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Some properties and applications of

equicompact sets of operators

by

E. Serrano, C. Piñeiro and J. M. Delgado (Huelva)

Abstract. Let X and Y be Banach spaces. A subset M of K(X, Y ) (the vector space
of all compact operators from X into Y endowed with the operator norm) is said to be
equicompact if every bounded sequence (xn) in X has a subsequence (xk(n))n such that
(Txk(n))n is uniformly convergent for T ∈ M. We study the relationship between this con-
cept and the notion of uniformly completely continuous set and give some applications.
Among other results, we obtain a generalization of the classical Ascoli theorem and a com-
pactness criterion in Mc(F, X), the Banach space of all (finitely additive) vector measures
(with compact range) from a field F of sets into X endowed with the semivariation norm.

1. Introduction. Throughout this paper X and Y will be Banach
spaces. As usual, we will denote by K(X,Y ) the Banach space of all com-
pact operators from X into Y endowed with the operator norm. In [9] the
authors introduced the notion of an equicompact set of operators. A set
M ⊂ K(X,Y ) is said to be equicompact if every bounded sequence (xn) in
X has a subsequence (xk(n))n such that (Txk(n))n is uniformly convergent
for T ∈ M. They proved that the notions of equicompact set and collectively
compact set are dual in the following sense: M ⊂ K(X,Y ) is equicompact
(respectively, collectively compact) iff M∗ = {T ∗ : T ∈ M} is collectively
compact (respectively, equicompact). We recall that M is called collectively

compact if the set
⋃

T∈M T (BX) is relatively compact. Thus, the well known
Palmer theorem [7] takes the following new form:

Theorem A. If M is a subset of K(X,Y ), then the following statements

are equivalent :

(i) M is relatively compact.

(ii) M is equicompact and Mx = {Tx : T ∈M} is relatively compact for

every x ∈ X.
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(iii) M is collectively compact and M∗y∗ = {T ∗y∗ : T ∈ M} is relatively

compact for every y∗ ∈ Y ∗.

In particular, the authors of [9] have obtained the following characteri-
zation of compactness in a dual Banach space that we will use throughout
this paper.

Corollary B. Let X be a Banach space and A ⊂ X∗ a bounded set.

Then A is relatively compact iff every bounded sequence (xn) in X has a

subsequence (xk(n))n so that (〈xk(n), a〉)n is uniformly convergent for a ∈ A.

In [9], the authors proved that a set M ⊂ K(X,Y ) is equicompact iff
there exists a null sequence (x∗n) in X∗ such that ‖Tx‖ ≤ supn |〈x, x

∗
n〉| for

all x ∈ X and T ∈ M. They also proved that equicompact sets are uniformly
completely continuous, that is, ‖Txn‖ → 0 uniformly for T ∈ M whenever
(xn) is a weakly null sequence inX. Actually, if the Banach spaceX does not
contain a copy of ℓ1, equicompact sets and uniformly completely continuous
sets are the same (see Proposition 2.2 below).

In this paper we deepen the study of the relationships between equicom-
pact and uniformly completely continuous sets. Moreover, we obtain a gen-
eralization of the classical Ascoli theorem and a characterization of compact-
ness in Mc(F, X), the Banach space of all (finitely additive) vector measures
from F into X with compact range, F being a field of subsets of a set Ω.

We use the classical notation in Banach space theory. If X is a Banach
space, X∗ denotes its dual space, BX its closed unit ball and SX its unit
sphere. For a subset A of X, co(A) is the closed convex hull of A. As usual,
ℓ1(I,X) (respectively ℓ∞(I,X)) stands for the Banach space of all functions
x̂ : I→X satisfying

∑
i∈I ‖x̂(i)‖<∞ (respectively sup{‖x̂(i)‖ : i∈ I}<∞)

endowed with its natural norm. We will use the following version of the
well known Vala compactness criterion in ℓc∞(I,X) (the Banach space of
all functions x̂ : I → X with relatively compact range endowed with the
supremum norm).

Theorem 1.1 (K. Vala [10, Theorem 1]). Let M ⊂ ℓc∞(I,X) be bounded.

The following statements are equivalent :

(i) M is relatively compact.

(ii) M has the following properties:

(a) For every ε > 0 there exists a finite partition {D1, . . . , Dp} of I
such that

1 ≤ k ≤ p, i, j ∈ Dk ⇒ ‖x̂(i)− x̂(j)‖ < ε for all x̂ ∈ M.

(b) M(i) = {x̂(i) : x̂ ∈M} is relatively compact for all i ∈ I.

Our notation from vector measure theory follows [3]. We only consider
vector measures defined on fields of sets. If F is a field of subsets of a set Ω,
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X is a Banach space and m : F → X is such a measure, we denote by
‖m‖(A) the semivariation of A ∈ F:

‖m‖(A) = sup{|x∗ ◦m|(A) : x∗ ∈ BX∗}.

The range of m is denoted by rg(m), that is, rg(m) = {m(A) : A ∈ F}.
Finally, we denote by B(F) the Banach space of all scalar-valued functions
on Ω that are uniform limits of simple functions modeled on F.

2. Relationships between equicompact and uniformly comple-

tely continuous sets

Theorem 2.1. Let M be a bounded subset of K(X,Y ). The following

statements are equivalent :

(i) M is equicompact.

(ii) M has the following properties:

(a) M is uniformly completely continuous.

(b) For every seminormalized sequence (xn) in X equivalent to the

ℓ1 unit vector basis and every ε > 0, there exists a finite partition

{D1, . . . , Dp} of N such that ‖Txn − Txm‖ < ε for all T ∈ M
whenever m,n ∈ Di and i = 1, . . . , p.

Proof. (i)⇒(ii). We only have to prove (b). Let φ : ℓ1→ span{xn : n∈N}
be an isomorphism with φ(en) = xn for all n ∈ N. Obviously, the set M◦φ =
{T◦φ : T ∈ M} is equicompact and, therefore, φ∗◦M∗ is collectively compact.
That is, the set

⋃

T∈M

φ∗(T ∗(BY ∗) = {(〈xn, T
∗y∗〉) : y∗ ∈ BY ∗ , T ∈M}

is relatively compact in ℓ∞. According to Theorem 1.1, given ε > 0, there
exists a finite partition {D1, . . . , Dp} of N so that

n,m ∈ Di ⇒ |〈xn − xm, T
∗y∗〉| < ε for all y∗ ∈ BY ∗ and T ∈ M,

for i = 1, . . . , p. This yields ‖Txn−Txm‖ < ε for all T ∈ M and i = 1, . . . , p.
(ii)⇒(i). Let (xn) be a bounded sequence in X. By Rosenthal’s ℓ1-

theorem, (xn) has a subsequence which is either weakly Cauchy or equivalent
to the unit basis of ℓ1 (for simplicity, we will go on denoting it by (xn)).
In the first case, (Txn) is uniformly convergent for T ∈ M because M is
uniformly completely continuous. In the second case, by hypothesis, there
exists a partition {D1, . . . , Dp} of N so that

n,m ∈ Di ⇒ ‖Txn − Txm‖ < 1 for all T ∈ M

and i = 1, . . . , p. Some of the Di’s must be infinite, so we can choose i ≤ p
such thatDi is infinite. If k1 : N→ Di is an increasing bijection, then (xk1(n))
is a sequence equivalent to the unit basis of ℓ1; so repeating this process
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inductively, we can determine a sequence of subsequences (kp(n))n such
that (kp+1(n))n is a subsequence of (kp(n))n and

‖Txkp(n) − Txkp(m)‖ < 1/p for all n,m ∈ N and T ∈ M

for all p ∈ N. Now it is easy to deduce that (Txkp(p))p is uniformly convergent
for T ∈ M.

The next proposition proves that all uniformly completely continuous
sets are equicompact iff X does not contain a copy of ℓ1. We denote by
V(X,Y ) the vector space of all completely continuous operators from X
into Y endowed with the operator norm.

Proposition 2.2. Let X be a Banach space. The following statements

are equivalent :

(i) For every Banach space Y and every M ⊂ V(X,Y ), M is equicom-

pact whenever M is uniformly completely continuous.

(ii) There exists a Banach space Y such that every uniformly completely

continuous set M ⊂ K(X,Y ) is equicompact.

(iii) X does not contain copy of ℓ1.

Proof. If X 6←֓ ℓ1, then V(X,Y ) = K(X,Y ) for all Banach spaces Y
and (iii)⇒(i) can be deduced using Theorem 2.1; so we only have to prove
(ii)⇒(iii). Assuming (ii), to prove that X does not contain a copy of ℓ1, we
show that every uniformly completely continuous subset A ofX∗ is relatively
compact [5, Th. 2]. Take y0 ∈ SY and put M = A⊗ y0. It is obvious that M
is a uniformly completely continuous subset of K(X,Y ). So, by hypothesis,
M is equicompact, which yields the equicompactness of A as a subset of
K(X,R). Finally, a call to Corollary B tells us that A is relatively compact.

Recall that an operator T : X → Y is said to be conditionally weakly

compact if every bounded sequence (xn) in X admits a subsequence (xk(n))n

so that (Txk(n))n is weakly Cauchy. We denote by CW (X,Y ) the vector
space of all conditionally weakly compact operators from X into Y .

Proposition 2.3. For an operator Q ∈ L(X,Z), the following state-

ments are equivalent :

(i) Q ∈ CW (X,Z).
(ii) If A ⊂ Z∗ is uniformly completely continuous, then Q∗(A) is rela-

tively compact.

(iii) For every Banach space Y and every N ⊂ V(Z, Y ), N◦Q is equicom-

pact whenever N is uniformly completely continuous.

Proof. (i)⇒(ii). Let A ⊂ Z∗ be uniformly completely continuous and
Q ∈ CW (X,Z). Given a bounded sequence (xn) in X, there exists a subse-
quence (xk(n))n such that (Qxk(n))n is weakly Cauchy. Then (〈Qxk(n), a〉)n =
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(〈xk(n), Q
∗a〉)n is uniformly convergent for a ∈ A. Now, Corollary B con-

cludes the proof.

(ii)⇒(iii). Let Y be a Banach space and N ⊂ V(Z, Y ) uniformly com-
pletely continuous. We prove that Q∗ ◦N∗ is collectively compact. For this,
take a sequence ((Q∗ ◦ S∗

n)y∗n)n in
⋃

S∈NQ
∗ ◦ S∗(BY ∗) and put A = {S∗

ny
∗
n :

n ∈ N}. The set A is uniformly completely continuous. In fact, if (zn) is a
weakly null sequence in Z, we have

|〈zn, S
∗
my

∗
m〉| = |〈Smzn, y

∗
m〉| ≤ ‖Smzn‖.

Then, by hypothesis, the set Q∗(A) is relatively compact and, therefore,
((Q∗ ◦ S∗

n)y∗n)n has a convergent subsequence.

(iii)⇒(i). By hypothesis, S(Q(BX)) is relatively compact for all Banach
space Y and all S ∈ V(Z, Y ). According to [8, p. 377], the set Q(BX) is
conditionally weakly compact.

The next theorem shows that every equicompact set M admits a repre-
sentation of the form M = N◦Q, where N is uniformly completely continuous
and Q is conditionally weakly compact.

Theorem 2.4. Let M be a subset of L(X,Y ). The following statements

are equivalent :

(i) M is equicompact.

(ii) There exist a closed subspace Z of c0, Q ∈ K(X,Z) and N ⊂
K(Z, Y ) such that N is equicompact and M = N ◦Q.

(iii) There exist a Banach space Z, Q ∈ CW (X,Z) and N ⊂ V(Z, Y )
such that N is uniformly completely continuous and M = N ◦Q.

Proof. Only (i)⇒(ii) needs to be proved. According to [9, Prop. 2.2], the
equicompactness of M implies that there exists a null sequence (x∗n) in X∗

so that

‖Tx‖ ≤ sup
n
|〈x, x∗n〉| for all x ∈ X and T ∈ M.

For each n ∈ N, we define λn =
√
‖x∗n‖ and b∗n = λ−1

n x∗n (we can assume
that λn 6= 0 for all n ∈ N). Obviously, λn → 0 and ‖b∗n‖ → 0. Now, in
a similar way to the proof of [6, Th. 17.1.4], we find a closed subspace Z
of c0 and operators Q ∈ K(X,Z) and ST ∈ K(Z, Y ) satisfying T = ST ◦Q,

for all T ∈ M (Q : x ∈ X 7→ (〈x, b∗n〉) ∈ c0, Z = {Qx : x ∈ X} and
ST (〈x, b∗n〉) = Tx).

Put N = {ST : T ∈ M}. Since Z →֒ c0, we have Z∗ ≈ ℓ1/Z
⊥. If (en)

denotes the unit vector basis of ℓ1, it is clear that

〈(〈x, b∗n〉), λm[em]〉 = 〈x, λmb
∗
m〉 = 〈x, x

∗
m〉 and ‖λn[en]‖ → 0.
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Then, for all T ∈ M, we have

‖ST (〈x, b∗n〉)‖ = ‖Tx‖ ≤ sup
m
|〈x, x∗m〉| = sup

m
|〈(〈x, b∗n〉), λm[em]〉|,

that is, N is equicompact. Finally, notice that M = N ◦Q.

3. A generalization of the classical Ascoli theorem. In this section
we generalize the notion of equicompact set to a wider class of functions.
Let J be an arbitrary set and Z a complete metric space. If M is a set of
functions from J into Z with relatively compact range, we say that M is
equicompact if every sequence (jn) in J has a subsequence (jk(n))n such that
(f(jk(n)))n is uniformly convergent for f ∈ M.

If M ⊂ K(X,Y ), where X and Y are Banach spaces, then M is equicom-
pact (in the original sense) iff M = {T |BX

: T ∈ M} is equicompact.
Throughout this section X will be a Banach space and I an infinite in-
dex set. The mapping ψ : x̂ ∈ ℓc∞(I,X) 7→ ψ(x̂) = Tx̂ ∈ K(ℓ1(I), X) de-
fined by Tx̂(ξi)i∈I =

∑
i∈I ξix̂(i) is an isometric isomorphism. Using a sim-

ilar argument to the proof of Theorem 2.1, it is easy to prove the next
lemma:

Lemma 3.1. Let M be a bounded subset of K(ℓ1(I), X). Then M is

equicompact iff for every ε > 0 there exists a finite partition {D1, . . . , Dp}
of I such that

1 ≤ k ≤ p, i, j ∈ Dk ⇒ ‖Tei − Tej‖ < ε for all T ∈M.

Remark 3.2. If ψ(M) ⊂ K(ℓ1(I), X) is equicompact, then M is equicom-
pact and bounded, but, in general, an equicompact set M in ℓc∞(I,X) is not
necessarily bounded. To see this, take an equicompact and bounded se-
quence (x̂k) in ℓc∞(I,X) and choose x0 ∈ SX . Now, for each k ∈ N, denote
by ẑk ∈ ℓ

c
∞(I,X) the function defined by ẑk(i) = x̂k(i) + kx0 for all i ∈ I.

It is easy to prove that (ẑk) is an equicompact sequence but, nevertheless,
it is not bounded.

Proposition 3.3. Let M be a bounded subset of ℓc∞(I,X). The follow-

ing statements are equivalent :

(i) M is equicompact.

(ii) ψ(M) is equicompact.

(iii) There exists a null sequence (β̂n) in ℓ∞(I) so that

‖x̂(i)− x̂(j)‖ ≤ sup
n
|β̂n(i)− β̂n(j)| for all i, j ∈ I and x̂ ∈M.

Proof. (i)⇒(ii). Consider the operator U : ℓ1(I)→ ℓ∞(M, X) defined by
U(ei) = (x̂(i))x̂∈M for all i ∈ I ((ei)i∈I is the canonical basis of ℓ1(I)). By (i),
U is compact and, therefore, the set ψ(M) is equicompact [9, Prop. 2.2].
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(ii)⇒(iii). According to [9, Prop. 2.2], there exists a null sequence (β̂n)

in ℓ∞(I) satisfying ‖Tx̂(ξ)‖ ≤ supn |〈ξ, β̂n〉| for all ξ ∈ ℓ1(I) and x̂ ∈ M. In

particular, for i, j ∈ I we have ‖x̂(i) − x̂(j)‖ ≤ supn |β̂n(i) − β̂n(j)| for all
x̂ ∈ M.

(iii)⇒(i). Given a sequence (in) in I, there exists a subsequence (ik(n))n

such that (〈eik(n)
, β̂m〉)n is uniformly convergent for m ∈ N because of the

compactness of {β̂m : m ∈ N} (Corollary B). Now, from the uniform con-

vergence of (β̂m(ik(n)))n for m ∈ N and (iii), it is easy to obtain (i).

Remark 3.4. According to Lemma 3.1 and Proposition 3.3, a bounded
subset M of ℓc∞(I,X) is equicompact iff it satisfies condition (ii)(a) in Vala’s
theorem (Th. 1.1). As usual, if Ω is a compact topological space, C(Ω,X) is
the Banach space of all continuous functions φ : Ω → X endowed with the
supremum norm. Obviously, C(Ω,X) is a subspace of ℓc∞(Ω,X).

Now we are ready to show the main result of this section: a generalization
of the classical Ascoli theorem [4, Th. 7.5.7].

Theorem 3.5. Let M be a subset of C(Ω,X), Ω being an arbitrary

compact topological space. The following statements are equivalent :

(i) M is relatively compact.

(ii) M has the following properties:

(a) M is equicompact.

(b) M(ω) = {φ(ω) : φ ∈M} is relatively compact for all ω ∈ Ω.

Proof. (i)⇒(ii). follows directly from Theorem 1.1, Proposition 3.3 and
Lemma 3.1. According to Remark 3.4, to prove (ii)⇒(i) we only need to
show that M is bounded. To see this, consider the function F : ω ∈ Ω 7→
F (ω) = (φ(ω))φ∈M ∈ ℓ∞(M, X). Then F is well defined and has compact
range since M is equicompact.

The next proposition lists some elementary properties of equicompact
sets of functions that allow us to consider the above theorem as a general-
ization of the classical Ascoli–Arzelà theorem.

Proposition 3.6. Let Ω be an arbitrary compact topological space and

M a bounded subset of C(Ω,X).

(1) If M is equicompact , then it is sequentially equicontinuous.

(2) If , in addition, Ω is metrizable, then M is equicompact iff it is

equicontinuous.

Proof. (1) Suppose (ωn) is a sequence in Ω with limit ω0 ∈ Ω. By con-
tinuity, for each φ ∈ M, we have φ(ωn) → φ(ω0). As M is equicompact, by
contradiction, it is easy to prove that φ(ωn)→ φ(ω0) uniformly in φ ∈ M.



178 E. Serrano et al.

(2) In case Ω is metrizable, equicontinuity and sequential equicontinuity
are the same. So, we only have to prove the sufficiency. Assume M is equicon-
tinuous. Given a sequence (ωn) in Ω, as Ω is metrizable and compact, there
is a convergent subsequence (ωk(n))n. Suppose that ωk(n) → ω0 ∈ Ω. Since
M is equicontinuous it follows that φ(ωk(n)) → φ(ω0) as n → ∞ uniformly
in φ ∈ M.

4. Compactness in Mc(F, X). As in Section 3, we say that a set M ⊂
Mc(F, X) is equicompact if every sequence (An) in F has a subsequence
(Ak(n))n such that (m(Ak(n)))n is uniformly convergent for m ∈ M.

By [3, I.5.3], all vector measures in Mc(F, X) are strongly additive. To
start, we prove that equicompact sets of vector measures are uniformly

strongly additive. We recall that a set M of strongly additive vector measures
is called uniformly strongly additive if, for every sequence (An) of pairwise
disjoint members of F, limn→∞ ‖

∑
∞

k=nm(Ak)‖ = 0 uniformly in m ∈M.

Proposition 4.1. If M is an equicompact set of vector measures, then

it is uniformly strongly additive.

Proof. According to [3, Proposition I.1.17], we have to prove that
limn→∞ ‖m(An)‖ = 0 uniformly in m ∈ M whenever (An) is a sequence
of pairwise disjoint members of F. Arguing by contradiction, suppose there
exist ε > 0, a sequence (mn) in M and a subsequence (Ak(n))n so that

(1) ‖mn(Ak(n))‖ > ε for all n ∈ N.

By hypothesis, (Ak(n))n has a subsequence (Ah(n))n such that limnm(Ah(n))
= 0 uniformly in m ∈M, which contradicts (1).

If m : F → X is a finite additive measure with compact range, then
the integration map Im : f ∈ B(F) 7→

T
Ω
f dm ∈ X is compact. In fact, in

[3, p. 263] it is proved that the sums of the form
∑n

i=1 αim(Ai), 0 ≤ α1 ≤
· · · ≤ αn ≤ 1, Ai ∩ Aj = ∅ for i 6= j, belong to co(rg(m)). This yields the
inclusion { \

Ω

f dm : f ∈ BB(F)

}
⊂ co(rg(m))− co(rg(m)).

Then the operator Im is compact.
Now we are ready to state our main result.

Theorem 4.2. Let M be a subset of Mc(F, X). The following statements

are equivalent :

(i) M is relatively compact.

(ii) M is equicompact and M(A) is relatively compact for all A ∈ F.

Proof. (i)⇒(ii). Put M̂ = {Im : m ∈ M}. As there is an isometry be-

tween Mc(F, X) and K(B(F), X) defined by m ↔ Im, M̂ is a relatively
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compact subset of K(B(F), X). By Theorem A, M̂ is equicompact and

M̂(f) = {
T
Ω
f dm : m ∈ M} is relatively compact, for all f ∈ B(F). So,

in particular, (ii) holds.

(ii)⇒(i). We consider the vector measure

G : A ∈ F 7→ (m(A))m∈M ∈ ℓ∞(M, X),

which has compact range since M is equicompact. Thus the integration map
IG : B(F)→ ℓ∞(M, X) is compact and defined by IG(f) = (Im(f))m∈M for

f ∈ B(F). From the compactness of IG it follows that M̂ = {Im : m ∈M}

is equicompact. To prove that M̂ is relatively compact in K(B(F), X), we

only have to show that M̂(f) = {
T
Ω
f dm : m ∈ M} is relatively compact for

all f ∈ B(F). Given f ∈ B(F), choose a sequence (φn)n of simple functions
so that f = limn→∞ φn in B(F). Fix ε > 0, and take n ∈ N such that
‖f − φn‖ < ε/s, where s = sup{‖m‖(Ω) : m ∈M}. For all m ∈ M, we have\

Ω

f dm =
\
Ω

(f − φn) dm+
\
Ω

φn dm ∈M(φn) + εBX ,

since ‖
T
Ω

(f − φn) dm‖ ≤ ε for all m ∈ M. It is obvious that M(φn) is

relatively compact, so we have proved that M̂(f) is relatively compact for
all f ∈ B(F).

Corollary 4.3. Let (mn) be an equicompact sequence in Mc(F, X). If

limn→∞mn(A) exists for all A ∈ F, then (mn) is convergent.

Remark 4.4. A uniformly strongly additive set is not necessarily equi-
compact. For an example, take a noncompact and weakly compact subset
W of L1(µ), µ being Lebesgue measure on [0, 1]. Denote by M(W ) the set of
indefinite integrals λf =

T
(·) fdµ with f running over W . By [1, Th. VII.13],

M(W ) is uniformly countably additive, nevertheless, it is not equicompact
in view of Theorem 4.2.

Examples of equicompact sets can be obtained in the following way: take
a uniformly completely continuous set N ⊂ V(Z,X), Z being an arbitrary
Banach space, and a vector measure m ∈Mc(F, X). It is easy to prove either
directly or using Proposition 2.4 that the set M = N ◦m is equicompact.

Theorem 4.5. Let M be a bounded subset of Mc(F, X). Then M is

equicompact iff there exist a Banach space Z, a vector measurem∈Mc(F, X)
and a uniformly completely continuous set N ⊂ V(Z,X) so that M = N◦m.

Proof. We only have to prove the necessity. So, let M ⊂ Mc(F, X) be
bounded and equicompact. As in the proof of the above theorem, we can
consider the vector measure

G : A ∈ F 7→ (m(A))m∈M ∈ ℓ∞(M, X).
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Again, the integration map IG : B(F) → ℓ∞(M, X) is compact because G
has compact range. Moreover, IG(f) = (

T
Ω
fdm)m∈M for all f ∈ B(F). This

proves that M̂ = {Im : m ∈ M} is equicompact. According to Theorem 2.4,
there exist a closed subspace Z of c0, an operator Q ∈ K(B(F), Z) and an

equicompact set N ⊂ K(Z,X) such that M̂ = N ◦ Q. If mQ denotes the
representing measure of Q, we have M = N ◦mQ. Finally, mQ is strongly
additive because Q is compact (see [3, Th. VI.1.1]).
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