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Carleson measures associated with
families of multilinear operators

by

Loukas Grafakos (Columbia, MO) and
Lucas Oliveira (Porto Alegre, RS)

Abstract. We investigate the construction of Carleson measures from families of
multilinear integral operators applied to tuples of L∞ and BMO functions. We show that
if the family Rt of multilinear operators has cancellation in each variable, then for BMO
functions b1, . . . , bm, the measure |Rt(b1, . . . , bm)(x)|2dxdt/t is Carleson. However, if the
family of multilinear operators has cancellation in all variables combined, this result is still
valid if bj are L∞ functions, but it may fail if bj are unbounded BMO functions, as we
indicate via an example. As an application of our results we obtain a multilinear quadratic
T (1) type theorem and a multilinear version of a quadratic T (b) theorem analogous to
those by Semmes [Proc. Amer. Math. Soc. 110 (1990), 721–726].

1. Introduction. A positive measure dµ(x, t) on Rn+1
+ is called a Car-

leson measure if

(1.1) ‖dµ‖C = sup
Q⊂Rn

1

|Q|
dµ(T (Q)) <∞,

where |Q| denotes the Lebesgue measure of the cube Q, T (Q) = Q×(0, l(Q)]
denotes the tent over Q, and l(Q) is the side length of Q. Carleson measures
arose in the work of Carleson [2], [3] and turned out to be tools of funda-
mental importance in harmonic analysis; we mention for instance the great
role they play in the study of the Cauchy integrals along Lipschitz curves
[5], the T (1) theorem [6], and in the study of the Kato problem [1].

There is a natural connection between Carleson measures, families of
linear operators acting L2, and BMO functions. Precisely, let {Rt}t>0 be a
family of integral operators

(1.2) Rt(f)(x) =
�

Rn
Kt(x, y)f(y) dy

2010 Mathematics Subject Classification: Primary 42B99; Secondary 42B25.
Key words and phrases: Carleson measures, multilinear operators.

DOI: 10.4064/sm211-1-4 [71] c© Instytut Matematyczny PAN, 2012



72 L. Grafakos and L. Oliveira

whose kernels Kt satisfy

(1.3) |Kt(x, y)| ≤ At−n

(1 + t−1|x− y|)n+δ

for some δ > 0. Suppose that Rt(1)(x) = 0 for all t > 0 and that there is a
positive constant B such that

(1.4)
�

Rn

∞�

0

|Rt(f)(x)|2 dx dt
t
≤ B2‖f‖22

for all f ∈ L2(Rn). Then given a function b ∈ BMO, the measure

dµ(x, t) := |Rt(b)(x)|2 dx dt
t

is Carleson with norm

‖dµ‖C ≤ Cn,δ(A2 +B2)‖b‖2BMO.

Here the constant depends only on the dimension and on δ. A special case of
this result is due to Fefferman and Stein [11]. Conversely, a result of Christ
and Journé [4] says that given a family of operators Rt whose kernels Kt

satisfy the size condition (1.3) and the regularity condition

(1.5) |Kt(x, y)−Kt(x, y
′)| ≤ At−n(t−1|y − y′|)γ ,

if the Carleson measure estimate

(1.6) sup
Q

1

|Q|

�

Q

l(Q)�

0

|Rt(f)(x)|2 dx dt
t

<∞

holds, then estimate (1.4) also holds.
In this work we investigate the construction of Carleson measures from

families Rt of multilinear operators. The key question is: what is a reasonable
analog of the cancellation condition Rt(1) = 0 in the multilinear case? We
examine two kinds of cancellation conditions, a one-variable and a multi-
variable condition. It is noteworthy that in one of these two cases BMO
functions do not give rise to Carleson measures. To make our result precise
we need some definitions.

We define a family {Θt}t>0 of multilinear operators by setting

(1.7) Θt(f1, . . . , fm)(x) =
�

Rnm
θt(x, y1, . . . , ym)

m∏
i=1

fi(yi) dy1 · · · dym,

where f1, . . . , fm are initially functions in C∞0 (Rn) (smooth with compact
support). For any t > 0, we suppose that the kernels θt(x, y1, . . . , ym) satisfy
the size condition

(1.8) |θt(x, y1, . . . , ym)| ≤ A
m∏
i=1

t−n

(1 + |x− yi|/t)n+δ



Carleson measures and multilinear operators 73

and the smoothness condition

(1.9) |θt(x, y1, . . . , yi, . . . , ym) − θt(x, y1, . . . , y′i, . . . , ym)| ≤ A

tmn
|yi − y′i|γ

tγ

for all i = 1, . . . ,m and for all x, yi, y
′
i ∈ Rn.

Definition 1. We say that the family of operators Θt with kernels θt
satisfies the one-variable T (1) cancellation condition if for all x and yi we
have

(1.10)
�

Rn
θt(x, y1, . . . , ym) dyi = 0 ∀i = 1, . . . ,m.

We also say that Θt satisfies the multi-variable T (1) cancellation condition
if for all x we have

(1.11)
�

Rmn
θt(x, y1, . . . , ym) dy1 · · · dym = 0.

We now state our main result:

Theorem 1.1. Consider the operator

Rt(f1, . . . , fm)(x) =
�

Rmn
rt(x, y1, . . . , ym)

m∏
i=1

fi(yi) dy1 · · · dym

whose kernel rt(x, y1, . . . , ym) satisfies the size condition (1.8) for some con-
stant δ > 0. Assume that for some fixed pi satisfying 2 ≤ pi ≤ ∞ and

1

2
=

m∑
i=1

1

pi

there is a constant B such that

(1.12)
�

Rn

∞�

0

|Rt(f1, . . . , fm)(x)|2 dx dt
t
≤ B2

m∏
i=1

‖fi‖2pi ,

for all fi ∈ Lpi.
(i) If rt satisfies the one-variable T (1) cancellation condition, then there

is a constant Cn,δ such that for all b1, . . . , bm ∈ BMO(Rn) the
measure

(1.13) dµ(x, t) := |Rt(b1, . . . , bm)(x)|2dx dt
t

is Carleson with constant

(1.14) ‖dµ‖C ≤ Cn,δ(A2 +B2)‖b1‖2BMO · · · ‖bm‖2BMO.

(ii) There is a constant Cn,δ such that for all b1, . . . , bm ∈ L∞(Rn), the
measure dµ(x, t) in (1.1) is Carleson with constant

‖dµ‖C ≤ Cn,δ(A2 +B2)‖b1‖2∞ · · · ‖bm‖2∞.
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In particular, this result holds if the Rt satisfy the multi-variable
T (1) cancellation condition.

(iii) Under the multi-variable T (1) cancellation condition, the measure
in (1.1) may not be Carleson if at least one bi is an unbounded BMO
function.

We recall the quadratic T (b) theorem of Semmes in [23]: Let {Rt}t>0 be
a family of linear operators as in (1.2) whose kernels satisfy (1.3). Suppose
that for all t > 0 we have the cancellation condition

Rt(b)(x) = 0

for some bounded complex-valued function b on Rn with Re b(x) ≥ c0 > 0
for almost all x ∈ Rn (such functions are called accretive). Then (1.4) holds.

As an application of our main result, we obtain a multilinear extension
of Semmes’ theorem above.

Theorem 1.2. Let A, δ, γ > 0 and suppose that θt(x, y1, . . . , ym) satisfy
the size condition (1.8) and the smoothness condition (1.9). Assume that
there exist accretive functions b1, . . . , bm on Rn such that the cancellation
condition

(1.15) Θt(b1, . . . , bm) = 0

holds. Then for all 2 < pi < ∞ satisfying 1/2 =
∑m

i=1 1/pi, there is a
positive constant C = Cn,δ,γ,pi such that for all fi ∈ Lpi(Rn) we have

(1.16)
�

Rn

∞�

0

|Θt(f1, . . . , fm)(x)|2 dx dt
t
≤ C2A2

(
1 +

m∏
i=1

‖bi‖2∞
) m∏
i=1

‖fi‖2pi .

As in the linear case, the proof of the result above is based on a com-
bination of a quadratic T (1) estimate for the multilinear family of opera-
torsΘt (that could be seen as a continuous version of the Cotlar–Stein lemma
[7], [19]) and a Carleson measure estimate based on the work of Coifman,
McIntosh, and Meyer [5] on the Cauchy integral on Lipschitz curves.

An important step in the proof of the Theorem 1.2 is a multilinear
quadratic T (1) estimate which is stated below (Theorem 1.3). This theorem
extends results of Maldonado [20] as well as of Maldonado and Naibo [21].

Theorem 1.3. Suppose that the kernel θt(x, y1, . . . , ym) satisfies (1.8)
and (1.9) for some constants γ and δ. Consider the “multilinear” square
function

S(f1, . . . , fm) =

(∞�
0

|Θt(f1, . . . , fm)|2 dt
t

)1/2

.

Suppose that either Θt satisfies the one-variable T (1) cancellation condition
or it satisfies the multi-variable T (1) cancellation condition. Then

S : Lp1(Rn)× · · · × Lpm(Rn)→ Lp(Rn)
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for all 1 < p1, . . . , p2, p <∞ and 1/p = 1/p1 + · · ·+ 1/pm with norm

(1.17) ‖S‖op ≤ Cn,δ,γA.

Moreover, if Θt satisfies the one-variable T (1) cancellation condition, then
the endpoint estimates for some (but not all) pj are infinite are valid.

The paper is organized as follows. In the next section we state a basic
lemma that will be used subsequently. In the third section we prove the
Carleson measure estimate (Theorem 1.1). In the fourth section we prove
the multilinear quadratic T (1) theorems and in the fifth section we prove
the multilinear quadratic T (b) theorem.

Remark. During the preparation of this article, it came to our attention
that Theorems 1.3 and 1.2 overlap recent results obtained by Hart [16] when
m = 2. Hart’s approach in [16], as well as in his subsequent work [17], is
based on the Calderón reproducing formula adapted to the bilinear setting
and is different than ours which is based on Carleson measures formed by
multilinear operators.

2. Preliminary material. Throughout the proofs of our results we will
be working with smooth functions with compact support (C∞0 ). Estimates
for general Lpj functions follow then by density.

Sometimes we will just use the notation A . B to indicate the existence
of a constant C that could depend on the dimension n, and on the numbers
δ and γ introduced in equations (1.8) and (1.9), and on the norm of some
Hardy–Littlewood operators that appears in our proofs.

We begin by recalling the definition of continuous Littlewood–Paley op-
erators. To fix notation, we consider a smooth function Ψ whose Fourier
transform is supported in the annulus {1/2 ≤ |ξ| ≤ 2}. We denote by
Ψs(x) = s−nΨ(x/s) the L1 dilation of Ψ . We call the operator Qs(h) = h?Ψs
the Littlewood–Paley operator associated with Ψ . Throughout this paper we
assume that Ψ has the additional property that

(2.1)

∞�

0

Q2
s

ds

s
:= lim

ε→0
N→∞

N�

ε

Q2
s

ds

s
= I

where the convergence is in S ′ \P; here P is the space of polynomials on Rn.

We state a useful lemma, whose proof is straightforward and is omitted.

Lemma 1. Let Ps(f)(x) =
	
Rn Φs(x − y)f(y) ds, where Φ ∈ C∞0 (Rn)

satisfies

(2.2) |Φ(y)| . 1

(1 + |y|)n+1
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and

(2.3)
�

Rn
Φ(y) dy = 1.

Suppose also that 1 ≤ p1, . . . , pm ≤ ∞ and 0 < r <∞. Then for all Carleson
measures dµ(x, t) the m-linear operator

Ps(f1, . . . , fm)(x) =

m∏
i=1

Ps(fi)(x)

satisfies

(2.4)
�

Rn

∞�

0

|Pt(f1, . . . , fm)(x)|r dµ(x, t) .
m∏
i=1

‖fi‖rpi

for all smooth functions fi ∈ Lpi(Rn), where

1

r
=

m∑
i=1

1

pi
.

3. Carleson measure estimates. In this section we prove Theorem
1.1.

Fix a cube Q. To prove part (i) we need to show that for all b1, . . . , bm
in BMO(Rn),

(3.1)
�

Q

l(Q)�

0

|Rt(b1, . . . , bm)(x)|2 dx dt
t

.
m∏
i=1

‖bi‖2BMO|Q|.

Setting bj,0 = (bj−AvgQ bj)χQ∗ , bj,1 = (bj−AvgQ bj)χ(Q∗)c , bj,2 = AvgQ bj ,
where Q∗ = 2Q, we introduce the decompositions

(3.2) bj = bj,0 + bj,1 + bj,2

for all j = 1, . . . ,m. Using Minkowski’s inequality, it suffices to show that

(3.3)
�

Q

l(Q)�

0

|Rt(b1,j1 , . . . , bm,jm)(x)|2 dx dt
t

.
m∏
i=1

‖bi‖2BMO|Q|,

where ji ∈ {0, 1, 2}. Since rt satisfies the multilinear one-variable T (1) con-
dition, each term of the form (3.3) that contains bi,2 vanishes. So, we may
focus attention on the situation where we have m1 entries containing bj,1
and m2 entries entries containing bj,2, with m = m1 +m2 and 0 ≤ m1 ≤ m.
By a permutation of the variables we may assume that the first m1 variables
of θt correspond to bj,1 and the remaining variables of θt correspond to bj,2.
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We begin with the case where m2 = 0. Then

�

Rn

∞�

0

|Rt(b1,1, . . . , bm,1)|2
dx dt

t
≤ B2

m∏
i=1

‖(bi −AvgQ bi)χQ∗‖2pi(3.4)

. B2
m∏
i=1

‖bi‖2BMO|Q|.

We now consider the case where m2 > 0. In this case, we simply estimate
Rt(b1, . . . , bm)(x) using the size condition (1.8) which permits us to obtain

(3.5) |Rt(b1,1, . . . , bm1,1, bm1+1,2, . . . , bm,2)(x)|

. A

m1∏
i=1

( �

Rn

(bi −AvgQ bi)χQ∗(yi)

tn(1 + t−1|x− yi|)n+δ
dyi

)

×
m2∏

i=m1+1

( �

Rn

(bi −AvgQ bi)χ(Q∗)c(yi)

tn(1 + t−1|x− yi|)n+δ
dyi

)

=: A
(m1∏
i=1

P1,t(bi)(x)
)( m∏

i=m1+1

P2,t(bi)(x)
)
.

For P2,t(bi) we use the easy estimate

(3.6) |P2,t(bi)(x)| .
(

t

l(Q)

)δ
‖bi‖BMO,

which can be found for instance in [24, p. 160]. As for P1,t(bi)(x), we control
it by the Hardy–Littlewood maximal function:

(3.7) |P1,t(bi)(x)| .M((bi −AvgQ bi)χQ∗(x)).

Combining these estimates we deduce

�

Q

l(Q)�

0

|Rt(b1,1, . . . , bm1,1, bm1+1,2, . . . , bm,2)(x)|2 dx dt
t

. A2
�

Q

l(Q)�

0

(m1∏
i=1

M((bi −AvgQ bi)χQ∗)(x)
)2

× t2m2

l(Q)2m2

m2∏
i=m1+1

‖bi‖2BMO

dx dt

t

. A2
∥∥∥m1∏
i=1

M((bi −AvgQ bi)χQ∗)
∥∥∥2
L2(Q)

m∏
i=m1+1

‖bi‖2BMO

. A2
m1∏
i=1

‖M((bi −AvgQ bi)χQ∗)‖2Lpi (Rn)
m∏

i=m1+1

‖bi‖2BMO
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. A2
m1∏
i=1

‖(bi −AvgQ bi)χQ∗‖2Lpi (Rn)
m∏

i=m1+1

‖bi‖2BMO

. A2
m1∏
i=1

‖bi‖2BMO(|Q|
1
p1

+···+ 1
pm1 )2

m∏
i=m1+1

‖bi‖2BMO

= CA2|Q|
m∏
i=1

‖bi‖2BMO,

where pi ≥ 2 are numbers that satisfy 1/p1 + · · · + 1/pm1 = 1/2. We used
here the characterization of BMO in terms of an Lp mean oscillation.

We now turn to part (ii) of the theorem. Here we use the decompositions

(3.8) bj = χQ∗bj + χ(Q∗)cbj = bj,0 + bj,1

where Q∗ = 2Q. To estimate the quantity

(3.9)

l(Q)�

0

�

Q

|Rt(b1,0, . . . , bm,0)(x)|2 dx dt
t

we use (1.12), which shows that (3.9) is at most

B2‖b1,0‖2Lp1 · · · ‖bm,0‖2Lpm ≤ B2(|Q∗|1/p1+···+1/pm)2
m∏
i=1

‖bi‖2L∞

≤ cB2
m∏
i=1

‖bi‖2L∞ ,

and this yields the desired conclusion for this term. If at least one bj,0 is
replaced by bj,1 in (3.9), then we use the estimate

(3.10) |Rt(b1,r1 , . . . , bm,rm)|2 ≤ A
[ ∏
i,ri=0

M(bi,ri)
][ ∏
i,ri=1

P2,t(bi,ri)
]
,

where P2,t is defined earlier, and the second product has at least one term,
and we make use of (3.6) which makes the dt/t integral converge.

We now turn to part (iii) of the theorem. We give an example indicat-
ing that one may not replace L∞ with BMO in Theorem 1.1(ii) under the
multi-variable multilinear T (1) condition. We select a smooth polynomially
decaying function ψ(y, z) on R2 with the following properties (1):

(a) ψ(−y, z) = −ψ(y, z).

(b) Let ψ0(y) =
	
R ψ(y, z) dz. Then

	1
0 |ψ̂0(ξ)|2 dξ > 0.

Condition (a) implies that ψ(y, z) has mean value zero with respect to the
variable y and thus over R2. Condition (b) in particular implies that ψ0

(1) The function ψ(y, z) = y(1 + |y|2 + |z|2)−5/2 has the specified properties.
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is not the zero function, hence
	
R ψ(y, z) dz = ψ0(y) 6= 0 for some y ∈ R.

Hence the kernel

θt(x, y1, y2) =
1

t2
ψ

(
x− y1
t

,
x− y2
t

)
satisfies the multi-variable T (1) cancellation condition and also the one-
variable T (1) cancellation condition with respect to the y1 variable, but not
with respect to the y2 variable.

Now consider the bilinear integral operator given by

Rt(f, g)(x) =
�

R2

1

t2
ψ

(
x− y
t

,
x− z
t

)
f(y)g(z) dy dz.

Given 0 < ε < 1/100 take

bε1(y) = e2πiy/ε − e−2πiy/ε, b2(y) = log |y|,
and Iε = [−ε, ε]. Then b2 is a BMO function whose average over Iε is aε ≈
log ε−1 and b1 is an odd function bounded by 2. Write

b2 = b2,0 + b2,1 + b2,2,

where

b2,0(y) = (log |y| − aε)χ2Iε ,

b2,1(y) = (log |y| − aε)χ(2Iε)c , b2,2 = aε.

We have

Rt(b
ε
1, b2) = Rt(b

ε
1, b2,0) +Rt(b

ε
1, b2,1) +Rt(b

ε
1, b2,2).

We split bε1 = bε1χ2Iε + bε1χ(2Iε)c and we use the estimates in the proof of
Theorem 1.1(ii), which yield (without using any cancellation properties of ψ)

1

2ε

ε�

−ε

ε�

0

|Rt(bε1, b2,0)(x)|2 dx dt
t

+
1

2ε

ε�

−ε

ε�

0

|Rt(bε1, b2,1)(x)|2 dx dt
t
≤ C ′,

where C ′ ≥ Cn(A + B)2‖bε1‖2BMO‖b2‖2BMO and C ′ is independent of ε. The
cancellation of ψ was only used to annihilate the terms containing at least
one average but no average appears in the preceding estimate. Using these
observations, in order to prove that the measure |Rt(bε1, b2)|2dx dt/t is not
Carleson, it will suffice to show that

1

2ε

ε�

−ε

ε�

0

|Rt(bε1, b2,2)(x)|2 dx dt
t
≥ c|log ε−1|2 ↑ ∞ as ε→ 0+,

which, since b2,2 = aε, is equivalent to showing that

(3.11)
1

2ε

ε�

−ε

ε�

0

|Rt(bε1, 1)(x)|2 dx dt
t
≥ c.
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A simple calculation gives that

Rt(b
ε
1, 1)(x) = e2πix/εψ̂0(t/ε)− e−2πix/εψ̂0(−t/ε)

= 2 cos(2πx/ε)ψ̂0(t/ε),

where the last identity follows from the fact that ψ̂0 is odd, which is a
consequence of the fact that ψ is odd in the first variable. Using this identity
for Rt(b

ε
1, 1)(x), we find that the expression on the left in (3.11) is at least

1

2ε

ε�

−ε

ε�

0

4 cos2(2πx/ε)|ψ̂0(t/ε)|2 dx dt
t

and by a change of variables the above is bounded from below by a constant
independent of ε since

1�

0

|ψ̂0(ξ)|2 dξ > 0.

4. T (1) square function estimates. In this section we prove Theorem
1.3. This theorem will be a necessary tool in the proof of Theorem 1.2. We
fix functions fj in C∞0 (Rn).

Proof of Theorem 1.3. Using the Littlewood–Paley operator Qs intro-
duced in Section 2, we rewrite the operator Θt in a more convenient form:

(4.1) Θt(f1, . . . , fm)(x)

= Θt

(∞�
0

Q2
sf1

ds

s
, . . . , fm

)
(x)

=
�

R2n

(∞�
0

(Q2
sf1)(y1)

ds

s

) m∏
i=2

fi(yi)θt(x, y1, . . . , ym) dy1 · · · dym

=

∞�

0

( �

R2n

(Q2
sf1)(y)

m∏
i=2

fi(z)θt(x, y1, . . . , ym) dy1 · · · dym
)
ds

s

=

∞�

0

Θt(Q
2
sf1, . . . , fm)(x)

ds

s
.

We will study of the boundedness of this operator via duality. For this
purpose we introduce a function h(x, t) ∈ Lp′(dx, L2(dt/t)) with( �

Rn

(∞�
0

|h(x, t)|2 dt
t

)p′/2
dx

)1/p′

= ‖h‖p′,2 ≤ 1.
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Using this function we obtain

‖S(f1, . . . , fm)‖p =

( �

Rn

∣∣∣∣∞�
0

|Θt(f1, . . . , fm)(x)|2 dt
t

∣∣∣∣p/2dx)1/p

(4.2)

= sup
‖h‖p′,2≤1

∣∣∣∣ �
Rn

∞�

0

Θt(f1, . . . , fm)(x)h(x, t)
dt

t
dx

∣∣∣∣.
Now for a fixed h with ‖h‖p′,2 ≤ 1 we have

(4.3)

∣∣∣∣ �
Rn

∞�

0

Θt(f1, . . . , fm)(x)h(x, t)
dt

t
dx

∣∣∣∣
=

∣∣∣∣ �
Rn

∞�

0

Θt(f1, . . . , fm)(x)h(x, t)
dt

t
dx

∣∣∣∣
=

∣∣∣∣ �
Rn

∞�

0

(∞�
0

Θt(Q
2
sf1, . . . , fm)(x)

ds

s

)
h(x, t)

dt

t
dx

∣∣∣∣
=

∣∣∣∣ �
Rn

∞�

0

∞�

0

Θt(Q
2
sf1, . . . , fm)(x)h(x, t)

ds

s

dt

t
dx

∣∣∣∣
≤
∣∣∣∣ �

Rn

(∞�
0

∞�

0

|Θt(Q2
sf1, . . . , fm)(x)|2w(t, s)−1

ds

s

dt

t

)1/2

×
(∞�

0

∞�

0

|h(x, t)|2w(t, s)
ds

s

dt

t

)1/2

dx

∣∣∣∣,
where w(t, s) is a positive symmetric function which satisfies

(4.4) Aw := sup
t>0

∞�

0

w(t, s)
ds

s
= sup

s>0

∞�

0

w(t, s)
dt

t
<∞

and will be defined later. Combining (4.2) and (4.3) we deduce that

‖S(f1, . . . , fm)‖p ≤
( �

Rn

(∞�
0

∞�

0

|Θt(Q2
sf1, . . . , fm)|2w(t, s)−1

ds

s

dt

t

)p/2
dx

)1/p

× sup
h

( �

Rn

(∞�
0

∞�

0

|h(x, t)|2w(t, s)
ds

s

dt

t

)p′/2
dx

)1/p′

≤
( �

Rn

(∞�
0

∞�

0

|Θt(Q2
sf1, . . . , fm)(x)|2w(t, s)−1

ds

s

dt

t

)p/2
dx

)1/p

× sup
h

( �

Rn

(∞�
0

|h(x, t)|2
(

sup
t>0

∞�

0

w(t, s)
ds

s

)
dt

t

)p′/2
dx

)1/p′
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≤
( �

Rn

(∞�
0

∞�

0

|Θt(Q2
sf1, . . . , fm)(x)|2w(t, s)−1

ds

s

dt

t

)p/2
dx

)1/p

× sup
h
A1/2
ω

( �

Rn

(∞�
0

|h(x, t)|2 dt
t

)p′/2
dx

)1/p′

≤ A1/2
ω

( �

Rn

(∞�
0

∞�

0

|Θt(Q2
sf1, . . . , fm)|2w(t, s)−1

ds

s

dt

t

)p/2
dx

)1/p

,

where the supremum is taken over all h satisfying ‖h‖p′,2 ≤ 1.

Let M be the Hardy–Littlewood maximal function. In view of the result
in [13, pp. 247–248] there is a function w(t, s) satisfying (4.4) such that

(4.5) |Θt(Qsf1, . . . , fm)(x)| . Aw(t, s)

m∏
i=1

M(fi)(x).

Assume for the moment that (4.5) holds. Define p∗ by setting

1

p∗
=

1

p2
+ · · ·+ 1

pm

so that
1

p
=

1

p1
+

1

p∗
.

In view of (4.5) we obtain( �

Rn

(∞�
0

∞�

0

|Θt(Q2
sf1, . . . , fm)(x)|2w(t, s)−1

ds

s

dt

t

)p/2
dx

)1/p

. A

( �

Rn

(∞�
0

∞�

0

|M(Qsf1)(x)|2
∣∣∣ m∏
i=2

M(fi)(x)
∣∣∣2w(t, s)

ds

s

dt

t

)p/2
dx

)1/p

= A

( �

Rn

∣∣∣ m∏
i=2

M(fi)(x)
∣∣∣p(∞�

0

∞�

0

|M(Qsf1)(x)|2w(t, s)
ds

s

dt

t

)p/2
dx

)1/p

≤
∥∥∥ m∏
i=2

M(fi)
∥∥∥
p∗

( �

Rn

(∞�
0

∞�

0

|M(Qsf1)(x)|2w(t, s)
ds

s

dt

t

)p1/2
dx

)1/p1

. A
m∏
i=2

‖fi‖pi
( �

Rn

{∞�
0

|M(Qsf1)(x)|2
(

sup
s

∞�

0

w(t, s)
dt

t

)
ds

s

}p1/2
dx

)1/p1

. AA1/2
w

m∏
i=2

‖fi‖pi
( �

Rn

(∞�
0

|M(Qsf1)(x)|2 ds
s

)p1/2
dx

)1/p1

. AA1/2
w

m∏
i=2

‖fi‖pi
( �

Rn

(∞�
0

|(Qsf1)(x)|2 ds
s

)p1/2
dx

)1/p1

. AA1/2
w

m∏
i=1

‖fi‖pi ,
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where we used the Fefferman–Stein [10] vector-valued maximal function in-
equality and the Littlewood–Paley theorem. We conclude that

(4.6) ‖S(f1, . . . , fm)‖p . A

m∏
i=1

‖fi‖pi

whenever 1 < pi <∞ and
1

p
=

m∑
i=1

1

pi
.

But (4.6) is a restatement of (1.17) that we were supposed to prove.
We now discuss the proof of (4.5). To begin, we introduce some notation.

Observe that

Θt(Qsf1, . . . , fm)(x)

=
�

Rmn
θt(x, y1, . . . , ym)(Qsf1)(y1)

m∏
i=2

fi(yi) dy1 · · · dym

=
�

Rmn
θt(x, y1, . . . , ym)

( �

Rn
ψs(yi − u)f1(u) du

) m∏
i=2

fi(yi) dy1 · · · dym

=
�

Rmn

{ �

Rn
θt(x, y1, . . . , ym)ψs(y1 − u) dy1

}
f1(u)

m∏
i=2

fi(yi) du dy2 · · · dym

=
�

Rmn
Lt,s(x, u, y2, . . . , ym)f1(u)

m∏
i=2

fi(yi) du dy2 · · · dym.

The result will follow from a pointwise estimate for Lt,s(x, u, y2, . . . , ym). We
will make use of the following integral identities (whose proof can be found
in [13, pp. 229]):

�

RN

s−N min(2, t−1|u|γ)

(1 + s−1|u|)N+1
du ≤ CN

(
s

t

) 1
2
min(γ,1)

if s ≤ t,(4.7)

�

RN

t−N min(2, s−1|u|)
(1 + t−1|u|)N+δ

du ≤ CN
(
t

s

) 1
2
min(δ,1)

if t ≤ s.(4.8)

We begin with the case s ≤ t. Using the fact that Qs(1) = 0 for all
s > 0, and that ψs(y) satisfies the same size estimate as θt(x, y1, . . . , ym)
with γ = δ = 1, we get

(4.9) |Ls,t(x, u, . . . , ym)| =
∣∣∣ �
Rn
θt(x, y1, . . . , ym)ψs(y1 − u) dy1

∣∣∣
=
∣∣∣ �

Rn
[θt(x, y1, . . . , ym)− θt(x, u, . . . , ym)]ψs(y1 − u) dy1

+ θt(x, u, . . . , ym)
�

Rn
ψs(y1 − u) dy1

∣∣∣
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=
∣∣∣ �
Rn

[θt(x, y1, . . . , ym)− θt(x, u, . . . , ym)]ψs(y1 − u) dy1

∣∣∣
≤ CA

�

Rn

min(2, (t−1|y1 − u|)γ)

t2n
s−n

(1 + s−1|y1 − u|)n+1
dy1

≤ CnA
1

t2n

(
s

t

) 1
2
min(γ,1)

≤ CnAmin

(
1

t
,
1

s

)n
min

(
t

s
,
s

t

) 1
2
min(γ,δ,1)

.

Now, for t ≤ s we have

(4.10) |Ls,t(x, u, . . . , ym)|

=
∣∣∣ �
Rn
θt(x, y1, . . . , ym)ψs(y1 − u) dy1

∣∣∣
=
∣∣∣ �
Rn
θt(x, y1, . . . , ym)[ψs(y1 − u)− ψ(x− u)] dy1

∣∣∣
≤ CAt−(m−1)n

( m∏
i=2

1

(1 + t−1|x− yi|)n+δ

)
×

�

Rn

t−n

(1 + t−1|x− y1|)n+δ
min(2, s−1|x− y1|)

sn
dy1

≤ CnAmin

(
1

t
,
1

s

)n
min

(
t

s
,
s

t

) 1
2
min(γ,δ,1) m∏

i=2

t−n

(1 + t−1|x− yi|)n+δ
.

We also have the following integral inequality (see Appendix K.1 in [12]):

(4.11) |Ls,t(x, u, . . . , ym)| ≤
�

Rn
|θt(x, y1, . . . , ym)ψs(y1 − u)| dy1

≤ CAmin(1/t, 1/s)n

(1 + min(1/t, 1/s)|x− u|)n+min(δ,1)

( m∏
i=2

1

(1 + t−1|x− yi|)n+δ

)
.

Combining the estimates (4.9)–(4.11), we obtain

|Ls,t(x, u, . . . , ym)| . min(1/t, 1/s)
1
2
min(δ,γ,1)(1−β)Amin(1/t, 1/s)n

((1 + min(1/t, 1/s)|x− u|)n+min(δ,1))β
(4.12)

×
( m∏
i=2

1

(1 + t−1|x− yi|)n+δ

)
for all 0 < β < 1. If we choose β =

(
n+ 1

2 min(δ, 1)
)
(n+ min(δ, 1))−1, then

estimate (4.12) implies that
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(4.13) |Θt(Qsf1, . . . , fm)(x)|

. Amin

(
1

t
,
1

s

)ε( �

Rn

min(1/t, 1/s)n

((1 + min(1/t, 1/s)|x− u|)n+min(δ,1))β
|f(u)| du

)

×
m∏
i=2

( �

Rn

t−n

(1 + t−1|x− yi|)n+δ
|fi(yi)| dyi

)

. min

(
t

s
,
s

t

)ε m∏
i=1

M(fi)(x),

where we set

ε =
1

4
min(δ, γ, 1)

min(δ, 1)

n+ min(δ, 1)
and we used the well-known inequality

(4.14)
�

Rn
|h(w)| a−n

(1 + a−1|x− w|)
dw .M(h)(x).

As the function w(t, s) = min(t/s, s/t)ε satisfies (4.4), estimate (4.5)
easily follows.

This completes the proof of the endpoint estimate

Lp × L∞ × · · · × L∞ → Lp

in Theorem 1.3 under the one-variable T (1) cancellation condition. Bound-
edness at the remaining points as claimed by the theorem follows by sym-
metry and multilinear interpolation [14].

It remains to obtain the same estimate under the multi-variable T (1)
cancellation condition.

So suppose now that θt satisfies this condition. Just as in the preceding
situation, we start by using duality and Littlewood–Paley operators to put
the operator in a more tractable form. Then

(4.15) ‖S(f1, . . . , fm)‖p = sup
‖h‖p′,2≤1

∣∣∣∣ �
Rn

∞�

0

Θt(f1, . . . , fm)(x)h(x, t)
dt

t
dx

∣∣∣∣.
Setting Θt(Q

2
s1f1, . . . , Q

2
smfm)(x) = Θ̃t,~s(x), we have

(4.16)

∣∣∣∣ �
Rn

∞�

0

Θt(f1, . . . , fm)(x)h(x, t)
dt

t
dx

∣∣∣∣
=

∣∣∣∣ �
Rn

∞�

0

(∞�
0

· · ·
∞�

0

Θ̃t,~s(x)
ds1
s1
· · · dsm

sm

)
h(x, t)

dt

t
dx

∣∣∣∣
=

∣∣∣∣ �
Rn

∞�

0

· · ·
∞�

0

Θ̃t,~s(x)h(x, t)
ds1
s1
· · · dsm

sm

dt

t
dx

∣∣∣∣
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≤
∣∣∣∣ �

Rn

(∞�
0

· · ·
∞�

0

|Θ̃t,~s(x)|2w(s1, . . . , sm, t)
−1 ds1

s1
· · · dsm

sm

dt

t

)1/2

×
(∞�

0

· · ·
∞�

0

|h(x, t)|2w(s1, . . . , sm, t)
ds1
s1
· · · dsm

sm

dt

t

)1/2

dx

∣∣∣∣,
where

w(s1, . . . , sm, t) =

m∏
i=1

min

(
t

si
,
si
t

)ε
for some ε > 0. This function is symmetric in all variables and satisfies

A1 = sup
t

∞�

0

· · ·
∞�

0

w(s1, . . . , sm, t)
ds1
s1
· · · dsm

sm
<∞,(4.17)

A2 = sup
s1>0

. . . sup
sm>0

∞�

0

w(s1, . . . , sm, t)
dt

t
<∞.(4.18)

In particular, in view of (4.17), we have( �

Rn

(∞�
0

· · ·
∞�

0

|h(x, t)|2w(s1, . . . , sm, t)
ds1
s1
· · · dsm

sm

dt

t

)p′/2
dx

)1/p′

≤
( �

Rn

(∞�
0

|h(x, t)|2 sup
t>0

∞�

0

· · ·
∞�

0

w(s1, . . . , sm, t)
ds1
s1
· · · dsm

sm

)p′/2
dx

)1/p′

. ‖h‖p′,2.
Proceeding exactly as in the case of one variable, we reduce matters to
showing that

(4.19) |Θt(Qs1f1, . . . , Qsmfm)(x)| . w(s1, . . . , sm, t)
m∏
i=1

M(fi)(x).

Inserting this estimate in (4.16) we obtain

(4.20)

( �

Rn

(∞�
0

· · ·
∞�

0

|Θt(Q2
s1f1, . . . , Q

2
smfm)(x)|2

×w(s1, . . . , sm, t)
−1 ds1

s1
· · · dsm

sm

dt

t

)p/2
dx

)1/p

≤
( �

Rn

(∞�
0

· · ·
∞�

0

∣∣∣ m∏
i=1

M(Qsifi)(x)
∣∣∣2

×w(s1, . . . , sm, t)
ds1
s1
· · · dsm

sm

dt

t

)p/2
dx

)1/p
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≤
( �

Rn

( m∏
i=1

∞�

0

|M(Qsifi)(x)|2 dsi
si

)p/2
×
(

sup
s1>0

. . . sup
sm>0

∞�

0

w(s1, . . . , sm, t)
dt

t

)p/2
dx

)1/p

.

The proof is now easily completed by applying Hölder’s inequality, the
vector-valued maximal function Fefferman–Stein inequality [10], and the
Littlewood–Paley theorem.

It suffices to obtain estimate (4.19). We begin by observing that the
kernel of the operator Θt(Qs1f1, . . . , Qsmfm)(x) is given by

(4.21) Lt,s1,...,sm(x, u1, . . . , um)

=
�

Rmn
θt(x, y1, . . . , ym)

m∏
i=1

ψsi(yi − ui) dy1 · · · dym.

We estimate this operator using two different kinds of decompositions. If
t ≤ r, s1, . . . , sm, we can use the cancellation properties of θt and ψsi and
rewrite Lt,s1,...,sm as

Lt,s1,...,sm(x, u1, . . . , um)

=
�

Rmn
θt(x, y1, . . . , ym)

m∏
i=1

ψsi(yi − ui) d~y

=
�

Rmn
[θt(x, y1, . . . , ym)− θt(x, u1, y2, . . . , ym)]

m∏
i=1

ψsi(yi − ui) d~y

+
�

Rmn
[θt(x, u1, y2 . . . , ym)− θt(x, u1, u2, . . . , ym)]

m∏
i=1

ψsi(yi − ui) d~y

...

+
�

Rmn
[θt(x, u1, . . . , um−1, ym)− θt(x, u1, . . . , um)]

m∏
i=1

ψsi(yi − ui) d~y

=
m∑
i=1

Li,It,s1,...,sm(x, u1, . . . , um),

noting that the term containing the θt(x, u1, . . . , um) vanishes since it is
multiplied by the product of the ψj ’s which have mean value zero. (We set
d~y = dy1 · · · dym.) We will refer to this kind of kernel pieces as type I. These
terms are estimated using (4.7) and (4.8); the ith term of the sum is
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(4.22) |Li,It,s1,...,sm(x, u1, . . . , um)|

. A
�

Rnm

min(2, (t−1|yi − ui|)γ

tmn

m∏
k=1

s−nk
(1 + s−1k |yk − uk|)n+1

dy1 · · · dym

. A
1

tn(m−1)
min

(
t

si
,
si
t

)n
min

(
t

si
,
si
t

) 1
2
min(δ,γ,1)

.

Now, if r, s1, . . . , sm ≤ t, using the cancellation conditions again, setting
d~y = dy1 · · · dym we obtain

Lt,s1,...,sm(x, u1, . . . , um)

=
�

Rmn
θt(x, y1, . . . , ym)

m∏
i=1

ψsi(yi − ui) dy1 · · · dym

=
�

Rmn
θt(x, y1, . . . , ym)

m∏
i=1

[{ψsi(yi − ui)− ψsi(x− ui)}+ ψsi(x− ui)] d~y

=
2m−1∑
i=1

Li,IIt,s1,...,sm
(x, u1, . . . , um),

where each term Li,IIt,s1,...,sm
(x, u1, . . . , um) has the form

Li,IIt,s1,...,sm
(x, u1, . . . , um)

=
�

Rmn
θt(x, y1, . . . , ym)

k∏
k=1

[ψsik (yik − uik)− ψsik (x− uik)]

×
l∏
l=1

ψsil (x− uil) dy1 · · · dym,

where k+l = m and {ik} are new indices obtained by permuting the original
ones. For simplicity, we may suppose that ik = i since the other terms are
a permutation of this case. This kind of kernel pieces will be referred to as
type II. These terms are estimated by

(4.23) |Li,IIt,s1,...,sm
(x, u1, . . . , um)|

≤
�

Rmn
|θt(x, y1, . . . , ym)|

k∏
i=1

|ψsi(yi − ui)− ψsi(x− ui)|

×
m∏

j=k+1

|ψsj (x− uj)| dy1 · · · dym
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. A

( k∏
i=1

�

Rn

t−n

(1 + t−1|x− yi|)n+δ
min(2, s−1i |x− yi|)

sni
dyi

)

. A
k∏
i=1

min

(
t

si
,
si
t

)n
min

(
t

si
,
si
t

)1/2min(δ,γ,1)

.

Combining all these estimates with

(4.24) |Lt,s1,...,sm(x, u1, . . . , um)|

≤
�

Rmn
|θt(x, y1, . . . , ym)|

m∏
i=1

|ψsi(yi − ui)| dy1 · · · dym

. A
m∏
i=1

min(t/si, si/t)
n

(1 + min(t/si, si/t)|x− ui|)n+min(δ,1)

we obtain (after some manipulations)

(4.25) |Θt(Qs1f1, . . . , Qsmfm)(x)|

. A

m∏
i=1

min

(
t

si
,
si
t

)ε m∏
i=1

( �

Rn

min(t/si, si/t)
n|fi(ui)|

((1 + min(t/si, si/t)|x− ui|)n+min(δ,1))β
dui

)

. A

( m∏
i=1

min

(
t

si
,
si
t

)ε) m∏
i=1

M(fi)(x)

for some positive constants ε, β > 0. Noticing that

w(t, s1, . . . , sm) =
m∏
i=1

min

(
t

si
,
si
t

)ε
satisfies (4.13) and (4.14) leads to the result.

5. The multilinear T (b) theorem for square functions. In this
section we prove Theorem 1.2. We will obtain the estimate

(5.1)
�

Rn

∞�

0

|Θt(f1, . . . , fm)(x)|2 dx dt
t

.
m∏
i=1

‖fi‖2pi

for operators Θt(f1, . . . , fm) satisfying the cancellation condition

Θt(b1, . . . , bm) = 0

for some accretive functions b1, . . . , bm.
Fix a smooth compactly supported and nonnegative function Φ with

integral equal to 1. Let Φt(x) = t−nΦ(x/t). Let Pt be given by

(5.2) Pt(f1, . . . , fm)(x) :=

m∏
i=1

(Φt ? fi)(x),
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which satisfies the same size condition as Θt. We introduce the operator

(5.3) Ξt(f1, . . . , fm) = Θt(Φt ? f1, . . . , Φt ? fm)

and we observe that

(5.4) Ξt(1, . . . , 1) = Θt(Φt ? 1, . . . , Φt ? 1) = Θt(1, . . . , 1).

The key idea is to decompose Θt(f1, . . . , fm) as the sum

(5.5) (Θt −Θt(1, . . . , 1)Pt)(f1, . . . , fm) +Θt(1, . . . , 1)Pt(f1, . . . , fm).

The first term in (5.5) satisfies

(5.6) (Θt −Θt(1, . . . , 1)Pt)(1, . . . , 1)

= Θt(1, . . . , 1)−Θt(1, . . . , 1)Pt(1, . . . , 1) = 0.

Since the kernel of this operator satisfies the same estimates as the kernel
of Θt, we apply Theorem 1.3 to conclude that this part satisfies (5.1) with
bound at most (Cn,δ,γA)2.

To obtain the required estimates for the termΘt(1, . . . , 1)Pt(f1, . . . , fm)(x)
we use the Carleson measure estimates. In fact, in view of Lemma 1, we reduce
this problem to showing that

(5.7) |Θt(1, . . . , 1)|2 dx dt
t

is a Carleson measure. As Θt(b1, . . . , bm) = 0, we have

(5.8) Θt(1, . . . , 1)Pt(b1, . . . , bm)

= (Pt(b1, . . . , bm)Θt(1, . . . , 1)−Ξt(b1, . . . , bm))

+ (Ξt(b1, . . . , bm)−Θt(b1, . . . , bm)).

If we could show that

(5.9) |Θt(b1, . . . , bm)(x)−Ξt(b1, . . . , bm)(x)|2 dx dt
t

and

(5.10) |Ξt(b1, . . . , bm)(x)− Pt(b1, . . . , bm)(x)Θt(1, . . . , 1)(x)|2 dx dt
t

are Carleson measures, then the measure

(5.11) |Pt(b1, . . . , bm)Θt(1, . . . , 1)|2 dx dt
t

would also be a Carleson measure. Since each piece of Pt is a positive oper-
ator and the functions b1, . . . , bm are accretive, we deduce

(5.12) |Pt(b1, . . . , bm)| ≥ Pt(Re(b1), . . . ,Re(bm)) ≥ Pt(c1, . . . , cm) =
m∏
i=1

ci,
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which implies

(5.13) |Θt(1, . . . , 1)|2 ≤ 1∏m
i=1 c

2
i

|Pt(b1, . . . , bm)Θt(1, . . . , 1)|2.

This would show that |Θt(1, . . . , 1)|2 dx dtt is a Carleson measure if so are
(5.9) and (5.10).

As b1, . . . , bm are bounded functions, the assertions that (5.9) and (5.10)
are Carleson measures follow from the facts that the operators

Π1
t (f1, . . . , fm) := (Θt −Ξt)(f1, . . . , fm)(x),(5.14)

Π2
t (f1, . . . , fm) := (Ξt −Θt(1, . . . , 1)Pt)(f1, . . . , fm)(x)(5.15)

satisfy the hypothesis of Theorem 1.1.

Case 1: The operator Π1
t (f1, . . . , fm). Note that

(5.16) Ξt(f1, . . . , fm) =
�

Rmn
ξt(x, y1, . . . , ym)

m∏
i=1

fi(yi) dy1 · · · dym

has the kernel

(5.17) ξt(x, y1, . . . , ym) =
�

Rmn
θt(x, u1, . . . , um)

m∏
i=1

Φt(ui − yi) du1 · · · dum,

which is easily seen to satisfy the size conditions. Thus we conclude that

Π1
t = Θt −Ξt

satisfies the required size estimates and additionally we have

Π1
t (1, . . . , 1) = Θt(1, . . . , 1)−Ξt(1, . . . , 1) = 0

in view of (5.4). Applying Theorem 1.3, we deduce that Π1
t is a bounded

operator

Lp1(Rn)× · · · × Lpm(Rn)→ L2(Rn, L2(R+))

with operator norm controlled by Cn,δ,γA; here 1/p1 + · · · + 1/pm = 1/2.
Then, by Theorem 1.1, we conclude that

(5.18) |Π1
t (b1, . . . , bm)(x)|2 dx dt

t

is a Carleson measure with constant controlled by Cn,δ,γA
2
∏m
i=1 ‖bi‖2∞.

Case 2: The operator Π2
t (f1, . . . , fm). The kernel of Π2

t is given by

(5.19) π2t (x, y1, . . . , ym) := ξt(x, y1, . . . , ym)−Θt(1, . . . , 1)(x)

m∏
i=1

Φt(x− yi)

and this is easily seen to satisfy the required size conditions, since both
ξt(x, y1, . . . , ym) and

∏m
i=1 Φt(x − yi) do so and since Θt(1, . . . , 1)(x) is a
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bounded function for each t > 0. Moreover, using (5.4) we have

(5.20) Π2
t (1, . . . , 1)(x)

= Ξt(1, . . . , 1)(x)−Θt(1, . . . , 1)(x)Pt(1, . . . , 1)(x) = 0,

and one more application of Theorem 1.3 permits us to conclude that Π2
t

maps

Lp1(Rn)× · · · × Lpm(Rn)→ L2(Rn, L2(R+))

continuously with the same norm estimate. Using Theorem 1.1 we obtain
the desired conclusion, that is, (5.18) is a Carleson measure with constant
controlled by

Cn,δ,γA
2
m∏
i=1

‖bi‖2∞.

Combining all these, we obtain (5.1) with bound

C2
n,δ,γA

2
(

1 +
m∏
i=1

‖bi‖2∞
)
.

This concludes the proof of Theorem 1.2.

6. Final remarks and further comments. As in Semmes [23], it is
possible to modify the preceding proof to the case of para-accretive func-
tions. This modification is straightforward and the details are left to the
interested reader.

Under stronger regularity for the kernel of Θt, Hart [16] proves a vector-
valued version of a bilinear Calderón–Zygmund theorem (in the spirit of
Grafakos and Torres [15] and Kenig and Stein [18]) which allows him to
obtain boundedness for the quadratic square function formed by Θt via
interpolation in the full range of exponents starting from an initial estimate.
The same idea could be adapted in our situation and this would yield the
boundedness of the quadratic square function formed by Θt in Theorem
1.2 from Lp1 × · · · × Lpm to Lp where 1 < pj < ∞, 1/m < p < ∞ and
1/p1 + · · ·+ 1/pm = 1/p, and also from L1 × · · · × L1 to L1/m,∞.
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