On the distance between $\langle X\rangle$ and L^{∞} in the space of continuous BMO-martingales

by
Litan Yan (Shanghai) and Norihiko Kazamaki (Toyama)

Abstract. Let $X=\left(X_{t}, \mathcal{F}_{t}\right)$ be a continuous BMO-martingale, that is,

$$
\|X\|_{\mathrm{BMO}} \equiv \sup _{T}\left\|E\left[\left|X_{\infty}-X_{T}\right| \mid \mathcal{F}_{T}\right]\right\|_{\infty}<\infty,
$$

where the supremum is taken over all stopping times T. Define the critical exponent $b(X)$ by

$$
b(X)=\left\{b>0: \sup _{T}\left\|E\left[\exp \left(b^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]\right\|_{\infty}<\infty\right\}
$$

where the supremum is taken over all stopping times T. Consider the continuous martingale $q(X)$ defined by

$$
q(X)_{t}=E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{t}\right]-E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{0}\right]
$$

We use $q(X)$ to characterize the distance between $\langle X\rangle$ and the class L^{∞} of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities

$$
\frac{1}{4 d_{1}\left(q(X), L^{\infty}\right)} \leq b(X) \leq \frac{4}{d_{1}\left(q(X), L^{\infty}\right)}
$$

hold for every continuous BMO-martingale X.

1. Introduction and preliminaries. Throughout this paper, we fix a filtered complete probability space $\left(\Omega, \mathcal{F}, P,\left(\mathcal{F}_{t}\right)\right)$ with the usual conditions, and we assume that every martingale is uniformly integrable and continuous.

Recall that a uniformly integrable martingale $X=\left(X_{t}, \mathcal{F}_{t}\right)$ is said to be in $\mathrm{BMO}_{p}(p \geq 1)$ if

$$
\begin{equation*}
\|X\|_{\mathrm{BMO}_{p}} \equiv \sup _{T}\left\|E\left[\left|X_{\infty}-X_{T}\right|^{p} \mid \mathcal{F}_{T}\right]^{1 / p}\right\|_{\infty}<\infty \tag{1.1}
\end{equation*}
$$

where the supremum is taken over all stopping times T. In particular,

$$
\|X\|_{\mathrm{BMO}_{2}}=\sup _{T}\left\|E\left[\langle X\rangle_{\infty}-\langle X\rangle_{T} \mid \mathcal{F}_{T}\right]^{1 / 2}\right\|_{\infty}
$$

Then, as is well known, $\|\cdot\|_{\mathrm{BMO}_{\mathrm{p}}}$ is a norm for all $p \geq 1$ and

$$
\|X\|_{\mathrm{BMO}_{1}} \leq\|X\|_{\mathrm{BMO}_{p}} \leq C_{p}\|X\|_{\mathrm{BMO}_{1}},
$$

where $C_{p}>0$ is a constant depending only on p. For these, see, for example, [3, p. 28].

Now, let BMO be the class of all uniformly integrable martingales X such that $\|X\|_{\mathrm{BMO}_{1}}<\infty$. Then BMO is a Banach space with the norm $\|\cdot\|_{\mathrm{BMO}_{1}}$, and we call the martingale X in BMO a BMO-martingale. There exist two important subclasses of BMO, namely, the class L^{∞} of all bounded martingales and the class H^{∞} of all martingales X such that $\langle X\rangle$ is bounded.

For $X \in \mathrm{BMO}$, let $a(X)$ be the supremum of the set of $a>0$ for which

$$
\sup _{T}\left\|E\left[\exp \left(a\left|X_{\infty}-X_{T}\right|\right) \mid \mathcal{F}_{T}\right]\right\|_{\infty}<\infty
$$

where the supremum is taken over all stopping times T, and for $M, N \in$ BMO we set

$$
d_{p}(M, N)=\|M-N\|_{\mathrm{BMO}_{p}} \quad(p \geq 1)
$$

Then there is a beautiful relationship between $a(X)$ and $d_{1}(\cdot, \cdot)$:

$$
\begin{equation*}
\frac{1}{4 d_{1}\left(X, L^{\infty}\right)} \leq a(X) \leq \frac{4}{d_{1}\left(X, L^{\infty}\right)} \tag{1.2}
\end{equation*}
$$

for every $X \in \mathrm{BMO}$. This is the Garnett-Jones theorem. For the proof, see [1], [3], [4].

Let now $b(X)$ denote the supremum of the set of $b>0$ for which

$$
\sup _{T}\left\|E\left[\exp \left(b^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]\right\|_{\infty}<\infty
$$

for $X \in \mathrm{BMO}$, where T runs through all stopping times. Then we have (see [3])

$$
\begin{equation*}
\frac{1}{\sqrt{2} d_{2}\left(X, H^{\infty}\right)} \leq b(X) \quad(X \in \mathrm{BMO}) \tag{1.3}
\end{equation*}
$$

Furthermore, we shall see in Section 2 that $\sqrt{2} a(X) \geq b(X)$ for every $X \in$ BMO.

In this paper, we consider the continuous martingale $q(X)$ defined by

$$
q(X)_{t}=E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{t}\right]-E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{0}\right]
$$

where X is a continuous martingale. We use $q(X)$ to characterize the distance between $\langle X\rangle$ and L^{∞} in the space of continuous BMO-martingales.
2. Results and proofs. In this section, we give the characterization of the distance between $\langle X\rangle$ and L^{∞} in the space of BMO-martingales.

Lemma 1. Let $X, Y \in$ BMO. Assume that $q(X)$ and $q(Y)$ are defined as in Section 1. Then

$$
\|q(X)-q(Y)\|_{\mathrm{BMO}_{1}} \leq 2\left(\|X\|_{\mathrm{BMO}_{2}}+\|Y\|_{\mathrm{BMO}_{2}}\right)\|X-Y\|_{\mathrm{BMO}_{2}} .
$$

Proof. Observing that

$$
\langle X\rangle-\langle Y\rangle=\langle X-Y, X\rangle+\langle X-Y, Y\rangle
$$

we find

$$
\begin{aligned}
& q(X)_{\infty}-q(Y)_{\infty}-E\left[q(X)_{\infty}-q(Y)_{\infty} \mid \mathcal{F}_{T}\right] \\
& \quad=\langle X\rangle_{\infty}-\langle Y\rangle_{\infty}-E\left[\langle X\rangle_{\infty}-\langle Y\rangle_{\infty} \mid \mathcal{F}_{T}\right] \\
& \quad=\left(\langle X-Y, X\rangle_{\infty}-\langle X-Y, X\rangle_{T}\right)-E\left[\langle X-Y, X\rangle_{\infty}-\langle X-Y, X\rangle_{T} \mid \mathcal{F}_{T}\right] \\
& \quad+l\left(\langle X-Y, Y\rangle_{\infty}-\langle X-Y, Y\rangle_{T}\right)-E\left[\langle X-Y, Y\rangle_{\infty}-\langle X-Y, Y\rangle_{T} \mid \mathcal{F}_{T}\right]
\end{aligned}
$$

It follows from the Schwarz inequality that

$$
\begin{aligned}
& E\left[\left|q(X)_{\infty}-q(Y)_{\infty}-E\left[q(X)_{\infty}-q(Y)_{\infty} \mid \mathcal{F}_{T}\right]\right| \mid \mathcal{F}_{T}\right] \\
& \quad \leq 2 E\left[\left|\langle X-Y, X\rangle_{\infty}-\langle X-Y, X\rangle_{T}\right| \mid \mathcal{F}_{T}\right] \\
& \quad+2 E\left[\left|\langle X-Y, Y\rangle_{\infty}-\langle X-Y, Y\rangle_{T}\right| \mid \mathcal{F}_{T}\right] \\
& \quad \leq 2 E\left[\left|\langle X-Y\rangle_{\infty}-\langle X-Y\rangle_{T}\right| \mid \mathcal{F}_{T}\right]^{1 / 2} E\left[\langle X\rangle_{\infty}-\langle X\rangle_{T} \mid \mathcal{F}_{T}\right]^{1 / 2} \\
& \quad+2 E\left[\left|\langle X-Y\rangle_{\infty}-\langle X-Y\rangle_{T}\right| \mid \mathcal{F}_{T}\right]^{1 / 2} E\left[\langle Y\rangle_{\infty}-\langle Y\rangle_{T} \mid \mathcal{F}_{T}\right]^{1 / 2} \\
& \quad \leq 2\left(\|X\|_{\mathrm{BMO}_{2}}+\|Y\|_{\mathrm{BMO}_{2}}\right)\|X-Y\|_{\mathrm{BMO}_{2}}
\end{aligned}
$$

This completes the proof.
As a consequence of the lemma, we see that $X \in \operatorname{BMO}$ implies $q(X) \in$ BMO. Furthermore, we have

Theorem 1. Let X be a uniformly integrable continuous martingale and let $q(X)$ be defined as in Section 1. If $X \in \mathrm{BMO}$, then

$$
\begin{equation*}
\frac{1}{4 d_{1}\left(q(X), L^{\infty}\right)} \leq b(X) \leq \frac{4}{d_{1}\left(q(X), L^{\infty}\right)} \tag{2.1}
\end{equation*}
$$

and furthermore, we have $\sqrt{2} a(X) \geq b(X)$ for all $X \in \mathrm{BMO}$.
Proof. Let $X \in \mathrm{BMO}$. Then for any $\lambda>0$ we have

$$
\begin{aligned}
& E\left[\exp \left(\lambda\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right] \\
& \quad=E\left[\exp \left(\lambda E\left[\langle X\rangle_{\infty}-\langle X\rangle_{T} \mid \mathcal{F}_{T}\right]\right) \exp \left(\lambda\left(\langle X\rangle_{\infty}-E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{T}\right]\right)\right) \mid \mathcal{F}_{T}\right] \\
& \quad \leq e^{\lambda\|X\|_{\mathrm{BMO}_{2}}^{2} E\left[\exp \left(\lambda\left|\langle X\rangle_{\infty}-E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{T}\right]\right|\right) \mid \mathcal{F}_{T}\right]} \\
& \quad \leq e^{\lambda\|X\|_{\mathrm{BMO}_{2}}^{2} E\left[\exp \left(\lambda\left|q(X)_{\infty}-q(X)_{T}\right|\right) \mid \mathcal{F}_{T}\right]}
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left[\exp \left(\lambda\left|q(X)_{\infty}-q(X)_{T}\right|\right) \mid \mathcal{F}_{T}\right] \\
& \quad=E\left[\exp \left(\lambda\left|\langle X\rangle_{\infty}-E\left[\langle X\rangle_{\infty} \mid \mathcal{F}_{T}\right]\right|\right) \mid \mathcal{F}_{T}\right] \\
& \quad \leq E\left[\exp \left(\lambda\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \exp \left(\lambda E\left[\langle X\rangle_{\infty}-\langle X\rangle_{T} \mid \mathcal{F}_{T}\right]\right) \mid \mathcal{F}_{T}\right] \\
& \quad \leq e^{\lambda\|X\|_{\mathrm{BMO}_{2}}^{2} E\left[\exp \left(\lambda\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]}
\end{aligned}
$$

which shows that $b(X)=a(q(X))$. Thus, inequalities (2.1) follow from inequalities (1.2).

On the other hand, it is not difficult to show that the inequality

$$
\begin{equation*}
E\left[\exp \left(\lambda\left|X_{\infty}-X_{T}\right|\right) \mid \mathcal{F}_{T}\right] \leq 2 E\left[\exp \left(2 \lambda^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]^{1 / 2} \tag{2.2}
\end{equation*}
$$

holds for all $\lambda>0$. Indeed, by using the Schwarz inequality and noting that for $X \in \mathrm{BMO}$ the continuous exponential martingale $\mathcal{E}(X)$ defined by

$$
\mathcal{E}(X)=\exp \left(X-\frac{1}{2}\langle X\rangle\right)
$$

is uniformly integrable (see Theorem 2.3 in [3, p. 31]), for every real $\lambda>0$ we have

$$
\begin{aligned}
E[\exp (\lambda(& \left.\left.\left.X_{\infty}-X_{T}\right)\right) \mid \mathcal{F}_{T}\right] \\
& =E\left[\left.\frac{\mathcal{E}(\lambda X)_{\infty}}{\mathcal{E}(\lambda X)_{T}} \exp \left(\lambda^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \right\rvert\, \mathcal{F}_{T}\right] \\
& \leq E\left[\left.\frac{\mathcal{E}(2 \lambda X)_{\infty}}{\mathcal{E}(2 \lambda X)_{T}} \right\rvert\, \mathcal{F}_{T}\right]^{1 / 2} E\left[\exp \left(2 \lambda^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]^{1 / 2} \\
& \leq E\left[\exp \left(2 \lambda^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]^{1 / 2}
\end{aligned}
$$

The same argument works if X is replaced by $-X$. Thus, we obtain (2.2). This shows that $\sqrt{2} a(X) \geq b(X)$.

Corollary 1. If $X \in \mathrm{BMO}$, then $q(X) \in \overline{L^{\infty}}$ is equivalent to $b(X)$ $=\infty$, where $\overline{L^{\infty}}$ stands for the BMO-closure of L^{∞}.

Recall that the continuous exponential martingale $\mathcal{E}(X)$ is said to satisfy the $\left(A_{p}\right)$-condition $(1<p<\infty)$, in symbols $\mathcal{E}(X) \in\left(A_{p}\right)$, if

$$
\sup _{T}\left\|E\left[\left.\left\{\frac{\mathcal{E}(X)_{T}}{\mathcal{E}(X)_{\infty}}\right\}^{1 /(p-1)} \right\rvert\, \mathcal{F}_{T}\right]\right\|_{\infty}<\infty
$$

where the supremum is taken over all stopping times T. It is known (see Theorem 3.12 of [3, p. 72]) that $q(X) \in \overline{L^{\infty}}$ is equivalent to $\mathcal{E}(X)$ and $\mathcal{E}(-X)$ satisfying all $\left(A_{p}\right)(1<p<\infty)$. Thus, the following corollary is clear.

Corollary 2. If $X \in \mathrm{BMO}$ and $1<p<\infty$, then $b(X)=\infty$ is equivalent to $\mathcal{E}(X)$ and $\mathcal{E}(-X)$ satisfying all $\left(A_{p}\right)$.

Finally, we consider a subspace \mathcal{H} of BMO,

$$
\mathcal{H} \equiv\left\{X \in \mathrm{BMO}: q(X) \in \overline{L^{\infty}}\right\}
$$

Corollary 3. Let $\overline{H^{\infty}}$ denote the BMO-closure of H^{∞}. Then

$$
\overline{H^{\infty}} \subset \mathcal{H} \subset \overline{L^{\infty}}
$$

Proof. $\overline{H^{\infty}} \subset \mathcal{H}$ follows from (1.3) and Corollary 1, and $\mathcal{H} \subset \overline{L^{\infty}}$ follows from Theorem 1.

Lemma 2. The mapping $q: X \mapsto q(X)$ is continuous on BMO.
Proof. Let $\left\{X^{n}\right\}$ be a sequence of BMO-martingales such that $X^{n} \rightarrow X$ in BMO. Then

$$
K \equiv \sup _{n}\left\|X^{n}\right\|_{\mathrm{BMO}_{2}}<\infty \quad \text { and } \quad\|X\|_{\mathrm{BMO}_{2}} \leq K
$$

It follows from Lemma 1 that

$$
\left\|q\left(X^{n}\right)-q(X)\right\|_{\mathrm{BMO}_{1}} \leq 4 K\left\|X^{n}-X\right\|_{\mathrm{BMO}_{2}} \rightarrow 0
$$

as $n \rightarrow \infty$. This shows that the mapping q is continuous on BMO.
Theorem 2. \mathcal{H} is a closed linear subspace of BMO.
Proof. The closedness of \mathcal{H} follows from Lemma 2.
On the other hand, for any two real α, β and any two BMO-martingales X, Y, we have

$$
\langle\alpha X+\beta Y\rangle_{\infty}-\langle\alpha X+\beta Y\rangle_{T} \leq 2\left(\alpha^{2}\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)+\beta^{2}\left(\langle Y\rangle_{\infty}-\langle Y\rangle_{T}\right)\right)
$$

and so, for any $\lambda>0$,

$$
\begin{aligned}
E\left[\operatorname { e x p } \left(\lambda \left(\langle\alpha X+\beta Y\rangle_{\infty}-\langle\alpha X\right.\right.\right. & \left.\left.\left.+\beta Y\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right] \\
\leq & E\left[\exp \left(4 \alpha^{2} \lambda\left(\langle X\rangle_{\infty}-\langle X\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]^{1 / 2} \\
& \times E\left[\exp \left(4 \beta^{2} \lambda\left(\langle Y\rangle_{\infty}-\langle Y\rangle_{T}\right)\right) \mid \mathcal{F}_{T}\right]^{1 / 2}
\end{aligned}
$$

which shows that $b(\alpha X+\beta Y)=\infty$ for $b(X)=\infty, b(Y)=\infty$. Thus, $X, Y \in \mathcal{H}$ implies that $\alpha X+\beta Y \in \mathcal{H}$. This completes the proof.

Now, it is natural to ask if the relationship $\overline{H^{\infty}}=\mathcal{H}$ holds. But we have not been able to settle this question so far.

Acknowledgments. The authors wish to thank an anonymous earnest referee for a careful reading of the manuscript and many helpful comments.

References

[1] M. Emery, Le théorème de Garnett-Jones, d'après Varopoulos, in: Séminaire de Probabilités XV, Lecture Notes in Math. 850, Springer, Berlin, 1981, 278-284.
[2] N. Kazamaki, A new aspect of L^{∞} in the space of BMO-martingales, Probab. Theory Related Fields 78 (1987), 113-126.
[3] -, Continuous Exponential Martingales and BMO, Lecture Notes in Math. 1579, Springer, Berlin, 1994.
[4] N. Th. Varopoulos, A probabilistic proof of the Garnett-Jones theorem on BMO, Pacific J. Math. 90 (1980), 201-221.

Department of Mathematics
College of Science
Donghua University
1882 West Yan'an Rd.
Department of Mathematics
Toyama University
3190 Gofuku,Toyama 930-8555, Japan
E-mail: kaz@sci.toyama-u.ac.jp
Shanghai 200051, P.R. China
E-mail: litanyan@dhu.edu.cn

Received December 30, 2003
Revised version December 23, 2004

