e dy)
|z—y|>2¢/3 ’x_y‘ ’x_y‘
<ear’ | Jo—y[TT 0 (dy)
lz—y|>2¢/3

(note that r/|z — y| < 1/2 provided |z — y| > 2¢/3). Now let ¢/3 < r <
1/5"+1. Then 2r + ¢ < 1/5" and by induction

| 2Bz —y,m)Pl(dy) < |92 (B(x,2r +¢))
|lz—y|<2r+e
Iz

e (2r +£)Ve” (TN < (BegrreTne
&
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for some co = co(a, p1); and by homogeneity of v and (13) we get
| 2B@-ymuay < | v(B@—yr)Ddy)
|x—y|>2r+e |x—y|>2r+e
< | arp-yurdy) <ar? | o -y 00 (dy).
lx—y|>2r+e |z—y|>2¢e/3
From the above we have
(15) DY (B(z,7)) < e X lx —y|"* TV (dy) + chear’e
|z—y|>2¢/3

for all 0 < r < max(e/3,1/5"T1).
Let L. = |logs(3/2¢)]. If 2¢/3 < 1/5" then we get by induction

| |z —y| D (dy)
2e/3<|z—y|<1/5™
Le Le
<> | o —y| 7R (dy) < Y (MR (B(x,1/5Y))
k=n 1/5k+1<|z—y|<1/5F k=n
Le
< Cg5a+’y€—(n—1)a Z 5ka < 08035—71047
k=1

where c3 = c3(a, ). Also,
Vo ey 0 (dy) < (5L = (5T |ulfa)" e T < e,
lz—y[>1/5™
by taking large cy. We get
Ve —y 0 (dy) < e (ea + 1),
|lx—y|>2¢e/3
and (15) yields
f/\gH(B(x,r)) < cgﬂr%_"a. "
COROLLARY 2. There ezxists C = C(a, p) such that
(16)  DP(B(z,Ae)) < C"N(1+ AV~ (=De x>0, ¢>0, |2 = 1.

£

Proof. Lemma 1 yields (16) for Ae < 1/5". For Ae > 1/5" we have
c an «

I//\H(B(l’,)\é“)) < ’I//\g| = Mgfna < (M 5a+’7> )\a+'yE'yf(n71)a' -

In what follows we write ﬁt = ﬁttl/a and ﬁt = IBttl/a.
COROLLARY 3. There exists C = C(a, 1) such that
Py(B(z, AtY) < CA(1 4+ AMEH/2 0 X>0,t>0, |z = 1.
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Proof. Corollary 2 yields

~ o0 tn’\n B ,)\tl/a
Py(B(a, At1)) = et/ 37 Ve (B )

|
=0 n.
X n ay+l+vy/a
< o itfa 3 ENHDNDEN ety | yogganve
n.
n=0

COROLLARY 4. P{(B(y,\)) < CAY(1+XY)|y|~* 7 fory € R and A > 0.

Proof. Let y € R\ {0} and = = y/|y|, t = |y|~*. By scaling and Corol-
lary 3 we have

PL(Bly \) = BB, M%) < X (14 ATy 7w

We note that for every ¢ > 0 we have {|y|? ]Bl(dy) < 00, because the
support of v is bounded ([46]). A simple reasoning based on this and the
boundedness of the derivative of p; yields

Piy) <cg(l+1y)™%  ¢>0,y€R?
(see [43, Lemma 9]).
LEMMA 5. For every q > 0 there exists C = C(«, i, q) such that
P (B(z,0) <CA+|2))"9%% 0<1, zeR%
Proof. 1 |z| < 2 then P (B(z, 9)) = SB(Z’Q) p1(y) dy < co® <c(1+]z|)~90%
If |z] > 2 then ]Bl(B(z, 0)) < (14 |2/2) %% < c(1 + |2])790%. =

The proof of the following lemma is a simplification of the proof of [43,
Theorem 3].

LEMMA 6. Pi(B(z,0)) < C|z|7* 7 for € R% and 0 < o < 1.
Proof. By (7), Lemma 5, and Corollary 4,

Pi(B(z,0)) = Prx Pi(B(2,0) = | Pi(B(z —y,0)) Pi(dy)
Rd

({y: Pi(B(z - y,0)) > s})ds

s}

~

({y el + |2 —y) "% > s}) ds

IN

O e = O ey

C.Qd

~

| BuB(z, cMas~Vagi/)) ds
0

IN
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ng

<c S (cl/qs—l/qu/q)v(l + (Cl/qs—l/qu/q)a)|z|_7_a ds

0
cgd cgd
= || [de/q [ s/9ds + g0t/ | s Grea ds]
0 0

= c‘z‘*%a[gdv/q(gd)lﬂ/q + Qd(wra)/q(gd)lf(wa)/q] — c’Z’fvfan' .

The following two corollaries are our main estimates of the semigroup.
Corollary 8 is an analogue of [43, Theorem 3|, while (17) corresponds to [53].

COROLLARY 7. Pi(B(z,0)) < C(1+|z])~ %7 if 0< o< |z|/2.

Proof. We recall that pi(y) = Pi(dy)/dy is bounded and so Lemma 6
yields

(17) pily) <ec(l+1y) 77 yeR™
If 0 < p < |z|/2 then
Pi(B(z,0)<c | (+ly) 7 dy < (142)"* 70"
B(z,0)

COROLLARY 8. Pi(B(z,0)) < Ct't0=d/apd provided |z| = 1, t > 0,
and 0 < o < t1/.

Proof. By scaling and Lemma 6 we have
Py(B(z,0)) = Pi(B(at Y, ot71/)) < ct! TO=D/opd o
Proof of Theorem 1. Let |z| = 1,0 < p < 1/2. By scaling and Corollary 7,

o0 o0

V(B(z,0)) = | Pu(B(,0))dt = | P(B(xt™/* ot~ 1/*)) dt
0 0
< co? S (1+ t_l/"‘)_v_at—d/o‘ dt.
0

The integral is finite because —d/a < —1 and (y + a — d)/a > —1. Let
y € R4\ {0}, = = y/|y|. By scaling, a change of variable, and (17),

[ee] o)

Viy) = § eyt )dt = |y|*= § = pa(wt ™) dt
0 0
< |y’a—d X t_d/a(l _|_t—1/a)—'y—a dt < C|y|a—d.
0

The first integral above is locally uniformly convergent on R?\ {0}, hence V'
is continuous there. =
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We now proceed to our converse, Theorem 2. We propose a general ap-
proach based on a simple study of the generator 4. We first note that
(18) pi(z) >0, zeRY (t>0)
(see [52] or [43, Lemma 5]). In fact, (18) easily follows from (8), (4), continuity
of pf, and the fact that supp(v) + - - - + supp(v) (d times) equals R

By (18), (12), and continuity of p; for ¢ > 0, there is a constant ¢ = ¢(«, 1)
such that
(19) V(z) >clz|*™?, xeR%

LEMMA 9. Let d > . For all ¢ € C(RY) we have

| Ap(z —y)V(dy) = —p(z), =z eR,
R4
where the integral s absolutely convergent.

This is well known (see, e.g., [36, Theorem 3.5.78]). We only note that
|Ap(z)] < (1 + |z|)~17. The absolute convergence follows from this and
the homogeneity of V.

Proof of Theorem 2. If d =1 < a then V' = oo and there is nothing to
prove. Thus we assume that d > a. We fix a function ¢ € C2°(R?) such that
¢ >0, supp¢ C B(0,1/2) and ¢ = 1 on B(0,1/3). Let r > 0. Put ¢,(z) =
¢(x/r) and A, (x) = A¢,(z). Homogeneity of A yields A, (x) = r=*Ay(x/7).
Note that A¢ = Ay is bounded, hence there is a constant ¢ such that

Ap(z) > —cr™ 2.

If || > r/2 then A,(z) > 0, and in fact A, (z) > v(B(x,r/3)). Let |z| > 7.
From Lemma 9 we have

0=\ A @—yV(dy) > | Al-yViy)+ | Alz—y) V(dy)

Rd B(z,r/2) B(0,r/4)
> —er V((B(z,r/2) + | v(Ble—y,r/3))V(dy)
B(0,r/4)

> —cr *V((B(z,7/2)) + V(B(0,7r/4))v(B(z,1/12)).
Since V(B(0,7/4)) = r*V(B(0,1/4)) and V(B(0,1/4)) < oo we get
(20) v(B(z,r/12)) < cr 2V((B(z,7/2)), |z|>r. =

We note that similar results can also be derived from the lower bounds
for the semigroup as given in [53, Theorem 1.1].

4. Harnack’s inequality: preliminaries. The general references for
this section are [22, 23], [46], [8], or [10]. The Lévy measure v yields a
standard symmetric stable Lévy process (X, P*) with generating triplet
(0,,0). Namely, the transition probabilities of the process (X, P*) are
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P(t,z,A) = P(A—=z),t >0,z € RY, A C R? and P(0,z,A4) = 14(x),
where {P;, t > 0} is the stable semigroup of measures introduced in Prelim-
inaries. The process is strong Markov with respect to the so-called standard
filtration.

The process conveniently leads to a definition of harmonic measures w7,
and their properties (21) and (24) below. For an analytic definition of these,
called the fundamental family, we refer to [7] (see also [40, 9]).

For open U C R? we define 7y = inf{t > 0: X; & U}, the first exit time
of U. We write w}, for the harmonic measure of (open) D:

wh(A) = P*(1p < 00, X;p € A), x€RY ACRL
By the strong Markov property

(21) wh(A) = {wh(A) wi(dy) iU C D.
We say that a function u on R? is harmonic in open D C R? if
(22) u(z) = E'u(Xr,) = | u(y)ofi(dy), «eR,
UC

for every bounded open set U with the closure U contained in D. It is called
regular harmonic in D if (22) holds for U = D. If D is unbounded then
E*uw(X.,) = E*[tp < o0; u(X;,)] by convention. Under (22) it will only
be assumed that the expectation in (22) is well defined (but not necessar-
ily finite). Regular harmonicity implies harmonicity, and it is inherited by
subsets U C D. This follows from (21).

We denote by pP(z,v) the transition density of the process killed at the
first exit from D:

pP(x,v) = p(t,z,v) — E%[tp < t; p(t — 7p, Xrp,v)], t>0,z,v€ RY.
Here p(t,x,v) = pi(v—x). For convenience we will assume that D is regular:
Prinf{t > 0 : X; ¢ D} = 0] = 1 for x € D (see [23, 22]). Then pP
is symmetric: pP(z,v) = pP(v,x), z,v € D (see, e.g., [24]). The strong
Markov property yields
(23) p(t,z,v) = E*[p(t — mp, X+,,v); 7D < t], x € D,ve D"
In particular, pP(z,v) = 0if 2 € D, v € D°. We let

Gp(e,0) = | pP(z,v) dt,
0
and we call Gp(x,v) the Green function for D. If V is continuous on R4\ {0},
so that V(z) < ¢|z|*~%, then the strong Markov property yields, for z,v € D,

(24) Gp(z,v) =V(z,v) — E°V(X;,,v) =V(x,v) — S V(z,v) wh(dz).
Dec
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Here V(z,v) = V(v — ). The Green function is symmetric: Gp(x,v) =
Gp(v,x), continuous in D x D\ {(z,v) : © = v}, and it vanishes if z € D¢
orv € D°.
Note that V(z,v) is harmonic in # on R?\ {v}. Indeed, if z € D and
dist(D,v) > 0 then by (23),
oo
V(z,v) = | E"[p(t — 7p, X7, 0); 7p < t]dt = E"V (X, v).
0
Similarly, the Green function v — Gp(x,v) is harmonic in D \ {z}.
By the Tkeda—Watanabe formula [34] we have

(25) wh(A) = | Gp(x,v)v(A—v)dv if dist(A, D) > 0.
D

We note here that translation invariance of the Lebesgue measure and the
Fubini—Tonelli theorem yield

(26) SS@(U)J/(U + z)m(dz) dv = SS@P(U + 2)¥(v) m(dz) dv

for every symmetric measure m and nonnegative functions ¢ and ¥. In par-
ticular, taking m = v, &(v) = Gp(x,v) and ¥(v) = 14(v) we get

S Gp(z,v)v(A—v)dv = S S Gp(z,v— z)v(dz)dv.

D A —D+wv
If the boundary of D is smooth or even Lipschitz then

wph(0D) =0, =x€D

(see [50] and also [42], [54]). In this case w7, is absolutely continuous with
respect to the Lebesgue measure on D€, Its density function, or the Poisson
kernel, is given by the formula

(27) Pp(z,y)= | Gpla,y—2)v(dz), zeD.

y—D
Note that D is then regular, because of (18) and scaling. In particular the
above considerations apply to D = B(0,1).

It follows from (9) that for every 7 > 0 and x € R? the P® distribution
of {Xy, t > 0} is the same as the P™ distribution of {r~!X,a;, t > 0}. In
particular,

(28) wp(A) = wip(ra).

We call (28) scaling, too. It shows that for v harmonic on D, the dilation u,
is harmonic on rD. A similar remark concerns translations.
By (26) we also obtain

X ly|* (A —y)dy = S S ly — 2|*%v(dz)dy, AcCRY
B(0,1/2) A B(y,1/2)
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and
| v(A-ydy=\v(B(y,1/2)dy, AcCR’
B(0,1/2) A
Therefore we can express the relative Kato condition (RK) in an equivalent
form:

(29) | e wAd-ydy<k | wv(A-y)dy, AcCR™
B(0,1/2) B(0,1/2)

We remark that (RK) is a local condition at infinity: the inequality in
(2) only needs to be verified for large y € R?. In particular, if it holds for
ly| > 1 then it holds for all y € R? possibly with a different constant (see
[17]). Note that the reverse of (2) (and (29)) always holds, so actually (RK)
means comparability of both sides of (2) (and (29)).

In what follows we let G = Gp(g,1), P = Pp(o,1) and we define

s(z) = E*7po,1) = S G(z,v)dv.
B(0,1)
Explicit formulas for these functions for v(dy) = |y|~?~*dy are known and
may give some insight into the general situation. They are essentially due to
M. Riesz (see, e.g., [15], [11], [40], [9], |28]). In particular (for isotropic v) we
have
1—|a?
[yl? =1

a2
) Plow) =il ey el <L 1
The following two lemmas are consequences of symmetry and nondegen-
eracy of the spectral measure p. They can be proved similarly to Lemmas 4
and 10 of [17], so we skip the proofs.

LEMMA 10. There ezxist € = e(a, ) € (0,1) and C = C(a, p) such that
(31) v(Bz,1—¢))>C, 1—e<]|z|<1.
LEMMA 11. There ezxists C = C(a, ) such that
s(z) < C(1— |22, |z < 1.

For clarity we make the following remark on nondegeneracy of v. If a
symmetric Lévy measure v is concentrated on a proper linear subspace M
of R% and a function u is constant on = + M for every x € RY, then u is
harmonic on RY (relative to ). However, such functions in general violate
the Harnack inequality. Thus our standing assumption of the nondegeneracy
of v is a necessary, or nonrestrictive, condition for Harnack’s inequality in
Theorem 3.
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5. Necessity of the relative Kato condition. In this short section we
assume that Harnack’s inequality (1) holds. We make no further assumptions
on v beyond those in Section 2. In particular our considerations do not
depend on the estimates in Section 3.

LEMMA 12. Harnack’s inequality implies the relative Kato condition.

Proof. We first consider the case d > «. We claim that
(32) V(z) ~|z|*"? 2z eR
Indeed, for all |z| =1, V(B(z,1/4)) = SB(I 1/4) V(v)dv < V(B(0,2)) < oo,
so there exists v € B(z,1/4) such that V(v) < V(B(0,2))/|B(0,1/4)|. By
Harnack’s inequality V(z) < ¢V (v). The estimate (32) follows from (12)
and (19).

Let g(v) = min(G(0,v), 1). We claim that
(33) G(z,v) = gw)lv —z|*? if |z| < 1/2 and |v] < 1.

Indeed, by (32) and (24) for small § > 0 we have

Gz, v) = v —z|* %  |z| <1/2, |z —v| < 6.
Harnack’s inequality implies that G(z,v) ~ |v — 2|*~% provided |z| < 1/2
and |v| < 3/4, and also G(z,v) =~ G(0,v) if |x| < 1/2 and |v| > 3/4. Note
that ¢ is locally bounded from below on B(0,1). This completes the proof
of (33).

For every A C R? the function z + WE(o 1)(A) is nonnegative on R?
and regular harmonic in B(0,1). Harnack’s inequality (1), (25), (33), and
Fubini—Tonelli yield
Bon@~ | whon@drx| | g)lv— 24— o) dvda

B(0,1/2) B B(0,1/2)
R X g(v)v(A —v)dv.
B
This and (25) yield

S g(0)|v|* "W (A —v)dv ~ S g(v)v(A —v)dv.
B B
To this “approximate equality” we add the following one:

S 10| (A — v)dv ~ X v(A —v)dv,
B\B(0,3/4) B\B(0,3/4)
and we obtain
S [0|*" (A —v)dv ~ S v(A—wv)dv, AC B
B B
The change of variable v = 2u yields (29) and (2).
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In the case d < a we have d = 1, and so v(dy) = c|y|~'~“dy, which
satisfies (RK). =

6. Sufficiency of the relative Kato condition. In what follows we
assume that (RK) holds for v. We will also assume that d > « unless stated
otherwise.

The key step in the proof of Harnack’s inequality is the following esti-
mate for the Green function of the ball, which we prove after a sequence of
lemmas. We note that it is essentially the same as (33), but proved under
explicit assumptions on v rather than by stipulating Harnack’s inequality.
The estimate was suggested by the sharp estimates of the Green function of
Lipschitz domains [38] for isotropic v (see also [13]). We also refer the reader
to [39, 21] for more explicit estimates for smooth domains and to, e.g., [15]
for explicit formulas for the ball in the case of isotropic v.

PROPOSITION 1. G(z,v) ~ s(v)[v—xz|*"% provided |z| < 1/2 and |v| < 1.
LEMMA 13. v is a (d — «)-measure on S.
Proof. Indeed, for |z| =1, 0 < r < 1/2 by (2) we obtain

v(B(z,r)) < ri @ S |z — 2|*"?u(dz) < Kv(B(0,1/2)%)r%. u
B(x,1/2)

Theorem 1 implies that V' is continuous on R\ {0}. Consequently, V (z) ~
|z|*~% and G(z,y) is continuous on B x B\ {(z,y) : = y}.

LEMMA 14. G(z,v) =~ |v — 2|*~% if || < 1/2, |v| < 3/4.

We skip the proof as it is the same as the one of Lemma 6 in [17].

We note that lim,_,. G(x,v) = 0 for all v € B(0,1) and z € S because
the measures w%(o’l) weakly converge to §,. This is related to the regularity
of B(0,1), and follows, e.g., from the estimate

W%(zyli‘xn (B(O, l)c) Z C,
which is a consequence of scaling, nondegeneracy of v (compare (31)), and (25).
We will employ the operator

Urp(x) = Er9(Xrp(,,y) — 0(2)

E*Tp(5.r)

Y

whenever the expression is well defined for given ¢, r > 0 and z. We note
that U, is implicitly used in [7, Chapter III, §17]. Clearly, if h is harmonic
in D, x € D, and r < dist(z, D), then U, h(x) = 0. We note that

Uo() = limlUyo(a)

is the Dynkin characteristic operator, which was used in [17] in a similar
way.
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We record the following observation (maximum principle).
LEMMA 15. If there is r > 0 such that U.h(x) > 0 then

h(z) < sup h(y).
y€ER4

LEMMA 16. There exists C' = C(a, ) such that
G(z,v) < Cs(v), |z|<1/2,3/4<|v|<1.
Proof. By the strong Markov property we have
s(v) = E'rp = E"(1a + Tp(0,1) © 0ry) = E'7a + EVEX7a TB(0,1)
= EV74 + E's(X,,), wveR Ac B0,1),

which yields U,s(v) = —1 for v € B(0,1) and r < 1 — |v].

For n € {1,2,...} and z € B(0,1/2) we let g(v) = G(z,v) and g,(v) =
min(G(z,v),n). For v € B(z,1/8)° we have G(z,v) < c1|r — v|*¢, hence
gn(v) = G(z,v) provided n > ¢;89=%. By harmonicity of g on B(0,1) \ {x},
scaling property, (25) and (2) we find that for v € B(0,1) \ B(0,3/4) and
r < min(1 — |v],1/16),

urgn(v) = ur(gn - g) (7))

1
= —_— G0, w)\(gn — 9)(v+rw + 2) v(dz) dw
BP0 B(§,1> S

S G(0,w) S |t — v —rw — z|* " v(dz) dw
B(0,1) B(z—v—rw,1/8)

>

If @ > c3 then
Ur(as — gn)(v) = —a — Urgn(v) < —a+c3 < 0.
By scaling
(34) s(v) = E'Tp(pi-jo) = (1 — [v))*E%T50,1)
> 4_O¢EOTB(071), "U’ < 3/4

Since gn(v) < n, we see that as(v) — gn(v) > 0 for v € B(0,3/4) provided
a > TL/(4_OCEOTB(071)).

Let ag = max[c;),,n/(él_aEDTB(O,l))] + 1 and h(v) = ags(v) — gn(v). We
have h(v) > 0 for v € B(0,3/4), h(v) =0 for v € B(0,1)° and U.h(v) < 0 for

v € B(0,1)\ B(0,3/4), r < min(1 — |v|,1/16). Lemma 15 and continuity of
h yield h(v) > 0 in B(0,1). Since g, = g on B(0,3/4)¢, the lemma follows. =
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Lemmas 16 and 11 yield the following conclusion:
(35) Glz,v) < C(1— )2, |z| <1/2,3/4<|v] <1.

LEMMA 17. There is C = C(a, p) such that G(x,v) > Cs(v) provided
|z| < 1/2 and |v| < 1.

Proof. Let © € B(0,1/2). We fix € such that (31) is satisfied. Lemma
14 yields G(x,v) > ¢; > 0 for v € B(0,1 —¢). Let n € {1,2,...} be such
that ¢; > 2/n. By (35) there is n > 0 such that G(z,v) < 1/n for v €
B(0,1) \ B(0,1 —n). Let g(v) = G(z,v) and g,(v) = min(g(v),1/n). We
have

gn(v) = g(v), v e B(0,1)\ B(0,1—mn),
and
9(v) = gn(v) =2 2/n—=1/n=1/n, v e B(0,1-e),

hence by Lemma 10 for v € B(0,1) \ B(0,1 —7) and » < min(l — |v|,
(e —n)/2) we obtain

urgn(v) = ur(gn - g)(v)

1
=30 X Gp(0,1)(0,w) S (gn — 9) (v + rw + 2) v(d2) dw
B(0,1)
< 1 1 < .
s @ S Gp0,1)(0,w)r(B(v+rw,1 —¢))dw < -2

B(0,1)
For a > 0 we have
Ur(agn — s)(v) < —coa/n+1, wve B(0,1)\ B(0,1—mn).

This is negative if @ > n/cy. Furthermore s(v) < ¢3 for v € B(0,1) and
gn(v) > ¢4 > 0 for v € B(0,1 — 7). Thus agy(v) — s(v) > acs —c3 >0
for v € B(0,1 —n) if only a > c3/cs. Note that our estimates do not de-
pend on z, provided |z| < 1/2. Let ap = max(c3/cq,n/c2) + 1 and h(v) =
apgn(v) — s(v). We have h(v) > 0 for v € B(0,1 —n), and U h(v) < 0 for
v € B(0,1) \ B(0,1 —n). By Lemma 15 and the continuity of h we get
h(v) > 0in B(0,1), and the lemma follows. m

Proof of Proposition 1. The estimate is a consequence of (34), Lemma 14,

16, and 17.

Maciej Lewandowski [41] has informed us that he recently proved the
converse of the inequality in Lemma 11. This implies

(36) Gla,v) m (1= [o)*Pl —2|*, 2] <1/2, o] < 1.

We will not use (36) below; the less explicit estimate in Lemma 17 suffices
for our purposes. Note that the asymptotics of G at the pole is different
when d =1 < « (see, e.g., [15]).
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LeEmMA 18. (RK) implies Harnack’s inequality for all d € {1,2,...} and
a € (0,2).

Proof. By translation and scaling invariance of the class of harmonic
functions and by a covering argument we only need to verify that

u(0) < cu(x), |z|<1/2,

whenever u is nonnegative on R? and regular harmonic on B(0,1). For this
to hold it is sufficient to have, with the same constant c,

(37) P(0,y) <cP(z,y), |z <1/2, [y[> 1.

If d = 1, then (37) follows from (30). Thus we only need to examine the
case d > «. By the decomposition B(0,1) = B(0,1/2)U[B(0,1)\ B(0,1/2)],
(27), Proposition 1, (2), and the fact that s is bounded away from zero on
compact subsets of B(0,1) (cf. (34)), we obtain

POy~ | sy—vly—o/* )~ | sly—ov)v(dv)

B(y,1) B(y,1)
<c | sty—v)ly—v—al*u(dv)
B(y,1)

~P(a,y), 2l <12, [yl > 1.«
Proof of Theorem 3. See Lemmas 12 and 18.

We conclude with a few remarks and open problems.

By translation and dilation invariance of the class of harmonic functions
considered, and by a covering argument, Harnack’s inequality holds for every
compact subset of every connected domain of harmonicity. We note that:
(1) it does not generally hold for disconnected open sets, as the support of
y — P(z,y) may be smaller than B(0, 1) (see (25)), (2) it does hold for all
open sets if v is isotropic (this follows from (30), or see [14]).

We consider the following examples of measures v. (RK) holds for v (dy)
~ |y|~¥%dy (both sides of (2) may be explicitly estimated). Next, let £ € S,
0<r <2 and C =SN[B(£r)UB(=¢,r)]. Then (RK) holds for vo(dy) =
Le(y/lyDlyl~**dy (see [17]).

On the other hand, consider balls B,, C BJ, centered at S, with radii
47" and 27", respectively, and such that {B]} are pairwise disjoint. Let
C = Uy,>n, Bn and let v3(dy) = 1c(y/ly))|y|=?2dy. If d — 1 > o then (RK)
does not hold for v3 (|[17]) even though v3 is bounded by vy.

Let Be, = B(§,7) NS. By integrating in polar coordinates we can give
the characterization of the relative Kato condition in terms of the spectral
measure (4 and Bg, (cf. [17]). Let d — o > 1. Then (RK) holds for v if
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and only if
38) | (In—e&l/m)> "V p(dn) < eu(Be,), €€S,0<r<ec
Be.r
In the case d = 2, « = 1, (RK) is equivalent to
(39) | log(2r/In—€)) pldn) < cu(Be,), €€S,0<r<c
Be r

In the case of d = 2 and a > 1, (RK) is always satisfied. We omit the proofs.
COROLLARY 19. If d—1 < « then Harnack’s inequality holds for A.
This may be extended as follows. We will say that v is a strict y-measure if

(40) v(B(xz,r)) =17 provided x € suppv, |z|=1,0<r <1/2

(cf. (13)). Of course, if v is a (strict) y-measure on S then p is a (strict) (y—1)-
measure (on S). This observation and (38) yield the following conclusion,
which we state without proof.

COROLLARY 20. Ifv is a strict y-measure with v > d—a, then Harnack’s
inequality holds for A.

The example of 3 shows the importance of the strictness assumption.
We interpret (RK) as a property of balance or firmness of v. As such it is
close to the reverse Holder condition with exponent ¢ > d/« (see [17]).

If (&) > 0 for some & € S then v is a 1-measure only. By Theorem 2 the
potential kernel V' is unbounded on S if 1 > d — 2« (in fact, if 1 > d —2a, see
[63, Theorem 1.1], [17]). That V' may be infinite on rays emanating from the
origin shows that harmonic functions cannot be defined pointwise by means
of A. In general they even lack finiteness in the domain of harmonicity (but
see [14] and [44] in this connection). Thus the potential-theoretic properties
of the operators A are very diverse for the measures v considered here. This
is in sharp contrast with the fact that the exponents @ (see (5)) are all
comparable and the same is true of the corresponding Dirichlet forms ([27],
see also [25]). The boundary potential theory of A will generally be very
different from that of the fractional Laplacian (see [51, p. 199] for a simple
remark on this subject).

We mention a number of interesting topics deserving further study: (1)
characterization of continuity and higher order regularity of V on S ([6]),
(2) the boundary Harnack principle (cf. [12, 16, 51]), the corresponding ap-
proximate factorization of G(x,v) for all x,v € B(0,1) (cf. [13, 31, 20] and
Proposition 1 above), and related boundary problems (cf. [1, 19]), (3) study
of other Lévy measures which are products in polar coordinates, (4) study
of similar nonlocal operators A which are not translation invariant ([2, 47]).
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