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Abstract. We consider Hilbert spaces of analytic functions on a plane domain Ω
and multiplication operators on such spaces induced by functions from H∞(Ω). Recently,
K. Zhu has given conditions under which the adjoints of multiplication operators on Hilbert
spaces of analytic functions belong to the Cowen–Douglas classes. In this paper, we provide
some sufficient conditions which give the converse of the main result obtained by K. Zhu.
We also characterize the commutant of certain multiplication operators.

Introduction. LetH be a Hilbert space of functions analytic on a plane
domain Ω such that:

(1) Every point w ∈ Ω is a nonzero bounded linear functional on H, so
that H has a reproducing kernel kw ∈ H such that f(w) = 〈f, kw〉 for
all f ∈ H.

(2) If f is a function in H, then so is zf .
(3) If f ∈ H and f(λ) = 0, then there is a function g ∈ H such that

(z − λ)g = f .

A space H satisfying the above conditions is called a Hilbert space of analytic
functions on Ω. The Hardy and Bergman spaces are examples of Hilbert
spaces of analytic functions on the open unit disk.

A complex-valued function φ on Ω for which φf ∈H for every f ∈H is
called a multiplier of H, and every multiplier φ on H determines a multipli-
cation operator Mφ on H by Mφf = φf , f ∈ H. The set of all multipliers
of H is denoted by M(H). Clearly M(H) ⊂ H∞(Ω), where H∞(Ω) is the
space of all bounded analytic functions on Ω. In fact ‖φ‖∞ ≤ ‖Mφ‖. A good
source on this topic is [4].
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Recall that for a positive integer n and a domain U ⊂ C, the Cowen–
Douglas class Bn(U) consists of bounded linear operators T on any fixed
separable infinite-dimensional Hilbert space X with the following properties:

(a) ran(λ− T ) = X for every λ ∈ U .
(b) dim(ker(λ− T )) = n for every λ ∈ U .
(c) span{ker(λ− T ) : λ ∈ U} = X.

Here span denotes the closed linear span of a collection of sets in X. For
the study of the Cowen–Douglas classes Bn we mention [1], [2] and [5].

Also recall that a bounded linear operator A on a Hilbert space is a
Fredholm operator if and only if ranA is closed and both kerA and kerA∗

are finite-dimensional. We use σ(A) and σe(A) to denote respectively the
spectrum and the essential spectrum of A.

Main results. In Propositions 7 and 10 of [6], K. Zhu gives sufficient
conditions for the adjoint of a multiplication operator on Hilbert spaces of
analytic functions to belong to the Cowen–Douglas class Bn for a positive
integer n. In this paper we investigate the converse of Zhu’s results. Also we
consider the commutant of special multiplication operators. First, for the
benefit of the reader we give the main result of [6]:

Theorem 1. Suppose φ ∈ H∞(Ω) and V is a domain contained in
φ(Ω). If there exists a positive integer n such that Ω ∩ φ−1(λ) consists of
n points (counting multiplicity) for every λ ∈ V , then the adjoint of the
operator Mφ : H → H belongs to the Cowen–Douglas class Bn(U), where
U = {z : z ∈ V }.

Proof. See Proposition 10 in [6].

In the rest of the paper we assume that H is a Hilbert space of analytic
functions on a bounded plane domain Ω. We further assume that

(4) M(H) = H∞(Ω).

In the following by Kλ we mean the unit vector kλ/‖kλ‖.
Theorem 2. Suppose φ ∈ H∞(Ω) and V is a domain in C such that ,

for a positive integer n, the adjoint of the operator Mφ : H → H belongs
to the Cowen–Douglas class Bn(U), where U = {z : z ∈ V }. Also suppose
that the convergence of any sequence {zn}n ⊂ Ω to a boundary point of Ω
implies the weak convergence of {Kzn}n. Then V ⊂ φ(Ω) and Ω ∩ φ−1(λ)
consists of n points (counting multiplicity) for every λ ∈ V .

Proof. First note that closure(φ(Ω)) ⊂ σ(Mφ). Also if λ ∈ φ(Ω), then
λ = φ(λ0) for some λ0 ∈ Ω and so M∗φkλ0 = λkλ0 . Thus φ(Ω) ⊂ σ(Mφ)
and indeed σ(Mφ) = closure(φ(Ω)) and M∗φ − λ is Fredholm for all λ ∈ U .
Thus we get V ⊂ closure (φ(Ω)) \ σe(Mφ). Now to prove that V ⊂ φ(Ω) it
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is sufficient to show that ∂φ(Ω) ⊂ σe(Mφ). For this let λ 6∈ σe(Mφ) and also
let {zn}n be a sequence in Ω such that {zn}n converges to a point in ∂Ω
(boundary of Ω) and φ(zn)→ λ. Then by the relation

M∗φ−λKzn = (φ(zn)− λ)Kzn ,

we get ‖(M∗φ − λ)Kzn‖ → 0, which is a contradiction, because M ∗φ − λ is
Fredholm and the sequence of unit vectors {Kzn}n tends weakly to zero.
This implies that ∂φ(Ω) ⊂ σe(Mφ) and so V ⊂ φ(Ω).

Now we prove the second part of the theorem. If λ ∈ V , then λ = φ(λ0)
for some λ0 ∈ Ω and so M∗φkλ0 = λkλ0 . Thus kλ0 ∈ ker(Mφ − λ)∗. Since
dim(ker(Mφ−λ)∗) = n and a finite subset of points w in Ω yields a linearly
independent set of functions kw in H, the set Ω∩φ−1(λ) consists of at most
n points for all λ ∈ V . So for each fixed λ ∈ V , there exist λ1, . . . , λm in Ω
and n1, . . . , nm in N such that m ≤ n and for all z ∈ Ω we have

(∗) φ(z)− λ = ψ(z)(z − λ1)n1(z − λ2)n2 · · · (z − λm)nm ,

where ψ belongs to H∞(Ω) and is nonvanishing on Ω. The function ψ is
also bounded below on Ω. In fact, if we choose r > 0 such that the closed
disk D centered at λ with radius r is contained in V , then the pre-image
in Ω of D under φ is a compact set C in Ω, which must have a positive
distance δ to ∂Ω. Now if ψ is not bounded below on Ω, then there exists a
sequence {zn} in Ω\{λ1, . . . , λm} such that ψ(zn)→ 0 as n→∞. Since ψ is
nonvanishing on Ω, we must have zn → ∂Ω as n→∞. On the other hand,
the boundedness of Ω implies that φ(zn) → λ, so there exists a positive
integer N such that φ(zn) ∈ D for all n > N , or zn ∈ C for all n > N , a
contradiction to zn → ∂Ω. Since ψ is bounded above and below on Ω, the
operator Mψ is invertible on H and so

index(Mψ) = dim(kerMψ)− dim(kerM∗ψ) = 0.

Now by the relation (∗) we have

index(M∗φ−λ) =
m∑

j=1

nj(index(M∗z−λj )).

Since M∗φ ∈ Bn(U) and λ ∈ V we get

index(M∗φ−λ) = −dim(kerM∗φ−λ) = −n.
Also we have

index(M∗z−λj ) = −dim(kerM∗z−λj )

for j = 1, . . . ,m and by condition (3) onH, ker (Mz−λj)∗ is one-dimensional
([3]), thus

∑m
j=1 nj = n and so Ω ∩ φ−1(λ) consists of exactly n points

(counting multiplicity) for every λ ∈ V . This completes the proof.



190 B. Yousefi and S. Foroutan

In the following let Ω be such that if λ ∈ Ω then −λ ∈ Ω. Also we assume
that the composition operator C−z : H → H defined by C−zf = f(−z) is
bounded.

Proposition 3. Suppose that φ ∈ H∞(Ω) and there exists a domain
V ⊂ φ(Ω) such that Ω ∩ φ−1(w) is a singleton for every w ∈ V . If φ is odd
and SMφ = −MφS, then S = MhC−z for some h ∈ H∞(Ω).

Proof. For any w ∈ V there exists a unique λ ∈ Ω such that w = φ(λ).
Thus φ(z) + w = (z + λ)ψ(z), where ψ is an invertible function in H∞(Ω),
and so

dim(kerM∗φ+φ(λ)) = dim(kerM∗z+λ) = 1.

Since SMφ = −MφS, we can see that M∗φS
∗kλ = −φ(λ)S∗kλ and so S∗kλ ∈

kerM∗φ+φ(λ). But kerM∗φ+φ(λ) is equal to the closed linear span of {k−λ},
thus there exists a function h defined on U ∩ φ−1(V ) such that S∗kλ =
h(λ)k−λ. By the same method used in the proof of Proposition 8 in [6], h
can be extended to an analytic function (still denoted h) on Ω. Therefore
we have

Sf(λ) = 〈Sf, kλ〉 = 〈f, S∗kλ〉 = 〈f, h(λ)k−λ〉
= h(λ)f(−λ) = (MhC−zf)(λ).

Thus S = MhC−z and indeed h ∈ H∞(Ω). This completes the proof.

Theorem 4. Let φ ∈ H∞(Ω) be an odd map and suppose that for a
domain V ⊂ φ(Ω) the set Ω ∩ φ−1(w) is a singleton for every w ∈ V .
If SMφ2 = Mφ2S and SMφ − MφS is compact , then S = Mh for some
h ∈ H∞(Ω).

Proof. Clearly we can see that TMφ = −MφT , where T = SMφ−MφS.
So by Proposition 3, there exists ψ ∈ H∞(Ω) such that T = MψC−z. Since
T is compact, Mψ is also compact and by the Fredholm alternative, ψ = 0.
Thus SMφ = MφS and by Proposition 8 in [6], S = Mh for some h ∈ H∞(Ω)
and so the proof is complete.
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