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On character amenable Banach algebras

by

Z. Hu, M. Sangani Monfared and T. Traynor (Windsor, ON)

Abstract. We obtain characterizations of left character amenable Banach algebras
in terms of the existence of left φ-approximate diagonals and left φ-virtual diagonals. We
introduce the left character amenability constant and find this constant for some Banach
algebras. For all locally compact groups G, we show that the Fourier–Stieltjes algebra
B(G) is C-character amenable with C < 2 if and only if G is compact. We prove that
if A is a character amenable, reflexive, commutative Banach algebra, then A ∼= Cn for
some n ∈ N. We show that the left character amenability of the double dual of a Banach
algebra A implies the left character amenability of A, but the converse statement is not
true in general. In fact, we give characterizations of character amenability of L1(G)∗∗

and A(G)∗∗. We show that a natural uniform algebra on a compact space X is character
amenable if and only if X is the Choquet boundary of the algebra. We also introduce and
study character contractibility of Banach algebras.

1. Introduction. Let A be a Banach algebra over C and φ : A → C
a character of A, that is, an algebra homomorphism from A into the field
of complex numbers. Let MA

φ denote the class of Banach A-bimodules E
for which the right module action of A on E is given by x · a = φ(a)x
(a ∈ A, x ∈ E). Then A is called left φ-amenable if the first cohomology
group H1(A,E∗) vanishes for every E ∈ MA

φ ; furthermore, A is called left
character amenable if it is left φ-amenable for every character φ of A. Sim-
ilarly, one defines right φ-amenable and right character amenable Banach
algebras. If a Banach algebra is both left and right character amenable, it
is called character amenable. The concept of (right) φ-amenable Banach
algebras was introduced recently by Kaniuth, Lau, and Pym in [23] (see
also [24]). Character amenability was introduced independently by the sec-
ond named author in [36]. Both of these concepts generalize the earlier con-
cept of left amenability for F -algebras introduced by Lau in [25]. It follows
from the definition that left (or right) character amenability is weaker than
classical amenability introduced by Johnson in [20].
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In harmonic analysis, the interest in character amenability arises from
the fact that for a locally compact group G, the left character amenability
of both the group algebra L1(G) and the Fourier algebra A(G) is completely
determined by the amenability of G (see [36]).

In this paper, we continue the study of character amenable Banach al-
gebras. The paper is organized as follows. In Section 2, we define left φ-
approximate and left φ-virtual diagonals for a Banach algebra A, when φ is
a nonzero character of A. In Theorem 2.3, we prove that left φ-amenability
is equivalent to the existence of a bounded left φ-approximate diagonal,
which in turn is equivalent to the existence of a left φ-virtual diagonal. We
also define the left character amenability constant and investigate its rela-
tion with the amenability constant and the minimum bound of bounded left
φ-approximate diagonals.

In [13], Ghahramani, Loy, and Willis raised the question of whether
amenable reflexive Banach algebras are necessarily finite-dimensional. We
prove in Theorem 3.5 that if a commutative Banach algebra is reflexive,
then under the weaker assumption of character amenability, the algebra
must be finite-dimensional. In Section 3, we also study character amenabil-
ity of the double dual of a Banach algebra. In Theorem 3.8, we show that
if the double dual A∗∗ of a Banach algebra A (equipped with the left Arens
product) is left φ-amenable, then so is A, and in particular, the left character
amenability of the double dual A∗∗ implies the left character amenability
of A. Applying this result to Lipschitz algebras Lipα(X) = lipα(X)∗∗, we
prove that when X is infinite, Lipα(X) is not character amenable. The
reader is referred to Kaniuth–Lau–Pym [24, Example 5.3] for the complete
answer to the question for which characters φ the algebras Lipα(X) and
lip α(X) are φ-amenable. We show that the converse of Theorem 3.8 is
not true by showing that L1(G)∗∗ is left character amenable if and only
if the locally compact group G is finite (Theorem 3.10). The dual version
of Theorem 3.10 for the Fourier algebra A(G) is also established (Theo-
rem 3.12).

In Section 4, we study character amenability of the Fourier–Stieltjes
algebra B(G). In Theorem 4.2, we show that B(G) is C-character amenable
with C < 2 if and only if G is compact. It is interesting to compare this
result with [32, Theorem 3.2], where Runde and Spronk proved that B(G)
is C-operator amenable with C < 5 if and only if G is compact. The same
example as that considered by Runde and Spronk in [33] demonstrates that
there exists a noncompact locally compact group G such that B(G) is 2-
character amenable, which shows that the dual version of [36, Corollary 2.5]
proved by the second named author on the measure algebra M(G) does not
hold in general.
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In Section 5, we study character amenability of uniform algebras. In The-
orem 5.1, we show that if a unital Banach function algebra A on a compact
space X is character amenable, then the Choquet boundary of A must coin-
cide with X. As a corollary, we deduce that a natural unital uniform algebra
on X is character amenable if and only if its Choquet boundary coincides
with X. It turns out that there are character amenable uniform algebras
other than C(X). We do not know any other type of amenability that can
single out a uniform algebra other than the commutative C∗-algebra C(X).

In Section 6, we study the φ-diagonals and their relation with character
contractibility of Banach algebras.

We conclude the current section by recalling some basic terminology. For
unexplained terminology and notation we refer the reader to Dales [3].

LetA be a Banach algebra. We denote by σ(A) the set of all nonzero char-
acters of A. Given φ ∈ σ(A), a left φ-mean is an element Φ in A∗∗ such that
Φ(φ) = 1 and Φ·a = φ(a)Φ (a ∈ A). Right φ-means and (two-sided) φ-means
are defined similarly. The left and the right Arens products on A∗∗ are de-
noted by 2 and 3, respectively. These products extend the given product on
A to the entire A∗∗ in such a way that for every Φ ∈ A∗∗, the maps Ψ 7→ Ψ2Φ
and Ψ 7→ Φ 3 Ψ are w∗-continuous on A∗∗. Furthermore, Φ ∈ A∗∗ is called a
mixed identity if Φ is a right identity of (A∗∗,2) and a left identity of (A∗∗,3).

Let E be a Banach A-bimodule. A derivation D : A→ E is a linear map
such that D(ab) = a · D(b) + D(a) · b (a, b ∈ A). Given x ∈ E, the inner
derivation δx : A→ E is defined by δx(a) = a ·x−x ·a (a ∈ A). Let Z1(A,E)
denote the set of all continuous derivations and N 1(A,E) be the set of all
inner derivations from A into E. The first cohomology group H1(A,E) is
defined to be the quotient Z1(A,E)/N 1(A,E). The Banach space dual E∗

of E has a natural Banach A-bimodule structure given by

〈a · f, x〉 = 〈f, x · a〉, 〈f · a, x〉 = 〈f, a · x〉 (a ∈ A, x ∈ E, f ∈ E∗).
A is called amenable if H1(A,E∗) = {0} for all Banach A-bimodules E.

We let π : A ⊗̂ A → A be the bounded linear map determined by
a⊗ b 7→ ab (a, b ∈ A), where ⊗̂ is the projective tensor product. Note that
‖π‖ ≤ 1.

2. Character amenability constants. We start this section with two
definitions, which are variants of the concepts of approximate and virtual
diagonals introduced by Johnson in [20].

Definition 2.1. Let A be a Banach algebra and φ ∈ σ(A). A left [right ]
φ-approximate diagonal for A is a net (mα) in A ⊗̂A such that

(i) ‖mα · a− φ(a)mα‖ → 0 [‖a ·mα − φ(a)mα‖ → 0] (a ∈ A);
(ii) 〈φ⊗ φ,mα〉 = φ(π(mα))→ 1.
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Definition 2.2. Let A be a Banach algebra and φ ∈ σ(A). An element
M of (A ⊗̂A)∗∗ is a left [right ] φ-virtual diagonal for A if

(i) M · a = φ(a)M [a ·M = φ(a)M ] (a ∈ A);
(ii) 〈M,φ⊗ φ〉 = π∗∗(M)(φ) = 1.

Theorem 2.3. Let A be a Banach algebra and φ ∈ σ(A). Then the
following statements are equivalent :

(i) A has a left [right ] φ-virtual diagonal.
(ii) A has a bounded left [right ] φ-approximate diagonal.

(iii) A is left [right ] φ-amenable.
(iv) A∗∗ has a left [right ] φ-mean.

Proof. The equivalence of (i) and (ii) can be shown as in the case of
amenable Banach algebras. We briefly recall the arguments. (ii) implies (i),
since any w∗-cluster point in (A ⊗̂A)∗∗ of a bounded left [right] φ-approxi-
mate diagonal for A is a left [right] φ-virtual diagonal for A. Conversely,
let M be a left [right] φ-virtual diagonal for A, and let (uα) be a net
in A ⊗̂ A such that M = w∗- limα uα. Then a routine verification shows
that for the net (uα), Definition 2.1(ii) is satisfied, but the convergence
in Definition 2.1(i) holds only in the weak topology on A ⊗̂ A. Following
the argument given in the proof of [3, Lemma 2.9.64], we can show that
there exists a net (mλ) in A ⊗̂ A such that each mλ is a convex combi-
nation of elements from (uα), and (mλ) satisfies both conditions in Defini-
tion 2.1.

The equivalence of (iii) and (iv) is shown in [23, Theorem 1.1].
(i) implies (iv), since if M is a left [right] φ-virtual diagonal, then π∗∗(M)

is a left [right] φ-mean.
It remains to show that (iii) implies (i). Suppose that A is left φ-amen-

able. Consider the Banach A-bimodule A ⊗̂A with the module actions given
by

a · (b⊗ c) = φ(a)b⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

Consider the quotient Banach A-bimodule E = (A ⊗̂ A)∗/C · (φ ⊗ φ). Let
M0 ∈ (A ⊗̂ A)∗∗ be such that M0(φ ⊗ φ) = 1, and let δM0 : A → (A ⊗̂ A)∗∗

be the inner derivation by M0. Then the image of δM0 is a subset of E∗,
and hence by our assumption, there exists M1 ∈ E∗ = {φ ⊗ φ}◦ such that
δM0 = δM1 . It is easy to check that M = M0−M1 is a left φ-virtual diagonal
for A. The right side version of (iii)⇒(i) can be proved similarly.

Remark 2.4. The proof of the equivalence of (i) and (ii) in Theorem 2.3
shows that a Banach algebra has a left [right] φ-virtual diagonal bounded
by a constant C if and only if it has a left [right] φ-approximate diagonal
bounded by C.
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Recall that a Banach algebra A is left [right] 0-amenable if and only if
A has a bounded left [right] approximate identity (see Johnson [20, Propo-
sitions 1.5 and 1.6]). Combining this fact with Theorem 2.3, we have

Corollary 2.5. A Banach algebra A is left [right ] character amenable
if and only if A has a bounded left [right ] approximate identity and has a
bounded left [right ] φ-approximate diagonal for every φ ∈ σ(A).

We investigate below a quantitative character amenability of Banach
algebras.

Definition 2.6. Let A be a Banach algebra, C > 0 a constant, and
φ ∈ σ(A) ∪ {0}. Then, A is called C-left φ-amenable if the following are
satisfied:

(i) (A∗∗,3) has a left identity Φ0 with ‖Φ0‖ ≤ C if φ = 0;
(ii) there exists a left φ-mean Φ ∈ A∗∗ such that ‖Φ‖ ≤ C if φ ∈ σ(A).

Furthermore, A is called C-left character amenable if A is C-left φ-amenable
for all φ ∈ σ(A)∪{0}. The least such C is called the left character amenability
constant of A.

Similarly, we can define C-right (resp. two-sided) φ-amenability, C-right
(resp. two-sided) character amenability, and the right (resp. two-sided) char-
acter amenability constant.

It follows from the definition that if A is C-left or C-right φ-amenable for
some φ ∈ σ(A)∪{0}, then C ≥ 1. We also note that A is C-left 0-amenable
if and only if A has a left approximate identity bounded by C, which is true
if and only if for all E ∈ MA

0 and D ∈ Z1(A,E∗), D = δg for some g ∈ E∗
with ‖g‖ ≤ C‖D‖ (see the proofs of Propositions 1.5 and 1.6 in [20]).

Theorem 2.7. Let A be a Banach algebra, C > 0 be a constant , and
ψ ∈ σ(A) ∪ {0}.

(i) If A is C-left ψ-amenable, then, for all E ∈MA
ψ and D ∈Z1(A,E∗),

there exists g ∈ E∗ such that D = δg and ‖g‖ ≤ C‖D‖.
(ii) If for all E ∈MA

ψ and D ∈ Z1(A,E∗), there exists g ∈ E∗ such that
D = δg and ‖g‖ ≤ C‖D‖, then A is C(1 + 2C)-left ψ-amenable.

(iii) If ψ 6= 0 and A is C-left φ-amenable for φ ∈ {0, ψ}, then kerψ has
a left approximate identity of bound 2C.

The right side version of (i)–(iii) also holds.

Proof. (i) Let Ψ ∈ A∗∗ with ‖Ψ‖ ≤ C be a left ψ-mean if ψ ∈ σ(A), and a
left identity of (A∗∗,3) if ψ = 0. Identifying E with its natural image in E∗∗,
we define g = D∗∗(Ψ)|E . Then a proof similar to that of [23, Theorem 1.1]
shows that D = δg if ψ 6= 0, and D = δ−g if ψ = 0. Of course, we have
‖g‖ ≤ ‖D∗∗(Ψ)‖ ≤ C‖D‖.
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(ii) If ψ = 0, then, by the paragraph preceding Theorem 2.7, A is C-left
(and hence C(1 + 2C)-left) 0-amenable.

Let ψ ∈ σ(A). Then ‖ψ‖ ≥ C−1. We show below that there exists a left
ψ-mean Ψ ∈ A∗∗ such that ‖Ψ‖ ≤ C(1 + 2C). Consider A∗ being equipped
with the usual left A-module action and with the right module action given
by f · a = ψ(a)f (a ∈ A, f ∈ A∗). We define E = A∗/Cψ. Then E∗ =
(Cψ)◦ ⊆ A∗∗. Using the Hahn–Banach theorem, we let Ψ0 ∈ A∗∗ be such that
Ψ0(ψ) = 1 and ‖Ψ0‖ = ‖ψ‖−1. Let δΨ0 : A → A∗∗, δΨ0(a) = ψ(a)Ψ0 − Ψ0 · a,
be the inner derivation by Ψ0. It is easy to check that δΨ0(a) ∈ E∗ for all
a ∈ A. Thus the map D : A→ E∗, D(a) = δΨ0(a), is a continuous derivation
(though not an inner derivation by Ψ0, since Ψ0 6∈ E∗). By our assumptions,
there exists Ψ1 ∈ E∗ such that D = δΨ0 = δΨ1 and ‖Ψ1‖ ≤ C‖D‖. We claim
that Ψ = Ψ0− Ψ1 is the required left ψ-mean. First, 〈Ψ, ψ〉 = 〈Ψ0− Ψ1, ψ〉 =
1−0 = 1. Next, for all a ∈ A, δΨ0(a) = δΨ1(a) implies that ψ(a)Ψ0−Ψ0 ·a =
ψ(a)Ψ1 − Ψ1 · a and hence Ψ · a = ψ(a)Ψ, proving that Ψ is a left ψ-mean.
Finally, we have

‖Ψ‖ ≤ ‖Ψ0‖+ C‖D‖ ≤ ‖Ψ0‖(1 + 2C) = ‖ψ‖−1(1 + 2C) ≤ C(2C + 1).

(iii) Since (A∗∗,3) has a left identity Φ0 with ‖Φ0‖ ≤ C, A has a left
approximate identity of bound C. Let Ψ be a left ψ-mean with ‖Ψ‖ ≤ C.
Then, as shown in the proof of [23, Proposition 2.2], Ψ1 = Φ0 − Ψ is a
left identity of ((kerψ)∗∗,3) with ‖Ψ1‖ ≤ 2C. Therefore, kerψ has a left
approximate identity of bound 2C.

Remark 2.8. We note that in Theorem 2.7(iii), φ cannot be replaced
by ψ. Also, the bound 2C in Theorem 2.7(iii) is the best possible. In fact, in
Example 2.10(b) below, we shall show that the Fourier algebra A(G) of an
amenable locally compact group G is 1-character amenable. Thus if e ∈ G is
the identity element and τe ∈ σ(A(G)) is the evaluation functional at e, then,
by Theorem 2.7(iii), the closed ideal ker τe has a bounded approximate iden-
tity of bound 2. On the other hand, by Delaporte–Derighetti [5, Theorem 10],
if G is nondiscrete, then ker τe does not have any bounded approximate iden-
tity with bound smaller than 2 (see also Kaniuth–Lau [22, Theorem 3.4],
Forrest–Spronk [11, Corollary 2.3], and Derighetti [6, Theorem 12]).

Recall that a Banach algebra is C-amenable if it has an approximate
diagonal bounded by C (cf. Runde [30]).

Theorem 2.9. If A is a C-amenable Banach algebra, then A is C-left
and C-right character amenable, and C2-character amenable.

Proof. Assume that A has an approximate diagonal (mα) bounded by C.
Let M be a w∗-cluster point of (mα) in (A ⊗̂A)∗∗. Then π∗∗(M) is a mixed
identity of A∗∗ with ‖π∗∗(M)‖ ≤ C.
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Let ψ ∈ σ(A). We define Ψ ∈ A∗∗ by Ψ(λ) = 〈M,ψ ⊗ λ〉 (λ ∈ A∗). Then
‖Ψ‖ ≤ ‖M‖ ≤ C. Note that π∗(ψ) = ψ ⊗ ψ and (π(mα)) is a bounded
approximate identity of A. We have

Ψ(ψ) = 〈M,ψ ⊗ ψ〉 = lim
α
〈mα, ψ ⊗ ψ〉 = lim

α
〈π(mα), ψ〉 = 1.

Since M is a virtual diagonal for A, it follows that a ·M = M · a for all
a ∈ A. Therefore, for all a ∈ A and λ ∈ A∗,

Ψ(a · λ) = 〈M,ψ ⊗ (a · λ)〉 = 〈M,a · (ψ ⊗ λ)〉
= 〈M, (ψ ⊗ λ) · a〉 = ψ(a)〈M,ψ ⊗ λ〉 = ψ(a)Ψ(λ).

Hence Ψ is a left ψ-mean with norm bounded by C. Similarly, if we let
Φ(λ) = 〈M,λ ⊗ ψ〉 (λ ∈ A∗), then Φ is a right ψ-mean with ‖Φ‖ ≤ C.
Clearly, Φ 2 Ψ is a two-sided ψ-mean satisfying ‖Φ 2 Ψ‖ ≤ C2.

It follows from Theorem 2.9 that for an amenable Banach algebra, the left
[right] character amenability constant is less than or equal to the amenability
constant. We shall see in the following examples that in general, amenability
and character amenability constants are not equal.

Examples 2.10. (a) By Theorem 2.9, if A is an amenable Banach al-
gebra with amenability constant 1, then A has character amenability con-
stant 1 as well. Therefore, all commutative C∗-algebras and group algebras
L1(G) with G amenable have character amenability constant 1.

(b) Let G be a locally compact group, 1 < p < ∞, and Ap(G) be the
generalized Fourier algebra of G, as introduced by Figà-Talamanca and by
Herz. By Herz [18, Theorem 6], if G is amenable, then Ap(G) has a bounded
approximate identity of bound 1, and hence Ap(G)∗∗ has a mixed identity
of norm 1. In [34, Lemma 3.1], it is proved that for each φ ∈ σ(Ap(G)),
Ap(G)∗∗ has a φ-mean of norm 1. Thus, if G is amenable, then Ap(G) has
character amenability constant 1. In particular, taking p = 2, we deduce
that the Fourier algebra A(G) has character amenability constant 1 if G is
amenable.

In [27, Theorem 4.9], Lau, Loy, and Willis showed that for certain fi-
nite groups G of order 22n+1, the amenability constant of A(G) is greater
than 2[n/2]. Thus, the difference between the amenability constant and the
character amenability constant can be as large as we like. Furthermore, it
is known that there are compact groups G such that A(G) is not amenable
(see Johnson [21]). Therefore, there are Banach algebras A such that A is
not amenable while the character amenability constant of A remains mini-
mal (= 1).

(c) The Banach algebra B(H) of all continuous linear operators on a
separable Hilbert space H with dimH ≥ 2 is unital such that σ(B(H)) = ∅.
Hence B(H) is 1-character amenable.
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(d) It is easy to find Banach algebras with large character amenability
constants. In fact, l1n with pointwise multiplication has character amenability
constant n.

Theorem 2.11. Let A be a Banach algebra. Let C ≥ 1 and let (Aα) be
a net of closed , C-left [right ] character amenable subalgebras of A such that

(i) Aα ⊆ Aβ whenever α ≤ β;
(ii)

⋃
αAα is dense in A.

Then A is C-left [right ] character amenable.

Proof. Note that for each α, A∗∗α = A
w∗

α ⊆ A∗∗. If ψ ∈ σ(A), then
ψα = ψ|Aα ∈ σ(Aα)∪ {0}, and we must have ψα 6= 0 for all α large enough.
For each α with ψα 6= 0, let Ψα ∈ A∗∗α be a left ψα-mean with ‖Ψα‖ ≤ C.
Let Ψ ∈ A∗∗ be a w∗-cluster point of (Ψα). Without loss of generality, we
may assume that w∗- limα Ψα = Ψ . Then it is easy to verify that Ψ is a left
ψ-mean with ‖Ψ‖ ≤ C. The verification that (A∗∗,3) has a left identity with
norm bounded by C is routine.

The Banach algebra l2 (with pointwise product) does not have a bounded
(left) approximate identity and hence is not (left) character amenable. How-
ever, for each n ≥ 1, l2n is a

√
n-character amenable subalgebra of l2, and the

family (l2n) satisfies conditions (i) and (ii) in Theorem 2.11. It follows that in
this theorem, one cannot relax the condition of C-left character amenabil-
ity (for a fixed C) on the family (Aα), even if one only wants to have the
character amenability of A.

The proof of the following lemma is routine and is omitted.

Lemma 2.12. Let A and B be Banach algebras.

(i) If µ : A → B is a continuous homomorphism with a dense range
in B, then the C-left [right ] character amenability of A implies that
B is ‖µ‖C-left [right ] character amenable.

(ii) A ⊕∞ B is C-left [right ] character amenable if and only if both A
and B are C-left [right] character amenable.

(iii) If A is C1-left [right ] character amenable and B is C2-left [right ]
character amenable, then for 1 ≤ p <∞, A⊕pB is (Cp1 +Cp2 )1/p-left
[right ] character amenable.

The following corollary is a consequence of Theorem 2.11 and Lem-
ma 2.12.

Corollary 2.13. Let (Aα) be a family of Banach algebras. Then
c0-
⊕

αAα is C-left [right ] character amenable if and only if each Aα is
C-left [right ] character amenable.



Character amenable Banach algebras 61

To close this section, we consider the relation between the left charac-
ter amenability constant and the minimum bound for left approximate (or
virtual) diagonals. For a given Banach algebra A with σ(A) 6= ∅, we define

Cv = inf{C : ∀φ ∈ σ(A), ∃ a left φ-virtual diagonal with norm ≤ C};
Ca = inf{C : ∀φ ∈ σ(A), ∃ a left φ-approximate diagonal with norm ≤ C};
Cm = inf{C : ∀φ ∈ σ(A), ∃ a left φ-mean with norm ≤ C}.

It follows from Remark 2.4 that Cv = Ca. If M is a left φ-virtual diagonal
with ‖M‖ ≤ C, then π∗∗(M) is a left φ-mean and ‖π∗∗(M)‖ ≤ C. Therefore,
we have Cm ≤ Cv = Ca.

Theorem 2.14. If A is a C-left character amenable Banach algebra and
σ(A) 6= ∅, then Cv ≤ C2(1 + 2C).

Proof. Let (eα)α∈I be a bounded left approximate identity of A with
‖eα‖ ≤ C. Then (eα ⊗ eβ)(α,β)∈I×I is a bounded left approximate identity
of A ⊗̂ A bounded by C2. Given φ ∈ σ(A), we have ‖φ ⊗ φ‖ ≥ 1/C2. To
obtain a left φ-virtual diagonal for A with norm bounded by C2(2C+1), we
argue as in the proof of (iii)⇒(i) in Theorem 2.3. Keeping the same notation
and using the Hahn–Banach theorem, we choose M0 ∈ (A ⊗̂A)∗∗ such that
M0(φ⊗φ) = 1 and ‖M0‖ = ‖φ⊗φ‖−1 ≤ C2. Our assumption together with
Theorem 2.7(i) then implies that there exists M1 ∈ E∗ with δM0 = δM1 and
‖M1‖ ≤ C‖δM0‖ ≤ 2C3, where E = (A ⊗̂ A)∗/C · (φ ⊗ φ). It follows that
M = M0 −M1 is a left φ-virtual diagonal for A and

‖M‖ ≤ ‖M0‖+ ‖M1‖ ≤ C2(1 + 2C).

3. Character amenability of double duals. Let A be a Banach
algebra. In this section, we study the relation between character amenability
of A and that of its double dual A∗∗. We start with a few preliminary results
regarding ideals in A.

Recall that a subspace E of A is called weakly left [right ] invariantly
complemented in A if E◦ = {λ ∈ A∗ : λ|E = 0} is left [right] invariantly
complemented in A∗, that is, if there exists a left [right] A-module homo-
morphism P : A∗ → E◦ such that P 2 = P .

For convenience, we collect two known lemmas below. The first lemma
is due to Forrest (see [9, Proposition 6.4]).

Lemma 3.1. Let A be a Banach algebra and let I be a closed right ideal
in A.

(i) If I has a bounded left approximate identity , then I is weakly left
invariantly complemented in A.
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(ii) If A has a bounded left approximate identity and I is weakly left in-
variantly complemented in A, then I has a bounded left approximate
identity.

The corresponding assertions hold if the words “left” and “right” are inter-
changed in the above statements.

Lemma 3.2. Let A be a left character amenable Banach algebra and let
I be a closed ideal in A. Then the following statements are equivalent :

(i) I has a bounded left approximate identity.
(ii) I is weakly left invariantly complemented in A.
(iii) I is left character amenable.

The right side version of the lemma is also true.

Proof. The equivalence of (i) and (ii) follows from Lemma 3.1. And the
equivalence of (i) and (iii) is proved in [36, Theorem 2.6(ii)].

Lemma 3.3. If A is a character amenable commutative Banach algebra,
then every closed ideal of finite codimension in A is character amenable.

Proof. Let I be an ideal in A with dim(A/I) = n. There exists a chain
of ideals

I = I0 / I1 / · · · / In = A

such that each Ii−1 is a closed ideal in Ii and dim(Ii/Ii−1) = 1 for i =
1, . . . , n. Since In−1 is an ideal in A of codimension 1, it can be easily verified
that either In−1 is a modular ideal and hence In−1 = kerφ for some φ ∈
σ(A), or A2 ⊆ In−1 (cf. [3, Proposition 1.3.37]). The latter case is impossible,
since A has a bounded approximate identity and hence A2 = A by Cohen’s
factorization theorem. Thus In−1 is a maximal modular ideal and has a
bounded approximate identity by [36, Corollary 2.7]. By Lemma 3.2, In−1

is character amenable. The proof can be completed by an induction.

Remark 3.4. It follows from Lemma 3.3 and Dales [3, Corollary 2.9.36]
that every finite-dimensional Banach algebra extension of a character amen-
able commutative Banach algebra A splits strongly. This result was obtained
by the second named author in [36, Corollary 3.2] using a different method.

In [13], Ghahramani, Loy, and Willis showed that an amenable Banach
algebra which is a Hilbert space is finite-dimensional. They asked whether
this result holds for reflexive Banach algebras. In our next result, we consider
a related question in the commutative case, under the weaker assumption
of character amenability.

We recall that a modular annihilator algebra is a semiprime algebra in
which every maximal modular left ideal has a nonzero right annihilator (cf.
Palmer [28, Definition 8.4.6]).
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Theorem 3.5. Let A be a character amenable, reflexive, commutative
Banach algebra. Then A ∼= Cn for some n ∈ N.

Proof. Since A has a bounded approximate identity and is reflexive, it
has an identity 1A. We shall show that A is a semisimple modular annihilator
algebra, and hence is finite-dimensional by [28, Theorem 8.4.14]. Then A is
isomorphic to Cn by Wedderburn’s structure theorem.

Let M be a maximal ideal in A. Then M = kerφ for some φ ∈ σ(A),
and therefore M has a bounded approximate identity since A is character
amenable (see [36, Corollary 2.7]). Since M is reflexive, M has an iden-
tity 1M . It follows that 1A − 1M is a nonzero annihilator of M .

Note that A/radA is a commutative, unital, semisimple, reflexive Ba-
nach algebra which is character amenable. Our argument in the previous
paragraph shows that A/radA must be a semisimple modular annihilator
algebra and hence must be finite-dimensional. Thus radA is of finite codi-
mension in A. By Lemma 3.3, radA is character amenable and hence must
be unital, since it is reflexive. This implies that radA = {0}. We have shown
that A is a unital, semisimple modular annihilator algebra, completing the
proof of the theorem.

Let φMA denote the class of Banach A-bimodules E for which the left
module action of A on E is given by a ·x = φ(a)x (a ∈ A, x ∈ E). Replacing
the class of Banach A-bimodules by φMA, we have the following analogue
of a result of Gourdeau [14] on amenable Banach algebras (cf. Dales [3,
Proposition 2.8.59(i)]).

Lemma 3.6. Let A be a Banach algebra and φ ∈ σ(A) ∪ {0}. Then the
following statements are equivalent :

(i) A is left [right ] φ-amenable.
(ii) H1(A,E∗∗) = {0} for every E ∈ φMA [E ∈MA

φ ].
(iii) Given E ∈ φMA [E ∈MA

φ ], every continuous derivation D : A→ E
is approximately inner ; that is, there exists a bounded net (xα) in
E such that

D(a) = ‖ · ‖- lim
α

(a · xα − xα · a) (a ∈ A).

Note that E ∈ φMA (resp. E ∈ MA
φ ) if and only if E∗ ∈ MA

φ (resp.
E∗ ∈ φMA). The arguments used in the proof for the classical case can be
applied here so that we omit the details (cf. [3, Proposition 2.8.59]).

Remark 3.7. We would like to point out the following fact related to
Lemma 3.6(iii). If A is C-left character amenable, then it can be seen that
the net (xα) determining a derivation D : A → E as in Lemma 3.6(iii)
satisfies ‖xα‖ ≤ C‖D‖. On the other hand, if A is a C-amenable unital
Banach algebra with an approximate diagonal (ti) bounded by C, then, as
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noted by Johnson [21, p. 361], there exists a constant N such that for any
A-bimodule E and any continuous derivation D : A→ E, the net (xα) in E
determining D satisfies ‖xα‖ ≤ N‖D‖; however, N is related to the bound
of the net (1⊗ 1− ti).

The amenable version of the result below on Banach algebras has been
proved by Gourdeau [15], and by Ghahramani, Loy, and Willis [13]. In view
of Lemma 3.6, the proof for the amenable case carries over without difficulty.

Theorem 3.8. Let A be a Banach algebra and φ ∈ σ(A) ∪ {0}. If
(A∗∗,2) is left [right ] φ-amenable, then A is left [right ] φ-amenable. In
particular , if (A∗∗,2) is left [right ] character amenable, then so is A.

Let 0 < α < 1 and X be a compact metric space. Consider the Lipschitz
algebra Lipα(X) and its closed subalgebra lipα(X) (cf. Dales [3]). If X is a
finite space, then lipα(X) = Lipα(X) is semisimple and finite-dimensional,
and hence is amenable. However, if X is infinite and x0 ∈ X is not an
isolated point of X, then by [3, Theorem 4.4.30(iv)], Mx0 = {f ∈ lipα(X):
f(x0) = 0} does not have any bounded approximate identity, and hence by
Lemma 3.3, lipα(X) is not character amenable. Since lipα(X)∗∗ = Lipα(X),
as an application of Theorem 3.8, we see that Lipα(X) is not character
amenable when X is infinite.

We point out that the question for which characters φ the algebras
Lipα(X) and lipα(X) are φ-amenable has been clarified in [24]. Kaniuth,
Lau, and Pym [24, Example 5.3] showed that for 0 < α ≤ 1, Lipα(X) is
φx-amenable if and only if x is an isolated point of X, and this equivalence
holds for lipα(X) with 0 < α < 1, where x 7→ φx is the canonical homeomor-
phism between X and σ(Lipα(X)) (resp. σ(lipα(X))). See [24, Example 5.3]
for details on these facts.

We recall that if A is a Banach algebra, then a closed A-submodule X
of A∗ is called left introverted if Φ 2 λ ∈ X for all Φ ∈ A∗∗ and λ ∈ X. In
this case, X∗ is a Banach algebra with the multiplication induced by the
left Arens product 2 on A∗∗.

The following theorem is analogous to Lau–Loy [26, Corollary 4.4] on
weak amenability of X∗, where X is a left introverted subspace of L∞(G) of
a locally compact abelian group G. Inspired by the proof given by Lau and
Loy, we show the character amenability version for the class of maximally
almost periodic groups (MAP-groups). It is known that the class of MAP-
groups contains compact groups, finite extensions of abelian groups, free
groups, and the discrete Heisenberg group. It is also known that a direct
product of two MAP-groups is MAP, and for almost connected groups,
MAP = SIN (groups with small invariant neighborhoods). See Palmer [29]
for more information on MAP-groups.
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Theorem 3.9. Let G be a maximally almost periodic locally compact
group. Let X be a left introverted subspace of L∞(G) containing AP(G)
(the space of almost periodic functions on G). Then X∗ is left character
amenable if and only if G is finite.

Proof. If G is finite, then G is amenable, X = L∞(G), and hence X∗ =
L∞(G)∗ = L1(G) is left character amenable (see [36, Corollary 2.4]).

Conversely, suppose that X∗ is left character amenable. Then AP(G)∗ is
also left character amenable, since the restriction map X∗ → AP(G)∗, Φ 7→
Φ
∣∣
AP(G) , is a continuous surjective homomorphism. Since AP(G) ∼= C(bG),

where bG is the Bohr compactification ofG, it follows thatM(bG) ∼= AP(G)∗

is left character amenable. By [36, Corollary 2.5], bG must be discrete,
and hence bG is finite. Since for a maximally almost periodic group G,
the canonical homomorphism from G into bG is injective, it follows that G
is finite.

Examples of left introverted subspaces of L∞(G) containing AP(G) in-
clude AP(G), WAP(G) (weakly almost periodic functions on G), LUC(G)
(bounded left uniformly continuous functions on G), and of course L∞(G).
The condition AP(G) ⊆ X is essential in order to conclude that G is fi-
nite. For example, if G is noncompact and X = C0(G) (in which case
X ∩ AP(G) = {0}), then X∗ = M(G) is character amenable if and only
if G is discrete and amenable.

As proved in [36, Corollary 2.4], the character amenability of L1(G) and
the character amenability of A(G) are each equivalent to the amenability
of G. We show below that for all locally compact groups G, the character
amenability of L1(G)∗∗ and the character amenability of A(G)∗∗ are each
equivalent to the finiteness of G. As a consequence, we see that in general
the converse of Theorem 3.8 is not true.

The following result is the character amenable version of Ghahramani–
Loy–Willis [13, Theorem 1.3] for the locally compact group case, which shows
that (L1(G)∗∗,2) is amenable if and only if G is finite.

Theorem 3.10. Let G be a locally compact group. Then (L1(G)∗∗,2) is
character amenable if and only if G is finite.

Proof. We need to prove the necessity part of the theorem. Suppose that
L1(G)∗∗ is character amenable. Then L1(G)∗∗ does not have any nonzero
continuous point derivation corresponding to any character φ ∈ σ(L1(G)∗∗).
It follows from [4, Theorem 11.17] that G is finite.

Lemma 3.11. Let A be a Banach algebra such that (A∗∗,2) has a bounded
left approximate identity. Then A∗ = 〈A∗ · A〉 (the closed linear span of
A∗ ·A).
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Proof. Suppose that (A∗∗,2) has a bounded left approximate identity.
Then (A∗∗,2) has a left identity E. Let (aα) be a net in A such that aα → E
in the w∗-topology on A∗∗. Let f ∈ A∗. Then, f ·aα → f weakly in A∗. Thus,
f ∈ 〈A∗ ·A〉. Therefore, A∗ = 〈A∗ ·A〉.

In [17], Granirer proved that for all locally compact groupsG, (A(G)∗∗,2)
is amenable if and only if G is finite. We now show the character amenable
version of this result by Granirer.

Theorem 3.12. Let G be a locally compact group. Then (A(G)∗∗,2) is
character amenable if and only if G is finite.

Proof. We only have to prove the necessity part. Suppose that A(G)∗∗ is
character amenable. By Lemma 3.11, VN(G) = 〈VN(G) · A(G)〉 = UC(Ĝ),
where UC(Ĝ) is the space of all uniformly continuous functionals on A(G).
By [16, Theorem 3], G must be compact. We show below that G is discrete
and hence G is finite.

Let H be a closed abelian subgroup of G. Then the restriction map
r : A(G) → A(H) is a surjective norm decreasing homomorphism (see [18])
and so is its second adjoint r∗∗ : A(G)∗∗ → A(H)∗∗. By [36, Theorem 2.6(i)],
A(H)∗∗ is character amenable. However, A(H)∗∗ ∼= L1(Ĥ)∗∗, where Ĥ is
the dual group of H. By Theorem 3.10, Ĥ is finite, so that H is also fi-
nite.

From the proof of [10, Theorem 3.2], one can see that G is totally discon-
nected. The argument given in [10] is as follows. Let G0 be the connected
component of e. Since G is periodic, G0 and any homomorphic image of G0

are also periodic. For any neighborhood U of e in G0, there exists a compact
normal subgroup N of G0 such that N ⊆ U and G0/N is a periodic con-
nected Lie group. Thus, G0/N is trivial. This is true for all neighborhoods
U of e in G0. Therefore, G0 is trivial.

Finally, we follow the proof of [26, Lemma 6.5] as given below to con-
clude that G is discrete. Let H be a compact open subgroup of G; by [19,
Theorem 7.7], such H exist in any open neighborhood of e in G. If H is infi-
nite, then H would contain an infinite abelian subgroup by [39, Theorem 2],
which is impossible. Therefore, H is a finite open subgroup of G and hence
G is discrete.

4. Character amenability of Fourier–Stieltjes algebras. Let G be
a locally compact group. The Fourier–Stieltjes algebra B(G) of G introduced
by Eymard [8] is the collection of all coefficient functions of continuous
unitary representations of G. The set B(G) can be identified with the dual
space of the group C∗-algebra C∗(G). With the norm defined by this duality
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and the pointwise multiplication, B(G) is a Banach algebra containing A(G)
as a closed ideal. We have B(G) = A(G) if and only ifG is compact. The dual
of B(G) is the enveloping von Neumann algebra of C∗(G), and is denoted by
W ∗(G). For more information on B(G) and W ∗(G), the reader is referred
to [7, 8, 38].

If G is an abelian group and Ĝ is its dual group, it follows from Bochner’s
theorem that B(G) is isometrically algebra isomorphic to the measure al-
gebra M(Ĝ) of Ĝ via the Fourier–Stieltjes transform. The second-named
author proved in [36, Corollary 2.5] that for all locally compact groups G,
M(G) is (1-)left character amenable if and only ifG is discrete and amenable.
A natural question is whether the dual version of this equivalence holds,
that is, whether the compactness of G is necessary to ensure the character
amenability of B(G).

In [32, 33], Runde and Spronk studied the operator amenability of B(G).
They proved that B(G) is C-operator amenable with C < 5 if and only if
G is compact (see [32, Theorem 3.2]). In [33], they further showed that
the upper bound 5 for the constant C cannot be improved. More precisely,
they considered the following Fourier–Stieltjes algebra. Let n ≥ 1 be an
integer, p a prime number, Qp the field of p-adic numbers, and Zp the ring
of p-adic integers. Then the semidirect product Gp,n = Qn

p nGL(n,Zp) (with
the group action given by (v, T )(v′, T ′) = (v + Tv′, TT ′)) is a noncompact
amenable locally compact group. Let q : Gp,n → Gn,p/Qn

p
∼= GL(n,Zp) be

the quotient map, and let

A(GL(n,Zp)) ◦ q = {u ◦ q : u ∈ A(GL(n,Zp))}.

Runde and Spronk showed that

B(Gp,n) = [A(GL(n,Zp)) ◦ q]⊕1 A(Gp,n),

and B(Gp,n) is operator amenable with operator amenability constant 5 (see
[33, Proposition 2.1 and Theorem 2.3]).

By Eymard [8, Corollaire 2.26(3)], the map u 7→ u ◦ q is an isometric
algebra isomorphism between B(GL(n,Zp)) and its image B(GL(n,Zp))◦q.
Thus, A(GL(n,Zp)) is isomorphic to A(GL(n,Zp))◦q. Since both GL(n,Zp)
and Gp,n are amenable groups, it follows from Example 2.10(b) and Lem-
ma 2.12(iii) that B(Gp,n) is 2-character amenable. This example shows that
B(G) can be character amenable when G is noncompact. Therefore, we
do not have the dual version of the result on the character amenability
of M(G).

Our objective in this section is to show that B(G) is C-character amen-
able with C < 2 if and only if G is compact. We note that the proof of
Theorem 3.2 in Runde–Spronk [32] does not carry over to our case, since
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among other reasons, C-character amenability is defined in terms of bounded
approximate identity and φ-means rather than approximate diagonals.

In our proof, we use the following decomposition of B(G) proved by
Runde and Spronk in [32, Section 2], which can be considered as a dual
version to the decomposition M(G) = l1(G)⊕1 Mc(G).

Lemma 4.1 ([32]). If G is a noncompact locally compact group, then
there are central projections PF , PPIF in W ∗(G) such that

(i) PF ∈ σ(B(G));
(ii) AF (G) = PF · B(G) is a closed subalgebra of B(G) containing the

constant function 1G;
(iii) APIF (G) = PPIF ·B(G) is a closed ideal of B(G) containing A(G);
(iv) B(G) = AF (G)⊕1 APIF (G).

Theorem 4.2. Let G be a locally compact group. Then the following
statements are equivalent :

(i) G is compact ;
(ii) B(G) is 1-character amenable;

(iii) B(G) is C-character amenable for some constant C with C < 2.

Proof. If G is compact, then B(G) = A(G) is 1-character amenable (see
Example 2.10(b)). Therefore, (i) implies (ii). Obviously, (ii) implies (iii).

It remains to show that (iii) implies (i). Suppose that G is not compact
but B(G) is C-character amenable. Note that PF ∈ σ(B(G)). Let ΦF ∈
B(G)∗∗ be any PF -mean. We show that ‖ΦF‖ ≥ 2, which implies that
C ≥ 2, completing the proof of the theorem.

Consider the Banach space direct sums

W ∗(G) = AF (G)∗ ⊕∞ APIF (G)∗, W ∗(G)∗ = AF (G)∗∗ ⊕1 APIF (G)∗∗,

which follow directly from Lemma 4.1(iv). Clearly, PF ∈ AF (G)∗ and PPIF
∈ APIF (G)∗. If we write ΦF = Φ1 + Φ2 with Φ1 ∈ AF (G)∗∗ and Φ2 ∈
APIF (G)∗∗, then

1 = 〈ΦF , PF 〉 = 〈Φ1 + Φ2, PF 〉 = 〈Φ1, PF 〉.
This implies that ‖Φ1‖ ≥ 1.

Let ω : G → W ∗(G) be the universal representation of G. Then ω(e) =
PF+PPIF is the identity of W ∗(G) and 〈ω(e), u〉 = u(e) (u ∈ B(G)). Choose
u ∈ A(G) such that u(e) = 1. Then u ·ω(e) = ω(e). Since A(G) ⊆ APIF (G)
and PF ∈ AF (G)∗, we have PF (u) = 0. It follows that

〈Φ1, PF 〉+ 〈Φ2, PPIF 〉 = 〈ΦF , ω(e)〉 = 〈ΦF , u ·ω(e)〉 = PF (u)〈ΦF , ω(e)〉 = 0.

Thus, 〈Φ2, PPIF 〉 = −〈Φ1, PF 〉 = −1 and hence ‖Φ2‖ ≥ 1. Therefore,
‖ΦF‖ = ‖Φ1‖+ ‖Φ2‖ ≥ 2.
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Remarks 4.3. (a) Note that AF (G) ∼= B(bG) = A(bG) (see [32, Propo-
sition 2.1]). Therefore, for all locally compact groups G, AF (G) is always
character amenable. It follows from [36, Theorem 2.6(v)] that B(G) is char-
acter amenable if APIF (G) is character amenable.

(b) The group Gp,n shows that there exists a noncompact amenable
locally compact group G such that B(G) is 2-character amenable. On the
other hand, for all noncompact locally compact abelian groups G, B(G) ∼=
M(Ĝ) is not character amenable.

5. Character amenability of uniform algebras. We briefly recall
the terminology needed in this section. For more details, the reader is re-
ferred to Dales [3, Chapter 4].

Let X be a topological space. A function algebra A on X is a subalgebra
of CX that strongly separates points of X for which the A-topology on X
coincides with the given topology. A Banach function algebra on X is a
function algebra on X which is a Banach algebra with respect to some
norm; a uniform algebra on X is a function algebra on X which is a closed
subalgebra of (Cb(X), | · |X), where | · |X is the supremum norm on Cb(X).
A Banach function algebra is called natural if σ(A) = {τx : x ∈ X}, where
τx is the evaluation functional at x.

Suppose that X is a compact space and A is a unital Banach function
algebra on X. The Choquet boundary of A, denoted by Γ0(A), consists of
all those x ∈ X for which δx is the unique probability measure µ on X such
that f(x) =

	
X f dµ for every f ∈ A. The following theorem relates the

character amenability to the Choquet boundary.

Theorem 5.1. If A is a character amenable unital Banach function
algebra on a compact space X, then Γ0(A) = X.

Proof. Given x ∈ X, τx-amenability implies that ker τx has a bounded
approximate identity (see [23, Proposition 2.2]). A slight modification of the
proof of [2, Lemma 1.6.3] shows that there exist 0 < α < β < 1 such that
for each neighborhood U of x, there exists f ∈ A satisfying

|f |X ≤ 1, f(x) > β, |f |X\U < α.

It is known that under these conditions, we have x ∈ Γ0(A) (cf. [2, Theo-
rem 2.2.1]).

For uniform algebras A, the condition that x ∈ Γ0(A) is equivalent to
the existence of a bounded approximate identity of ker τx (cf. Dales [3, The-
orem 4.3.5]), which implies that A is τx-amenable (see Kaniuth–Lau–Pym
[23, Proposition 2.1]). Thus, the Choquet boundary completely characterizes
the character amenability of a natural unital uniform algebra.
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Corollary 5.2. A natural unital uniform algebra A on a compact space
X is character amenable if and only if Γ0(A) = X.

It is perhaps not surprising that the Choquet boundary alone cannot
characterize the character amenability of a general Banach function algebra,
since the definition of Choquet boundary does not involve the norm of the al-
gebra. For a specific example, let G = SL(2,R) (or any nonamenable locally
compact group). Let A(G)# be the unitization of A(G), and G∞ the one-
point compactification of G. Then A(G)# can be identified with a unital Ba-
nach function algebra on G∞ with σ(A#(G)) = {τx : x ∈ G∞}∼=G∞. Since
G is not amenable, A(G) and hence A(G)# are not character amenable (see
Sangani-Monfared [36, Corollary 2.4]). However, one can get Γ0(A#(G)) =
G∞ by showing that for each x ∈ G∞ and each neighborhood U of x in G∞,
there exists f ∈ A#(G) such that

|f |G∞ ≤ 1, f(x) = 1, |f |G∞\U = 0.

If x ∈ G, the construction of such a function f is well-known (see, for ex-
ample, Kaniuth–Lau–Pym [23, Example 2.6]). If x =∞, K ⊆ G is compact,
and U = G∞ \ K is an open neighborhood of ∞, then we can choose an
open neighborhood V of K in G, and find a function f ∈ A(G) such that
0 ≤ f ≤ 1, f |K = 1, and f

∣∣
G\V = 0. Then the function g = 1− f ∈ A(G)#

satisfies |g|G∞ ≤ 1, g(∞) = 1, and |g|G∞\U = 0. In fact, since G = SL(2,R)
is metrizable, each {x} is a Gδ-set in G∞ and therefore each x ∈ G∞ is a
peak point for A#(G∞) (cf. Dales [3, p. 447]).

By Sheinberg’s theorem, it is known that a unital uniform algebra A
on a compact space X is amenable if and only if A = C(X) (cf. [3, Theo-
rem 5.6.2]). Recently, Runde [31] showed an operator space version of Shein-
berg’s theorem when a uniform algebra is equipped with its minimal oper-
ator space structure and amenability is replaced by operator amenability.
It is natural to ask whether amenability in Sheinberg’s theorem can be
replaced by character amenability. The following example due to Basener
[1, Theorem 3] shows that this is not the case.

For a compact set K ⊆ C, let R(K) be the uniform algebra of all func-
tions on K which are uniform limits of rational functions with poles out-
side K. Let K be a compact subset of the unit disk D such that the only
Jensen measures for R(K) are trivial, and R(K) 6= C(K) (cf., for example,
Stout [37, Section 24]). Now let

ΩK = {(z, w) ∈ C2 : z ∈ K, |z|2 + |w|2 = 1}.

For this ΩK , Basener [1] showed that R(ΩK) 6= C(ΩK). However, given
(z0, w0) ∈ ΩK , the polynomial P (z, w) = (z0z+w0w+1)/2 peaks at (z0, w0)
and hence Γ0(R(ΩK)) = ΩK . Therefore, by Corollary 5.2, R(ΩK) is a char-
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acter amenable Banach algebra. We remark that since σ(R(ΩK)) = ΩK (cf.
Dales [3, Proposition 4.3.12(iii)]), R(ΩK) 6= C(X) for any compact space X.

Let K be a compact subset of C and let P (K) be the uniform algebra
on K consisting of uniform limits of polynomials. It is interesting that for
such uniform algebras, the character amenable version of Sheinberg’s result
holds. We start with a general result that was kindly pointed out to us by
the referee.

Lemma 5.3. Let K be a compact subset of Cn for some n ≥ 1, and let
P (K) be character amenable. Then K has empty interior and is polynomi-
ally convex.

Proof. Since P (K) is character amenable, it does not have any nonzero
point derivations. Thus K must have an empty interior, since for any w in
the interior of K and for any 1 ≤ k ≤ n, f 7→ df

dzk
(w) is a nonzero point

derivation on P (K).
Let K̂ be the polynomially convex hull of K. Then P (K) is isometrically

isomorphic to P (K̂) (cf. for example [12, p. 27]; the argument for n > 1 is
the same). Therefore, by Theorem 5.1, K̂ = Γ0(P (K̂)) ⊆ Γ0(P (K)) = K.
That is, K is polynomially convex.

Theorem 5.4. For a compact subset K of C, the uniform algebra P (K)
is character amenable if and only if P (K) = C(K).

Proof. The “only if” part of the theorem needs a proof. By Lem-
ma 5.3, K must be polynomially convex and must have empty interior.
Hence by Lavrentiev’s theorem (cf. [12, Theorem II.8.7]), we must have
P (K) = C(K).

6. Character contractibility. In the final section of this paper, we
consider character contractibility of Banach algebras. We start with the
following definition.

Definition 6.1. Let A be a Banach algebra and φ ∈ σ(A). A left [right ]
φ-diagonal for A is an element m of A ⊗̂A such that

(i) m · a = φ(a)m [a ·m = φ(a)m] (a ∈ A);
(ii) 〈φ⊗ φ,m〉 = φ(π(m)) = 1.

If m is both left and right φ-diagonal, it is called a φ-diagonal .

It is easy to see that if m is a left φ-diagonal and n is a right φ-diagonal,
then nm is a (two-sided) φ-diagonal. No direct relation seems to exist be-
tween a projective diagonal and a φ-diagonal. However, we will see that the
existence of a projective diagonal implies the existence of φ-diagonals for
every φ ∈ σ(A).
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Definition 6.2. Let A be a Banach algebra and φ ∈ σ(A) ∪ {0}. Then
A is called left φ-contractible if H1(A,E) = {0} for all E ∈ φMA. Further-
more, A is called left character contractible if it is left φ-contractible for all
φ ∈ σ(A) ∪ {0}.

Similar definitions hold for right φ-contractible and right character con-
tractible Banach algebras.

A is called character contractible if it is both left and right character
contractible.

Theorem 6.3. Let A be a Banach algebra and φ ∈ σ(A).

(i) A is left [right ] 0-contractible if and only if A has a left [right ]
identity.

(ii) A is left [right ] φ-contractible if and only if A has a left [right ]
φ-diagonal.

(iii) A is left [right ] character contractible if and only if A has a left
[right ] identity and has a left [right ] φ-diagonal for every φ ∈ σ(A).

Proof. We only prove the left version of the theorem. Similar arguments
will establish the right side version.

(i) Suppose that A is left 0-contractible. Let E = A⊕1 A be the Banach
A-bimodule with the module actions given by a · (b, c) = (0, 0) and (b, c) ·
a = (ba, ca) (a, b, c ∈ A). By our assumption, the continuous derivation
D : A → E, D(a) = (a, a), must be inner and hence D = δ(a0,b0) for some
(a0, b0) ∈ E. It follows that both −a0 and −b0 are left identities for A. The
converse is obvious and its proof is omitted.

(ii) Let A be left φ-contractible. Consider the Banach A-bimodule A ⊗̂A
with the module actions given by a · (b ⊗ c) = φ(a)b ⊗ c and (b ⊗ c) · a =
b ⊗ ca (a, b, c ∈ A). Let m0 ∈ A ⊗̂ A be such that 〈φ ⊗ φ,m0〉 = 1, and
consider the inner derivation

δm0 : A→ A ⊗̂A, a 7→ a ·m0 −m0 · a = φ(a)m0 −m0 · a.

Note that the image of δm0 is a subset of ker(φ⊗φ). Hence, by the assump-
tion, there exists m1 ∈ ker(φ⊗ φ) such that δm0 = δm1 . Then m0 −m1 is a
left φ-diagonal for A.

Conversely, let m be a left φ-diagonal for A, let E ∈ φMA, and let
D : A → E be a continuous derivation. Let x0 = D(π(m)). It suffices to
show that Da = δx0a for all a ∈ A satisfying φ(a) = 1 (since these elements
span A). Let a ∈ A with φ(a) = 1. Then

δx0a = x0 − x0 · a = D(π(m))− [D(π(m)a)− π(m) ·Da] = Da,

where the last equality holds since π(m)a = π(m · a) = φ(a)π(m) = π(m).
(iii) This is immediate by (i) and (ii).
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Our next result is analogous to Corollary 2.3 in Kaniuth–Lau–Pym [23],
where they proved that a Banach algebra A is left [right] φ-amenable and
has a bounded left [right] approximate identity if and only if kerφ has a
bounded left [right] approximate identity.

Theorem 6.4. Let A be a Banach algebra and φ ∈ σ(A). Then A is left
[right ] φ-contractible and has a left [right ] identity if and only if kerφ has
a left [right ] identity.

Proof. To prove the necessity of the condition, we note that by Theo-
rem 6.3(ii), A has a left φ-diagonal m ∈ A ⊗̂ A. If e is a left identity of A,
then e− π(m) is a left identity of kerφ.

It remains to prove the sufficiency of the condition. Let e′ be a left
identity of kerφ. Take a0 ∈ A such that φ(a0) = 1. Then e = a0 + e′ − e′a0

is a left identity of A and m = e ⊗ (e − e′e) is a left φ-diagonal for A. To
verify the last assertion, we note that

φ(π(m)) = φ(e)− φ(e′)φ(e) = φ(e) = 1 and m · e = m.

Furthermore, if a ∈ A, then a = (a− φ(a)e) + φ(a)e with a− φ(a)e ∈ kerφ.
Hence we have

m · (a− φ(a)e) = e⊗ ((a− φ(a)e)− e′(a− φ(a)e)) = e⊗ 0 = 0.

Therefore,
m · a = m · (a− φ(a)e) + φ(a)m · e = φ(a)m.

The right side version of the theorem can be proved similarly.

Clearly, every left [right] character contractible Banach algebra is left
[right] character amenable. The converse, however, is not true. For example,
if G is an amenable, noncompact locally compact group, then the Fourier
algebra A(G) is character amenable (see [36, Corollary 2.4]) but not char-
acter contractible since it is not unital. It is seen from the definitions that
every contractible Banach algebra is character contractible. The converse is
not true. For instance, if H is a separable infinite-dimensional Hilbert space,
then σ(B(H)) = ∅, and hence B(H) is character contractible, but B(H) is
not contractible (cf. Runde [30, Corollary 6.1.8]).

Example 6.5. To give an example of φ-diagonals, we consider the Ba-
nach algebra A of all upper-triangular 3 × 3 matrices over C. We have
σ(A) = {φ1, φ2, φ3}, where

φk([aij ]) = akk, k = 1, 2, 3.

The verification of the following assertions is routine.
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(i) A is right φ1-contractible and

M1 =

1 0 0
0 0 0
0 0 0

⊗
1 0 0

0 1 0
0 0 1


is a right φ1-diagonal for A.

(ii) A is not left φ1-amenable, since kerφ1 has no left identity.
(iii) A is neither left nor right φ2-amenable, since kerφ2 has neither a

left nor a right identity.
(iv) A is left φ3-contractible, and

M3 =

1 0 0
0 1 0
0 0 1

⊗
0 0 0

0 0 0
0 0 1


is a left φ3-diagonal for A.

(v) A is not right φ3-amenable, since kerφ3 has no right identity.

Let A be a Banach algebra and Aop the opposite algebra of A. Every
Banach A-bimodule E has a canonical Aop-bimodule structure given by
a ◦ x = x · a and x ◦ a = a · x (a ∈ Aop, x ∈ E). For the definition of higher
order cohomology groups of Banach algebras, the reader is referred to Dales
[3, p. 274]. The following lemma is well known.

Lemma 6.6. For every Banach A-bimodule E and every positive inte-
ger n,

Hn(A,E) ∼= Hn(Aop, E)

via the isomorphism T 7→ T o, where T o(a1, . . . , an) = T (an, . . . , a1).

Corollary 6.7. Let A be a Banach algebra and φ ∈ σ(A) ∪ {0}.

(i) A is left [right ] φ-contractible if and only if Aop is right [left ] φ-con-
tractible.

(ii) A is left [right ] φ-amenable if and only if Aop is right [left ] φ-
character contractible.

(iii) If A is left [right ] φ-contractible, then Hn(A,E) = {0} for all E ∈
φMA [E ∈MA

φ ] and all positive integers n.
(iv) If A is left [right ] φ-amenable, then Hn(A,E∗) = {0} for all E ∈

MA
φ [E ∈ φMA] and all positive integers n.

Parts (i) and (ii) are immediate consequences of Lemma 6.6. In (iii)
and (iv), the statements for the “left” case follow from the standard re-
duction of dimension formula Hn+1(A,E) = H1(A, (Bn(A,E), ?)) as proved
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for example in Dales [3, Proposition 2.8.22]. Then the “right” case in (iii)
and (iv) follows by applying Lemma 6.6.

Our objective in the remainder of this section is to show that a charac-
ter contractible commutative Banach algebra is isomorphic to Cn for some
n ∈ N. We start with a few preliminary results.

We recall that if A and B are Banach algebras and θ ∈ σ(B), then the
θ-Lau product A ×θ B is the space A × B equipped with the multiplica-
tion

(a, b) · (a′, b′) = (aa′ + θ(b)a′ + θ(b′)a, bb′),

and the norm ‖(a, b)‖ = ‖a‖+ ‖b‖. Then A×θ B is a Banach algebra, A is
a closed two-sided ideal in A ×θ B, and (A ×θ B)/A ∼= B. We note that if
B = C and θ is the identity map on C, then A×θ C = A# is the unitization
of A. In [35, Proposition 2.4] it is shown that

σ(A×θ B) = σ(A)× {θ} ∪ {0} × σ(B).

For more information on these algebras, the reader is referred to [25, 35].
The following result can be obtained by modifying the proofs of

[36, Theorem 2.6 and Proposition 2.8] given for the character amenable
case.

Lemma 6.8. Let A and B be Banach algebras and I a closed two-sided
ideal of A.

(i) If A is left [right ] character contractible and µ : A → B is a con-
tinuous algebra homomorphism such that µ(A) = B, then B is left
[right ] character contractible.

(ii) If A is left [right ] character contractible, then I is left [right ] char-
acter contractible if and only if I has a left [right ] identity.

(iii) Given θ ∈ σ(B), A×θ B is left [right ] character contractible if and
only if both A and B are left [right ] character contractible.

(iv) A×B is left [right ] character contractible if and only if both A and
B are left [right ] character contractible.

In view of Lemma 6.8, the following two results can be proved by simple
modifications of the arguments used in the proofs of Lemma 3.3 and Theo-
rem 3.5.

Lemma 6.9. If A is a character amenable commutative Banach algebra,
then every ideal of finite codimension in A is character contractible.

Theorem 6.10. If A is a character contractible commutative Banach
algebra, then A ∼= Cn for some n ∈ N.
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Remark 6.11. Theorem 6.10 is not true for noncommutative character
contractible Banach algebras, as the example B(H) shows, where H is an
infinite-dimensional separable Hilbert space. Another example can be given
by using Lemma 6.8(iii). If θ ∈ σ(Cn), then B(H) ×θ Cn is an infinite-
dimensional character contractible Banach algebra which has nonempty
spectrum. Note that B(H) ×θ Cn is an infinite-dimensional character con-
tractible Banach algebra whose maximal ideals are of finite codimension;
such examples do not exist among contractible Banach algebras (cf. Runde
[30, Proposition 4.1.2]).
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[8] P. Eymard, L’algèbre de Fourier d’un groupe localement compact , Bull. Soc. Math.
France 92 (1964), 181–236.

[9] B. Forrest, Amenability and bounded approximate identities in ideals of A(G), Illi-
nois J. Math. 34 (1990), 1–25.

[10] —, Weak amenability and the second dual of the Fourier algebra, Proc. Amer. Math.
Soc. 125 (1997), 2373–2378.

[11] B. Forrest and N. Spronk, Best bounds for approximate identities in ideals of the
Fourier algebra vanishing on subgroups, ibid. 134 (2006), 111–116.

[12] T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.

[13] F. Ghahramani, R. J. Loy, and G. A. Willis, Amenability and weak amenability of
second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489–1497.



Character amenable Banach algebras 77

[14] F. Gourdeau, Amenability of Lipschitz algebras, Math. Proc. Cambridge Philos. Soc.
112 (1992), 581–588.

[15] —, Amenability and the second dual of Banach algebras, Studia Math. 125 (1997),
75–81.

[16] E. E. Granirer, On group representations whose C∗-algebra is an ideal in its von
Neumann algebra, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, 37–52.

[17] —, A survey on some functional analytic properties of the Fourier algebra A(G) of
a locally compact group, Southeast Asian Bull. Math. 20 (1996), no. 2, 1–12.

[18] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973),
no. 3, 91–123.

[19] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I , Springer, New York, 1979.

[20] B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127
(1972).

[21] —, Non-amenability of the Fourier algebra of a compact group, J. London Math.
Soc. 50 (1994), 361–374.

[22] E. Kaniuth and A. T.-M. Lau, A separation property of positive definite functions
on locally compact groups and applications to Fourier algebras, J. Funct. Anal. 175
(2000), 89–110.

[23] E. Kaniuth, A. Lau, and J. Pym, On φ-amenability of Banach algebras, Math. Proc.
Cambridge Philos. Soc. 144 (2008), 85–96.

[24] —, —, —, On character amenability of Banach algebras, J. Math. Anal. Appl. 344
(2008), 942–955.

[25] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to har-
monic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983),
161–175.

[26] A. T.-M. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact
groups, J. Funct. Anal. 145 (1997), 175–204.

[27] A. T.-M. Lau, R. J. Loy, and G. A. Willis, Amenability of Banach and C∗-algebras
on locally compact groups, Studia Math. 119 (1996), 161–178.

[28] T. W. Palmer, Banach Algebras and the General Theory of ∗-Algebras, Vol. I ,
Cambridge Univ. Press, Cambridge, 1994.

[29] —, Banach Algebras and the General Theory of ∗-Algebras, Vol. II , Cambridge
Univ. Press, Cambridge, 2001.

[30] V. Runde, Lectures on Amenability , Springer, New York, 2002.

[31] —, The operator amenability of uniform algebras, Canad. Math. Bull. 46 (2003),
632–634.

[32] V. Runde and N. Spronk, Operator amenability of Fourier–Stieltjes algebras, Math.
Proc. Cambridge Philos. Soc. 136 (2004), 675–686.

[33] —, —, Operator amenability of Fourier–Stieltjes algebras II , Bull. London Math.
Soc. 39 (2007), 194–202.

[34] M. Sangani Monfared, Extensions and isomorphims for the generalized Fourier al-
gebras of a locally compact group, J. Funct. Anal. 198 (2003), 413–444.

[35] —, On certain products of Banach algebras with applications to harmonic analysis,
Studia Math. 178 (2007), 277–294.

[36] —, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc.
144 (2008), 697–706.

[37] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, New York, 1971.

[38] M. E. Walter, W ∗-algebras and nonabelian harmonic analysis, J. Funct. Anal. 11
(1972), 17–38.



78 Z. Hu et al.

[39] E. I. Zelmanov, On periodic compact groups, Israel J. Math. 77 (1992), 83–95.

Department of Mathematics and Statistics
University of Windsor
Windsor, ON, Canada N9B 3P4
E-mail: zhiguohu@uwindsor.ca

monfared@uwindsor.ca
tt@uwindsor.ca

Received July 17, 2008
Revised version January 15, 2009 (6386)


